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Abstract—Recent advances in proactive cyber threat 
intelligence rely on early detection of cyber threats in hacker 
communities. Dark Net Markets (DNMs) are growing platforms 
in hacker community that provide hackers with highly-
specialized tools and products which may not be found in other 
platforms. While text classification techniques have been used for 
cyber threat detection in English DNMs, the task is hindered in 
non-English platforms due to the language barrier and lack of 
ground-truth data. Current approaches use monolingual models 
on machine translated data to overcome these challenges. 
However, the translation errors can deteriorate the classification 
results. The abundance of data in English DNMs can be 
leveraged in learning non-English threats without using machine 
translation. In this study, we show that a deep cross-lingual 
model that can jointly learn the common language representation 
from two languages, significantly outperforms a monolingual 
model learned on machine translated data for identifying cyber 
threats in non-English DNMs. Unlike most studies, our approach 
does not require any external data source such as bilingual word 
embeddings or bilingual lexicons. Our experiments on Russian 
DNMs show that this approach can achieve better performance 
than state-of-the-art methods for non-English cyber threat 
detection in malicious hacker community. 

Keywords—Dark Net Markets, cyber threat, deep learning, 
cross-lingual transfer learning 

I. INTRODUCTION 

Proactive Cyber Threat Intelligence (CTI) aims to mitigate 
the risk of cyber attacks by detecting emerging cyber threats in 
the hacker community [1]. Dark Net Markets (DNMs), hacker 
forums, carding shops, and Internet-Relay-Chat (IRC) 
comprise the vast online hacker community. Among them, 
Dark Net Marketplaces (DNMs) are an integral and unique part 
of this broad ecosystem in the sense that their anonymity and 
profitability provide an environment conducive to 
cybercriminal activities. DNMs host purchasable highly-
specialized products (listings) that are not available in other 
platforms (e.g., ransomware, keyloggers, SQL Injection tools, 
DDos Attack tools, stolen account information, and hacked 
personal credentials). These malicious products are viewed as 
threats to cybersecurity since they are often used by hackers to 
conduct cyber attacks. Since 2013, the number of language-
specific DNMs have increased [2]. While English is the 
dominant language,  

 

Fig. 1. Listings of Hacking Tools in a Russian DNM. 

Russian, French, and Italian are common non-English DNMs 
[3]. Based on the DNMs listed in deepdotweb.com, a popular 
website providing up-to-date directory of DNMs [4], almost 
56% of platforms are English, 19% are Russian, 12.5% are 
French, and the rest are Italian. Non-English DNMs reflect 
different geopolitical regions and vary in malicious products. 
In particular, while English DNMs are geared towards general 
hacking contents, the Russian DNMs offer specialized hacking 
services such as personalized email hacking, call flooding, and 
Distributed Denial of Service (DDoS) attacks (Fig. 1). 
Therefore, detecting cyber threats in non-English DNMs is 
crucial to providing global insight across hacker community. 

Despite their CTI value, DNMs also contain many non-
cyber threat products (e.g., digital goods and drugs). Manual 
cyber threat detection is impractical due to increasing number 
of new products. Researchers have adopted text classification 
to automate threat detection [5][6]. Text classification models 
require labeled data for training. While labeled data in English 
is often available, the language barrier results in limited labeled 
data in non-English DNMs which hinders cyber threat 
detection. Current studies use machine translation (MT) to 
tackle this challenge [7]–[9]. However, informal, non-
grammatical and hacker-specific language causes translation 
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errors. Machine translation errors often propagate to the model 
and deteriorate threat detection performance [10][11]. 
Deterioration of threat detection performance results in high 
false negative rate which leads to overlooking potentially 
important threats (e.g., missing a DDoS attack tool), and high 
false positive rate which leads to suggesting non-threats (e.g., a 
book about hacking) as threats. These issues motivate 
developing models that transfer knowledge from high-resource 
languages (e.g., English) to low-resource ones (e.g., Russian) 
without relying on MT. Transfer learning is a field of machine 
learning which is concerned with transferring the learned 
knowledge from a source domain or task to a target domain or 
task [12]. Here we consider an application of transfer learning 
known as Cross-Lingual Knowledge Transfer (CLKT), which 
aims to transfer the knowledge between two languages. Deep 
learning has gained success as a method to automatically 
extract salient features that are transferrable among languages 
and also provides an efficient way to transfer the knowledge 
via sharing network layers and parameters [13]. Among deep 
learning architectures, Bidirectional Long Short-Term 
Memories (BiLSTMs) have the capability of using word orders 
[14] and capturing temporal patterns. This makes them suitable 
for capturing the common language representation from 
different languages [15]. 

