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Abstract
Objective. We analyze task-based fMRI time series to produce large-scale dynamical models
that are capable of approximating the observed signal with good accuracy. Approach. We
extend subspace system identification methods for deterministic and stochastic state-space
models with external inputs. The dynamic behavior of the generated models is characterized
using control-theoretic analysis tools. To validate their effectiveness, we perform a
probabilistic inversion of the identified input—output relationships via joint state-input
maximum likelihood estimation. Our experimental setup explores a large dataset generated
using state-of-the-art acquisition and pre-processing methods from the Human Connectome
Project. Main results. We analyze both anatomically parcellated and spatially dense time
series, and propose an efficient algorithm to address the high-dimensional optimization
problem resulting from the latter. Our results enable the quantification of input—output
transfer functions between each task condition and each region of the cortex, as exemplified
by a motor task. Further, the identified models produce impulse response functions between
task conditions and cortical regions that are compatible with typical hemodynamic response
functions. We then extend subspace methods to account for multi-subject experimental
configurations, identifying models that capture common dynamical characteristics across
subjects. Finally, we show that system inversion via maximum-likelihood allows the time-of-
occurrence of the task stimuli to be estimated from the observed outputs. Significance. The
ability to produce dynamical input—output models might have an impact in the expanding field
of neurofeedback. In particular, the models we produce allow the partial quantification of the
effect of external task-related inputs on the metabolic response of the brain, conditioned on
its current state. Such a notion provides a basis for leveraging control-theoretic approaches to
neuromodulation and self-regulation in therapeutic applications.
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1. Introduction

Dynamical models provide a principled approach to describing
the flow of energy and information in a system of interest.
Generally, such models account for the effect that past his-
tory (summarized in the system’s internal state) and external
sources of energy and information (represented by its inputs)
produce on the system’s observed variables (outputs) [1, 2].
In the context of a person participating in a functional magn-
etic resonance imaging experiment, the externally observed
variables are related to changes in blood flow resulting from
neural activity, as measured by variations in the local concen-
tration levels of oxyhemoglobin and deoxyhemoglobin on
the cortex [3]. Correspondingly, the observed inputs to these
models can be associated with task-related stimuli presented
to the individual throughout the execution of the experiment,
as well as to physiological measurements such as heart rate
and respiration [4].

From a biological point of view, the relationship between
such inputs and outputs is generally described as a combi-
nation of neural processes occurring across two levels. The
inner (microscopic) level consists of fine-grained interactions
between neurons involved in the exchange of information
encoded through action potentials. The outer (mesoscopic)
level, measured by the fMRI signal, consists of the aggregate
effect of metabolic requirements from the inner level in terms
of glucose metabolism and oxygen content in cerebral blood
flow [5]. This relationship has been quantified as the localized
time response of the blood-oxygen-level-dependent signal
(BOLD) with respect to a specific stimulus onset [6], and
is referred to as the BOLD-contrast hemodynamic response
function (HRF) [7]. Notably, in comparison with the shorter
time scale associated with inner-level processes, the time scale
over which most of the variation of the HRF takes place is of
the order of seconds. The onset of the HRF typically takes
place approximately 2 s after the presentation of the stimulus,
with the remaining part of the response lasting approximately
10-12 s [7]. In addition, because of an empirically observed
effect of additivity in BOLD response with respect to the
stimuli, this behavior can be broadly approximated by a linear
input—output dynamic relation [8—11] (for a discussion of pos-
sible limitations see [12—14]). Based on these characteristics,
this study seeks to estimate data-driven models capable of
approximating the measured fMRI BOLD signal as a function
of task-related and physiological inputs. Motivated by their
analytical tractability, we consider the class of discrete-time,
time-invariant linear systems, here expressed in a relatively
high-dimensional output space defined by the spatial resolu-
tion of the fMRI signal.

It is known that any given class of dynamical models under
consideration will impose constraints on the methods that can
be applied for their estimation. In the context of fMRI time
series, two commonly studied classes of models are those
based on dynamic causal modeling (DCM), and those based
on linear autoregressive processes (AR). The DCM approach
for fMRI [15] considers a bilinear neural activity model, cou-
pled with a nonlinear BOLD observation function. Because of
the nonlinearities involved in its formulation, the associated

model estimation procedure often involves an expectation
maximization algorithm, which tends to limit its applica-
bility to moderately-sized models. On the other hand, studies
applying AR models to fMRI assume that the signal is gener-
ated by a recursive linear transformation of endogenous noise
sources, and therefore do not account for the external input-
to-output relationships that we address in this paper [16—18].

For the class of models that we consider, i.e. discrete-time
time-invariant linear state-space models with external inputs,
effective and reliable methods for parameter estimation have
been developed [19, 20]. In particular, we take inspiration
from subspace methods, which have the desirable charac-
teristics of assured consistency and convergence to globally
optimal estimates with respect to a quadratic error criteria
[21, 22]. Although widely employed in many fields of engi-
neering, to the authors’ knowledge, subspace methods have
received restricted attention in fMRI modeling. The few
existing studies in this respect are lacking in important aspects,
such as depth of analysis and experimental validation on real
datasets. Earlier work [23] (followed by [24]) proposed the
use of subspace methods for fMRI data, but applied them to
simulated-only time series, and over a very low-dimensional
space of observations (less than four regions-of-interest). The
work in [25] considered a restricted configuration of subspace
methods, i.e. for models with no external inputs. The goal of
that study was to use resting-state (non-task) data to estimate
connectivity (as opposed to dynamical models), and its scope
was also restricted to a dataset with small numbers of brain
regions and participants.

In this work, we analyze task-based functional magnetic
resonance imaging time series using a dynamical systems
approach. Based on information about the time-of-occurrence
of task stimuli presentation and using the observed signal
intensity on the cortical surface, we apply subspace system
identification methods to produce input—output dynamical
models that are capable of approximating the BOLD time
series with good accuracy, as measured by the correlation
between the original fMRI signal and the one generated by
the model. As our experimental setup, we explore a dataset
extracted from the Human Connectome Project [26], gener-
ated using state-of-the-art fMRI acquisition and pre-pro-
cessing methods. We consider both anatomically parcellated
and high spatial resolution versions of the fMRI time series,
and propose an efficient algorithm to address the large-scale
optimization problem resulting from the latter. Our analysis
enables the quantification of input—output transfer function
norms between each task input channel and each region of the
cortex, as we exemplify by a motor task experiment. In addi-
tion, the identified models produce impulse response functions
between task conditions (i.e. specific task commands issued
to the subject) and cortical regions that are compatible with
typical hemodynamic response functions [27]. Furthermore,
we extend existing subspace system identification methods
to account for multi-subject experimental configurations,
identifying models that capture common dynamical charac-
teristics across subjects, and apply them to a cohort of 100
subjects. Finally, to verify that the method consistently cap-
tures the underlying input—output relationships, we perform
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a probabilistic inversion of the identified models based on
a first-principles maximum likelihood derivation, thereby
allowing the time-of-occurrence of the task-related inputs to
be estimated from the observed outputs.

The ability to produce dynamical input—output models
could have an impact in the expanding field of neurofeedback
[28]. In particular, the models we produce allow the partial
quantification of the effect of external task-related inputs on
the metabolic response of the brain, conditioned on its current
state. Such a notion provides a basis for leveraging control-
theoretic approaches to neuromodulation and self-regulation
in therapeutic applications, as those described in [29, 30].

The remainder of the paper is structured as follows. In
section 2, we describe the model and methods proposed for
system identification. In section 3, we report details of the
dataset and parameters considered in the experiments that we
performed. In section 4, we illustrate and discuss the main
results obtained by our methods, and in section 5, we provide
conclusions and suggestions for future research.

