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Abstract—The discovery and analysis of network patterns ane central to the scientific enterprise. In the present work, we developed and
evaluated a new approach that learns the building blocks of graphs that can be used to understand and generate new realistic graphs.
Our key insight is that a graph's dique tree encodes robust and precise information. Wa show that a Hyperedge Beplacement Grammar
(HRG) can be extracted from the clique tree, and we develop a fixed-size graph generation al gorithm that can be used to produce new
graphs of a specified size. |n expariments on large real-world graphs, we show that graphs generated from the HRG approach exhibit a
diverse range of properties that are similar to those found in the ofginal networks. Inaddition to graph prope rties like degrea or
eigenvector centrality, what a graph “looks like™ ultimately depends on small detailsin local graph substructures that are difficult to define
at a global level. We show that the HRG model can also preserve these local substructures when generating new graphs.

Index Terms—graphs, hypensdge replacement grammar, graph generation

1 INTRODUCTION

EASING out signatures of interactions buried in over-
whelming volumes of information is one of the most
basic challenges in scientific research. Understanding how
information is organized and how it evolves can help us dis-
cover its fundamental underlying properties. Researchers
do this when they investigate the relationships between dis-
eases, cell functions, chemicals, or partides, and we all learn
new concepts and solve problems by understanding the
relationships between the various entities present in our
everyday lives. These entities can be represented as net-
works, or graphs, in which loal behaviors can be under-
stood, but whose global view is highly complex.
Discovering and analyzing network patterns to extract
useful and interesting patterns (building blocks) is critical
to the advancement of many scientific fields. Indeed the
most pivotal moments in the development of a scientific
field are centered on discoveries about the structure of some
phenomena [1]. For example, biologists have agreed that
tree structures are useful when organizing the evolutionary
history of life [4], [5], and sodologists find that triadic clo-
sure underlies community development [6], [7]. In other
instances, the structural organization of the entities may
resemble a ring, a clique, a star, a constellation, or any num-
ber of complex configurations.
Unfortunately, current graph mining research deals with
small pre-defined patterns [8], [9] or frequently reoccurring
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patterns [10], [11], [12], [13], even though interesting and
useful information may be hidden in unknown and non-fre-
quent patterns. Principled strategies for extracting these
complex patterns are needed to discover the precise mecha-
nisms that govern network structure and growth. In-depth
examination of this mechanism leads to a better under-
standing of graph patterns involved in structural, topologi-
cal, and fundtional properties of complex systems. This is
predsely the focus of the present work: to develop and eval-
uate techniques that learn the building blocks of real-world
systems that, in aggregate, succinctly describe the observed
interactions expressed in a network.

These networks exhibit a long and varied list of global
properties, including heavy-tailed degree distributions [14],
and interesting community structures [15] to name a few.
Recent work has found that these global properties are
products of a graph’s local properties [17], [18]. In the pres-
ent work, our goal is to learn the local structures that, in
aggregate, help describe the interactions observed in the
network and generalize to applications across a variety of
fields like computer vision, computational biology, and
graph compression.

The key insight for this task is that a network’s cligue tree
encodes robust and precise information about the network.
A hyperedge replacement grammar (HRG), extracted from the
clique tree, contains graphical rewriting rules that can
match and replace graph fragments similar to how a con-
text-free grammar (CEG) rewrites characters in a siring.
These graph fragments represent a succinct, yet complete
description of the building blocks of the network, and the
rewriting rules of the HRG describe the instructions on how
the graph is pieced together.

The HRG framework is divided into two steps: 1) graph
model learning and 2) graph generation. After reviewing
some of the theoretical foundations of clique trees and
HRGs, we show how to extract an HRG from a graph. These

{1 60-8828 ¢ 2018 IEEE. Pemonal use is permified, bul mpubli sion redistrituSion requires IEEE permission.
See Miplwasiesesrg ubcaBons stands elsp bcation siights fnde mifor mos idormaton


https://orcid.org/0000-0003-3164-2615
https://orcid.org/0000-0003-3164-2615
https://orcid.org/0000-0003-3164-2615
https://orcid.org/0000-0003-3164-2615
https://orcid.org/0000-0003-3164-2615
mailto:

626

graph rewriting rules can be applied randomly to generate
larger and larger graphs. However, sdentists typically have
a specific size in mind, so we introduce a fixed-size graph
generation algorithm that will apply HRG rules to generate
a realistic graph of a user-spedfied size.

Finally, we present experimental results that compare the
generated graphs with the original graphs. We show that
these generated graphs exhibit a broad range of properties
that are very similar to the properties of the original graphs
and outperform existing graph models across a variety of
graph comparison metrics.

2 PRELMINARIES

The new work in this paper begins where previous
work [21], [22], [23], [24] left off. However, before we begin,
some background knowledge is crucial to understand the
key insights of our main contributions.

We begin with an arbitrary input hypergraph H = (V, E),
where V is a finite set of vertices and E C V' isa set of hyper-
edges. A hyperedge e € E can connect one or more ordered
vertices and is written e = (v, 1v9,.. ., vi). Common graphs
(e.g., social networks, Web graphs, information networks)
are a particular case of hypergraphs where each edge com-
nects exactly two vertices. For convenience, all of the graphs
in this paper will be simple, connected and undirected, although
these restricdions are not vital In the remainder of this sec-
tion, we refer mainly to previous developments in clique
trees and their relationship to hyperedge replacement gram-
mars in order to support the claims made in Sections 3 and 4.

2.1 Cligue Trees

All graphs can be decomposed (though not uniquely) into a
cligue tree, also known as a tree decomposition, junction
tree, join tree, intersection tree, or cluster graph. Within the
pattern recognition community, clique trees are best known
for their role in exact inference in probabilistic graphical
models, so we introduce the preliminary work from a
graphical modeling perspective; for an expanded introduc-
tion, we refer the reader to Chapters 9 and 10 of Koller and
Friedman's textbook [25].

Definition 21. A clique tree of a graph H = (V. E) is a tree
CT, each of whose nodes n is labeled with a V, €V and
E, C E, such that the following properties hold:

(1) Vertex Cover: For each v € V, there is a vertex n € CT
such that v € V.

(2)  Edge Cover: For each hyperedge e; = {v1,...,u:} € E
there is exactly one node n € CT such that e € E,.
Moreover, vy, ..., u € V.

(3) Rumning Intersection: For each veV, the set
{n € CT|v e V;} is connected.

Definition 2.2, The width of a cligue tree is max(|Vy — 1[), and
the treewidth of a graph H is the minimal width of any cligue
tree of H.

