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Abstract

We prove stable recurrent neural networks are well approximated by feed-forward networks
for the purpose of both inference and training. Our result applies to a broad range of non-
linear recurrent neural networks under natural stability and smoothness assumptions on the
state-transition map. As a corollary, we show that stable recurrent neural networks cannot have
long-term memory; the gradients of the training objective must vanish with respect to inputs
encountered far enough in the past.

From a rigorous theoretical perspective, our work sheds light on central phenomena in learn-
ing artificial neural networks such as the vanishing gradient problem and the power of recurrent
models.

1 Introduction

Recurrent neural networks are a popular modeling choice for solving sequence learning problems
arising in domains such as speech recognition, and natural language processing. At the outset,
recurrent neural networks are non-linear dynamical systems commonly trained to fit sequence data
via some variant of gradient descent.

Recurrent models feature flexibility and expressivity that come at a cost. Empirical experience
shows that these models are often more delicate to tune and more brittle to train [10] than standard
feed-forward architectures. Recurrent architectures can also introduce significant computational
burden compared with feed-forward implementations.

In response to these shortcomings, a growing line of empirical research succeeds in replacing
recurrent models effectively by feed-forward models in important applications, including transla-
tion [5,14], speech [13], and language modeling [4].

This development raises an intriguing question for theoretical investigation:

Can well-behaved recurrent neural networks in principle always be replaced by a feed-forward
model of comparable size without loss in performance?

To answer this question, we need to understand what class of recurrent neural networks we ought to
call well-behaved. In principle, it easy to contrive a non-linear recurrent models that on some input
sequences cannot be approximated by a feed forward model. But would such recurrent models be
trainable by gradient descent?
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One natural—even if not strictly necessary—requirement for gradient descent to work is that
the gradients of the training objective do not explode over time. This criterion roughly agrees with
the natural control-theoretic requirement of stability. The system can always be normalized in such
a manner that the gradients do not explode, but then they might vanish. Gradients that vanish
over time suggest that the system is unable to utilize inputs encountered long ago, suggesting that
a feed-forward approximation may be possible.

Roughly speaking, we show that for recurrent neural networks there is no robust sweet spot
between exploding and vanishing gradients. If they avoid exploding gradients, they exhibit vanish-
ing gradients. We can avoid vanishing gradients by making the system unstable, but then we face
exploding gradients and must resort to various heuristics for coping with them, such as, gradient
clipping [10].

Extending on the vanishing gradients property, we prove a general approximation result showing
that stable recurrent neural networks can be approximated well by feed-forward models for the
purpose of both inference and training by gradient descent. The latter result uses fundamental
stability properties of gradient descent.

1.1 Contributions

In this work, we make the following contributions.

1. We identify stability as a natural requirment for the analysis of recurrent models and show,
under the stability assumption, feed-forward networks can approximate recurrent networks
both for inference and training.

2. To allow for a unified analysis, our results are stated and proved for general non-linear dynam-
ical systems. We complement this analysis with sufficient conditions for several commonly
used model classes, including long-short-term memory (LSTM) networks, that imply the
assumptions of our theorems.

3. We empirically demonstrate feed-forward networks can well-approximate widely used recur-
rent networks on a benchmark natural language processing task. Moreover, we show that our
assumptions are not overly limiting and produce networks that achieve respectable, though
not state-of-the-art, results and satisfy all of the assumptions required for our theorems.

2 Problem Statement and Results

We consider general non-linear dynamical systems given by a differentiable state-transition map
buw: R" x R? — R", parameterized by w € R™. The hidden state hy € R" evolves in discrete time
steps according to the update rule

hy = ¢w<ht—17$t) . (1)

Here, the vector z; € R% is an arbitrary input provided to the system at time t. This formulation
is quite general and allows us to unify the analysis for several examples of interest, including linear
dynamical systems, recurrent neural networks (RNN), and Long-Short-Term Memory (LSTM)



networks. For instance, in the linear dynamical systems cases, given W € R™" U € R™?, the
system evolves according to

hi = Why_1 + Uu;.

Throughout this paper, we focus on the case of stable recurrent models. This corresponds to
assuming the state-transition map ¢ is contractive, so there exists some A < 1 such that, for any
weights w € R™, states h, k' € R", and input 2 € R,

“‘bw(hvx)_gbw(h/?x)“ S)‘Hh_h/H (2)

For each model class, we provide sufficient conditions that imply contractivity. For instance, in
the linear dynamical systems case, this corresponds to requiring |[|[W]| < 1. A similar requirement
applies to RNNs, where the norm constraint will depend on the choice of non-linearity. The
assumptions required for LSTMs are more subtle; we will discuss them later.

We study when the system (1) can be approximated by a feed-forward model with finite context.
While there are many choices for a feed-forward approximation, we consider the simplest one—
truncation of the system to some finite context k. In other words, the feed forward approximation
moves over the input sequence with a sliding window of length k& producing an output every time
the sliding window advances by one step. Formally, for context length k chosen in advance, we
define the truncated model via the update rule

hf = ¢uw(hf 1 @1), hi =0. (3)

Note that hf is a function only of the previous k inputs z;_p,...,z¢, and can be implemented as
an autoregressive, depth-k feed-forward model.

2.1 Our results

Our first result concerns inference in stable recurrent models. Suppose we'’re given a prediction
function f that maps a state h; to outputs f(hy) = y;.

Proposition (Informal version of Proposition 4). Assuming the system ¢ is A-contractive and
under additional Lipschitz assumptions, we show if k > O(log(1/(1 — N)¢)), then the difference in
predictions between the recurrent and truncated model is negligible, Hyt — ny <e.