1.1. Notation

We denote by x € R" a column vector, and by [x]; its ith entry.
For a matrix X € R™*", [X];; denotes the entry in its ith row
and jth column. Also, [X];,;. indicates the sub-matrix obtained
from keeping the entries from the ith to jth rows and all of
its columns. The transpose of a matrix is written as XT ie.
[XT)i; := [X);;- The Moore-Penrose pseudo-inverse of a
matrix A is denoted by AT,

The n x nidentity matrix is denoted by I,,. The vectorization
operator vec(X) : R™*"* — R™ vertically concatenates the col-
umnsof X ontoavectorx € R™, withvec,,},(X) : R™ — R"™*"
denoting its inverse operator. We denote by S | (resp. S)
the set of n X n symmetric positive definite (resp. semi-def-
inite) matrices. The Frobenius norm of a matrix is denoted
by [IX]| == (30, Yo [X]2)? = (TeXTX):. The matrix
Mahalanobis distance of X with respect to a matrix ¥ € Sy
is defined as | X||g := (TIXTUX)?. Further, we denote
by (x,y) the (Pearson) sample correlation between two
n-dimensional vectors, defined as (x,y) :=1 S (k) —
i Dico XRD(K) — 5 35 (K]

The density function (pdf)
able (r.v.) X with support on X is denoted by
p(x) = fx(x) := LFx(x), where Fx(x):=P{X <x}. The
conditional pdf of a r.v. X given Y is denoted p(x|y). A r.v.
x € R" following a multivariate normal distribution with
mean /¢ and covariance ¥ is denoted x ~ A (1, 2), having pdf

Pl 2) = (2m) =4 (det )~ exp (~ 4 v — )

of a random vari-

2. Model and methods

2.1. System model

As our approximating model (see figure 1), we consider a dis-
crete-time time-invariant linear system described by a state-
space representation, which evolves according to

Model Dynamics
z(k + 1) = Az(k) + Bu(k) + w(k)
g(k) = Cz(k) + v(k)

zeR", weR", veRP [15((}:))] NN([g] ’ [SQT IS?D

‘—b System Identification <—l

y(k) € R?  OUTPUTS INPUTS  u(k) € R™
parcellated: p=148 motor respiratory
dense: p=64984 gambling heart

emotion movement
BOLD fMRI COGNITIVE PHYSIOLOGICAL

Figure 1. The system identification approach. The cognitive (i.e.
task-related) and physiological inputs u(k) € R™, along with

the outputs y(k) € R?, are presented to the subspace system
identification algorithm, which produces estimates for the system
matrices A, B and C (and noise matrices Q, R, and S in the
stochastic case). In the experiments conducted, we have p = 148 for
the parcellated time series, and p = 64984 for the spatially dense
time series.

= Ax(k) + Bu(k) + w(k),

x(k+1) )
— Cx(k) + o(k), fork=0,1,.... D

y(k)
Here, the vector of outputs y(k) € R” corresponds to the
observed BOLD signal intensities associated with the fMRI
measurements at different regions of the brain. The dimen-
sionality parameter p corresponds to the number of regions
in the partition (parcellation) of the cortical surface, or to the
surface mesh resolution, in the case of spatially dense time
series (see description in section 3). The input u(k) € R™
corresponds to the physiological and task-related signals
observed during the experiment, whose encoding will be
specified in section 2.2. In addition, the internal state variable
x(k) € R" summarizes the system’s past history with respect
to its effect on future outputs. The matrices associated with the
deterministic state-space representation (A, B, C) are referred
to, respectively, as the state transition matrix A € R"*", the
input matrix B € R"™" and the output matrix C € RP*",
They implement, in that order, the mean linear relationships
between the recurrent effect of the state on itself, the effect
of external inputs on the state, and the effect of the state on
the observed outputs. Furthermore, such matrices correspond
to the linearization [2] of a possibly nonlinear system in the
close vicinity of a fixed operating point x(k) = X. The variable
v(k) € R? is referred to as additive observation noise, and is
commonly associated with uncertainties in the measurement
of the outputs. Correspondingly, w(k) € R”" is referred to as
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process noise and might, for example, account for the effect
of unobserved inputs to the system. These are assumed to be
zero-mean random variables jointly distributed according to

o]~ (L[5 &)

where Q€S ,, R€ SLr and S € R"*” are the matrices
associated with the stochastic component of the linear
system representation. The parameters of this approximating
model will be estimated by subspace identification methods,
subject to a model complexity constraint given by the state
dimension n (a parameter of choice). In this respect, we seek
estimates that, provided with the original inputs u(k) and ini-
tial state estimate x(0), are able to produce output estimates
$(k) that approximate the originally measured outputs y(k)
with good accuracy, as evaluated by their mutual correlation

(3. 3).

@)

2.2. Input encoding

In the context of a task-based fMRI experiment, we con-
sider two classes of exogenous signals to the model, which we
refer to as cognitive and physiological. Cognitive (i.e. task-
related) inputs are designed to trigger different aspects of the
brain’s neural response, and are therefore specific to the type
of experiment under investigation. Each task (e.g. MOTOR
task) defines a repertoire of stimuli issued to the subject par-
ticipating in the experiment, with each stimulus type being
referred to as a task condition. Concretely, task conditions are
implemented as specific visual or auditory commands issued
to the subject at different times during the experiment. For
example, one task condition in the MOTOR experiment is ‘tap
right finger’ (RH), which prompts the subject to act accord-
ingly, after the presentation of a visual cue on a screen. To
encode these inputs, considering task conditions j = 1,...,m,
(identified with corresponding input channels [u.(k)];), we
assign [u.(k)]; = 1 if task condition j occurs on time k, and
set [uc(k)]; = 0 otherwise (see figure 2). In contrast, physi-
ological signals (e.g. heart cycles, respiration, and head move-
ment) are usually treated as non-neural disturbances affecting
the measured output signal. In this case, it is common practice
to numerically remove the effect of the physiological signals
from the output measurement by means of a regression proce-
dure [4] (as we specify in section 3.2).

2.3. Identification via subspace methods

To formalize our system identification problem, we consider
a batch of L input and output observations {u(k),y(k)}i =,
generated by an unknown discrete-time, time-invariant linear
system described by (1), i.e. our approximating model. We
wish to recover estimates (AT,BT, C‘T) of the determin-
istic system description, estimates (QT,RT,ST) of the noise

matrices, and an estimate x7(0) of the initial condition. Here,

CUE [ [ | |
50 100 150 200 250
LF |
50 100 150 200 250
LH | |
50 100 150 200 250
RF | ]
50 100 150 200 250
RH | |
50 100 150 200 250
T ] |
50 100 150 200 250
0.1
heart | o PRt
50 100 150 200 250
01
u(k) | R
o1
50 100 150 200 250
t o W%
X -0.1
50 100 150 200 250
t c.é m
T i A
Y 0.1 A
50 100 150 200 250
t o W
2 of
o1 50 100 150 200 250
vy 9 M WWMWWMMMW
01 50 100 150 250
r, K WM
50 100 150 200 250
r % M
z -0.1
50 100 150 200 250
samples(k)

Figure 2. Input encoding of task and physiological signals for

the MOTOR task. The input vector is partitioned into two blocks:
the block of cognitive (i.e. task-related) input channels (u.) and

the block of physiological input channels (). For u,, a set of six
task conditions is considered: CUE (a visual cue preceding the
occurrence of other task conditions), LF (squeeze left toe), LH (tap
left fingers), RF (squeeze right toe), RH (tap right finger), and T
(move tongue). As the physiological inputs u, a set of eight input
channels is considered: heart (heart signal), resp (breathing signal),
head translation t,, t,, £, (in the three spatial axes), and head rotation
Ty, Iy, and 7 (in the three spatial axes).

the subscript 7" denotes the fact that estimates are obtained up
to an invertible linear transformation of the state representa-
tion, represented by a matrix T € R"*", i.e. ir(k) = Tx(k).
This transformation accounts for an invariance effect inherent
to the problem, since any such 7' can be applied to a given
state representation and still preserve the same input—output
relationship [31].

