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Abstract—Recent advances in proactive cyber threat
intelligence rely on early detection of cyber threats in hacker
communities. Dark Net Markets (DNMs) are growing platforms
in hacker community that provide hackers with highly-
specialized tools and products which may not be found in other
platforms. While text classification techniques have been used for
cyber threat detection in English DNMs, the task is hindered in
non-English platforms due to the language barrier and lack of
ground-truth data. Current approaches use monolingual models
on machine translated data to overcome these challenges.
However, the translation errors can deteriorate the classification
results. The abundance of data in English DNMs can be
leveraged in learning non-English threats without using machine
translation. In this study, we show that a deep cross-lingual
model that can jointly learn the common language representation
from two languages, significantly outperforms a monolingual
model learned on machine translated data for identifying cyber
threats in non-English DNMs. Unlike most studies, our approach
does not require any external data source such as bilingual word
embeddings or bilingual lexicons. Our experiments on Russian
DNMs show that this approach can achieve better performance
than state-of-the-art methods for non-English cyber threat
detection in malicious hacker community.

Keywords—Dark Net Markets, cyber threat, deep learning,
cross-lingual transfer learning

I. INTRODUCTION

Proactive Cyber Threat Intelligence (CTI) aims to mitigate
the risk of cyber attacks by detecting emerging cyber threats in
the hacker community [1]. Dark Net Markets (DNMs), hacker
forums, carding shops, and Internet-Relay-Chat (IRC)
comprise the vast online hacker community. Among them,
Dark Net Marketplaces (DNMs) are an integral and unique part
of this broad ecosystem in the sense that their anonymity and
profitability —provide an environment conducive to
cybercriminal activities. DNMs host purchasable highly-
specialized products (listings) that are not available in other
platforms (e.g., ransomware, keyloggers, SQL Injection tools,
DDos Attack tools, stolen account information, and hacked
personal credentials). These malicious products are viewed as
threats to cybersecurity since they are often used by hackers to
conduct cyber attacks. Since 2013, the number of language-
specific DNMs have increased [2]. While English is the
dominant language,
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Fig. 1. Listings of Hacking Tools in a Russian DNM.

Russian, French, and Italian are common non-English DNMs
[3]. Based on the DNMs listed in deepdotweb.com, a popular
website providing up-to-date directory of DNMs [4], almost
56% of platforms are English, 19% are Russian, 12.5% are
French, and the rest are Italian. Non-English DNMs reflect
different geopolitical regions and vary in malicious products.
In particular, while English DNMs are geared towards general
hacking contents, the Russian DNMs offer specialized hacking
services such as personalized email hacking, call flooding, and
Distributed Denial of Service (DDoS) attacks (Fig. 1).
Therefore, detecting cyber threats in non-English DNMs is
crucial to providing global insight across hacker community.

Despite their CTI value, DNMs also contain many non-
cyber threat products (e.g., digital goods and drugs). Manual
cyber threat detection is impractical due to increasing number
of new products. Researchers have adopted text classification
to automate threat detection [5][6]. Text classification models
require labeled data for training. While labeled data in English
is often available, the language barrier results in limited labeled
data in non-English DNMs which hinders cyber threat
detection. Current studies use machine translation (MT) to
tackle this challenge [7]-[9]. However, informal, non-
grammatical and hacker-specific language causes translation
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errors. Machine translation errors often propagate to the model
and deteriorate threat detection performance [10][11].
Deterioration of threat detection performance results in high
false negative rate which leads to overlooking potentially
important threats (e.g., missing a DDoS attack tool), and high
false positive rate which leads to suggesting non-threats (e.g., a
book about hacking) as threats. These issues motivate
developing models that transfer knowledge from high-resource
languages (e.g., English) to low-resource ones (e.g., Russian)
without relying on MT. Transfer learning is a field of machine
learning which is concerned with transferring the learned
knowledge from a source domain or task to a target domain or
task [12]. Here we consider an application of transfer learning
known as Cross-Lingual Knowledge Transfer (CLKT), which
aims to transfer the knowledge between two languages. Deep
learning has gained success as a method to automatically
extract salient features that are transferrable among languages
and also provides an efficient way to transfer the knowledge
via sharing network layers and parameters [13]. Among deep
learning architectures, Bidirectional Long Short-Term
Memories (BiLSTMSs) have the capability of using word orders
[14] and capturing temporal patterns. This makes them suitable
for capturing the common language representation from
different languages [15].

