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Abstract

Objective. We analyze task-based fMRI time series to produce large-scale dynamical models 

that are capable of approximating the observed signal with good accuracy. Approach. We 

extend subspace system identification methods for deterministic and stochastic state-space 

models with external inputs. The dynamic behavior of the generated models is characterized 

using control-theoretic analysis tools. To validate their effectiveness, we perform a 

probabilistic inversion of the identified input–output relationships via joint state-input 

maximum likelihood estimation. Our experimental setup explores a large dataset generated 

using state-of-the-art acquisition and pre-processing methods from the Human Connectome 

Project. Main results. We analyze both anatomically parcellated and spatially dense time 

series, and propose an efficient algorithm to address the high-dimensional optimization 

problem resulting from the latter. Our results enable the quantification of input–output 

transfer functions between each task condition and each region of the cortex, as exemplified 

by a motor task. Further, the identified models produce impulse response functions between 

task conditions and cortical regions that are compatible with typical hemodynamic response 

functions. We then extend subspace methods to account for multi-subject experimental 

configurations, identifying models that capture common dynamical characteristics across 

subjects. Finally, we show that system inversion via maximum-likelihood allows the time-of-

occurrence of the task stimuli to be estimated from the observed outputs. Significance. The 

ability to produce dynamical input–output models might have an impact in the expanding field 

of neurofeedback. In particular, the models we produce allow the partial quantification of the 

effect of external task-related inputs on the metabolic response of the brain, conditioned on 

its current state. Such a notion provides a basis for leveraging control-theoretic approaches to 

neuromodulation and self-regulation in therapeutic applications.
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1. Introduction

Dynamical models provide a principled approach to describing 

the flow of energy and information in a system of interest. 

Generally, such models account for the effect that past his-

tory (summarized in the system’s internal state) and external 

sources of energy and information (represented by its inputs) 

produce on the system’s observed variables (outputs) [1, 2]. 

In the context of a person participating in a functional magn-

etic resonance imaging experiment, the externally observed 

variables are related to changes in blood flow resulting from 

neural activity, as measured by variations in the local concen-

tration levels of oxyhemoglobin and deoxyhemoglobin on 

the cortex [3]. Correspondingly, the observed inputs to these 

models can be associated with task-related stimuli presented 

to the individual throughout the execution of the experiment, 

as well as to physiological measurements such as heart rate 

and respiration [4].

From a biological point of view, the relationship between 

such inputs and outputs is generally described as a combi-

nation of neural processes occurring across two levels. The 

inner (microscopic) level consists of fine-grained interactions 

between neurons involved in the exchange of information 

encoded through action potentials. The outer (mesoscopic) 

level, measured by the fMRI signal, consists of the aggregate 

effect of metabolic requirements from the inner level in terms 

of glucose metabolism and oxygen content in cerebral blood 

flow [5]. This relationship has been quantified as the localized 

time response of the blood-oxygen-level-dependent signal 

(BOLD) with respect to a specific stimulus onset [6], and 

is referred to as the BOLD-contrast hemodynamic response 

function (HRF) [7]. Notably, in comparison with the shorter 

time scale associated with inner-level processes, the time scale 

over which most of the variation of the HRF takes place is of 

the order of seconds. The onset of the HRF typically takes 

place approximately 2 s after the presentation of the stimulus, 

with the remaining part of the response lasting approximately 

10–12 s [7]. In addition, because of an empirically observed 

effect of additivity in BOLD response with respect to the 

stimuli, this behavior can be broadly approximated by a linear 

input–output dynamic relation [8–11] (for a discussion of pos-

sible limitations see [12–14]). Based on these characteristics, 

this study seeks to estimate data-driven models capable of 

approximating the measured fMRI BOLD signal as a function 

of task-related and physiological inputs. Motivated by their 

analytical tractability, we consider the class of discrete-time, 

time-invariant linear systems, here expressed in a relatively 

high-dimensional output space defined by the spatial resolu-

tion of the fMRI signal.

It is known that any given class of dynamical models under 

consideration will impose constraints on the methods that can 

be applied for their estimation. In the context of fMRI time 

series, two commonly studied classes of models are those 

based on dynamic causal modeling (DCM), and those based 

on linear autoregressive processes (AR). The DCM approach 

for fMRI [15] considers a bilinear neural activity model, cou-

pled with a nonlinear BOLD observation function. Because of 

the nonlinearities involved in its formulation, the associated 

model estimation procedure often involves an expectation 

maximization algorithm, which tends to limit its applica-

bility to moderately-sized models. On the other hand, studies 

applying AR models to fMRI assume that the signal is gener-

ated by a recursive linear transformation of endogenous noise 

sources, and therefore do not account for the external input-

to-output relationships that we address in this paper [16–18].

For the class of models that we consider, i.e. discrete-time 

time-invariant linear state-space models with external inputs, 

effective and reliable methods for parameter estimation have 

been developed [19, 20]. In particular, we take inspiration 

from subspace methods, which have the desirable charac-

teristics of assured consistency and convergence to globally 

optimal estimates with respect to a quadratic error criteria  

[21, 22]. Although widely employed in many fields of engi-

neering, to the authors’ knowledge, subspace methods have 

received restricted attention in fMRI modeling. The few 

existing studies in this respect are lacking in important aspects, 

such as depth of analysis and experimental validation on real 

datasets. Earlier work [23] (followed by [24]) proposed the 

use of subspace methods for fMRI data, but applied them to 

simulated-only time series, and over a very low-dimensional 

space of observations (less than four regions-of-interest). The 

work in [25] considered a restricted configuration of subspace 

methods, i.e. for models with no external inputs. The goal of 

that study was to use resting-state (non-task) data to estimate 

connectivity (as opposed to dynamical models), and its scope 

was also restricted to a dataset with small numbers of brain 

regions and participants.