To estimate system parameters, we apply and extend
algorithms derived from the class of subspace identifica-
tion methods [21]. Such methods rely on the construction,
using the observed input and output data, of Hankel- and
Toeplitz-structured matrices to establish a linear matrix equa-
tion between the data and the system parameters. The key
characteristic enabling a solution to this problem lies in the
notion that such matrices exhibit a specific low-rank structure
that can be leveraged via a singular value decomposition, as
will be seen shortly. For the sake of simplicity in our exposi-
tion, we will assume v(k) = 0 and w(k) = 0 in (1), and that
no feedback effect is present. Details of the treatment for
cases when these noise components follow normal distribu-
tions with arbitrary covariance matrices is given in the sup-
plementary methods (stacks.iop.org/JNE/15/066016/mmedia)
document accompanying this article.

We will begin our technical description by addressing a
simple configuration, which considers the model for one sub-
ject in isolation, and whose output measurements are defined
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in the lower-dimensional output spatial resolution (parcellated
case). The treatment of the extended configurations (i.e. multi-
subject models and large dimensionality of output measure-
ments) will be given in sections 2.4 and 2.5, respectively.
First, we note that using (1), the output at time & with an ini-
tial condition x(0) and past inputs u(r), for r =0, ...,k — 1,
satisfies
k=1
y(k) = CA*x(0) + > CA*"~'Bu(r) 3)
r=0

when k > 0. Using (3), a sequence of s output samples y(k) at

times k = 0,...,s — 1 can be written in matrix form as
¥(0) c 0 0 - 0] u0)
y(1) CA CB 0 of| u(1)
¥(2) CA* | y0)+| CAB CB 0| u2)
y(s—1)| |ca! CA2B CA*™3 ... 0] |u(s—1)
———— ——— X
=Yos =05 =T =:Uo,s

“
Here, O, € R?*"is ablock-row matrix with each block of size
p X n, and Ty € RP*¥ jg a structured block-Toeplitz matrix
having each block having size p x m. The block-row matrices
Yo, € RP*!and Uy, € R*! have each block of size p x 1
and m x 1, respectively, with the first subscript denoting the
sample time index of the block element in their first row. By
horizontally concatenating N block-row matrices Y;; (for
i=0,...,N—1), we obtain the structured block-Hankel
matrix Vo, n € R?>*N having each block of size p x 1, i.e.

¥(0)  y(1) YN 1)

y(1)  ¥(2) y(N)
VosN = ‘ : :

(s=1) y(s) (N +5-2)

Likewise, Uy € RV is a block-Hankel matrix with each
block of size m x 1, following the same structure as in Vo sn-.
Hence, by defining the block-row matrix Xoy € RN where
Xon := [x(0) x(1) ... x(N — 1)], we can write, from (4), the
data equation

y(),s,N = OSXO,N + 7;”0,x,N~ (5)

This equation will be subsequently analyzed to produce the
estimates for the state-space representation matrices A, B and
C, as well as for the initial state x(0).

2.3.1. Estimates of A and C. We consider the projection
matrix HﬁO‘N € RV*N defined by

g, = Iv — Ug oy Uosnlhy, o) Uosns

which can be explicitly computed from the set of observed
inputs {u(k)}ivj(ffz By right-multiplying both sides of the
data equation (5) by Hﬁnw, this projection matrix cancels the

term T Uy s v, yielding

yO,x,NHIj_O_\vN = OsXNHzf{'O_\,N' ©)

We now observe that the 1.h.s. of (6) can be computed based
on the observed output data {y(k)}3 152
tion matrix HZJ/I'U,.,,N’ which is also constructed from the known
inputs. As we will see next, this term provides a basis for esti-
mating a basis for the linear space spanned by the system’s
observability matrix, a key object in this method. To do so, we
perform the singular value decomposition

and on the projec-

UsvT = Yosn Héow’ @

and produce associated matrices U,, 3,, V,, where the sub-
script n indicates that only the left and right singular vectors
associated with the n largest singular values are retained.
Here, n is the dimension of the state of the system being esti-
mated. In the deterministic case, this singular value decom-
position produces exactly n nonzero singular values, so that
UYV = U,X,V,. In the presence of noise, there will be typi-
cally more than n nonzero singular values, and n becomes a
parameter of choice in the method.

Proceeding with the deterministic case, right-multiplying
(7) by V,,£; ! and comparing with (6) gives

Un = yO,s,NHLL{OV\NVnEnil = OSXNnﬁuv_‘vNVnz;l = os T,

where we have defined T := XI\,I_[%MV,,XJ*l as a similarity
transformation matrix. Provided that T preserves the column
space of O, (which can be assured by the conditions presented
in [20, lemma 9.1]), we may write

CT Cr
CT(T~'AT) CrAr
U,=0O,T = ) =: . . (®)
CT(T'AT)*~! CrAs!

and verify that the column space of U, is equivalent to the
column space of the extended observability matrix of the
system being estimated. This fact will allow us to use the com-
puted matrix U, to determine the matrices Ay and Cr, which
are similarity-transformed estimates of the matrices A and C,
as follows. First we note that (8) allows us to write
Cr CrAr
Lo |Ar= : ;
CrA;? CrAy!

which can be equivalently written in terms of sub-matrices
derived from U, as

[U"]I:n(sfl),lznAT = [U"’]n+l:ns,l:n' )

This is an overdetermined linear equation in the matrix vari-
able A7, whose least-squares solution

2
(10)
F

AT = arg II}J_II H[U"}l:n(s—l),lznAT - [U’l}nﬁ—]:ns,lzn



J. Neural Eng. 15 (2018) 066016

C O Becker et al

can be obtained in closed-form as
N T
Ar = ([Un}l:n(sfl),lzn) [Un}
where the dagger symbol denotes the Moore—Penrose pseudo-
inverse matrix. Similarly, the estimate for C can be obtained
by letting

n+1l:ns,1:n*

CT = [Un]l:p,lzn’

i.e, by retrieving the top n x n submatrix of U,,.

A comment is in order with respect to the set of eigen-
values {X;(Ar):i=1,...,n} of the estimated state trans-
ition matrix Az. It is a known fact that an unstable system
is implied if |\;(A7)| > 1 for any i = 1,...,n [31]. In that
respect, we mention two possible approaches to enforce sta-
bility. The first, simpler, is to perform an eigen-decomposition
of Ar and reconstruct it by imposing that any eigenvalues
with absolute value greater than one be restricted to a stable
value (i.e. to a value equal or slightly smaller than one). The
second approach consists of introducing an explicit stability
constraint on the minimization problem (10). This alternative,
described in detail in [32], is more computationally-intensive,
and involves the application of an iterative convex optim-
ization algorithm to account for the required constraint in the
resulting semi-definite program (SDP).