In this study, we propose a novel supervised knowledge
transfer method for detecting cyber threats in non-English
DNMs. This method leverages the labeled data in English
DNMs in conjunction with the limited labeled data in target
non-English DNMs simultaneously and learns a shared
BIiLSTM to capture common hacker language representation,
which helps transferring the knowledge learned from English
to non-English DNMs. Our approach differs from other deep
CLKT approaches in the sense that it does not need any
external resources such as mono or bilingual word-
embeddings, neither machine translation. Also most prior non-
cybersecurity studies assume there is no labeled data in the
target language and therefore address unsupervised knowledge
transfer. Given that in cybersecurity applications some labeled
data is often available in the target language, using supervised
approaches can lead to better performance as opposed to
unsupervised methods. Our method reduces false positive and
false negative rates without relying on MT and significantly
outperforms the state-of-the-art methods used for detecting
non-English cyber threats in CTL

II. LITERATURE REVIEW

Given our research objective, four areas of research are
reviewed. First, we investigate cyber threat detection in hacker
community to examine the past efforts on detection of cyber
threats in English and non-English platforms. Second, we
review deep transfer learning and third, we examine its
application, deep CLKT, to inform the development of a
knowledge transfer method for cyber threat detection in non-
English DNMs. Finally, we describe BiLSTMs as a promising
architecture for extracting and sharing the common language
representation.

86

A. Cyber Threat Detection in Hacker Community

Hackers share knowledge and malicious tools through
DNMs, hacker forums, carding shops, and IRC channels [16].
We summarize the prior work on these four platforms based on
the supported languages and the approach used to deal with
non-English platforms in order to gain a comprehensive insight
into the state of the art in cyber threat detection in hacker
community. Prior work on threat detection in hacker
communities falls into two main categories: (1) monolingual
approach and (2) machine translation-based approach. The
former aims to build separate models in each language with
language-specific features, while the latter uses machine
translation to translate the non-English data to English and
learns a monolingual model on the translated data
subsequently.

The majority of work in the first category is centered on
English platforms. An explorative analysis of data sources in
the dark web is conducted in [16] via monolingual keyword
search and information retrieval on five hacker forums, eight
IRC channels, and four carding shops in English and Russian.
In another work [17], authors use monolingual recurrent neural
networks to discover hacker jargons and terms in English
forums. Similarly in [5], authors employ semi-supervised
labeling and monolingual SVM classifiers to tackle threat
detection in ten English DNMs. In [6], malicious product
grouping in 17 English DNMs was presented via K-Means
clustering.

In the second category more work has been done on non-
English platforms. In [7], Support Vector Machine (SVM) was
used in a monolingual setting to classify malware source codes
on eight forums in English and Russian. In their approach,
Russian data was machine translated to English using Google
Translate. Similarly, in [8] authors used Maximum Entropy
classification and Recursive Neural Networks to detect and rate
top sellers in eight carding shops in English and Russian using
Google Translate. Their approach uses SentiTreeBank, an
external pre-trained word embedding trained on customer
reviews. Another machine translation-based approach is used
in [9], which applies LSTM to detect mobile malware on four
forums in English, Arabic, and Russian. Given that the
methods in this category represent the state of the art in threat
detection, their performance serve as baseline for our proposed
method.

There are two key limitations associated with current cyber
threat detection models in non-English platforms. First,
training separate monolingual models on low-resource non-
English languages is not practical [18][19] and cannot provide
a global insight across DNMs with different languages.
Second, erroneous machine translated technical text can affect
system performance [10][11]. As a result, monolingual models
applied on machine translated data may suffer from poor threat
detection performance. Moreover, prior DNM studies only
focus on English DNMs.

In light of these limitations, we review deep transfer
learning and its extension in cross-lingual knowledge transfer
to inform the development of a method that can transfer the
learned knowledge from a high-resource language (i.e.,
English) to low-resource non-English DNMs.



B. Deep Transfer Learning

Transfer learning aims to leverage the knowledge obtained
from a resource-rich task to solve a resource-deprived one in
which there is not sufficient training data [12]. Recent
progress in deep learning has revealed that layers and
parameters in deep architectures can capture the underlying
domain-invariant data representation [20]-[22]. Also, deep
learning has shown promising results in automatically
extracting important transferable features among tasks
[13][23][24].