In this study, we propose a novel supervised knowledge 
transfer method for detecting cyber threats in non-English 
DNMs. This method leverages the labeled data in English 
DNMs in conjunction with the limited labeled data in target  
non-English DNMs simultaneously and learns a shared 
BiLSTM to capture common hacker language representation, 
which helps transferring the knowledge learned from English 
to non-English DNMs. Our approach differs from other deep 
CLKT approaches in the sense that it does not need any 
external resources such as mono or bilingual word-
embeddings, neither machine translation. Also most prior non-
cybersecurity studies assume there is no labeled data in the 
target language and therefore address unsupervised knowledge 
transfer. Given that in cybersecurity applications some labeled 
data is often available in the target language, using supervised 
approaches can lead to better performance as opposed to 
unsupervised methods. Our method reduces false positive and 
false negative rates without relying on MT and significantly 
outperforms the state-of-the-art methods used for detecting 
non-English cyber threats in CTI. 

II. LITERATURE REVIEW 

Given our research objective, four areas of research are 
reviewed. First, we investigate cyber threat detection in hacker 
community to examine the past efforts on detection of cyber 
threats in English and non-English platforms. Second, we 
review deep transfer learning and third, we examine its 
application, deep CLKT, to inform the development of a 
knowledge transfer method for cyber threat detection in non-
English DNMs. Finally, we describe BiLSTMs as a promising 
architecture for extracting and sharing the common language 
representation. 

A. Cyber Threat Detection in Hacker Community 

Hackers share knowledge and malicious tools through 
DNMs, hacker forums, carding shops, and IRC channels [16]. 
We summarize the prior work on these four platforms based on 
the supported languages and the approach used to deal with 
non-English platforms in order to gain a comprehensive insight 
into the state of the art in cyber threat detection in hacker 
community. Prior work on threat detection in hacker 
communities falls into two main categories: (1) monolingual 
approach and (2) machine translation-based approach. The 
former aims to build separate models in each language with 
language-specific features, while the latter uses machine 
translation to translate the non-English data to English and 
learns a monolingual model on the translated data 
subsequently. 

The majority of work in the first category is centered on 
English platforms. An explorative analysis of data sources in 
the dark web is conducted in [16] via monolingual keyword 
search and information retrieval on five hacker forums, eight 
IRC channels, and four carding shops in English and Russian. 
In another work [17], authors use monolingual recurrent neural 
networks to discover hacker jargons and terms in English 
forums. Similarly in [5], authors employ semi-supervised 
labeling and monolingual SVM classifiers to tackle threat 
detection in ten English DNMs. In [6], malicious product 
grouping in 17 English DNMs was presented via K-Means 
clustering. 

In the second category more work has been done on non-
English platforms. In [7], Support Vector Machine (SVM) was 
used in a monolingual setting to classify malware source codes 
on eight forums in English and Russian. In their approach, 
Russian data was machine translated to English using Google 
Translate. Similarly, in [8] authors used Maximum Entropy 
classification and Recursive Neural Networks to detect and rate 
top sellers in eight carding shops in English and Russian using 
Google Translate. Their approach uses SentiTreeBank, an 
external pre-trained word embedding  trained on customer 
reviews. Another machine translation-based approach is used 
in [9], which applies LSTM to detect mobile malware on four 
forums in English, Arabic, and Russian. Given that the 
methods in this category represent the state of the art in threat 
detection, their performance serve as baseline for our proposed 
method. 