Unfortunately, finding the optimal elimination ordering
and corresponding minimalwidth clique tree is NP-Com-
plete [26]. Fortunately, many reasonable approximations
exist for general graphs: in this paper, we employ the com-
monly used maximum cardinality search (MCS) heuristic
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Fig. 1. A graph and one possible minimal-width digue tree for it. Ghosted
edges ame not partof E; they are shown only for explanatory purposes.
introduced by Tarjan and Yannikakis [27] to compute a cli-
que tree with a reasonably-low, but not necessarily minimal,
width.

Simply put, a clique tree of any graph (or any hyper-
graph) is a tree. Each of whose nodes we label with nodes
and edges from the original graph, such that vertex cover,
edge cover and the running intersection properties hold, and
the “width” of the dique tree measures how tree-like the
graph is. The reason for the interest in finding the clique
tree of a graph is because many computationally difficult
problems can be solved efficiently when the data is con-
strained to be a tree.

Fig. 1 shows a graph and its minimal-width clique tree
(showing V; for each node n). We label nodes with lower-
case Latin letters. We will refer back to this graph and clique
tree as a nmning example throughout this paper.

2.2 Hyperedge Replacement Grammar

The key insight for this task is that a network’s clique tree
encodes robust and precise information about the network.
An HRG, extracted from the clique-tree, contains graphical
rewtiting rules that can match and replace graph fragments
similar to how a context-free Grammar rewrites characters
in a string. These graph fragments represent a succinct, yet
complete description of the building blocks of the network,
and the rewriting rules of the HRG describe the instructions
on how the graph is pieced together. For a thorough exami-
nation of HRGs, we refer the reader to the survey by Drewes
et al. [28].

Definition 2.3. A hyperedge replacement grammar is a
tuple G = (N, T, S, P), where

(1) N isa finite set of nonterminal symbols. Each nomter-
minal A has a nonnegative integer rank, which we
write |A|.

(2) T isa finite set of terminal symbols.

(3)  SeN is a distinguished starting nonterminal, and
|51 =0.

(4)  Pisa finite set of production rules A — R, where
s A, the left hand side (LHS), &5 a nonterminal

symbol.

s R, the right hand side (RHS), is a hypergraph
whose edges are labeled by symbols from T N If
an edge e is labeled by a nonterminal B, we must
have |e| = |B.
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Fig. 2. Binarization of a bagin aclique tree.

» Exactly |A| vertices of R are designated external
vertices and numbered 1, . || A|. The other verti-
ces in R are called internal vertices.

When drawing HRG rules, we draw the LH5 A as a
hyperedge labeled A with arity |A]. We draw the RHS as a
hypergraph, with external vertices drawn as solid black
circles and the internal vertices as open white circles.

If an HRG rule has no nonterminal symbols in its RHS,
we call it a terminal rule. If an HRG rule has exactly one non-
terminal symbol in its RHS, we call it a unary rule.

Definition 24. Let G be an HRG and P = (A — R) be a pro-
duction rule of G. We define the relation H' = H* (H* is
derived in one step from H') as follows. H' must have a hyper-
edge e labeled A; let vy,. .., ve be the vertices it connects. Let
uy,. .., u; be the external vertices of R. Then H* is the graph
formed by removing e from H', making an isomorphic copy of
R, and identifying v; with the copies of u; foreachi =1,... &k

Let =* be the reflexive, transitive closure of = Then we
say that G generates a graph H if there is a production § — R
and R="* H and H has no edges labeled with nonterminal
syrm bols.

In other words, a derivation starts with the symbol S,
and we repeatedly choose a nonterminal A and rewrite it
using a production 4 — R. The replacement hypergraph
fragments R can itself have other nonterminal hyperedges,
so this process repeats until there are no more nonterminal
hyperedges. The following sections illustrate these defini-
tions more clearly.

3 LearnING HRGs

The first step in leamning an HRG from a graph is to com-
pute a clique tree from the original graph. Then, this clique-
tree directly induces an HRG, which we demonstrate in this
sechon.

3.1 Binarization

Just as context-free string grammars are more convenient
to parse if put into Chomsky normal form (CNF), we also
assume, without loss of generality, that our HRG also fol-
lows CNF. This means that each rule’s right-hand side has
at most two nonterminals. By the HRG induction methods
presented later in this section, each clique tree node 5
yields an HRG rule, and the number of children of n deter-
mines the number of nonterminals on the right-hand side
of the resulting rule. Thus, it suffices for the clique tree to
have a branching factor of at most two. Although the
branching factor of a clique tree may be greater than two,
it is always easy to binarize it.

[ 0@
(e) (e)
ol |oF

o ) & &
S — - R .
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o D] 0

Fig. 3. Pruning a clique tree to remove leaf nodes without internal verti-
cas. Ghosted clique tree nodes show nodes thatame pruned.

There is more than one way to do this; we use the follow-
ing scheme. Let n be a clique tree node with children
N1y g where d > 2 (here d corresponds to the number
of children for a given parent node). These are labeled with
bags Vi, W Vo, respedtively. Make a copy of n; call it o/,
and let Vy = V,. Let the children of n be n, and #', and let
the children of ' be n4,...,n,. See Fig. 2 for an example.
Then, if ' has more than two children, apply this procedure
recursively to n'.

It is easy to see that this procedure terminates and results
in a dique tree whose nodes are at most binary-branching
and still has the vertex cover, edge cover, and running inter-
section properties for H.

3.2 Cligue Tree Pruning

Later we will introduce a dynamic programming algorithm
for constructing graphs that require every leaf node of the
clique tree to have at least one internal vertex. Clique tree
algorithms, such as the MC5 algorithm used in this paper,
do no guarantee these conditions. Fortunately, we can just
remove these leaf nodes from the clique tree.

The bottom-right clique tree node in Fig. 1 is such an
example because f is an external vertex; that is, f exists in its
parent. Because no internal vertices exist in this leaf node, it
is removed from the clique tree. The clique tree node with
vertices e and f is now a leaf, as illustrated in the left side of
Fig. 3. Vertices e and f in the new leaf node arestill both exter-
nal vertices, so this clique tree node must also be removed
creating a final dique treeillustrated in theright side of Fig. 3.