Achieving a domain-invariant representation and learning
transferable features form the main idea of deep transfer
learning and are mostly implemented via sharing layers and
parameters among different tasks [13][25]. That is, sharing
hidden layers in deep architectures facilitates using the
knowledge from source domain to improve the performance in
target domain [25].

C. Deep Cross-Lingual Knowledge Transfer (CLKT)

CLKT is intended to improve the learning in target task in
low-resource language domain DY by using the knowledge
from a source task in high-resource language domain D*. D*

and DY encompass the feature space in languages L and L',
respectively. The task can be any machine learning problem of
interest. For instance, in the case of cross-lingual threat
detection in DNMs, source and target tasks both are formulated
as assigning label y € {0,1} to a product description from source

or target language L (English) and L’ (Russian). In this section,
we review selected prior studies on deep CLKT for low-
resource text based on the application context and the method
used in each study.

CLKT has been successfully used in cross-lingual
sentiment classification [26]-[28]. Different deep learning
architectures including BiLSTM [26], adversarial networks
[27], and stacked denoised autoencoders [28] have been used
for capturing common language representation in sentiment
classification. This area of research and cross-lingual threat
detection are similar in the sense that both problems reduce to
binary text classification. Cross-lingual knowledge transfer has
also been used in fundamental NLP tasks such as Semantic
Textual Similarity (STS) and language modeling. In [29],
adversarial learning in conjunction with shared BiILSTMs was
used to learn the bilingual sentence representation in
identifying textual similarity. Also in [30], an LSTM language
model with cross-lingual word embeddings was developed to
improve the intrinsic quality of the language model.

Methods in [26]-[28] assume there is no labeled data in the
target language (unsupervised knowledge transfer). However,
since limited labels in target language are often available in
cybersecurity applications, we design our method such that it
utilizes the limited labels in target DNMs (supervised
knowledge transfer). Also, the approach used in [29] requires
monolingual word embeddings in source and target language
as an auxiliary resource, unlike our method which does not
require any external data sources.
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D. Bidirectional Long Short-Term Memory (BiLSTM)

As noted, BiLSTMs have shown to be successful in
capturing common language representations due to their ability
in capturing word orders [14]. BILSTM consists of two LSTM
layers, each reading the input sequence in opposite directions

(Fig. 2).
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Fig. 2. Graphical Representation of Basic BILSTM for Text Classification

In Fig. 2, the goal is to predict label y for the entire input

sequence (wj,wy,..,w,) in which w; denotes the i” word

embedding vector. In the first step, forward and backward
LSTMs (subscripted by f and b) read word embeddings in

parallel and generate hidden states he R and he R" in

which R represents a real-valued vector with size d 5 - Inthe

second step, the final hidden state A€ R 2 is obtained from

concatenating the final hidden states h and h in forward and
backward layers. The loss (y— )7) is calculated in step 3.

Finally, steps 1-3 are repeated until the loss function is
minimized.

E. Research Gaps and Questions

Several research gaps are identified from the literature review.
Most DNM studies only identify threats in English DNMs.
Hence, threats in non-English DNMs (e.g., Russian) are
understudied, yet critically needed. Prior studies addressing
multiple languages either use independent monolingual models
or train monolingual models on machine translated data which
can lead to poor classification performance on low-resource
non-English DNMs. The following questions are posed to
address the identified gaps:

e How can CLKT be leveraged for cyber threat detection
in non-English DNMs without machine translation?

e How can the threat knowledge learned from English
DNMs be transferred to non-English DNMs?

Motivated by these questions, we propose a novel transfer
learning framework to conduct cross-lingual cyber threat
detection in non-English DNMs. To our knowledge, this is the
first framework that addresses the task in non-English DNMs.



III. RESEARCH DESIGN

Our transfer learning-based cross-lingual cyber threat
detection framework has three major components: data
collection and preparation, bilingual testbed generation, and
cross-lingual cyber threat detection and evaluation (Fig. 3).

BiLingual Testbed
Generation

Cross-Lingual Cyber Threat
Detection and Evaluation
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& Preparation

Sa.mpling.Er\insh & Deep Joint Knowledge
Russian Training Corpus Transfer & classification
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DNM Document
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Fig. 3. Proposed Framework for Transfer Larning-Based Cross-Lingual
Cyber Threat Detection

A. Data Collection and Preparation

Seven English DNMs and one Russian DNM were
identified based on deepdotweb.com. A web spider employing
techniques to avoid anti-crawling measures traversed each
DNM to extract all product descriptions. 95,095 product
descriptions were collected and parsed in a relational database.
The product descriptions include cyber-threat related products
(e.g., DDoS, ransomware, and keyloggers) and non-cyber
threats (e.g., drugs, digital goods, books, and weapons).