In other words, for fixed weights w, there exists a feed-forward model that well approximates
the full recurrent model at test-time. The dependence on the contractivity parameter A of the
system is the natural one even for linear systems, where A corresponds to the largest singular value
of the state transition matrix.

Equipped with our approximation result, we turn towards optimization. Suppose both the full
recurrent model and the truncated model are initialized at a common point w?, and optimized to
minimize some scalar loss function p on a common sequence of inputs. This results in a weight
vector Wreeyrr for the full recurrent model and weight vector wiyune for the truncated model. We
show that for truncation parameter k ~ O(log(NN/¢)), after IV steps of gradient descent, the weights
of the recurrent and feed-forward model are e-close in Euclidean distance.



Theorem (Informal version of Theorem 1). Assuming the system ¢ is A-contractive and under
additional smoothness and Lipschitz assumptions on the system ¢ and the loss p, if

k> 0 (1og(NYOY f(e(1 - 2))).

then after N steps of gradient descent with decaying step size oy = O(1/t), ||[Wrecurr — Werunc|| < €,
which in turn implies Hyt(wrecurr) — yf(wtrunc)H < O(e).

The operational interpretation of this theorem is that if it is possible to train a stable recurrent
model via gradient descent to perform well on some task, then it’s possible to get equally good
performance by instead training an autoregressive feed-forward model. In practice the cost of
training a fully recurrent model can be prohibitive, in which case truncation is commonly used
for computational reasons. Our theorem gives reassurance that this truncation step does not hurt
training performance. Contrast this with operations like compression and weight sparsification of
a neural net, which done after training do not hurt inference. However, reducing the number of
trainable model parameters can certainly make optimization harder.

The decaying step size in our theorem is consistent with the regime in which gradient descent
is known to be stable for non-convex training objectives [7]. While the decay is faster than many
learning rates encountered in practice, classical results nonetheless show that with this learning
rate gradient descent still converges to a stationary point; see p. 119 in [3] and references there.

Our previous results apply to general non-linear dynamical systems. In Section 4, we give
sufficient conditions for various different model classes that imply the assumptions of our theorems.
In the case of linear dynamical systems, and simple recurrent neural networks these assumptions
are easily stated in terms of the spectral norm of the weight matrices and the non-linearities of the
system (if present). We also consider LSTM models. Interestingly, LSTMs are not contractive in
any obvious way and are likely not stable in general under the assumptions that make RNNs stable.
This is witnessed by the need to use heuristics like gradient clipping when working with LSTMs in
practice. Despite this obstacle, we provide non-trivial sufficient conditions on the parameterization
of these models that imply the assumptions of our theorems. Whether these conditions are also
necessary is an interesting open problem.

2.2 Proof overview

To prove the inference result, we show stability and bounded weights imply the states of the system
themselves are bounded. This means the difference between the initial state of the truncated system
and the state of the full model is bounded, and contractivity then implies after sufficiently many
steps, the state difference becomes negligible.

To prove the optimization result, we initialize both the recurrent and truncated models at the
same point and then track the difference in weights during training. To do this, we prove (1)
the difference in gradients due to truncation vanishes like O(kAF) and (2) under regularity, the
dynamical system is smooth. The first result relies on the vanishing gradient phenomenon— the
“long-term” contributions to the gradient vanish exponentially fast. The second result uses stability
and a Lipschitz assumption on the weights to argue the states of systems with similar weights are
similar, even for large numbers of iterations. These conditions are sufficient to argue gradient
descent itself is stable, and this property makes it possible to bound the divergence of weights as
training progresses.



2.3 Assumptions

In this section, we collect several assumptions on the system ¢, the inputs {x;}, the prediction
function f, and the loss function p that we repeatedly use throughout our analysis.

Our primary assumption is there some compact convex domain 2 C R™ so that the map ¢,, is
A-contractive with A < 1 for all w € 2. Without loss of generality, we also assume ¢,,(0,0) = 0 for
all w. Otherwise, we can reparameterize (h, z) — ¢, (h, ) — ¢y, (0,0) without affecting expressivity
of ¢y.

We further assume the map ¢, is L,-Lipschitz in the Euclidean norm with respect to the input x,
and, for all reachable states h, the system ¢,, is L,-Lipschitz in w. Further, every sequence of inputs
{xt}thl is uniformly bounded with ||z;|| < B,. To study optimization, we additionally assume that
the map ¢,, satisfies four smoothness conditions: for any reachable states h,h’, and any weights
w,w’ € Q,

1. 0w (h,x)  0¢,1(h,x) < Buw ||w . ’LU/H

ow ow

2. || 22t — 22| < Bunllh— ]l

ow ow

A (R, Oyt (R,
3. || 2ulhr) _ 00D || < 5 lw — w!|].

Opuw (h, O (I,
4. ||Zulhr) _ 00ulhl) | < g1 1h — ).

We assume the prediction function f is Ly Lipschitz, and the loss function p is L, Lipschitz
and 3, smooth. To simplify the presentation, the prediction function f is not parameterized. This
is without loss of generality because it’s always possible to fold the parameters into the system ¢,
itself. In addition, we assume the initial state of the recurrent model hg = 0.

2.4 Related work

The connection between stability and a truncated system approximation was exploited in [12]
to prove bounds on the number of samples needed to learn a truncated approximation to the
full stable system. Their approximation result is the same as our inference result in the linear
dynamical system case. We extend this result to the non-linear setting and, moreover, exploit the
associated vanishing gradient phenomenon to analyze the impact of truncation on training with
gradient descent. Results of the latter kind are completely new to our knowledge.