2.3.2. Estimates for B and x(0). Given the estimates A7 and
Cr. as well as the input—output data {y(k), u(k)}:Z}, one can
find similarity-transformed estimates %7(0) for x(0), and By
for B, as follows. We apply the vectorization operator in (3)

and use the identity vec(LXR) = (RT ® L)vec(X), to get

y(k) = vec(y(k))

k—1
=vec (CTA]}XT(O) + Z CTA’}_r_lBu(r)>
r=0
k-1
= CrAkxr(0)+ (Zu(r)TtX) CTAI}_'_1> vec(Br),
r=0
which is a linear equation in the variables x7(0) and
vec(Br). We now define a set of coefficient matrices
{p(k) € Rr(m+Dxp ﬁ;& whose computation is based on the
existing estimates Ay and Cr, such that

o(k) == I:C'TAI-} ‘ <§ u(r)T ® éTA';rl) :|T.

r=0
Further, we define the auxiliary parameter variable
6 € R"0", with 6 := [x7(0)T vec(Br)"]", and note that we
can find an estimate 6 by solving the minimum least squares
problem
. L1 5
0 :=arg rgin Z 3 Hy(k) - ¢(k)T9H2.

k=0

(1)

A solution to the optimization problem in (11) can be
found in closed-form by defining the vector y; € R” with
yr =0T, - ,y(L—1)T]T and the coefficient matrix
& € RPLX0m4D) with & = [9(0)] - - - |¢(L — 1)]T, such that

6= (27®) '@y, = dfy,, (12)

where ®f is the Moore—Penrose left pseudo-inverse of @.
Finally, the desired estimates are directly obtained from 6 by

letting &7(0) := [0]01 and Br := vec;,}, ([é}n+1:n(m+l),l>‘

2.4. Dense time series

We now propose a computationally efficient method for iden-
tifying our approximating model for spatially dense time
series data, i.e. the case when the output variables y € R? are
defined in a space where p > n, L. In the case of the Human
Connectome Project dataset explored in this paper (see descrip-
tion in section 3), the dense data consists of p = 64 984 brain
surface coordinates, with the first 32492 being related to the
left hemisphere, and the remaining 32492 to the right hemi-
sphere. These values become relevant from a computational
aspect when we consider the steps in fitting a model using
the above described subspace method. In particular, we high-
light two specific steps: (i) the singular value decomposition
in (7), required for the estimation of the parameters Az and
C‘T, and (ii) the least-squares solution in (12), required for the
estimation of the parameters By and initial state 7(0). In (i),
the SVD is applied on the matrix yo,s,NHﬁO&N € RPN with
e.g. sp = 194952 (for s = 3) and N = 284; whereas in (ii) the
solution involves storing and calculating a pseudo-inverse of
the matrix ® of size e.g. pN x n(m + 1) = 18.45 - 10° x 280,
accounting for potentially up to 5.17 - 10° entries. The com-
putational cost for performing such operations is further com-
pounded when one considers a collection of subjects, and
when the behavior of the model at different parameters is ana-
lyzed, requiring many model-fitting iterations. By applying
recent developments in numerical linear algebra and optim-
ization, we propose computationally efficient solutions for
both of these problems, enabling such computations to be per-
formed within a reasonable time.

First, we address the SVD in (7) using a randomized algo-
rithm with approximation guarantees, introduced in [33].
The principle enabling the gain in computational efficiency
in the proposed approach lies in the fact that the SVD com-
putation will be performed on a representative matrix of
smaller dimensions (also called a sketch) S € R"*¢, which is
appropriately sampled from the original matrix yo,j,NHij‘N.
The result of this SVD is then related to the original matrix
decomposition ULVT := yO,S,NHZﬁOJ_N, yielding the desired
matrices Uy, Sy, V,, such that |U,S,V, — U,S, V|| < e. Tt is
worth noticing that the quality of the approximation can be
guaranteed and controlled by the sketch size parameter ( in
the order of n/e. For example, for rank n = 30 and tolerance
€=3-10"3 we select ¢ ~ 1-10* The computational steps
are presented in algorithm 1, following [34, section 5.2].
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Algorithm 1. Large-scale approximate SVD.

Require: )y, # of singular values n, sketch size ¢
1: Generate a sketch matrix S := sketch(Yy s, )
2:Let C := Yo sNS
3: Perform QR decomposition [Q, R] := qr(C)

4: Perform n-SVD [Uy, S, V] 1= svd(Q Vo, 1)
5: Let f]n = Qf]o
6: return U,,S,V, ~ Von

Next, we propose a computationally efficient solution for
the least-squares problem (12) in the dense time series case.
To do so, we address the problem in its optimization form
as in (11), and describe an iterative solution using proximal
methods [35]. The method is based on the proximal operator
prox; , o : R7m+1) — R+ which is defined according to
the objective function in (11) as follows:

. 1
Prox; , o(w) := argemmf(e) + ﬁ“w - 0|3

L-1
1
= arg min Z 3 [ly(k)
o =0

2 1
= 0RO, + 55w 015,

where A is a scaling parameter. This implicit definition of the
proximal operator, in terms of its quadratic minimization in 6,
can be solved and alternatively represented in closed-form as

-1
prox; , o(w) = <In<m+1) +AY ¢(k)¢(k)T)
k=0

X (2_: o(k)y(k) + Aw) .
k=0

Seeking gains in computational efficiency, we further
express factors in (13) by defining a parameter matrix
W € RrlmtDxn(ntl) with
~1
) ) (14)

W= (In(m+l) + /\i $(k)p (k)

andaparametervectorh € R”(”’H)whereh = Zk - s y(k) (k).
Importantly, we note that, for a given value of the parameter A,
both W and & can be precomputed, since they do not depend
on the argument w of the proximal operator. In addition, since
the dimensions of these parameters do not depend on the large
dimension p of the output measurements y(k) or the number
of time samples L, these parameters can be conveniently
stored and used across iterations. The proximal operator thus
becomes a simple affine transformation

W(h+ Aw),

L—-1

(13)

proxf,)\’g(w) = (15)

which can be evaluated at a much lower computational cost.
The optimization algorithm (summarized in algorithm 2)
consists of iteratively applying the proximal operator on iter-
ates 01 of the optimization variable 6, indexed by iteration
[, until a termination criterion is met (e.g. relative tolerance

& over the norm of the difference in 0 over successive itera-
tions). With respect to the scaling parameter )\, convergence
to the set of minimizers of the objective function is guaranteed
provided All > 0 and 372, Al = o0 [35, p 143], which is
satisfied by letting Al! = 1 for all /, as we adopt in this paper.

Algorithm 2. Proximal method for dense time series.

Require: Scaling parameter A, tolerance &

1: Let 011 =0

2: while [|00+11 — 1), /(|61), > ¢ do

3: 011 = prox, , »(61)

4: end while

5:return 6 = 01 = [%7(0)7, vec(B)T|T

2.5. Multi-subject identification

We consider a set of subjects {h:h € 1,...,q} associated
with a given task, and we seek a common state-space represen-
tation across all subjects. We denote the input block-Hankel
matrices associated with subject /& as y“') = yé’?Nh drop-
ping the first subscript for brevity, and allowing for different
block column dimensions N. Correspondingly, we denote
the output block-Hankel matrix 14 (h) = Z/{é}?N, and block-row
state matrices X & ) = Xé}j\), We can wrlte a multi-subject data

equation, analogous to (5), as
1 1
Y8 ] =0 [xl.
1
+ T (Ul 1u)]