There are two key limitations associated with current cyber 
threat detection models in non-English platforms. First, 
training separate monolingual models on low-resource non-
English languages is not practical [18][19] and cannot provide 
a global insight across DNMs with different languages. 
Second, erroneous machine translated technical text can affect 
system performance [10][11]. As a result, monolingual models 
applied on machine translated data may suffer from poor threat 
detection performance. Moreover, prior DNM studies only 
focus on English DNMs. 

In light of these limitations, we review deep transfer 
learning and its extension in cross-lingual knowledge transfer 
to inform the development of a method that can transfer the 
learned knowledge from a high-resource language (i.e., 
English) to low-resource non-English DNMs. 
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B. Deep Transfer Learning 

Transfer learning aims to leverage the knowledge obtained 
from a resource-rich task to solve a resource-deprived one in 
which there is not sufficient training data [12]. Recent 
progress in deep learning has revealed that layers and 
parameters in deep architectures can capture the underlying 
domain-invariant data representation [20]–[22]. Also, deep 
learning has shown promising results in automatically 
extracting important transferable features among tasks 
[13][23][24]. 

Achieving a domain-invariant representation and learning 
transferable features form the main idea of deep transfer 
learning and are mostly implemented via sharing layers and 
parameters among different tasks [13][25]. That is, sharing 
hidden layers in deep architectures facilitates using the 
knowledge from source domain to improve the performance in 
target domain [25]. 

C. Deep Cross-Lingual Knowledge Transfer (CLKT) 

CLKT is intended to improve the learning in target task in 
low-resource language domain LD ′ by using the knowledge 
from a source task in high-resource language domain LD . LD  
and LD ′ encompass the feature space in languages L and L′ , 
respectively. The task can be any machine learning problem of 
interest. For instance, in the case of cross-lingual threat 
detection in DNMs, source and target tasks both are formulated 
as assigning label { }1,0∈y  to a product description from source 
or target language L (English) and L′ (Russian). In this section, 
we review selected prior studies on deep CLKT for low-
resource text based on the application context and the method 
used in each study. 

CLKT has been successfully used in cross-lingual 
sentiment classification [26]–[28]. Different deep learning 
architectures including BiLSTM [26], adversarial networks 
[27], and stacked denoised autoencoders [28] have been used 
for capturing common language representation in sentiment 
classification. This area of research and cross-lingual threat 
detection are similar in the sense that both problems reduce to 
binary text classification. Cross-lingual knowledge transfer has 
also been used in fundamental NLP tasks such as Semantic 
Textual Similarity (STS) and language modeling. In [29], 
adversarial learning in conjunction with shared BiLSTMs was 
used to learn the bilingual sentence representation in 
identifying textual similarity. Also in [30], an LSTM language 
model with cross-lingual word embeddings was developed to 
improve the intrinsic quality of the language model. 

Methods in [26]–[28] assume there is no labeled data in the 
target language (unsupervised knowledge transfer). However, 
since limited labels in target language are often available in 
cybersecurity applications, we design our method such that it 
utilizes the limited labels in target DNMs (supervised 
knowledge transfer). Also, the approach used in [29] requires 
monolingual word embeddings in source and target language 
as an auxiliary resource, unlike our method which does not 
require any external data sources. 

D. Bidirectional Long Short-Term Memory (BiLSTM) 

As noted, BiLSTMs have shown to be successful in 
capturing common language representations due to their ability 
in capturing word orders [14]. BiLSTM consists of two LSTM 
layers, each reading the input sequence in opposite directions 
(Fig. 2).  