Learning dynamical systems with gradient descent has been a recent topic of interest in the
machine learning community. For instance, [6] showed gradient descent can efficiently learn linear
dynamical systems. In contrast, our analysis controls the difference between the truncated and full-
system solutions obtained by gradient descent. Roughly speaking, these results can be combined
with ours to show, when gradient descent succeeds for a class of stable dynamical systems, it
succeeds for the truncated systems as well. Work by [11] gives a moment-based approach for
learning some classes of non-linear recurrent neural networks.

The vanishing gradient problem was first introduced in [2] and further explored in [10]. Our work
is complementary to both of these papers; while they view the vanishing gradient problem primarily
as an optimization issue to be overcome, we interpret vanishing gradients as a representational
limitation that restricts the power of recurrent architectures. In particular, recurrent models with



vanishing gradients can be well approximated by feed-forward models with limited context. Further,
this result applies not just at inference time, but throughout training via gradient descent.

From an empirical perspective, [1] conducted a detailed evaluation of recurrent and convolu-
tional, feed-forward models on a variety of sequence modeling tasks. In diverse settings, they
reliably find feed-forward models outperform their recurrent counterparts. However, their work
does not offer an explanation for this phenomenon.

We built on the stability analysis of [7], but interestingly use it for an entirely different purpose.

3 Stability

This entire work is conducted under the assumption of stability. While this assumption might
seem limiting, it is in fact necessary on two counts. First, without stability, it is easy to construct
counterexamples where finite-length truncation can be arbitrarily bad, even for large values of k.
This alone rules out both the inference and optimization results without additional assumptions.
Second, even in the linear dynamical system case, without stability it is difficult to show gradient
descent converges to a stationary point. Indeed, there exists trivial counterexamples where gradient
descent fails to converge. Both points are made precise in the propositions below, and the proofs
are deferred to the appendix.

Proposition 1. There exists an unstable system ¢ such that, for any finite truncation length k,
Hyt—ny — 00 as t — 00.

Proposition 2. There exists a system ¢, such that, if w is not constrained to the set Q where ¢y,
is stable, then gradient descent does not converge to a stationary point, and ||Vy,pr| — oo as the
number of iterations N — oo.

4 Examples

Our results are stated in the language of general non-linear dynamical systems, and our assumptions
are given in terms of a generic state-to-state transition map ¢. This level of abstraction allows us
to separate the core phenomenon that makes approximation possible from the specific parameteri-
zation of particular model classes. However, the utility of the theory is in it’s application to specific
models. In this section, we show how linear dynamical systems, recurrent neural networks, and
LSTMs fit into this general framework and give non-trivial sufficient conditions to ensure stability
for each class.

4.1 Linear Dynamical Systems

Given matrices W € R™™ U € R™*?, the state-transition map for a linear dynamical system is
ht = Why_1 + Uxy. (4)

Using the linear structure of the updates, both the state and the gradients have a particularly

simple form:

t
hi=> WUz ; and Vy,pr =W "V, pr. (5)
=0



As these expressions suggest, the model is stable provided ||W|| < 1, and Lipschitz in x provided
|IU]| is bounded. Using Lemma (2) below, the model is O(1/(1 — ||W||)) Lipschitz in W, and it’s
a simple exercise to check that such a system satisfies the remaining Lipschitz and smoothness
assumptions.

4.2 Recurrent Neural Networks

Given a Lipschitz, point-wise non-linearity p and matrices W € R™" and U € R™¢, the state-
transition map for a recurrent neural network (RNN) is

ht = p(Wht_l + Ul‘t) (6)

This model is stable provided p is L, Lipschitz and ||[W]| < L%’ and it satisfies our Lipschitz and
smoothness assumptions if p is smooth and ||U|| < By. Our results do not apply for the non-smooth
ReLu non-linearity. For concreteness, let p be tanh, which is 1-smooth and 1-Lipschitz.

To see the system is stable for |[W|| < 1, for any states h, h’

|tanh(Wh + Uz) — tanh(Wh' + Uz)|| < |Wh+ Uz — WH = Ux|| < [[W] ||h = 1|

Lemma (2) ensures ||h]] < %, so the model is ﬁU_% Lipschitz in W over reachable states h.

Smoothness follows from the smoothness of p. These properties are checked in the appendix.

4.3 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are another commonly used class of sequence models
[8]. In an LSTM, the state is a pair of vectors s = (¢, h) € R%*? and the model is parameterized
by eight matrices, W; € R™? and U; € R™" for i € {i, f,0,z}. The state-transition map ¢rsrm
is given by

fi=0Wyshi—1 + Usay)

iy = o(Wihy—1 + Usy)

o = o(Wohi—1 + Upxy)

z = tanh(W,hi—1 + U,xy)
=102+ froc

hy = oy - tanh(c;),

where o denotes elementwise multiplication and o is the logistic function. Without loss of generality,
assume s = 0.

The state-transition map is not Lipschitz in s, much less stable, unless ||c|| is bounded. However,
assuming the weights are bounded, we first prove ||c|| is always bounded. Below we denote by ||W|| s
the induced /o matrix norm, which corresponds to the maximum absolute row sum max; ) [Wi;|.

Lemma 1. Let |[f[lo, = sup; [ filloo- I IWrlloo < 00, IUfllo < 00, and [lzi|| < Ba, then || f]l, <1

1
and |lc| o < C=1i™) for all t.

We provide conditions under which the iterated system ¢f gy, is stable. We leave it as an open
problem to find different parameter regimes where the system is stable, as well as resolve whether
the original system ¢rsTan is stable.



Proposition 3. Under the conditions of Lemma (1), if we further assume |Will,||Woll,, <
L= [ flloer Welloo < (/DA = flloo)s IWllog < (1= 11flloc)?, and r = O(log(d)), then the iterated
system ¢y g\ i stable on the set of reachable states.

The proofs of both Lemma (1) and Proposition (3) are deferred to the appendix. Equipped
with several examples of stable recurrent models, we now turn to the proving the main results of
the paper.