.
In this case, since the functional dependency between the
system dependent matrices Oy and 7y is the same as the one
in (5), the steps for obtaining the common matrix estimates
Ar and Cr are exactly the same as those presented in sec-

tion 2.3, in this case considering Yo,y : [ys SN (q>]
XO,N = [XI(\/11)| .. ‘XI(VZ)} and I/{O,S,N = [ v(11\1)1| |Z/{(q) ] In con-

trast, because the internal state x;’ (k), and in partlcular the
initial state x(Th)(O) is specific for each subject, the estima-
tion step involving the common parameter By and the indi-
vidual condition x( )(0) requires us to examine the individual

equatlons

Y0 (k) = CrAkxP (0 +ZC AL B (1) (16)
r=0
for each h = 1,...,q. We note that these equations are cou-

pled through the common parameter Br. To address this, we
define b := vec(Br), x; = x(T )(0), and

y®(0) Cr
y<h)(1) CrAr
Yh = . OL =
yM(L—1) CTA%_I
We also define K, = [K"(0)7,--- ,K"(L — 1)T]", where
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k=1
KM (k) :=> u®(r)T @ CrAf "
r=0
Then, we propose to solve the quadratic problem
min
{m}i’,zl b

by proximal algorithms. Similarly to (13), the corresponding
proximal operators can be derived in closed-form, respec-
tively for b and x s, as:

—1
q
proxf’kb(w) = (1,,,,, + A Z IC,;'—ICh>

=1

q q
x <w —A>KrKub + AZICZY,-) :
h=1 h=1

proxfy)\vxh(w) = (In + )\(’)LTOL) !
x (w—XO[ Kyb + XO[Yy,) .

Yot 3 1Y — O, — Kibll; (17

We can now solve (17) by recursively evaluating

x,(llﬂ) = prox; , ., (xfll)), h=1,....q
b+ = prox; , ,(61),

until the stopping criterion is met. Finally, we can retrieve the

estimates By 1= vec,, 1 (b) and fc(Th) (0) = xy, as desired.

3. Experimental description

3.1. The Human Connectome Project dataset

The dataset that we explore in this paper is derived from the
Human Connectome Project (HCP) [36], as part of the HCP
900 subjects release. The acquisition and pre-processing pipe-
lines are discussed in [37], and described in detail in [38].
Here, we provide a brief summary of the aspects that are most
relevant to our problem.

3.1.1. Acquisition and pre-processing. Functional MRI
data were acquired using a Gradient-echo EPI sequence, at
a TR (sampling rate) of 720ms, and additional parameters
TE =33.1 ms, flip angle =52°, FOV =208 x 180 mm
(RO x PE), 72 slices, 2.0 mm isotropic views, multi-band
acceleration factor of 8, echo spacing of 0.58 ms and a BW of
2290 Hz Px~'. The pre-processing of the data comprised the
following steps: gradient unwarping, motion correction, field-
map-based EPI distortion correction, brain-boundary-based
registration of EPI to structural T1-weighted scan, non-linear
(FNIRT) registration into MNI152 space, and grand-mean
intensity normalization. These procedures were executed
according to the HCP data analysis pipelines using the FSL
and FreeSurfer software packages, and following the steps
described in [37].

3.12. Surface registration and spatial encoding. The
HCP project provides cortical neuroimaging data in a

surface-constrained format, as an alternative to the standard
volumetric format. A motivation for the surface format is
that distances defined in the geodesic surface of the brain are
more neurobiologically relevant than the distances evaluated
in volumetric space. In addition, in the surface format, the
voxels of the cortical gray matter ribbon are projected onto
a registered surface mesh with a standard number of vertices
that is more efficiently encoded and stored. The coordinates
defined by this mesh are referred to as grayordinates. In this
system, each brain hemisphere is represented by 32492 gray-
ordinates, which are appended by a volumetric representa-
tion of subcortical structures, in sum providing 91 282 spatial
points per fMRI frame. Excluding the subcortical grayordi-
nates (not analyzed in this paper), we refer to this spatially
dense representation of 64 984 grayordinates per time frame
as DENSE. Alternatively, the spatial representation of the sur-
face can be summarized into regions-of-interest (ROI) by the
use of a standard cortical atlas. More specifically, we adopted
the Destrieux 2009 atlas, which is composed of 74 regions
per hemisphere, following internationally accepted nomencla-
ture and criteria [39]. In this case, the signal intensities in all
grayordinates associated with a region are averaged together
to account for the representative signal intensity at that region.
Following the HCP nomenclature, we refer to this type of spa-
tial encoding as the APARC parcellation.

3.1.3. Physiological data. Cardiac signals were measured by
a pulse oximeter, sampled at 400 Hz (288 samples per frame of
functional image), and synchronized with the scanner. Respi-
ratory signals, also sampled at 400 Hz, were measured by an
elastic respiratory belt transducer. These signals account for
oscillations occurring typically at 60 to 100 cycles a minute
for the cardiac signals, and at 6 to 20 cycles per minute for the
respiratory signals. Head motion was acquired by an optical
motion tracking camera system in real-time using an infrared
camera mounted in the scanner bore. The estimates of motion
parameters were derived from a rigid-body transformation
to the SBRef image acquired at the start of each fMRI scan,
and comprise six parameters: trans,, trans,, trans., rot,(deg),
rot,(deg), and rot; (deg).

3.1.4. The motor task. In the MOTOR task [40], a set of six task
conditions is considered. The participants are presented with
(i) visual cues that ask them to tap their (ii) left or (iii) right
fingers, squeeze their (iv) left or (v) right toes, or (vi) move
their tongue. The task is intended to map motor areas in the
cortex, and its design is inspired by [41], where its motivation
for an examination of cognitive function is discussed. Each
task run has a duration of 3min 34 s, corresponding to 284
samples in time, i.e. 284 full spatial acquisition frames. The
time-of-occurrence of each task condition is recorded with a
precision of milliseconds, enabling its consideration as input
data in our model.

3.2. Time series pre-processing

3.2.1. Centering and normalizing. For each

i=1,...,p, the output samples {[y(k)];}:=, were subtracted

region
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by their mean values y; := I/LZ,f;é [y(k)]; and scaled by
(1/0;), with 02 == 1/L Zi;& ([y(k)]; — ¥:)? being the squared
sample standard deviation.

3.2.2. Filtering. Within the spectrum of the fMRI BOLD
signal, a specific frequency sub-band is predominantly asso-
ciated with neural activity [42]. We therefore consider two
alternatives of the frequency content of the signal, which we
refer to as ALL-PASS and BAND-PASS. In the ALL-PASS case,
the whole frequency band of the signal is preserved; in the
BAND-PASS case, we attenuate the frequencies outside the
0.06-0.12 Hz band by applying a band-pass filter, defined as
follows. We design an order 50 FIR-type filter using MATLAB’s
‘equiripple’ method, so as to achieve a 20 dB attenuation out-
side the pass band. The initial stop and pass frequencies con-
sidered were f;; = 0.04 Hz, f,; = 0.06 Hz, and the final stop
and pass frequencies were f,, = 0.12 Hz and fi; = 0.15 Hz,
respectively. Both filter alternatives are explored in the experi-
ments analyzed in this paper.