 
Fig. 2. Graphical Representation of Basic BiLSTM for Text Classification 

In Fig. 2, the goal is to predict label ŷ for the entire input 
sequence nwww ,...,, 21 in which wi denotes the ith word 

embedding vector. In the first step, forward and backward 
LSTMs (subscripted by f and b) read word embeddings in 

parallel and generate hidden states hdRh ∈


and hdRh ∈


 in 

which hdR  represents a real-valued vector with size hd . In the 

second step, the final hidden state hdRh ×∈ 2  is obtained from 

concatenating the final hidden states h


 and h


 in forward and 
backward layers. The loss ( )yy ˆ− is calculated in step 3. 
Finally, steps 1-3 are repeated until the loss function is 
minimized. 

E. Research Gaps and Questions 

Several research gaps are identified from the literature review. 
Most DNM studies only identify threats in English DNMs. 
Hence, threats in non-English DNMs (e.g., Russian) are 
understudied, yet critically needed. Prior studies addressing 
multiple languages either use independent monolingual models 
or train monolingual models on machine translated data which 
can lead to poor classification performance on low-resource 
non-English DNMs. The following questions are posed to 
address the identified gaps: 

• How can CLKT be leveraged for cyber threat detection 
in non-English DNMs without machine translation? 

• How can the threat knowledge learned from English 
DNMs be transferred to non-English DNMs? 

Motivated by these questions, we propose a novel transfer 
learning framework to conduct cross-lingual cyber threat 
detection in non-English DNMs. To our knowledge, this is the 
first framework that addresses the task in non-English DNMs. 
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III. RESEARCH DESIGN 

Our transfer learning-based cross-lingual cyber threat 
detection framework has three major components: data 
collection and preparation, bilingual testbed generation, and 
cross-lingual cyber threat detection and evaluation (Fig. 3). 

BiLingual Testbed 
Generation

Sampling English & 
Russian Training Corpus

Data Labeling

Cross-Lingual Cyber Threat 
Detection and Evaluation

Deep Joint Knowledge 
Transfer & classification

via CL-LSTM

Classification 
Performance Evaluation

Labeling by Native 
Speaker

Labeling by Security 
Expert

Data Collection
& Preparation

DNM Identification

Crawling & 
Information 
Extraction

DNM Document 
Repository

Baseline 
Performance Analysis

 

Fig. 3. Proposed Framework for Transfer Larning-Based Cross-Lingual 
Cyber Threat Detection 

A. Data Collection and Preparation 

Seven English DNMs and one Russian DNM were 
identified based on deepdotweb.com. A web spider employing 
techniques to avoid anti-crawling measures traversed each 
DNM to extract all product descriptions. 95,095 product 
descriptions were collected and parsed in a relational database. 
The product descriptions include cyber-threat related products 
(e.g., DDoS, ransomware, and keyloggers) and non-cyber 
threats (e.g., drugs, digital goods, books, and weapons). 

B. Bilingual Testbed Generation 

To facilitate the training of our proposed model, we 
randomly sampled the product descriptions in each language 
by preserving the ratio of cyber to non-cyber products and 
obtained 2,373 product listings including 1,821 English and 
552 Russian products (Table I). English product description 
were manually labeled as cyber threats or non-threats by two 
cybersecurity experts. Russian products were manually labelled 
by a cybersecurity expert and a Russian speaker. 

TABLE I.  SUMMARY OF DNM DATA COLLECTION 

DNM # of listings Language 
# of Labeled 

Products 
Year 

Dream Market 39,473 

English 1,821 
2016, 
2017 

 

AlphaBay 25,118 
Hansa 14,149 
Silkroad3 1,683 
Minerva 683 
Apple Market 877 
Valhalla 12,192 
Russian Silkroad 920 Russian 552 2016