5 Feed-Forward Approximation

In this section, we demonstrate, for an appropriate choice of context k, the truncated model makes
essentially the same predictions as the full recurrent model. We first show the maximum size of the
hidden state is bounded, and then we argue contractivity implies the difference between truncated
and recurrent hidden states becomes negligible after k steps.

Lemma 2 (No-Blow-Up). If ¢, is A-contractive, L, Lipschitz in x, and ||z < By, then for all t,

[[e]| < éff\gc)

Proof. For any t > 1, we apply the contracitivity and Lipschitz assumptions and then sum a
geometric series,

1Pl = [l dw (hi—1, 2t) — P (0, 0)
< [l pw(hi—1, ) = Guw(0, 20) || + (6w (0, 21) — ¢ (0, 0)
S AMhe ]l + La [|l2t]

t
<> NL,B,
i=0
Ly By
T =N
The No-Blow-Up lemma guarantees the difference between the recurrent state and the initial

state of the truncated model is bounded. Contractivity then implies after sufficiently many steps
of both models, this difference becomes very small, as the following lemma makes precise.

O]

Lemma 3. Assume ¢y, is A\-contractive and L, Lipschitz in x. Assume the input sequence ||| <
By for allt. If k > logy /) ((1 /\)8), then the difference in hidden states Hht hf” <e.

Proof. Consider the difference between hidden states at time step ¢. Unrolling the iterates k steps
and invoking the no-blow-up property yields

ML, B,
(1-=X)"

and solving for k gives the result. O

e = || = w20 = a0 < ARy = B | < AF sl <

If the prediction function is Lipschitz, then this result immediately implies that the predictions
between the recurrent and truncated model are nearly identical.

Proposition 4. If ¢,, is a L.-Lipschitz and \-contractive map, and f is Ly Lipschitz and k >

log (#) then |y — yf| <e.



6 Vanishing Gradients

One way to interpret the results of the previous section is the dependence on distant inputs is
limited in stable recurrent models. To make this connection precise, we show the gradient of a
scalar loss at step 1" with respect to xy vanishes exponentially fast as 7" becomes large. These
results are similar to those derived in [10].

Lemma 4. Let pr be an L, Lipschitz loss evaluated at step T', and assume ¢, is A-contractive and
Ly Lipschitz in x, then ||Vi,pr| < LpLA\T.

Proof. Writing out the gradient and using sub-multiplicativity of the spectral norms,

Oho " Ohy T 8ho 8hT
\vmomu—‘axo O E Vnrprl
By the Lipschitz assumptions, 2—28 < L, and ||Vp,pr| < Lp. Since ¢, is A-contractive,
H 82?; ‘ < X. Putting this together,
8hT aht 6ht T
\Y% <L,L, =L,L <L,L, < L,L \".
|| fJCopTH 8h pHT H 8ht_1 H ht—l — HprT

0<i<T 0<i<T
O

We can similarly show that the gradient with respect to the weights at distant-time steps is
small. The Jacobian of the loss with respect to the weights is

opr _ Opr 8hT Ohy M)
ow  Ohr 8ht ow

where %Zj is the partial derivative of h; with respect to w, assuming h;_1 is constant with respect
to w. We call the terms in (7) for steps t = 0 to t = T" — k the “long-term components” of the
gradient.

Proposition 5. If pr is an L, Lipschitz loss, ¢, is A-contractive and L, Lipschitz in w, then the

long term components of the gradient vanish as k — oo, namely HZtT;ok %’%% < Nk (LIPL;”).
Proof. The contribution to the gradient for stepst =0tot =T — k is
8pT Z ahT aht
6hT — 6ht 0w '
Taking norms and using the Lipschitz and contractive assumptions,
X Ohy Oh 8h = LyLu
T 0Ny T T—t ~ \k
\Y \Y% Vuwh <L,L A <A ———
H thTu Gy | < 1V 19t 32> et




7 Gradient Descent Analysis

In this section, we study the gradient descent in stable recurrent models. Our goal is to show the
recurrent model and truncated models found by running gradient descent make essentially the same
predictions.

At a high-level, our proof technique is to initialize both the recurrent and truncated models
at the same point and track the divergence in weights throughout the course of gradient descent.
Roughly, we show if k ~ O(log(N/¢)), then after N steps of gradient descent, the difference in the
weights between the recurrent and truncated models is at most €.

Even if the gradients are similar for both models at the same point, it’s a priori possible that
slight differences in the gradients accumulate over time and lead to divergent weights where no
meaningful comparison is possible. Building on similar techniques as [7], we show that gradient
descent itself is stable and this type of divergence cannot occur.

We begin by stating two essential lemmas. The first bounds the difference in gradient as a
result of running the truncated model rather than full model. The second establishes the gradient
map of the full and recurrent models is Lipschitz.

Lemma 5. Let pl% denote the loss function evaluated on truncated model. Assume p (and therefore
p? ) are Lipschitz and smooth. Assume ¢, is A\-contractive, Lipschitz in x and w, and satisfies
smoothness conditions 1-4. Assume the inputs satisfy |z¢|| < By, then

vapT - prliﬂ“H = ﬁYkAka (8)

where v = O (ﬁ), suppressing dependence on the Lipschitz and smoothness parameters.

Lemma 6. For any w,w’ € Q, suppose ¢, is A\-contractive, Lipschitz in w, and satisfies smoothness
conditions 1-4. If p is Lipschitz and smooth, then

IVwpr(w) = Vupr(@)|| < 8w —w'||, )
where =0 <(1 VE ), suppressing dependence on the Lipschitz and smoothness parameters.