3.2.3. Physiological signals. We perform a linear regression
of the physiological inputs on the outputs, using cognitive
inputs u.(k) € R™, and physiological inputs u,(k) € R™,
defined as

[heart(k)
cue(k) resp(k)
1f(k) trans, (k)
| (k) | trans, (k)
te(k) = rh(k) up (k) = trans, (k) |’
rh(k) rot, (k)
t(k) rot, (k)
L rot,(k) |

with m.=6 and m,=8. To do so, we build a data
matrix U, € R™*L containing the physiological inputs,
Uy := [u(0) ... u,(L — 1)], and a data matrix ¥ € R”*L con-
taining the measured outputs, ¥ := [y(0)...y(L — 1)]. We
then find a matrix of linear regression coefficients H € R?*"
corresponding to the least-squares solution to

H = arg min,|Y — HU,||% = YU;.
Finally, we define the set of physiologically regressed outputs
{Yr(k) }i;(; by
[y:(0) ...

i.e. by removing the direct linear prediction of the physiolog-
ical inputs on the outputs.

y(L—=1)]:=Y-HU, =Y(I, - UlU,),

3.3. System identification parameters

The system identification method presented in section 2.3
depends on the parameters s and N, associated with the block-
Hankel matrices, as well as on the parameter n, corresponding
to the dimension of the state representation of the system. We

note that, for a given value of the parameter s (the number
of block-rows) and number of samples L, the structure of the
Hankel matrix allows a maximum value for the parameter N
to be Nmax := L — s + L. In the following experiments, unless
otherwise noted, we adopt s = 3. Given that L = 284 for the
MOTOR task, we have N = Ny,.x = 282. Finally, we set the
sketch size ¢ = 1- 10* (yielding tolerance € ~ 1 - 1073), and
proximal algorithm stopping tolerance £ = 1 - 107,

4. Results

4.1 Task-fMRI time series is well approximated with a low
degrees-of-freedom model

In this section, we analyze the quality of the approximated
output signal when the method described in section 2.3 is
applied individually to each subjectz = 1, .. ., g in the dataset.
For each subject, we consider experimental data collected
from the MOTOR task in the form of a set of inputs {u) (k) ifé
and a set of outputs {y")(k)}Z,. First, we obtain the indi-
vidual system matrix estimates (A(Th) ) B<Th), C(h)) and the initial
state X(Th) (0) estimate, given chosen values for (n, s, N). Next,
using the original inputs {u(") (k)}+=, and the initial condition

i )(O) we produce the outputs {3 ( ;}L ! as the response
generated by the estimated system (A\, B(/% CM). We then
measure the quality of the approximation obtained for each
region i =1,...,p, by computing the Pearson correlation
coefficient between the original and the approximated time
series, i.e. 'y(h) (", ™).

The results from performing this procedure, when con-
sidering the parcellated times series (p = 148) for both the
ALL-PASS and BAND-PASS filters, are presented in figure 3.
The dimension of the state was defined to be n = 25, by
inspection of the singular values in (7), fulfilling the condi-
tion that sp > n. We display the original and reconstructed
outputs for the three regions with highest ~; ®) (left) and for

()

the three regions with ~;" around the median across regions

(right), considering the subject h who%e across-regions
average correlation coefficient (i.e. pl i 1'71 >) was in the

median of the across-subjects distribution. We observe that
the approximate output captures the main features of the
BOLD signal in all cases, with especially high accuracy for
the BAND-PASS filter.

In figure 4, we build the sample covariance matrices F € S”
where each entry [F];; is given by the sample correlation
coefficient between the output signal at every pair of regions
(i,7) € {1,....pY% ie.[Flij := (V] [y];). We also compare F
obtained from the original inputs y(k) with F obtained from
the approximated outputs y(k) by displaying the matrix of the
absolute values of their difference, which were found to be of
low magnitude on average.

In figure 5, we consider the dense times series (p = 64 984),
and apply the method described in section 2.4 with both the
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Figure 3. Original and reconstructed output times series for the MOTOR task with the APARC parcellation, for filters ALL-PASS (a) and (b),

and BAND-PASS (c) and (d). Values are presented for the subject & whose across-regions average correlation coefficient (i.e. i

i= 1’Y,h))

was in the median of the across-subjects distribution. In (a) and (c), we display values for the reconstructed outputs {[y(k)];}-Z, for regions

iEZhighC{l,...

and (d), values correspond to the reconstructed outputs {[y(k)]; f;(; for regions i € Ziea C {1,. ..

,p} with p = 148, where the subset Thigh consists of the three regions for which the correlation %(h)

was highest. In (b)
,p}, where the subset Zyyeq consists of

the three regions for which the correlation +;" was adjacent to the median. The vertical dotted lines across each plot mark the time-of-
occurrence of each task condition, with the task condition number being indicated in the small box on top.

ALL-PASS and BAND-PASS filters, considering the state dimen-
sion parameter n = 35. We display the original and recon-
structed outputs for the three regions with highest 7(h) and the
three regions with ’yi( ) around the median across regions, for
the subject h whose across regions average correlation coef-
ficient (i.e. - Zl,l v; ) ) was the median in the across-subjects
dlstrlbutlon We observe that, in this finer parcellation, the
noise content of the ALL-PASS filter is relatively high, while
the approximation quality for the BAND-PASS filter achieves
an accuracy that is comparable to the one observed in the
APARC parcellation.

Finally, to evaluate the approximation capacity of the
models, we examine the ratio between the number of degrees
of freedom allowed by the parameters of the model against

the number of constraints imposed by the input and output
observations, taking the deterministic system model as a ref-
erence. Considering L samples, we have that the set of inputs
u(k) € R™ and outputs y(k) € R? generates L(p + m) con-
straints. On the side of the model, the matrices (A, B, C) cor-
respond, respectively, to (nz,nm,pn) scalar parameters, i.e.
a total of n(n + m + p) degrees of freedom. Therefore, the
deterministic degree of parametrization of the models can be
quantified by the ratio of the degrees of freedom

_n(n+m+p)
L(p+m)
When applied to our case, for single-task models, with p = 1438,

m=6,n=25, and L =284 we have n ~ 0.123. Furthermore,
we note that the degrees of freedom ratio decreases linearly with

(18)
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Figure 4. Covariance matrices F(") € SP, where each entry [F()]; J
is given by the correlation coefficient [F™")];; := ([y™],, [y"];)
between the output signal at every pair of regions (i,j) € {1,...,p}>
We display, in (a), F obtained from the original inputs y(k); in (b),
F® obtained from the approximated outputs $(k); and in (c), the
absolute entry-wise error from |[F) — F()| In (d), we present the
full distribution of output correlations %_(h) overregionsi = 1,...,p,
for the same subject.

the number of samples L. For dense time series, where p > m, n
we have that 77 ~ n/L. In this case, for n =25 and L = 284 we
have n =~ 0.102, while for n = 35 we have n =~ 0.123. Based on
the average correlations obtained for both the parcellated and
dense time series, we can conclude that the models derived from
the subspace methods are able to approximate the task-fMRI
signal with a low degrees-of-freedom model.

4.2. Input—output transfer function identified is compatible
with hemodynamic response function

We refer as hemodynamic response function (HRF), at a cor-
tical point-of-interest and with respect to a stereotyped stim-
ulus, to the time sequence of BOLD values occurring at that
cortical point following the presentation of that stimulus. In
terms of dynamical systems, this quantity can be also defined
as an impulse response function [27]. In this regard, the state-
space representation (A, B, C) contains the required informa-
tion to generate the approximated impulse response on every
brain region (or grayordinate) i = 1, ..., p due to an impulse
(i.e. task condition event occurrence) at any input channel
j=1...,m. Subsequently, we denote the impulse response
(IR) for an individual /# due to an impulse at the jth input

channel at time index k = 0 by y (k) | S0y The IR corresponds
to the system’s output computed according to (16) for an
input defined as 0(j) : [u(0)]; = 1 and [u(k)]; = 0 for k > 0,
applied at the jth input channel, with x(0) = 0. With the above

definitions, in figure 6, we investigate the IR associated with
two specific sets of regions of the cortex, ocCIPITAL and
PARACENTRAL.