3.3 Cligue Trees and HRGs

Here we show how to extract an HRG from the clique tree.
Let n be an interior node of the clique tree CT, let ' be its
parent, and let n,...,n, be its children. Node n corre-
sponds to an HRG production rule A — R as follows. First,

|A| = |Vy NV;|. Then, R is formed by:
* Adding an isomorphic copy of the vertices in ¥} and
the edgesin E,
s Marking the (copies of) vertices in ¥, NV} as exter-
nal vertices

* Adding, for each ;, a nonterminal hyperedge con-
necting the (copies of) vertices in ¥, N 17
Fig. 4 shows an example of the creation of an HRG rule.
In this example, we focus on the middle clique-tree node
V3 = {b, ¢, d, e}, outlined in bold.
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Clique Tree (subtree)

LHS

Fig. 4. Example of hyperedge replacement gammar rule creation from
an interior vertex of the clique tree. Note that lowercase letters inside
vertices ame for explanatory pumposes only; only the numeric labels out-
side external vertices ane actually part of the rule.

We choose nonterminal symbol N for the LHS, which
must have rank 3 because n has 3 vertices in common with its
parent. The RHS is a graph whose vertices are (copies of)
Vy = {b,c,d, e}. Vertices ¢, d and e are marked external (and
numbered 1, 2, and 3, arbitrarily) because they also appear in
the parent node. The terminal edges are E; = {(b,c),(b,d)}.
There is only one child of #, and the nodes they have in com-
mon are b and e, so there is one nonterminal hyperedge com-
nectingb and e.

Next we deal with the spedal cases of theroot and leaves.

Root Node. If  is the root node, then it does not have any
parent cliques, but may still have one or more children.
Because n has no parent, the corresponding rule has a LHS
with rank 0 and a REHS with no external vertices. In this
case, we use the start nonterminal symbol § as the LHS, as
shown in Fig. 5.

The RHS is computed in the same way as the interior
node case. For the example in Fig. 5, the RHS has vertices
that are copies of ¢, d, and e. In addition, the RHS has two
terminal hyperedges, E, = {(c,d),(c,€)}. The root node
has two children, so there are two nonterminal hyperedges
on the RHS. The right child has two vertices in common
with 1, namely, d and e; so the corresponding vertices in the
RHS are attached by a 2-ary nonterminal hyperedge. The
left child has three vertices in common with n, namely, c, d,
and e, so the corresponding vertices in the RHS are attached
by a 3-ary nonterminal hyperedge.

Leaf Node. If n is a leaf node, then the LHS is calculated
the same as in the interior node case. Again we return to the
running example in Fg. 6. Here, we focus on the leaf node
{a, b, e}, outlined in bold. The LHS has rank 2, because
has two vertices in common with its parent.

Clique Tree (subtree)

LHS

Fig. 5. Example of hypemredge replacement gammar rule creation from
the root node of the clique tree.
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Cligue Tree (subtree) LHS

Fig. 6. Example of hyperedge replacement grammar rule creation froma
leaf vertex of the dique tree.

The RHS is computed in the same way as the interior
node case, except no new nonterminal hyperedges are
added to the RHS. The vertices of the RHS are (copies of)
the nodes in », namely, a, b, and e. Vertices b and e are
external because they also appear in the parent clique. This
RHS has two terminal hyperedges, E,= {(a,b),(a.e)}.
Because the leaf clique has no children, it cannot produce
any nonterminal hyperedges on the RHS; therefore this rule

is a terminal rule.

3.4 Top-DownHRG Rule Induction

We induce production rules from the clique tree by apply-
ing the above extraction method top down. Because trees
are acyclic, the traversal order does not matter, yet there are
some interesting observations we can make about traversals
of moderately sized graphs. First, exactly one HRG rule will
have the special starting nonterminal 5 on its LHS; no men-
tion of § will ever appear in any RHS. Similarly, the number
of terminal rules is equal to the number of leaf nodes in the
clique tree.

Larger graphs will typically produce larger clique trees,
especially sparse graphs because they are more likely to
have a greater number of small maximal cliques. These
larger clique trees will produce a large number of HRG
rules, one for each clique in the clique tree. Although it is
possible to keep track of each rule and its traversal order,
we find, and will later show in the experiments section, that
the same rules often repeat many times.

Fig. 7 shows the four rules that are induced from the cli-
que tree illustrated in Fig. 1 and used in the running exam-
ple throughout this section.

Fig. 7. Complete set of production rules extracted from the example di-
que tres. Note that lowercase letters inside vertices are for explanatory
purposes only; only the numeric labels outside external vertices are part
of the rule.
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4 GRAPH GENERATION

In this section, we show how to use the HRG extracted from
the original graph H (as described in the previous section)
to generate a new graph H*. Ideally, H* will be similar to or
have features that are akin or analogous to the original
graph H. We present two generation algorithms. The first
generates random graphs with similar characteristics to the
original graph. The second is like it but generates random
graphs that have a specified number of nodes.

4.1 Stochastic Generation

There are many cases in which we prefer to create very large
graphs in an efficient manner that still exhibit the local and
global properties of some given example graph. Here we
describe a simple stochastic hypergraph generator that
applies rules from the extracted HRG to efficiently create
such graphs.

In larger HRGs we usually find many A — R production
rules that are identical. We chose to consider rules that are
identical modulo a permutation of their external vertices to
be equivalent as well We can merge these dupliates by
matching rule-signatures in a dictionary and keep a count
of the number of times that each distinct rule has been seen.
For example, if there were some extra Rule #5 in Fig. 7 that
was identical to, say, Rule #3, then we would simply note
that we saw Rule #3 two times.

To generate random graphs from a probabilistic HRG
(PHRG), we start with the spedal starting nonterminal
H' = 5. From this point, H* can be generated as follows: (1)
Pick any nonterminal A in H’; (2) Find the set of rules
(A — R) associated with LHS 4; (3) Randomly choose one
of these rules with probability proportional to its count; (4)
Choose an ordering of its external vertices with uniform
probability; (5) Replace A in H' with R to aeate H*; (5)
Replace H' with H* and repeat until there are no more non-
terminal edges.

4.2 Fixed-Size Generation

A problem we find with the stochastic generation procedure
is that, although the generated graphs have the same mean
size as the original graph, the variance is much too high to
be useful. 50 we want to sample only graphs whose size is
the same as the original graph’s, or some other user-speci-
fied size. Naively, we can do this using rejection sampling:
sample a graph, and if the size is not right, reject the sample
and try again. However, this would be quite slow. Our
implementation uses a dynamic programming approach to
sample a graph with specified size, while using quadratic
time and linear space, or approximately while using linear
time and space.

More formally, the learned PHRG defines a probability
distribution over graphs, P{H*). But rather than sampling
from P{H*), we want to sample from P{H*||H*| =n),
where n is the desired size.

Here, the stochastic generation sampling procedure is
maodified to rule out all graphs of the wrong size, as follows.
Define a sized nonterminal X9 to be a nonterminal X
together with a size £ > 0. If n is the desired final size, we
start with 5/, and repeatedly:

(1} Choose an arbitrary edge labeled with a sized non-
terminal (call it X').