Lemma (5) is proved in the next subsection, and Lemma (6) is proved in the appendix. We now
proceed prove our main gradient descent result. Let w!,.,, be the weights of the recurrent model

on step i and define wi,,,. similarly for the truncated model. At initialization, wQ_, ., = WY -

Proposition 6. Under the assumptions of Lemmas (5) and ( ), for compact, conver Q), after N

steps of projected gradient descent with step size oy = a/t, wtrunCH < a’yk‘)\kNo‘BH

recurr

Proof. Let Il denote the Euclidean projection onto €2, which we assume can be efficiently evaluated.

Let 6; = erecurr wérunCH. Initially dgp = 0, and on step 7 + 1, we have the following recurrence

10



relation for d;41,

i+1 i+1 H

67?-‘1-1 = erecurr — Wirune

= HHQ Wrecurr aivPT(wl)) —Ilg (w%runc - aivPT('wzrunc)) H

= erecurr aiva(wZ)) - wilsrunc - ainT(w‘zrunc)

VPT(wiecurr) - vP%(wérunc)
<o+t }'vPT(wiecurr) - VpT(w‘irunc) H

( .
< erecurr wtrunc” + 0%

(wzrunc) - Vpl'%(wérunc)
< 6 + i (80 + k")
< exp (if3) 6; + aiyk A",

+ o

the penultimate line applied lemmas (5) and (6), and the last line used 1 + 2 < e* for all z.
Unwinding the recurrence relation at step NV,

N N
ON < Z H exp(a;B) ¢ aiykA®
i=1 | j=i+1
N k
S o (2) L
i=1 | j=i+1 !
N N
1 ayk\F
-5 fem (a1 3 1)}
=1 Jj=i+1
N
« k:)\k
<3 explaflog(N/i) 2

I
—

7

N
1
_ k B
= avkA"N® g prasY
i=1

< aykAFNOAHL O

Given the previous result, if we take o = 1 and k = O (log(yN?/e)), then after N steps of

wrecurr wtrunc” < €.
To translate control over the weight difference into control over the predictions, we first show

small differences in weights don’t significantly change the trajectory of the recurrent model.

Lemma 7. For some w,w', suppose ¢u,, ¢y are X-contractive and Ly, Lipschitz inw. Let hy(w), hy(w’)
be the hidden state at time t obtain from running the model with weights w,w’ on common inputs

{z+}. If ho(w) = ho(w'), then

H wHw w H

(10)

11



Proof. Since both models are initialized at a common point, we can repeatedly apply Lipschitz and
contractivity to obtain a geometric series in A

Hht(w) - ht(w/)H = Hﬁbw(ht—l(w), Ty) — ¢w'(ht71(w/)7ﬂft)H
< [¢w(hi—1(w), 21) — P (he—1(w), 2 ” + || b (he—1(w), 2¢) — dur (-1 (w'), ) |
L o — ] X s () — s ()

t
<3 L — /| ¥
i=0
Ly [Jw — w'|
- 1=
Putting each of the previous pieces together, we obtain the main theorem.

Theorem 1. Let p be Lipschitz and smooth. Assume ¢y, is A-contractive, Lipschitz in x and w, and
satisfies smoothness conditions 1-4. Assume the inputs are bounded, and the prediction function f
is Ly-Lipschitz. If k = O(log(yN#/¢)), then HyT — y:],iH <e.

Proof. Combining Lemmas (3) and (7) via the triangle inequality, at step T,

Ly [Jw —w'|| L.B
k w k LaDx
HhT(w) — ()| < ||hr(w) — he(w')|| + HhT — hp(w') B +A -
Since f is Ly-Lipschitz assumption, the prediction error
Jor = o] < Ly o (i) = R ()
LyLy o +Bs
< f erecurr wtrunc” + )\k; LfL B
(1-N DY
- Ly Ly,a kAP NoAH  ywLiLaBe
=TI FESYA
and solving for &k such that both terms are less than £/2 gives the result. O

7.1 Truncation

In the section, we argue the difference in gradient with respect to the weights between the recurrent
and truncated models is O(kA¥). Hence, for k sufficiently large (independent of the sequence length),
the impact of truncation is negligible.

At a high level, the long-term gradient components quickly vanish, so the main challenge is to
show the short term gradient components are similar.

Proof of Lemma 5. Expanding the expression for the gradient, we wish to bound

|| prT - pr ||
T
Oht Ohy
Z (amm) Virpr -

Ohy Oh, v
Bhy Ow haPT

T

Ok Ohk Tv i
2 \arfou) Vet

t=T—k+1
d ohr o "o (ombon) ' o
Ohy 0w ) VMPTT \onk ow ) Y rEPT|

>

t=T—k+1
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By Proposition (5), the first term is bounded by )\k(L ) Focusing on the second term,
i (ahT am) _— (0h§ ah§>Tv ,
heDT = | Sk A ni DT
= \on o ok w
Ohk, Oh¥ Ohr Oh;  OhL ORF
< " A i 2
Z HV*‘T”T Vi pTH ank aw || IVt B0 5~ BhE B
t=T—k+1
T
_ Ohr Oh;  ORK OLF
< hy — RE| AT Ly + L L——ti,
—t:§+lﬁp|| bl 50| Bhy 8w T Rk dw

(a) e

Using Lemma (3) to upper bound (a),

T T
_ ANByLwLeBy _ NByLy LB
B HhT_hk’H)\T tL < )\T t p < P )
t:;—k ’ ! ‘ t:;—k (1 B )‘) (1 - /\)2

Using the triangle inequality, Lipschitz and smoothness, (b) is bounded by

zT: | ||ohz o _ onk ong
P k
T Ohy Ow  Ohf Ow
- ET: Ohr '8ht onf Ok HahT onk,
— k
i k+1 Ohy ow  Ow ow Ohy  Ohf
dhp  Ohk
< Z LT By ||t — BF|| + LyLy, - L
o R R
T
L /B hL:ch 8hT 8hk
SENETEE L Ly Y o — s
= _ w k
(1-X) i ohe  on]