Total: 95,095 - 2,373 2016-2017

C. Cross-Lingual Cyber Threat Detection 

As noted in the deep CLKT review, joint learning of shared 
hidden layers has shown to produce high-quality language 
representations. The resulting BiLSTM (without the fully 
connected layer) can be shared between two networks each 
training on a different language to capture the commonalities 

from both languages in the form of hidden states [15][29]. 
Motivated by this finding, we propose CL-LSTM (Cross-
Lingual LSTM) which employs BiLSTM to jointly learn the 
common hacker language representation from English and 
non-English DNMs. Our method is inspired by a monolingual 
architecture in [31], which includes joint learning of a common 
representation from two classification tasks in English (i.e., 
sentiment classification and subjectivity analysis) using shared 
BiLSTMs in a multi-task manner with homogenous feature 
spaces. Unlike this study, our approach deals with 
heterogeneous feature spaces in two different languages and is 
not concerned with learning from different tasks. Furthermore, 
[31] uses Word2Vec English word embeddings as external 
resources, while the word embeddings in our method are 
randomly initialized and are learned during the training 
process. 

We developed CL-LSTM for Russian cyber threat 
detection. The architecture and key operations of CL-LSTM 
are shown in Fig. 4. There are three layers in this architecture: 
a language-independent shared BiLSTM layer to jointly 
capture the common representation from English and Russian, 
and two language-specific LSTM layers that interpret the 
common representation for threat detection in Russian and 
English separately (shown by LSTMru and LSTMen). While 
English and Russian labeled data (i.e., supervision signals) are 
different for each language-specific layer the weights and 
structure of shared BiLSTM is shared and therefore is the same 
for both languages. 

Fig. 4. Graphical Illustration of CL-LSTM for Joint Cross-Lingual 
Knowledge Transfer from English to Russian. 

As shown in Fig. 4, in step 1 (represented in red circle), the 
shared BiLSTM layer reads word embeddings of products in 
English and Russian DNMs in parallel. In step 2, the hidden 
state vectors emitted by the shared layer at each time-step are 
fed to language-specific layers. In step 3, the class labels for 
the products in each language are predicted independently via 

softmax functions enσ  and ruσ . Lastly, the loss values are 
calculated for English and Russian separately and gradient 
errors propagate to the shared layer. These steps repeat until 
the loss is minimized or a stop condition (e.g., maximum 
number of training epochs) is met. 

The shared bidirectional layer (BiLSTM cells in Fig. 4) is 
composed of a forward and a backward LSTM as already 
shown in Fig. 2. The only difference with the conventional 
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BiLSTM is that the weight matrices are shared between 
Russian- and English-specific layers. While different 
specifications are available for BiLSTMs we implemented the 
specification in [32] (Eq. 1-4). 

( )tt Coh tanh∗=  (1) 

ttttt zifCC ∗+∗= −1  (2) 

( ) shared
it

shared
hgt

shared
xgt bhUxWg ++= −1σ  (3) 

( ) shared
zt

shared
hzt

shared
xzt bhUxWz ++= −1tanh  (4) 

ht and Ct are hidden state and cell state at time t. Also g 
represents either of input (i), forget (f), and output (o) gate 
vectors and * denotes component-wise vector 

multiplication. shared
xgW denotes shared weight matrices from 

input vector xt to input, forget or output gates. Similarly, U 
represents weight matrices between hidden state vectors and 
the gates. bshared denotes the common bias terms. zt is the 
potential update computed as in simple recurrent neural 
network. σ can be any non-linearity. The same specification 
applies to the backward LSTM. The final output from each cell 
in the shared layer is generated by concatenating hidden states 
in forward and backward LSTMs [32]. 

tt
shared hhy
t


⊕=  (5) 

The learning procedure of our CL-LSTM is summarized in 
Algorithm 1. Cross-entropy loss [29] was used as loss function 
and was minimized by Adam optimizer [33]. Also tanh and 
sigmoid were used as activations. 

Algorithm 1. CL-LSTM Learning Procedure for Russian DNMs. 