(2} Choose arule from among all rules with LHS X.

(3) Choose sizes for all the nonterminals in the rule's
RHS such that the total size of the RHS is £.

(4) Choose an ordering of the external vertices of the
rule’s RHS, with uniform probability.

(5) Apply therule.

A complication arises when choosing the rule and the
RHS nonterminal sizes (steps 2 and 3) because the weights
of these choices no longer form a probability distribution.
Removing graphs with the wrong size causes the probabil-
ity distribution over graphs to sum to less than one, and it
must be renormalized [29]. To do this, we precompute a
table of inside probabilities o[X, £ for £=1,..., n, each of
which is the total weight of derivations starting with X and
yielding a (sub)graph of size exactly £. These are computed
using dynamic programming, as shown in Algorithm 1.

Algorithm 1. Compute Inside Probabilities (no Cycles of
Size-Zero Unary Rules)

compute digraph [T of unary size-zero rules;
topologically sort U
assert (I7is acyclic);
forf«~—1,....ndo
for X € N inreverse topological order do
for rules X P\ R do
# =1 —size( R);
if B has no nonterminals and £ =
al X, f +=p;
else if R has nontermina Y then
e X, ] +=p = (Y £;
else if R has nonterminals ¥ and £ then
fork+~—1,..., #—-1do
a[ X, f] +=p = eV k] < a|Z,8' - };

(i then

If X — Ris a HRG rule, define size{ B) to be the increase
in the size of a graph upon application of rule (X — R). If
size is measured in vertices, then size(R) is the number of
internal verticesin K.

Rules that are unary and have zero size require some
special care because they do not change the size of the
graph. If there is a unary size-zero rule X — Y, we need to
ensure that a[Y, ] is computed before «[X, §], or else the lat-
ter will be incorrect. Thus, in Algorithm 1, we start by form-
ing a weighted directed graph U7 whose nudes are all the
nonterminals in N, and fDI‘E\’E[}’IJIIEI}’I‘IJ].EX—gY there is
an edge from X to ¥ with weight p. We perform a topologi-
cal sort on UV, and the loop over nonterminals X € N is done
in reverse topological order.

However, if [T has a cyde, then no such ordering exists.
The cycle could apply an unbounded number of times, and
we need to sum over all possibilities. Algorithm 2 handles
this more general case [30]. We precompute the strongly
connected components of U, for example, using Tarjan's
algorithm, and for each component C, we form the
weighted adjacency matrix of C; call this Uz The matrix
Ut =52 UL=(I-Uz)"" gives the total weight of all
chains of unary rules within C. So, after computing all the
a[X, ] for X € C, we apply the unary rules by treating the
a[X, f] (for X € () as a vector and left-multiplying it by U}
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Fig. 8. When an HRG rule has two nonterminal symbols, one is ower-
whelmingly likely to be much langer than the other This plot shows, for
varous grammar rules (one LHS per row, one AHS per colored line), the
probability (log scale) of apportioning 1024 nodes betwean two nonter-
minal symbwols. This plot is best viewedincolor

Some tricks are needed for numerical stability; for details,
please see the released source code at hitps:/ / github.com/
nddsg /PHRG/.

Algorithm 2 Compute Inside Probabilities (General)
compute weighted digraph ' of unary size-zero rules;
find strongly connected components (soc’s) of U
compute [/, for each scc C;
forf+—1,...,ndo
for scc’s C' in reverse topological order do
for X € C'do
forrules X X, R do
¥ ={ —size( R);
if R has no nonterminals and £ = 0 then
el X +=p
else if i has nonterminal ¥ and & < £ then
a| X, ] +=p = oV, #);
else if R has nonterminals ¥ and £ then
fork—1,....¢f —1do
a[X .8 +=p = eV} =2, - k;
for X € C'do
a[X, 0] = ¥yl Ut xy x Y. 4);

In principle, a similar problem could arise with binary
rules. Consider a rule X — R where R is zero-size and has
two nonterminals, ¥ and Z. If of¥,0] > 0, then ofX, {] is
defined in terms of «[Y, £, which could lead to a dreularity.
Fortunately, we can avoid such situations easily. Recall that
after clique tree pruning (Section 3.2), every leaf of the di-
que tree has at least one internal vertex. In terms of HRG
rules, this means that if B has no nonterminals, then
size(R) > 0. Therefore, we have o[X,0] =0 for all X, and
no problem arises.

Once we have computed o, we can easily sample a graph
of size n using Algorithm 3. Initially, we start with the sized
start nonterminal 5. Then, we repeatedly choose an edge
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labeled with a sized nonterminal X'Y, use the table o of
inside probabilities to recompute the weight of all the
rewriting choices quickly, sample one of them, and apply it.

Algorithm 3. Generate a Graph with n Nodes

H .—S[“J;
while H contains a nonterminal X9 do
forall rules X ©, Rdo
# =17 —dze(R);
if R has no nonterminals and £ = 0 then
weight[R] = p;
else if R has nontermina Y then
R = R{YHY[”},

weight[ ] = p = «[¥ #];
else if R has nonterminals ¥ and £ then
fork—1,....# —1do

R‘r = R{YHY{H EHE["”};
weight[R] = p x o[V, k] = a2, - k|;
let P(R) = weight[R]/ 3" , weight[R'];
sample sized RHS R from F{R);
choose ordering of the external vertices of R;
H— H{X""-R};

4.3 Pruning Inside Probabilities
The slowest step in the above method is the precomputation
of inside probabilities (Algorithm 2), which is quadratic in
the number of vertices. To speed up this step up, we observe
that randomly generated graphs tend to be highly unbal-
anced in the sense that if a rule has two nonterminal sym-
bols, one is usually much larger than the other (see Fig. 8).
This is related to the fact, familiar with the study of algo-
rithms, that random binary search trees tend to be highly
unbalanced [31].

Therefore, we can modify Algorithm 2 to consider only
splits where at most (say) 1000 nodes go to one nonterminal
and the rest of the nodes go the other. This makes the algo-

rithm asymptotically linear.

5 EXPERIMENTS

Here we show that HRGs contain rules that succinctly repre-
sent the global and local structure of the original graph. In
this section, we compare our approach against some of the
state-of-the-art graph generators. We consider the properties
that characterize some real-world networks and compare the
distribution of graphs generated using Kronedker Graphs,
the Exponential Random Graph, Chung-Lu Graphs, and the
graphs produced by the probabilistic hyperedge replace-
mentgraph grammar.