(c)
where the last line used ||y — hf|| < )\t_(T_k)% for t > T — k. It remains to bound (c), the
difference of the hidden-to-hidden Jacobians. Peeling off one term at a time and applying triangle
inequality, for any t > T — k + 1,

Ohr  Ohy Ohr Oy |[||9hr_y N onk. | ||ohr—y  Ohp_,
Ohy  OhF Ohr_1  Ohk_, oh, onk. | Ohy Ohk
e Ohp_y  Oh_,
< hp_1 —hp | AT 40 —
< Bun ||hr-1 7-1]| + oh, OhF
T-—1
<3 BunAT T g — |

%

| /\

t
thB Z/\m

kﬂth B,
A
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so (c) is bounded by k)\k%. Ignoring Lipschitz and smoothness constants, we’ve shown

the entire sum is O (%) O]

8 Experiments

In this section, we first verify the conclusions of our theoretical investigations on synthetic data,
and then we demonstrate the same phenomenon hold for models trained on a benchmark language
modeling task.

8.1 Synthetic Data

Our goal in this section is to empirically verify the bounds obtained in Section (7). Using random
instances, we first check the conclusion of Lemma (5) and show the difference in gradients due to
truncation at length % indeed scales as kA* for both linear dynamical systems and recurrent neural
networks. Then we show the bound on parameter error from running gradient descent given in
Proposition (6) also has the correct scaling.

Truncation. To test the conclusions of our truncation lemma, we generate random instances

as follows. Fix a sequence length T° = 1000, generate random Gaussian input data x; g

N (0,0.1- I32), and generate a random target yp ~ Unif[—1,1]. Then, sample parameters W,U €
R32%32 for a linear dynamical system or a recurrent neural networks with tanh non-linearity using
Uij, Wij N (0,1). Finally, set A = 0.75 and threshold the singular values of W so |[W]| < A\. We
use the squared loss, and take f(hy, 2;) = Chy+ Dxy as our prediction function, where C, D € R3**1
are sampled C, D ~ N (0, Is2). In Figure (1), we plot HVWpT — VWpH} as k varies (averaged over
10 runs) for both a linear dynamical system and a recurrent neural network, and we find the error
closely matches the kA* scaling predicted by our bound.

Gradient Descent. To check the conclusions of the gradient descent bound, we randomly gener-
ate instances and initialize model parameters as in the truncation experiment. We fix the truncation
length to k = 35, set the learning rate to ay = «/t for a = 0.01, and take N = 200 gradient steps.
(These parameters are chosen so that the ykA* N*#*! bound does not become vacuous — by triangle
inequality, we always have ||[Wiecurr — Wirune|| < 2A). In Figure (2), we plot the parameter error
[Wiecurr — Wirunc|| @s training progresses for both a linear dynamical system and a recurrent neural
network with tanh non-linearities, and we find the error scales comparably with the bound given
in Proposition (6).

8.2 Language Modeling

In this section, we investigate our theoretical conclusions on real data and systems of practical rele-
vance. We train both LSTM and tanh recurrent neural network language models on the WikiText-2
dataset [9] using publicly available code.! First, we show there exist models with respectable per-
formance on the language modeling task that satisfy the sufficient conditions for stability given
in Section (4) along with the other assumptions of our theorems. Second, we show the same

! https://github.com/pytorch/examples/tree/master/word_language_model
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Gradient Difference Due to Truncation (A = 0.75)
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Figure 1: Empirical comparison of the gradient error caused by truncation as k varies. On random
Gaussian instances, the observed difference in gradients closely matches the kA* rate predicted by
Lemma (5).

Difference in Recurrent Weight Matrices during Gradient Descent (A =0.75, k = 35)
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Figure 2: Empirical comparison of the parameter error ||wrecurr — Wirunc|| during gradient descent.
On random Gaussian instances, the observed parameter error scales similarly with the kAfy N+
rate predicted by Proposition (6).
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phenomenon of vanishing gradients and truncated approximation appear in settings not directly
captured by our theoretical results.

Stable Recurrent Models. Recurrent models trained in practice are not a-priori stable, so
it is natural to consider the impact of imposing the stability assumption during training. To
understand these effects, we trained two recurrent neural networks. Both models consist of a single
single recurrent layer with tanh nonlinearity, are trained for 40 epochs using a sequence length of 50,
use embedding and hidden state dimensions of 1500, dropout 0.65, and an initial learning rate of 5.
The first model is otherwise unconstrained, and the second model is constrained to ||WW|| < 1, which
assures stability by Section (4). Concretely, after each gradient update, we project the hidden-to-
hidden matrix W onto the spectral norm ball by computing the SVD and thresholding the singular
values to lie in [0, 1). The projection step is computationally expensive, and the constrained model
takes an order of magnitude longer to train. All of the hyperparameters were chosen via grid-
search to maximize the performance of the unconstrained model. However, at convergence, there
appears to be little difference between the two models. The unconstrained model achieves a final
test perplexity of 168.7, whereas the stable, constrained model achieves a final test perplexity of
149.6. This result suggests the stability assumption is not overly restrictive, and our theory applies
to models that achieve respectable performance on a common benchmark task.

Vanishing Gradients. LSTMs and recurrent neural networks trained in practice exhibit vanish-
ing gradients and limited sensitivity to past inputs well-beyond what’s guaranteed by our theorems.
Vanishing gradients are not merely encountered in pathological models that fail to train. Even mod-
els that achieve competitive performance on benchmark tasks exhibit this phenomenon.