B. Bilingual Testbed Generation

To facilitate the training of our proposed model, we
randomly sampled the product descriptions in each language
by preserving the ratio of cyber to non-cyber products and
obtained 2,373 product listings including 1,821 English and
552 Russian products (Table I). English product description
were manually labeled as cyber threats or non-threats by two
cybersecurity experts. Russian products were manually labelled
by a cybersecurity expert and a Russian speaker.

TABLE L. SUMMARY OF DNM DATA COLLECTION
e # of Labeled

DNM # of listings | Language Products Year
Dream Market 39,473
AlphaBay 25,118
Hansa 14,149 2016,
Silkroad3 1,683 English 1,821 2017
Minerva 683
Apple Market 877
Valhalla 12,192
Russian Silkroad | 920 Russian 552 2016
Total: 95,095 - 2,373 2016-2017

C. Cross-Lingual Cyber Threat Detection

As noted in the deep CLKT review, joint learning of shared
hidden layers has shown to produce high-quality language
representations. The resulting BIiLSTM (without the fully
connected layer) can be shared between two networks each
training on a different language to capture the commonalities
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from both languages in the form of hidden states [15][29].
Motivated by this finding, we propose CL-LSTM (Cross-
Lingual LSTM) which employs BiLSTM to jointly learn the
common hacker language representation from English and
non-English DNMs. Our method is inspired by a monolingual
architecture in [31], which includes joint learning of a common
representation from two classification tasks in English (i.e.,
sentiment classification and subjectivity analysis) using shared
BiLSTMs in a multi-task manner with homogenous feature
spaces. Unlike this study, our approach deals with
heterogeneous feature spaces in two different languages and is
not concerned with learning from different tasks. Furthermore,
[31] uses Word2Vec English word embeddings as external
resources, while the word embeddings in our method are
randomly initialized and are learned during the training
process.

We developed CL-LSTM for Russian cyber threat
detection. The architecture and key operations of CL-LSTM
are shown in Fig. 4. There are three layers in this architecture:
a language-independent shared BiLSTM layer to jointly
capture the common representation from English and Russian,
and two language-specific LSTM layers that interpret the
common representation for threat detection in Russian and
English separately (shown by LSTM™ and LSTM®"). While
English and Russian labeled data (i.e., supervision signals) are
different for each language-specific layer the weights and
structure of shared BiLSTM is shared and therefore is the same
for both languages.

Padded Word Embeddings from Russian DNM

i i
LSTM’% LSTM.%— é——» LSTMO}>

BILSTM <—> BlLSTM <—> BlLSTM “--+ BiLSTM <
l y
LSTME” M LSTME“ -—» LSTM™ o

Cross-Lingual

Padded Word Embeddmgs from English DNMs

Fig. 4. Graphical Illustration of CL-LSTM for Joint
Knowledge Transfer from English to Russian.

As shown in Fig. 4, in step 1 (represented in red circle), the
shared BiLSTM layer reads word embeddings of products in
English and Russian DNMs in parallel. In step 2, the hidden
state vectors emitted by the shared layer at each time-step are
fed to language-specific layers. In step 3, the class labels for
the products in each language are predicted independently via

softmax functions o and o™ . Lastly, the loss values are
calculated for English and Russian separately and gradient
errors propagate to the shared layer. These steps repeat until
the loss is minimized or a stop condition (e.g., maximum
number of training epochs) is met.

The shared bidirectional layer (BiLSTM cells in Fig. 4) is
composed of a forward and a backward LSTM as already
shown in Fig. 2. The only difference with the conventional



BILSTM is that the weight matrices are shared between
Russian- and English-specific layers. While different
specifications are available for BILSTMs we implemented the
specification in [32] (Eq. 1-4).

h, = 0 tanh(C,) (1)
C,=C, *f, +i *z 2
g = O_(mzzaredxt " U;gared hH) " bl:shared 3)
z, = tanh (e x, 4 U, )+ b )

h; and C; are hidden state and cell state at time ¢ Also g
represents either of input (i), forget (f), and output (o) gate
vectors and *  denotes component-wise  vector

multiplication. Wxsghmd denotes shared weight matrices from

input vector x; to input, forget or output gates. Similarly, U
represents weight matrices between hidden state vectors and
the gates. "¢ denotes the common bias terms. z is the
potential update computed as in simple recurrent neural
network. o can be any non-linearity. The same specification
applies to the backward LSTM. The final output from each cell
in the shared layer is generated by concatenating hidden states
in forward and backward LSTMs [32].