Like HRGs, the Kronecker and Exponential Random
Graph Models learn parameters that can be used to approxd-
mately recreate the original graph H or a graph of some
other size such that the probabilistically generated graph
holds many of the same properties as the original graph
The Chung-Lu graph model relies on node degree sequen-
ces to yield graphs that maintain this distribution. The prob-
abilistically generated graphs are likely not isomorphic to
the original graph. We can, however, still judge how closely
the probabilistically generated graph resembles the original
graph by comparing several of their properties.


https://github.com/nddsg/PHRG/
https://github.com/nddsg/PHRG/
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TABLE 1

Experimental Dataset
Dataset Name MNodes Edges
Karate Club M 78
Proteins (metabolic) 1,870 2277
arXiv GR-QC 5242 14 49
Internet Routers 6,474 13,895
Enron Emails 36,692 183,831
DELF 317,080 1,049 866
Amazon 400727 2,349 8a0
Flickr 105,938 2316,948
5.1 Real-World Datasets

To get a holistic and varied view of the strengths and weak-
nesses of HRGs in comparison to the other leading graph
generation models, we consider real-world networks that
exhibit properties that are both common to many networks
across different fields, but also have certain distinchive
properties.

The six real-world networks considered in this paper are
described in Table 1. The networks vary in their number of
vertices and edges as indicated, but also vary in clustering
coeffident, diameter, degree distribution and many other
graph properties. Specifically, Karate Club graph is a net-
work of interactions between members of a karate club; the
Protein network is a protein-protein interaction network of
5. cerevisine yeast; the Enron graph is the email correspon-
dence graph of the now defunct Enron corporation; the
arXiv GR-QC graph is the co-authorship graph extracted
from the General Relativity and Quantum Cosmology sec-
tion of arXiv; the Internet router graph is created from traffic
flows through Internet peers; DBLP is the co-authorship
graph from the DBLP dataset; Amazon is the co-purchasing
network from March 12, 2003; and, finally, Flickr is a net-
work created from photos taken at the same location.

In the following experiments, we use the larger networks
(arXiv, Routers, Enron, DBLFP, Amazon, Flickr) for network
generation and the smaller networks (Karate, Protein) for a
special graph extrapolation task. Datasets were downloaded
from the SNAP and KONECT dataset repositories.

5.2 Methodology
We compare several different graph properties from the
four classes of graph generators (fixed-size HRG, Kro-
necker, Chung-Lu and exponential random graph (ERGM)
maodels) to the original graph H. Other models, such as the
Erdo s-Rényi random graph model, the Watts-Strogatz small
world model, the Barabdsi-Albert generator, etc are not
compared here because Kronecker, Chung-Lu and ERGM
have been shown to outperform these earlier models when
matching network properties in empirical networks.
Kronecker graphs operate by learning an initiator matrix
and then performing a recursive multiplication of that initia-
tor matrix to create an adjacency matrix of the approximate
graph. In our case, we use KronFit [32] with default parame-
ters to learn a 2 = 2 iniHator matrix and then use the recursive
Kronecker produd to generate the graph. Unfortunately, the
Kronecker produdt only areates graphs where the number of
nodes is a power of 2, i.e,, 2, where we chose x = 15, £ = 12,
r=13, and r = 18 for Enron, ArXiv, Routers and DBLP

graphs respectively to match the number of nodes as close as
possible.

The Chung-Lu Graph Model takes, as input, a degree
distribution and generates a new graph of the similar
degree distribution and size [33].

Exponential Random Graph Models are a class of proba-
bilistic models. Their usefulness lies in that they directly
describe several structural features of a graph [34]. We used
default parameters in R's ERGM padkage [35] to generate
graph models for comparison. In addition to the problem of
model degeneracy, ERGMs do not scale well to large
graphs. As aresult, DBLP, Enron, Amazon, and Flickr could
not be modelled due to their size, and the arXiv graph
always resulted in a degenerate model Therefore ERGM
results are omitted from this sedion.

The main strength of HRG is to learn the patterns and
rules that generate a large graph from only a few small sub-
graph-samples of the original graph. 5o, in all experiments,
we make k random samples of size 5 node-induced sub-
graphs by a breadth first traversal starting from a random
node in the graph [36]. By default we set k = 4 and 5 = 500
empirically. We then compute tree decompositions from the
k samples, learn HRGs G, Ga,. .., (i, and combine them to
create a single grammar 7 = | ;.

Unless otherwise noted, we generate 2 graphs each for
the HRG, Chung-Lu, and Kronecker models and plot the
mean vahlues in the results sedion. We did compute the con-
fidence intervals for each of the models but omitted them
from the graphs for clarity. In general, the confidence inter-
vals were small for HRG, Kronecker, and Chung-Lu.

5.3 Graph Generation Results

Here we compare and contrast the results of approximate
graphs generated from the HRG, Kronecker, and Chung-Lu
models. Before presenting each result, we briefly introduce
the graph properties that we used to compare the similarity
between the real networks and their a imate counter-
parts. Although many properties have been discovered and
detailed in related literature, we focus on five of the princi-
pal properties from which most others can be derived.

5.31 Global Measures

A key goal of graph modelling to preserve certain network
properties of the original graph (Le., H as introduced in 2).
Graphs generated using HRG, Kronecker, or Chung-Lu are
analyzed by studying their fundamental network properties
to assess how successful the model performs in generating
graphs from parameters and produdion rules learned from
the input graph. First, we look at the degree distribution,
eigenvector centrality, local clustering coeffident, hop plot,
and assortative mixing characteristics, and draw condu-
sions on these results.

Degree Distribution. The degree distribution of a graph is
the distribution of the number of edges comnnecting to a par-
ticular vertex. Fig. 9 shows the results of the degree distribu-
tion property on the six real-world graphs. Recall that the
graph results plotted here and throughout the results sec-
tion are the mean averages of 20 generated graphs. Each of
the generated graphs is slightly different from the original
graphs in their own way. As expected, we find that the
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—— H = HREG —— Chung-Lu —— Kronecker

Fig. 8. Degree Distibution. Dataset graphs echibit a power law degnes
distribution that is well captured by existing graph generators as well as
HRG.

power law degree distribution is captured by existing graph
generators as well as the HRG model

Eigenvector Centrality. The principal eigenvector is often
associated with the centrality or “value” of each vertex in
the network, where high values indicate an important or
central vertex and lower values indicate the opposite. A
skewed distribution points to a relatively few “celebrity”
vertices and many common nodes.