Inputs: Word embedding sequences 
enW and 

ruW in which 

en
n

enenen
i wwwW ,...,, 21= , ru

n
rururu

i wwwW ,...,, 21= represent 

the sequence for ith product description in the domain of source and target 

DNM ( enD , ruD ), respectively. 

Output: Predicted class label for products from target DNM (
ruŷ ). 

while CrossEntropy )ˆ,( ruyy  is minimized or stop condition is met, do 

  for each batch of word embedding sequence 
en

iW  and 
ru

iW  do 

      - Compute the hidden states th  for shared biLSTM by Eq. 1-4. 

      - Feed th as input to language-specific LSTMs and generate the final 

hidden state from the last cell in each layer to obtain 
ruŷ . 

      - Calculate the error gradients via CrossEntropy )ˆ,( ruyy . 

      - Update shared layer weights ( sharedW and sharedU ) and language-
specific layers’ weights through propagating the error gradients. 

  end for 
end while 

return 
ruŷ  

D. Performance Evaluation 

As noted in the literature review section, machine-
translation based methods represent the state of the art in cyber 
threat detection. Accordingly, to compare the results, we 
applied the approach used in [7][9] to our dataset. We denote 

these two methods as SVM + MT and LSTM + MT, respectively. 
The methods used in [29][30][8] leverage pre-trained word 
embeddings and therefore are excluded from our evaluation. 
Similarly, the unsupervised approaches mentioned in CLKT 
review [26]–[28] were excluded for a fair comparison. 

The training and testing partitions were constructed via 
random assignment (80% to 20%). Hyperparameters (e.g., 
activation type, batch size) were tuned through 2-fold cross-
validation. For deep learning models, we ran each test 10 times 
and averaged the results. BiLSTM layers in all models have 
equal number of cells (i.e., 100). Accuracy, precision, recall, 
and F1-score have already been used as cyber threat detection 
performance measures in the literature [7]–[9]. To further 
evaluate our method, we also compare the area under ROC 
curve (AUC). The statistical significance of the results was 
calculated by paired t-test [34]. 

IV. RESULTS AND DISCUSSION 

We compare our method to the benchmarks in terms of 
accuracy, precision, recall, and F1-score (Table II and Fig. 5) 

TABLE II.  EVALUATING CL-LSTM AGAINST BASELINES 

Method Description Accuracy Precision Recall F1-score 

SVM + MT 95.15***a 96.15** 86.21*** 90.91*** 

LSTM + MT 96.50* 97.88 89.66* 93.52** 

BiLSTM + MT 94.17*** 92.18** 87.24* 89.45*** 

CL-LSTM 97.50 98.90 92.28 95.39 
a. P-values significant at 0.05:*, 0.01:**, 0.001:***. 

 
Fig. 5. CL-LSTM Performance Comparison 

CL-LSTM outperforms all methods in accuracy, recall, and 
F1-score by statistically significant margins. Fig. 6 compares 
the AUC for deep learning benchmarks indicating that CL-
LSTM can correctly detect more threats, while it reduces the 
number of false positives. 

 

Fig. 6. Comparing the AUC for deep learning benchmarks 
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V. CONCLUSION AND FUTURE DIRECTIONS 

In this research, we propose a novel transfer learning-based 
cyber threat detection framework for  non-English DNMs 
using deep CLKT. We showed that threat knowledge learned 
from English DNMs can be transferred to Russian DNMs. Our 
approach jointly learns the common hacker-specific 
representation from Russian and English DNMs and 
outperforms baselines without relying on machine translation. 
Our framework advances proactive CTI by bridging the gap 
caused by language barrier in non-English DNMs and can help 
CTI professionals gain a better insight about cyber threats in 
foreign language DNMs. Future research is needed on 
developing methods to handle very short product descriptions 
at the character level. Validating the framework on other 
platforms (e.g., hacker forums) and other target languages (e.g., 
Arabic, Chinese) is another promising research direction. 
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