First, we examine the occCIPITAL pole regions, which are
areas associated with the visual cortex, whose HRFis commonly

studied [6]. In figure 6(a), the across-subjects average impulse

sy = 4 iy P 0]y is pre-
sented for all j=1,...,6 input channels (corresponding to
the six different task conditions). If compared in terms of
their overall form (time-to-peak and total duration), it can be
said that the HRF’s obtained are in good agreement with the
HRF’s typically reported for that cortical area [6].

Next, we examine the IR for an area associated with motor
control [43, 44], the PARACENTRAL lobule and sulcus in the
Destrieux atlas [39]. In line with the previous experiment,
we computed and presented in figure 6(b) the across-subjects
average IR for that region, for all of the six task conditions.
One notable aspect is the crossed association between a high
amplitude of the response in the left-hemisphere region (‘L-G-
and-S-paracentral’) for the RF (squeeze right toe) task condi-
tion. The corresponding crossed association in the symmetric
right-hemisphere region (‘R-G-and-S-paracentral’ versus LF,
squeeze left toe) is also present, possibly indicating some
form of lateralization effect associated with motor function
[45, 46]. Overall, we note that both the shape and time scales
of the IR’s obtained are also compatible with HRF’s reported
in the literature (see [27]).

response function, i.e. y(k

4.3. Pairwise input—output Hp norm reveals region activation

The state-space formulation allows the representation of the
multi-input multi-output transfer function of the system,
which can be analyzed in terms of the typical and maximum
rates of signal energy transfer between inputs and outputs,
i.e. between task-related inputs and ensuing BOLD signal
response. Formally, the transfer function H(z) associated with
the state-space parameters (A, B, C) is given by

H(z) = C(zI — A)~'B,

where H(z) is a p x m matrix whose entries are scalar
transfer functions, i.e. rational polynomials, of the com-
plex variable z. Given the transfer functions, one can asso-
ciate an H, norm ||[H(z)];j|l» to each input-output pair
(i,j) € {1,...,p} x {1,...,m}, which can be computed, for
stable systems and under a stationarity assumption, as

HELIE = 3 W] [®l,)
k=0

where the symbol * denotes complex conjugation. Such
expression accounts for the sum of the squared abso-

*
i

lute values of the ith output response [y(k)| 5(,‘)}" due to an
impulse applied at the jth input channel. Intuitively, this H,
norm accounts for the total output energy observed at output
region i as a result of a unit energy impulse input at channel
Jj. In terms of the input—output brain models, this corresponds
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Figure 5. Original and reconstructed output times series for the MOTOR task with the DENSE parcellation, for filters ALL-PASS ((a) and (b)),
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and BAND-PASS ((c) and (d)). Values are presented for the subject & whose across-regions average correlation coefficient (i.e. » 2=t i

h))

was in the median of the across-subjects distribution. In (a) and (c), we display values for the reconstructed outputs {[y(k)];}-Z, for regions
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,p} with p = 64984, where the subset Ty, consists of the three regions for which the correlation ;" was highest. In

(b) and (d), values correspond to the reconstructed outputs {Ly(k)],}f;é for regions i € Zieq C {1,...,p}, where the subset Z,eq consists

of the three regions for which the correlation 'yfh) was adjacent to the median. The vertical dotted lines across each plot mark the time-of-
occurrence of each task condition, with the task condition number being indicated in the small box on top.

to the BOLD signal energy observed at brain region i as a
result of the occurrence of a task condition event at input
channel j. Alternatively, starting from the system parameters
(A, B, C), the H, norm associated with the (i,;) output-input
pair ||[H(2)]]]> can be calculated analytically, for stable sys-
tems, as follows. Denoting by B; := [B].; (the jth column of
the input matrix B), we first compute a solution W; € §'} to
the discrete-time Lyapunov equation [31, section 12.3]:

19)

Given W; as the solution to (19), and denoting C; := [C];. (the
ith row of the output matrix C), we thus have

AWAT — W; + B;B] =0.

I[H(2)]i,lI5 = CW;CT.

In figure 7, we display a surface plot projecting the pair-
wise input—output H, norm values for the dense time series
for all grayordinates i = 1,...,p (p = 64984), considering
the input j corresponding to the RH condition (i.e. ‘tap right
finger’). We note that the regions in the neighborhood of the
primary motor cortex present a predominantly high 7, norm
value, suggesting a higher engagement of these regions with
the RH cognitive input as a task condition [47].

4.4. Multi-subject model identifies common dynamic
characteristics across subjects

To evaluate the quality of the approximated output for the
multi-subject model identification presented in section 2.5,
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(2)

j: CUE

R-Pole-occipital

samples (k)
j: CUE

L-G-and-S-occipital-inf

samples (k)

(b)

j: CUE

0
Impulse response [y(k)];|s(;) for OCCIPITAL regions

VE

L-G-and-S-paracentral

v

samples (k)
j: CUE

R-G-and-S-paracentral

samples (k)

Impulse response [y(k)]i|s;) for PARACENTRAL regions

Figure 6. In (a), the across-subjects average impulse response function, i.e. é Sy y® (k)| S0y is presented for all six input channels (in
each column), corresponding to the six different task conditions { CUE, LF, LH, RF, RH, T}, for the ALL-PASS filter. The regions considered

(index i, as different rows) are those achieving the highest average correlation % EZZI 7,

@

;"7 across subjects h = 1,...

,q. In (b), we display

the corresponding average impulse response functions for the left and right paracentral lobule and sulcus regions. One notable aspect is the
crossed association between a high intensity response in the left-hemisphere region (‘L-G-and-S-paracentral’) for the ‘squeeze right toe’
task condition (RF). The corresponding crossed association in the symmetric right-hemisphere region (‘R-G-and-S-paracentral’ versus LF),

is also present.

we consider multiple subject splits, i.e. random partitions
of the set of subjects. More formally, we partition the set of
subjects S = {1,...,¢} into training and testing subsets, as
follows. We define ¢ = 1,...,0lyax training subject splits
8O c S, where each subject split 8@ is obtained by uni-
formly sampling a subset of g < g subjects from the total
set of individuals S = {1,...,q}, without replacement. For
each training subject split, we define a corresponding training
data split DO = {yO(k), u® (k)} ge gy containing all time
samples k = 1,...,L — 1 of the inputs and outputs, for each
subject in that training subject split. Similarly, we define the
=1 ..., 0ux testing subject splits S©) = S\ SO, as well
as their associated data-splits DY) containing § = g — § testing
subjects per split, with corresponding input and output samples.

13

For each training subject split SO, we find one common
model {A;a,f?(rz), é(Te)} by applying the procedure described
in section 2.5 to the training data split D(Y). Then, for each
subject h € SO, we produce the estimated training outputs
5" = 0N
tial state fc(Th) (0). We then compare

, using the inputs u® € DO and the ini-
yg’” with the original out-
puts yl(zh) = {y® (k)}é;é to compute the per subject, per-region
training approximation correlation ’y,-(h) (0) == <[y§,h)]i, B)/(Zh)],-)
in that split. Likewise, we use the same common model
(A(TZ),L@(TZ),C‘?) to compute the estimated testing outputs
y/f,”) = W (k)}iZ, forh € S, and compare with the orig-
inal outputs y,’, to compute the festing approximation cor-

relation ii(h) 0) == { ﬁh)}i, [j},(f')],-) in that split.
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Input-output Hs norm, ||[H(2)];||2

input j: RH
parcellation: DENSE
filter: ALL-PASS

Figure 7. We display a projection of the input—output H system
norm |[H(z)];;||> onto the cortical surface for the DENSE parcellation
and ALL-PASS filter. The jth input corresponds to the RH task
condition, i.e. ‘tap right finger’, where each output i corresponds to
a surface grayordinate, i.e. i = 1,...,p, with p = 64984,

The results obtained by applying these definitions are
illustrated in figure 8. We consider the state dimension
parameter n = 35, and a number of total splits fyax = 3,
defined over a base set of ¢ = 100 total subjects and having
g =30 and g =70 training and testing subjects, respec-
tively. More specifically, we summarize the distribution
of per-region training correlation values across all splits

U &i(h) (), for the regions whose across-subjects average
correlation ZM)\XZ/ ﬁi'\lx D ohed® ﬁi(h) (¢) was highest. We can

argue that the multi-subject models capture common dynamic
characteristics across individuals, since the in-sample and
out-of-sample correlations achieved comparable values.
Furthermore, the regions with the highest correlations were
the ones associated with the occipital areas (implicated in
visual processing), as was the case for the previous experi-
ments. Finally, to compare its approximating capacity with the
single-subject model, we can derive the multi-subject degrees
of freedom ratio

Mmulti =

n(n+m+p)
gL(p +m)

for which, with n = 35, we have Nmui ~ 0.003, a significantly
lower value.