The principal eigenvector value for each vertex is also
closely associated with the PageRank and degree value for
each node. Fg. 10 shows the eigenvector scores for each
node ranked highest to lowest in each of the six real-world
graphs. Because the z-axis represents individual nodes,
Fig. 10 also shows the size difference among the generated
graphs. HRG performs consistently well across all graphs,
but the log scaling on the y-axis makes this plot difficult to
discern. To more conaretely compare the eigenvectors, the
pairwise cosine distance between eigenvector centrality of
H and the mean eigenvector centrality of each model’s gen-
erated graphs appear at the top of each plot in order. HRG
consistently has the lowest cosine distance followed by
Chung-Lu and Kronecker.

Hop Plot. The hop-plot of a graph shows the number of
vertex-pairs that are reachable within = hops. The hop-plot,
therefore, is another way to view how quickly a vertex's
neighborhood grows as the number of hops increases. As in
related work [16] we generate a hop-plot by picking 50 ran-
dom nodes and performing a complete breadth first tra-
versal over each graph. Fig. 11 demonstrates that HRG
graphs produce hop-plots that are remarkably similar to the

original graph.
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Fig. 12. Mean Clustering Coefficient by Node Degree. HRG dosely and
consistently resembles the clustering coefficients of the ofginal graph.

Mean Clustering Coefficients. A vertex's clustering ooeffi-
cient is a measure of how well connected its neighbors
are [40]. For each vertex in the graph, its clustering coeffi-
cient is the ratio of the number of edges in its ego-network
(i.e, loal neighborhood) to the total number of possible
edges that could exist if the vertex’s neighborhood was a di-
que. Calculating the clustering coefficient for each node is a
computationally difficult task and difficult plot aestheti-
cally, so we sampled 100 nodes from the graph randomly.
Fig. 12 shows the average dustering coefficients for the sam-
pled nodes as a function of its degree in the graph. Like the
results from Seshadhri et al, we find that the Kronecker and
Chung-Lu models perform poorly at this task [15].

Local Degree Assortativity. The global degree assortativity
of a graph measures its tendency to have high-degree verti-
ces connedt to high-degree vertices and vice versa measured
as a Pearson correlation coeffident. The ol degree assorta-
tivity is measured for each vertex as the amount that each
vertex contributes to the overall correlation, i.e., how differ-
ent the vertex is from its neighbors. Fig. 13 shows the degree
assortativity for each vertex from each generated graph.

The last three graph metrics, k-core, local clustering coef-
ficient, and local degree assortativity, all showed a relatively
poor performance of the Chung-Lu and Kronedker graph
generators. HRG modelled the k-core and local clustering
coeffidents rather well but had inconsistent results in the
local degree assortativity plots.

5.4 Canonical Graph Comparison

The previous network properties primarily focus on statis-
tics of the global network. However, there is mounting evi-
dence which argues that the graphlet comparisons are a
complete way to measure the similarity between two

—— [ = HRG —— Chung-Lu —— Kronecker

Fig. 13. Local Degree Assortativity HRG, Chung-Lu, and Kronecker
graphs show mixed results with no clear winner.

graphs [17], [18]. The graphlet distribution succinctly
describes the number of small, local substructures that
compose the overall graph and therefore more completely
represents the details of what a graph "looks like.” Fur-
thermore, it is possible for two very dissimilar graphs to
have the same degree distributions, hop plots, etc,, but it is
difficult for two dissimilar graphs to fool a comparison
with the graphlet distribution.

Table 2 shows the mean graphlet counts over 10 runs for
each graph generator. We find that graphlet counts for the
graphs generated by HRG follow the original counts more
closely, and in many cases much more closely, than the Kro-
necker and Chung-Lu graphs.

Graphlet Correlation Distance. Recent work from systems
biology has identified a new metric called the Graphlet Cor-
relation Distance (GCD). The GCD computes the distance
between two graphlet correlation matrices—one matrix for
each graph [19]. It measures the frequency of the various
graphlets present in each graph, ie., the number of edges,
wedges, triangles, squares, 4-cliques, etc., and compares the
graphlet frequencies of each node across two graphs.
Because the GCD is a distance metric, lower values are bet-
ter. The GCD can range from [0, +oc], where the GCDis 0 if
the two graphs are isomorphic.

The rightmost column in Table 2 shows the GCD results.
Unfortunately, the node-by-node graphlet enumerator used
to aalculate the GCD [19] could not process the large Ama-
zon and Hickr graphs, so only the summary graphlet counts
are listed for the two larger graphs [20]. The results here are
clear: HRG significantly outperforms the Chung-Lu and
Kronecker models. The GCD opens a whole new line of net-
work comparison methods that stress the graph generators
in various ways. We explore many of these options next.
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TABLE 2
Graphlet Statistics and Graphlet Correlation Distance (GCD) for Six ReatWorld Graphs
Gaphs D L1, X 12 17! A 19 T oo
Routers 13511 1397413 9863 304478 6266541 177475 194533149 18615590
HRG 13928 1387388 9997 288664 6223500 174787 208588200 18398430 | 141
Kronecker 144 61406 0 B0 10676 973 642676 3514596 251
Chung-Lu 4787 356897 6268 81403 1651445 13116 35296782 4992714 2.00
Enron TAT044 23385781 2341630 2MTRMD 37ha91411 6708870 4479591993 1371828020
HEG 79131 4430783 49355 554240 13123350 556760 688165900 40090 | 051
Eronecker 2598 745412 1 1011 68566 49869 159468000 141065800 2.88
Chung-Lu 322352 23590260 1191770 16267140 342570000 10195620 3G67912000 2170061000 133
arXiv BU287 558179 320385 A35143 4686232 382032 11898620 7947374
HRG BB108 alag9a 320039 656554 FA03S2 435516 15691941 9162859 110
Eronecker 436 224916 1 3 47239 4277 3280822 2993351 210
Chung-Lu 927 232276 [ 967 B7R6S 11395 2503333 3936998 1.82
DELF 2224385 15107734 16713192 4764685 9615211 203394 258570802 25244735
HEG | 1271520 7036423 1809570 2716225 26536420 296801 F1099374 28744359 1.59
Eronecker 869 21456020 0 25 150877 11568 517370300 3679E1700 2.82
Chung-Lu 1718 22816460 740 a1 e993 27856 453408500 495492000 1.73
Amazon 5426197 B1676562 4202503 39339842 306482275 10982173486 11224584 15113824858
HREG | 4558006 062054 3782253 35405858 275834048 12519677774 10326617 1556723963 -
Eromecker 11265 118261600 40 166 4548659 50162 HET1HIT000 4752968000 -
Chung-Lu 4535 V1288780 21 6376 5874TH) 95323 11008170000 213462900 -
Flickr 24553 3754965 lal2 38327 2547637 63476 197979760 30734524
HRG 24125 4648108 1600 39582 3130621 GETIG 409838400 41498780 -
Kromecker | 679294 494779400 16068 4503724 G51038500 TB799B60 96664230000  Fa3Z13E0000 -
Chung-Lu | 7059002 787155400 J003082 313863800 12826040000 1513807000 168423000000 247999700000 -

First row of each section shotes the original graph’s graphlet counts, remaining rotw shotes mean counts of 10 runs for each graph generator. We find that the
HRG mndel generates graphs that desely approcimate the graphlet cournts of the origina graph.