In this experiment, we trained LSTM and recurrent neural networks models. The recurrent
model hyperparameters are the same as the previous experiment, and the LSTM model consists of
a single layer, uses embedding and hidden state dimensions of 1500, is trained for 40 epochs, and
otherwise uses the default hyperparameters. The stability constraints on the weight matrices were
not enforced in either case.

At the end of every epoch, we computed ||V, pyi|| for i = 1,...,50 for ¢ ranging over the entire
validation set. The results are shown in Figure (3).

The LSTM and the RNN both suffer from limited sensitivity to distant inputs at initialization
and throughout training. The gradients of the LSTM vanish more slowly than those of the RNN,
but both models exhibit the same qualitative behavior. Intriguingly, as training progresses the rate
of decay decreases, which is a not a phenomenon captured by our theory. Moreover, in neither
case does the spectral norm assumption obtain— in the RNN case, |[W|| ~ 7.9 at convergence.
Better understanding this training phenomenon and finding more general conditions either on the
weight matrices or the data distribution that lead to vanishing gradients and approximation by
feed-forward models is a challenge for future work.

Truncated Approximation. Even in settings not captured by our existing results, recurrent
models can be approximated by feed-forward networks for inference and training. To demonstrate
this phenomenon, we took the RNN described in the preceeding section and studied the impact
of truncating the model for £ = k, 10,15, 25,35, 50,65. We assume k = 65 well captures the full-
recurrent model. All of the models were initialized at the same point, and we tracked the distance
between the hidden-to-hidden matrices W as training progress. In Figure (4), we plot ||W — Wes]|
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RNN Trained on Wiki-Text-2. 35 LSTM Trained on Wiki-Text-2.
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Figure 3: Norm of the loss gradient with respect to inputs, ||V, pi+il|, as the distance between the
input and the loss grows, averaged over the entire held-out set. The gradient vanishes for moderate
values of ¢ in both the RNN and the LSTM case. The LSTM achieves a perplexity of 92.3, and the
RNN achieves a perplexity of 168.7.

for & = 5,10,15,25,35,50,64 as training proceeds. After an initial rapid increase in distance,
|Wr — Wes|| grows slowly as training continues. As our theory suggests, there is a diminishing
return to choosing larger values of the truncation parameter k.
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A Missing Proofs

A.1 Proofs from Section (3)

In both of the following proofs, we consider the simple example of a scalar linear dynamical system
given by

hi = ahy—1 + bxy
yAt = h’tv

where hg = 0, a,b € R are parameters, and z;,y; € R are elements the input-output sequence
{(z, yt)}thl, where L is the sequence length, and ¢ is the prediction at time .

Stability of the above system corresponds to |a| < 1. If the system is not stable, then finite-
length truncation can be arbitrarily bad.

Proof of Proposition (1). Suppose a = 2, b = 1, and the inputs 29 = 1 and x; = 0 for ¢ > 1. Fix
any truncation length k. At time step t > k+c+ 1 for any ¢ > 0, h¥ = 0, and the prediction of the
truncated model is yF = 0. However, for the full model, ; = h; = 2!~! = 2F*+¢. Sending ¢ — oo,
|yf = ¢ = 28T — oo. O

Without stability or further assumptions, “exploding gradients” make analysis of gradient de-
scent untenable.

Proof of Proposition (2). Suppose (x¢,y:) = (1,1) for ¢ = 1,..., L. Then the desired system (11)
simply computes the identity mapping. Suppose we use the squared-loss £(y, ;) = (1/2)(y: — 9:)?,
and suppose further b = 1, so the problem reduces to finding a = 0. We first compute the gradient.
Compactly write

ht:tiat :(11__65) (11)

=0

Let 6; = (9: — y¢). The gradient for step T is then

d d T—-1
< Sy — s Y T—1-t 19
daf(yijT) 5Tda or t:(]a hy (12)
T—1
1_ t
_ aT_l_t<1_C;> (13)
t=0
T-1
1 Tal-1
Y t_ 14
’ [<1—a> <1—a>] .
B (1—a”) Ta™!
=0T [(1—@2 0—a) (15)

Plugging in y; = 1, this becomes

Letomm = (G ) [ - 2] (16)
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For large T, if |a| > 1, then a” grows exponentially with T and the gradient is approximately
d 1, - - f—
S lyr.gr) ~ (a7 = 1) T2 & Ta?T )

Therefore, if a° is initialized outside of [—1, 1], the iterates a’ from gradient descent with step size
a; = (1/i) diverge, i.e. a’ — oo, and from equation (16), it is clear that such a' are not stationary
points. ]

A.2 Proof from Section (4)

Details of Section 4.2. Assume |[W|| < A < 1 and |U|| < By. Notice tanh/(z) = 1 — tanh(z)?, so
since tanh(x) € [—1, 1], tanh(z) is 1-Lipschitz and 2-smooth. We previously showed the system is
stable since, for any states h, b/,

Htanh(Wh + Uz) — tanh(Wh' + Ux)||

<|Wh+Uz—WH —Uxz||

< W] |h—=H|-
Lemma (2) ensures ||h|| < BIU%)” for all ¢t. Therefore, for any W, W', U,U’,

|tanh(Why 4+ Uz) — tanh(W'hy + U'z)||
< |Why + Uz — W'hy — U's||
< sup [he|| |[W = W'|| + B, ||[U = U"|].