yjharcd =ht @ ht (5)

The learning procedure of our CL-LSTM is summarized in
Algorithm 1. Cross-entropy loss [29] was used as loss function
and was minimized by Adam optimizer [33]. Also tanh and
sigmoid were used as activations.

these two methods as SVM + MT and LSTM + MT, respectively.
The methods used in [29][30][8] leverage pre-trained word
embeddings and therefore are excluded from our evaluation.
Similarly, the unsupervised approaches mentioned in CLKT
review [26]-[28] were excluded for a fair comparison.

The training and testing partitions were constructed via
random assignment (80% to 20%). Hyperparameters (e.g.,
activation type, batch size) were tuned through 2-fold cross-
validation. For deep learning models, we ran each test 10 times
and averaged the results. BILSTM layers in all models have
equal number of cells (i.e., 100). Accuracy, precision, recall,
and Fi-score have already been used as cyber threat detection
performance measures in the literature [7]-[9]. To further
evaluate our method, we also compare the area under ROC
curve (AUC). The statistical significance of the results was
calculated by paired t-test [34].

IV. RESULTS AND DISCUSSION

We compare our method to the benchmarks in terms of
accuracy, precision, recall, and F-score (Table II and Fig. 5)

Algorithm 1. CL-LSTM Learning Procedure for Russian DNMs.

Inputs: Word embedding sequences W and W™ in which

en _ [ en en en ru
Wi _<Wl SWD 5ees Wy >’W;

<w1m Wy Wy > represent
the sequence for i product description in the domain of source and target
DNM ( D", D"™), respectively.
Output: Predicted class label for products from target DNM ( )A/m ).
while CrossEntropy (v, ™) is minimized or stop condition is met, do
for each batch of word embedding sequence W;”" and W, do
- Compute the hidden states ht for shared biLSTM by Eq. 1-4.

- Feed ht as input to language-specific LSTMs and generate the final
hidden state from the last cell in each layer to obtain ﬁru .

- Calculate the error gradients via CrossEntropy (y,y"™).

- Update shared layer weights (7 *"¢@ and U~"@ed y and language-

specific layers’ weights through propagating the error gradients.
end for
end while

return )A/ -

D. Performance Evaluation

As noted in the literature review section, machine-
translation based methods represent the state of the art in cyber
threat detection. Accordingly, to compare the results, we
applied the approach used in [7][9] to our dataset. We denote
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TABLE II. EVALUATING CL-LSTM AGAINST BASELINES
Method Description Accuracy | Precision Recall Fi-score
SVM + MT 95.15%** 1 96,15%* 86.21%** | 90.91***
LSTM + MT 96.50* 97.88 89.66* 93.52%*
BIiLSTM + MT 94, 17*** 192, 18%* 87.24% 89.45%**
CL-LSTM 97.50 98.90 92.28 95.39
2 P-values significant at 0.05:", 0.01:"*, 0.001:"*".
100

Accuracy Precdision Recall Fl-score

m CL-L5TM SVM + MT LSTM + MT GilLSTM + MT

Fig. 5. CL-LSTM Performance Comparison

CL-LSTM outperforms all methods in accuracy, recall, and
Fi-score by statistically significant margins. Fig. 6 compares
the AUC for deep learning benchmarks indicating that CL-
LSTM can correctly detect more threats, while it reduces the
number of false positives.
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Fig. 6. Comparing the AUC for deep learning benchmarks



V. CONCLUSION AND FUTURE DIRECTIONS

In this research, we propose a novel transfer learning-based
cyber threat detection framework for non-English DNMs
using deep CLKT. We showed that threat knowledge learned
from English DNMs can be transferred to Russian DNMs. Our
approach jointly learns the common hacker-specific
representation from Russian and English DNMs and
outperforms baselines without relying on machine translation.
Our framework advances proactive CTI by bridging the gap
caused by language barrier in non-English DNMs and can help
CTI professionals gain a better insight about cyber threats in
foreign language DNMs. Future research is needed on
developing methods to handle very short product descriptions
at the character level. Validating the framework on other
platforms (e.g., hacker forums) and other target languages (e.g.,
Arabic, Chinese) is another promising research direction.
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