5.5 Graph Extrapolation

Recall that HRG learns the grammar from & = 4 subgraph-
samples from the original graph. In essence, HRG is extrap-
olating the learned subgraphs into a full-size graph. This
raises the question: if we only had access to a small subset
of some larger network, could we use our models to infer a
larger (or smaller) network with the same local and global
properties? For example, given the 3-node Karate Club
graph, could we infer what a Karate Club might look like if
it's membership doubled?

Using two smaller graphs, Zachary’s Karate Club (34
nodes, 78 edges) and the protein-protein interaction net-
work of 5. cerevisite yeast (see Table 1), we learned an HRG
model with k=1 and s =n, ie, no sampling, and gener-
ated networks of size-n* = 2x, 3%, . .., 32x For the protein
graph, we also sampled down to n* = z/8 Powers of 2
were used because the standard Kronecker model can only
generate graphs of that size. The Chung-Lu model requires
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Fig. 14. GCD of graphs extrapolated in multiples up to 32x from two
small graphs. HRG outperforms Chung-Lu and Kronecker models when
generating larger graphs. Lower is batter

a size-n* degree distribution as input. To create the proper
degree distribution we fitted a Poisson distribution
(A =2.43) and a Geometric Distribution (p = 0.29) to Karate
and Protein graphs respectively and drew n* degree-
samples from their respective distributions. In all cases, we
generated 20 graphs at each size-point.

Rather than comparing raw numbers of graphlets, the
GCD metric compares the correlation of the resulting graph-
let distributions. As a result, GCD is largely immune to
changes in graph size. Thus, GCD is a good metric for this
extrapolation task. Fig. 14 shows the mean GCD scores; not
only does HRG generate good results at n* = 1x, the GCD

scores remain mostly level as n* grows.

5.6 Infinity Mirror
Next, we characterize the robusiness of graph generators by
introducing a new kind of test we call the infinity mirror.!
One of the motivating questions behind this idea was to see
if HRG holds sufficient information to be used as a reference
itself. In this test, we repeatedly learn a model from a graph
generated by an earlier version of the same model. For
HRG, this means that we learn a set of production rules
from the original graph H and generate a new graph H*;
then we set H «— H* and repeat whereby learning a new
maodel from the generated graph recursively. We repeat this
process ten times and compare the output of the 10th recur-
rence with the original graph using GCD.

We expect to see that all models degenerate over ten
recurrences. The question is, how quickly do the models
degenerate and how badly do the graphs become?

1. “Infinity mirror” gets its name from the novelty item with a pair
of mirrors, set up to create a series of smaller and smaller reflections
that appear to taper to an infinite distance.
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Fig. 15. Infinity Mirror: GCD comparison after each recurrence. Unlike
Kronecker and Chung-Lu models, HRG does not degenerate as its
model is applied repeatedby.

Fig. 15 shows the GCD scores for the HRG, Chung-Lu and
Kronecker models at each recurrence (we have also validated
the Infinity Mirror tests with other variations to the Chung-
Lu model including the Blodk Two-Level Erdos-Rényi Model
with similar results [41]). Surprisingly, we find that HRG
stays steady, and even improves its performance while the
Kronecker and Chung-Lu models steadily decrease their per-
formance as expeded. We do not yet know why HRG
improves performance in some cases. Because GCD measures
the graphlet correlations between two graphs, the improve-
ment in GCD may be because HRGis implicitly homing in on
rules that generate the necessary graph patterns.

5.6.1 Infinity Mirror Model Size

The number of production rules derived from a given graph
using Fixed-Size Graph Generation. Fig. 16 shows the num-
ber of nodes in graphs after 1, 5, and 10 feedback iterations.
The trend for each input graph varies slightly, but in general
the modelsize (ie., the number of produdion rules
derived) stays flat.

5.7 Sampling and Grammar Complexity

We have shown that HRG can generate graphs that match
the original graph from k = 4 samples of 5 = 500-node sub-
graphs. If we adjust the size of the subgraph, then the size of
the clique tree will change causing the grammar to change in
size and complexity. A large dique tree ought to create more
rules and a more complex grammar, resulting in a larger
maodel size and better performance; while a small clique tree
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Fig. 16. Number of rules (mean ower 20 runs) derived as the number of
reCUrrences increases.
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Fig. 17. HAG model size as the subgraph size s and the number of sub-
graph samples kvaries. The model size grows linearly with kand s.
ought to create fewer rules and a less complex grammar,
resultingin a smaller model size and a lower performance.

To test this hypothesis, we generated graphs by varying
the number of subgraph samples k from 1 to 32, while also
varying the size of the sampled subgraph s from 100 to 600
nodes. Again, we generated 20 graphs for each parameter
setting. Fig. 17 shows how the model size grows as the sam-
pling procedure changes on the Internet Routers graph
FPlots for other graphs show a similar growth rate and shape
but are omitted due to space constraints.

To test the statistical correlation we calculated Pearson's
correlation coefficient between the model size and sampling
parameters. We find that the k is slightly correlated with the
model size on Routers (r = 0.31, p = 0.07), Enron (r = 0.27,
p=008), arXiv (r=021,p =0.11), and DBLP (r=0.29,
p = 0.09). Furthermore, the choice of s affects the size of the
clique tree from which the grammars are inferred. So its not
surprising that s is highly correlated with the model size on
Routers (r =0.64), Enron (r = 0.71), arXiv (r = (.68), and
DBLP (r = 0.54) all with p < 0.001.

Because we merge identical rules when possible, we sus-
pect that the overall growth of the HRG model follows Heaps
law [42], i.e,, that the model size of a graph can be predicted
from its rules; although we save a more thorough examina-
tion of the grammar rules as a matter for future work.

5.7.1 Model Size and Perfformance

One of the disadvantages of the HRG model, as indicated in
Fig. 17, is that the model size can grow to be very large. But
this again begs the question: do larger and more complex
HRG models result in improved performance?