B B,
< U
(1-
so the model is Lipschitz in U, W. We can similarly argue the model is By Lipschitz in . For
smoothness, the partial derivative with respect to h is

W = diag(tanh' (Wh + Uz))W,

so for any h, k', bounding the £, norm with the 5 norm,

Odw(h,z)  Odw(h, )
' oh  oh

w W =W+ B v -,

= ||diag(tanh’(Wh + Uz))W — diag(tanh'(Wh' + Uz))W ||

< |W]| ||diag(tanh’(Wh + Uz) — tanh'(Wh' + Uz))||
<2W||Wh+ Uz —WH —Usz|__
<2X*||h— 1|

For any W, W' U, U’ satisfying our assumptions,

a¢w h $ a¢w’(h7x)
|5 - 2

= ||diag(tanh’(Wh + Uz))W — diag(tanh'(W'h + U'z))W'||

< ||diag(tanh’(Wh + Uz) — tanh'(W'h + U'z))|| | W| + ||diag(tanh’(W’'h + U'z))|| ||V
S2M|(W = WHh+ (U = U+ |[W =W

<2A||(W = W) IA] + 21 [|U = U || |zl + [|W — W

2AByB, + (1 — \)

SR (Y

|W = W|| +2AB, ||U-U||.
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Similar manipulations establish ad)%igl’z) is Lipschitz in h and w. O

Proof of Lemma 1. Note |tanh(z)|,|o(z)| < 1 for all z. Therefore, for any ¢, || h¢||,, = ||o¢ o tanh(ct)]| o, <
1. Since o(x) < 1 for x < oo and ¢ is monotonically increasing

1 felloo < o (IWrhi—1 + Uyl )
<o (Wil Mhe=1lloe + 1Tl Nl2tlloo )
< o (Bw + Byx)
< 1.

Using the trivial bound, ||i||,, <1 and ||z <1, so

letsillo = llie 0zt + frocllog < 1+ [ felloo lleel o -
Unrolling this recursion, we obtain a geometric series
t ) 1
HCt—H”oo < ZZ; ”ftHoo < m
O

Proof of Proposition 3. We show ¢rgTm is A-contractive in the ¢o.-norm for some A < 1. For
r > logy, A(\/Zi), this in turn implies the iterated system qﬁiSTM is contractive is the fo-norm.

Consider the pair of reachable hidden states s = (¢, h), s’ = (¢, h'). By Lemma (1), ¢, are
bounded. Analogous to the recurrent network case above, since o is (1/4)-Lipschitz and tanh is
1-Lipschitz,

i =1 < § IWillo 1= w1
1 =7l < 5 Wl = L
ool < § IWall 12— ]l
2= 2| < IWellog [I12 = 1] -

Both ||z|| o , |||, < 1 since they’re the output of a sigmoid. Letting ¢4 and ¢/, denote the state on
the next time step, applying the triangle inequality,

les =eillg < ioz=i"0 ||+ [|lfoc = od]|,
<[|@=) ezl +]i"e (=2l + 1S 0 le =l +eo(F = Ml

< i =g Izllo + 12 = 2l 1110 + e = llo 1lloo + 11 = £l lello

W; oo T Il w o
< (Pt lllee o v, ) o+ 11 = .

A similar argument shows

_ Wl
0 = 4

1os = Rillg < flo =l + lles =< = A= # oo+ llex =il -
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By assumption,

<!Wi\|oo + llelloo Wil oo + [Woll

; F W) < 1= 1

and so
as well as
les = ille < @=Mflo) [ =Pl + 1l lle =Nl < M5 = 'l
which together imply
s+ = s lloe < lls = 5]l

establishing ¢p.gTm is contractive in the £, norm. ]

A.3 Section (7)
Proof of Lemma 6. Let h; = hy(w'). Expanding the gradients and using ||hi(w) — he(w')]] <

%ﬂ from Lemma (7),

Ohy Ohs\ | Ohl O\
( i t) VthT—< Tt) V. pr

/
[Vupr(w) = Vepr(w)| < oh; O Ohj, Ow

Ohi Ohy
oh}, 0

Ohy Ohy  ONYy O}

Ohy Ow  Ohj dw

+ [ Vhrpr|

Ohr Ohy  OhL OB}

! T—t _t
pllhr = B[ A L+ L |15 50~ Bhe

T
>
=1
T

< Z HVhTPT — Vy pTH H
.
2.5

Ohr Ohy  ONY M,
Ohy Ow 0K, dw

(a)

Focusing on term (a),

. ZT: Ohr Ohy  Ohy ai' XT: Ohr Ol aht |2 (jone _ om
2| Ohy dw ~ Ohy 0 2 |[oh, ~ o, on; || |[ow — dw
Ohy O, _
<I,L 8; P 20 327 B ]+ s )
t=1
<LL Ohy  Ohy || | LpBunLw [[w —w'||  LpBuww [[w —w'||
Ohe oM, (1?2 T-x5

()
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where the penultimate line used,

< agbw(ht*lal‘t) . 8(b’u)( ;5_171‘15)
- ow ow

< Bun |[b = || + Buw [0 = w'][

oh, _ on,

L [[20uthis ) D0ty z)
ow ow

ow Ow

To bound (b), we peel off terms one by one using the triangle inequality,

<LpLuw)

t=1

T

LpLw Y

t=1

Ohy MY
dhp_1 oW ,

Ohr _ Ohy
Oh; _ R,

Ohy on,

HahT—l Ohrp_4

H ohly,
oWy

Ohr_1
Ohy

T T Ohr_y  Ohp_4
< LyLu Y _(th [hr—1 = By || + Bhw [Jw — [ N +”\H ohy O

|

T T T—t
< Lyl 3 | BT = A [l — ] +5hhz||hm-h'muf”]
- i=1

_ /
Bhn Loy || w U’H(T__t)AIL¢—1]

T -
< Lyl 3 Bl = N7 o = wf |+ 2T TS
t=1 *-

Ly LB ||w = w'|| | LyLy, B Jw — w'|
- (1—=A)2 (L—=A)3
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