4.5. Probabilistic inversion of the identified stochastic models
enables input estimation

If the stochastic component of the identified models is con-
sidered (see description in supplementary methods), we may
perform a probabilistic inversion of the input—output relation-
ship that they capture. In particular, we may derive inverted
models that are able to express the probability of occurrence
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Figure 8. In (a), we present the across-subjects distribution of
training correlations Uh’y,v(h) for the multi-subject model, obtained

for £max = 3 data splits. The distribution of the correlation is
presented for the ten regions whose across-subjects average
correlation was highest. In (b), the corresponding testing

correlations Uh’y.(h)

;" are presented.

of specific input values given output observations. Taking
inspiration in [48] and seeking greater clarity of exposition,
we derive a first-principles joint state-input estimation form-
ulation based on maximum likelihood estimation criteria
[49]. For that purpose, we resort to the full stochastic sub-
space identification algorithm (an extension to the algorithm
presented in section 2.3), whereby estimates for the cova-
riance matrices Q, R, and S (and initial state mean m( and
covariance Qp) are produced (see also algorithm 4.3 in [21]
or section 9.6 in [20]). Given estimates for the full param-
etrization © = (A, B, C, Q, R, S, mg, Qp), the system model in
(1) provides us with the elements to express the joint den-
sity p(v,x|u, ©) of the states x := {x(k)};Z, and outputs



J. Neural Eng. 15 (2018) 066016

C O Becker et al

Parcellation: APARC; filter: ALL-PASS; n = 0.102
output (heatmap), y(k)

100 150

input (heatmap), u(k)
K | I
| |

| |

200

o . 1. . .
100 150 200
input estimate (heatmap), u(k)
||| T TTTITTT I‘IIIIII T T
| |
Il |

50 100 150 200 250
thresholded input estimate (heatmap), dg(k), 8 = 0.47

I |I [ I T1 [ |I| I ' I 171
| |

CUE!II |

L e

‘I .
50 100

a
-G
i
T T T T
L e

1. . .
150 200 250
samples, (k)

n=25p=148; m=6;s =3

Figure 9. Joint input and state estimation through probabilistic
inversion. In (a), we present the original outputs y(k); in (b), the
original inputs u(k); and in (c), the recovered input estimates i. In
(d), we display the thresholded input estimates, obtained by setting
lig(k)); = Lif [a(k)]; > B and [itg(k)]; = O otherwise.

L1 L1

y = {y(k)};Z, as a function of the inputs u := {u(k)}; ;.

Therefore, to perform the intended probabilistic inversion, we
apply Bayes’ theorem to express

_ P x[u, ©)p(u, ©)
p(».©) '

p(u. x|y, ©) (20)

and, as an estimation criterion, look for estimates X and & such
that

{it, %} := arg max p(u, x|y, ©).
u,x

We now proceed to find an explicit form for the likelihood
function p(y, x|u, ©) required on the r.h.s of (20). For com-
pactness, we denote x; = x(k), yr = y(k), ux = u(k), and the
system and noise matrices as

with T € Re+P)x0tm) and ¥ € TP, Further,
assume a prior distribution over the first observation, i.e.

xo ~ N (my, Qo). Importantly, we note that the set of equa-
tion (1) establish a Markovian property that allows us to write

we

L—1
p(r.xl1t.0) = plxolmo. o) [ [
k=0

(e )

given its sequential dependence structure. By the process and
noise models assumed in (1) and (2), this relationship is equiv-
alently described, for each sample &, by a normal distribution

(e ol 15 &) = (e lil-#)

having a log-likelihood given by

X1 | | | Xk
1 L) = —
o8P ({ Yk } L‘k} ) 2
~ Dogdetw — L[ Prert] _p [
2 2 U

Yk
By expressing the log-likelihood of the initial state and com-
bining the sum of the log-likelihood over the successive time
samples, we have that the complete log-likelihood can be
written as

X1
Yk

log 27

2

!

L—1

>

k=0

Xk+1
Yk

1 1
log p(,x]y. ©) o 5 logdet Qo — 5 [lxo — mollg-
lil det W — 1 T | ’

N e detw — X _
Zk:1 & 2 Ui
=: L(u, x|y, ©).

-1
For simplicity, we assume a flat prior probability for u and dis-
card the probability term on the denominator of (20) (since it
is independent of u and x). The problem of finding maximum
likelihood estimates for the inputs & = { ﬁk}ivzl and state
. Y
X = {&},_, can thus be expressed as

(e29)

{it, x} := argmax L(u, x|y, ©),
ux

which, by (21), is a convex quadratic optimization problem
in u and x.

In figure 9, we present the estimation results for i, obtained
when the above estimation criterion is applied. We consider a
model identified on data from a subject 7 whose average esti-
mated output correlation (5, (") was in the median of the
distribution over h = 1,.. ., g, for the population of ¢ = 100
subjects. It can be seen that, although the input estimate
presents a significant noise component, by applying a fixed
threshold to the magnitude of the signal, the binary content of
the original signal can be recovered with reasonable accuracy.

5. Conclusion

We have proposed the use of dynamical input—output models
for discrete linear state-space systems as a framework to ana-
lyze task-fMRI times series. Such input—output relationships
are based on a specific encoding of task-related inputs that uses
information about the time-of-occurrence of task conditions.
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In addition, we provided means to numerically characterize
this relationship by a set of matrix parameters, whose esti-
mation algorithm relies on subspace identification methods.
We used a comprehensive dataset comprising time series from
multiple subjects, whose spatial configuration followed both
a regional parcellation and a spatially dense representation.
In the latter configuration, the estimation of the parameters
becomes a large-scale optimization problem, for which we
proposed a numerically efficient algorithm.

One of the advantages of the state representation of a
dynamical system model is that it enables rich analyses of the
system’s behavior. One example is the generation of impulse
responses, which can be associated with the hemodynamic
response functions and are readily computable from the system
representation. Another example is the calculation of input—
output system norms, which provide a principled manner to
quantify the dynamic effect of task-related inputs on the inten-
sity of the BOLD response at different regions of the cortex.

Given the dynamic nature of these models, we expect that
our approach might have an impact in the emerging field of
neurofeedback. In the scenario where clinical stimulation of
the subject’s brain is studied (e.g. transcranial magnetic stim-
ulation), our method might be used to measure and compare
the effects of potentially induced modifications in the BOLD
dynamics. We also envision an application where our method
is applied in real time, where both the system dynamics and
the underlying state are measured and used to guide interven-
tions and assess treatment efficacy.
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