To answer this question, we computed the GCD distance
between the original graph and graphs generated by varying
k and s. Fig. 18 illustrates the relationship between model
size and the GCD. We use the Router and DBLP graphs to

Fouters

DELP

10# 104
Model Size

Model Size

Fig. 18. GCD as a function of model size. Wa find a slightly negative nela-
tionship between model size and performance, but with quickly diminish-
ing returns. We show best-fit lines and their equations; the shorter fit line
inthe Routers plot ignores the square outlier points.
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Fig. 19. Total extraction runtime (i.e., clique tree creation and rule extrac-

tion) as a function of model size. Best fit lines on the log-log plot show
that the execution time grows linearty with the model size.

shows the largest and smaller of our datasets; other graphs
show similar results, but we omit their plots due to space.
Surprisingly, we find that the performance of models with
only 100 rules is similar to the performance of the largest
maodels. In the Router results, two very small models with
poor performance had only 18 and 20 rules each. Best fitlines
are drawn to illustrate the axes relationship where negative
slope indicates that larger models perform better. Qutliers
can dramatically affect the outcome of best-fit lines, so the
faint line in the Routers graph shows the best fit line if we
remove the two square outlier points. Without removing out-
liers, we find only a slightly negative slope on the best fit line
indicating only a slight performance improvement between
HEG models with 100 rules and HRG models with 1,000
rules. Pearson’s correlation coefficient comparing GCD and
model size similarly show slightly negative correlations on
Routers (r = —0.12, p=0.49), Enron (r = —0.09, p = 0.21),
ArXiv (r = 0.04, p = 0.54), and DBLP {r = —0.08, p = 0.62)

5.7.2 Runfime Analysis

The overall execution time of the HRG model is best viewed
in two parts: (1) rule extraction, and (2) graph generation.

Unfortunately, finding a clique tree with minimal width
ie., the treewidth tw, is NP-Complete. Let n and m be the
number of vertices and edges respectively in H. Tarjan and
Yannikakis’ Maximum Cardinality Search algorithm finds
usable clique trees [27] in linear time O(n +m), but is not
guaranteed to be minimal

The running time of the HRG rule extraction process is
determined exclusively by the size of the clique tree as well
as the number of vertices in each dique tree node. From
Definition 2.1 we have that the number of nodes in the di-
que tree is m. When minimal, the number of vertices in the
largest dique tree node max(|n;|) (minus 1) is defined as the
treewidth tw. However, clique trees generated by MCS have
max(|n;|) bounded by the maximum degree of H and is
denoted as A [43]. Therefore, given an elimination ordering
from MCS5, the computational complexity of the extraction
process is in O{m - A). In our experiments, we perform &
samples of size-s subgraphs. So, when sampling with & and
5, we amend the runtime complexity to be O(k-m- A)
where m is bounded by the number of hyperedges in the
size-s subgraphsampleand A < s.

Graph generation requires a straightforward application of
rules that is linear in thenumber of edges in the output graph.

We performed all experiments on a modemn consumer-
grade laptop in an unoptimized, unthreaded python imple-
mentation. We recorded theextradion time while generating
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graphs for the size-to-GCD comparison in the previous sec-
tion. Although the runtime analysis gives theoretical upper
bounds to the rule extraction process, Fig. 19 shows that the
extraction runtime is highly correlated to the size of the
model in Routers (r=068), arXiv (r=091), Enron
(r = 0.88), and DBLP (r = 0.94) all with p < 0.001. Simply
put, more rules require more time, but there are diminishing
returns. So it may not be necessary to learn complex models
when smaller HRG models tend to perform reasonably well.

By comparison, the Kronecker graph generator learns a
maodel in O(m) and can create a graph in O(m). The Chung-
Lu model does not learn a model, but rather takes, as input,
a degree sequence; graph generation is in O(n +m).

5.7.3 Graph Guarantees

In earlier work we showed that an application of HRG rules
corresponding to a traversal of the clique tree will generate
an isomorphic copy of the original graph [24].

Unlike the Kronecker and Chung-Lu graph generators,
which are guaranteed to generate graph with power-law
degree distributions, there are no such guarantees that can
be made about the shape of graphs generated by HRGs. The
reason is straightforward: the HRG generator is capable of
applying rules in any order, therefore, a wide variety of
graphs are possible, although improbable, given an HRG
BTammar.

But the lack of a formal guarantees give the HRG model
flexibility to model a large variety of graphs. For example,
given a line-graph, the HRG model will generate a new
graph that looks, more-or-less, like a linegraph. If given a
random graph, characterized by a binomial degree distribu-
tion, then HRG is likely to generate a new graph with a
binomial degree distribution.

6 CONCLUSIONS

This paper describes a new generative network framework
that learns a hyperedge replacement grammar given a sim-
ple, general graph and grows new graphs. The inference (or
model learning) step uses clique trees (also known as junc-
tion trees, tree decomposition, intersection trees) to extract
an HRG, which characterizes a set of production rules. We
show that depending on how HRG grammar rules are
applied, during the graph generation step, the resulting
graph is isomorphic to the original graph if the clique tree is
traversed during reconstruction. More significantly, we
show thata stochastic application of the HRG grammar rules
creates new graphs that have very similar properties to the
original graph. The results of graphlet correlation distance
experiments, extrapolation, and the infinity mirror are par-
ticularly exciting because our results show a stark improve-
mentin performance over several existing graph generators.
Perhaps the most significant finding that comes from this
work is the ability to interrogate the generation of substruc-
tures and subgraphs within the grammar rules that combine
to create a holistic graph. Forward applications of the tech-
nology described in this work may allow us to identify
novel patterns analogous to the previously discovered tri-
adic closure and bridge patterns found in real-world social
networks. Thus, an investigation into the nature of the
extracted rules and their meaning (if any) is a top priority.
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In the future, we plan to investigate differences between
the grammars extracted from different types of graphs; we
are also interested in exploring the implications of finding
two graphs which have a large overlap in their extracted
grammars. Among the many areas for future work that this
study opens, we are particularly interested in learning a
grammar from the actual growth of some dynamic or evolv-
ing graph. Within the computational theory community,
there has been a renewed interest in quickly finding clique
trees of large real-world graphs that are closer to optimal.
Because of the close relationship of HRG and clique trees
are shown in this paper, any advancement in clique tree
algorithms could direcly improve the speed and accuracy
of graph generation.

We encourage the community to explore further work
bringing HRGs to attributed graphs, heterogeneous graphs
and developing pradical applications of the extracted rules.
Given the current limitation related to the growth in the
number of extracted rules as well as the encouraging results
from small models, we are also looking for sparsification
techniques that might limit the model's size while still
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