In this work, we analyze task-based functional magnetic 

resonance imaging time series using a dynamical systems 

approach. Based on information about the time-of-occurrence 

of task stimuli presentation and using the observed signal 

intensity on the cortical surface, we apply subspace system 

identification methods to produce input–output dynamical 

models that are capable of approximating the BOLD time 

series with good accuracy, as measured by the correlation 

between the original fMRI signal and the one generated by 

the model. As our experimental setup, we explore a dataset 

extracted from the Human Connectome Project [26], gener-

ated using state-of-the-art fMRI acquisition and pre-pro-

cessing methods. We consider both anatomically parcellated 

and high spatial resolution versions of the fMRI time series, 

and propose an efficient algorithm to address the large-scale 

optimization problem resulting from the latter. Our analysis 

enables the quantification of input–output transfer function 

norms between each task input channel and each region of the 

cortex, as we exemplify by a motor task experiment. In addi-

tion, the identified models produce impulse response functions 

between task conditions (i.e. specific task commands issued 

to the subject) and cortical regions that are compatible with 

typical hemodynamic response functions [27]. Furthermore, 

we extend existing subspace system identification methods 

to account for multi-subject experimental configurations, 

identifying models that capture common dynamical charac-

teristics across subjects, and apply them to a cohort of 100 

subjects. Finally, to verify that the method consistently cap-

tures the underlying input–output relationships, we perform 
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a probabilistic inversion of the identified models based on 

a first-principles maximum likelihood derivation, thereby 

allowing the time-of-occurrence of the task-related inputs to 

be estimated from the observed outputs.

The ability to produce dynamical input–output models 

could have an impact in the expanding field of neurofeedback 

[28]. In particular, the models we produce allow the partial 

quantification of the effect of external task-related inputs on 

the metabolic response of the brain, conditioned on its current 

state. Such a notion provides a basis for leveraging control-

theoretic approaches to neuromodulation and self-regulation 

in therapeutic applications, as those described in [29, 30].

The remainder of the paper is structured as follows. In 

section 2, we describe the model and methods proposed for 

system identification. In section  3, we report details of the 

dataset and parameters considered in the experiments that we 

performed. In section 4, we illustrate and discuss the main 

results obtained by our methods, and in section 5, we provide 

conclusions and suggestions for future research.

1.1. Notation

We denote by x ∈ R
n a column vector, and by [x]

i
 its ith entry. 

For a matrix X ∈ R
m×n, [X]i,j denotes the entry in its ith row 

and jth column. Also, [X]i:j,: indicates the sub-matrix obtained 

from keeping the entries from the ith to jth rows and all of 

its columns. The transpose of a matrix is written as X
T, i.e. 

[XT]i,j := [X]j,i. The Moore–Penrose pseudo-inverse of a 

matrix A is denoted by A†.

The n × n identity matrix is denoted by In. The vectorization 

operator vec(X) : R
m×n

→ R
mn vertically concatenates the col-

umns of X  onto a vector x ∈ R
mn, with vec−1

m,n(X) : Rmn
→ R

m×n 

denoting its inverse operator. We denote by Sn

++ (resp. Sn

+) 

the set of n × n symmetric positive definite (resp. semi-def-

inite) matrices. The Frobenius norm of a matrix is denoted 

by ∥X∥
F

:= (
∑m

i=1

∑n

j=1
[X]2ij)

1

2 = (TrXTX)
1

2 . The matrix 

Mahalanobis distance of X  with respect to a matrix Ψ ∈ S++ 

is defined as ∥X∥Ψ := (TrX
T
ΨX)

1

2 . Further, we denote 

by ⟨x, y⟩ the (Pearson) sample correlation between two 

n-dimensional vectors, defined as ⟨x, y⟩ := 1

n

∑n−1

k=0
[x(k)−  

1

n

∑n−1

k=0
x(k)][y(k)− 1

n

∑n−1

k=0
y(k)].

The density function (pdf) of a random vari-

able (r.v.) X with support on X  is denoted by 

p(x) ≡ fX(x) := d
dx

FX(x), where FX(x) := P{X ! x}. The 

conditional pdf of a r.v. X given Y is denoted p(x|y). A r.v. 

x ∈ R
n following a multivariate normal distribution with 

mean µ and covariance Σ is denoted x ∼ N (µ,Σ), having pdf 

p(x|µ,Σ) = (2π)−
n

2 (detΣ)−
1

2 exp
(

− 1

2
∥x − µ∥2

Σ−1

)

.

2. Model and methods

2.1. System model

As our approximating model (see figure 1), we consider a dis-

crete-time time-invariant linear system described by a state-

space representation, which evolves according to

{

x(k + 1) = Ax(k) + Bu(k) + w(k),

y(k) = Cx(k) + v(k), for k = 0, 1, . . . .
 (1)

Here, the vector of outputs y(k) ∈ R
p corresponds to the 

observed BOLD signal intensities associated with the fMRI 

measurements at different regions of the brain. The dimen-

sionality parameter p corresponds to the number of regions 

in the partition (parcellation) of the cortical surface, or to the 

surface mesh resolution, in the case of spatially dense time 

series (see description in section  3). The input u(k) ∈ R
m 

corresponds to the physiological and task-related signals 

observed during the experiment, whose encoding will be 

specified in section 2.2. In addition, the internal state variable 

x(k) ∈ R
n summarizes the system’s past history with respect 

to its effect on future outputs. The matrices associated with the 

deterministic state-space representation (A, B, C) are referred 

to, respectively, as the state transition matrix A ∈ R
n×n, the 

input matrix B ∈ R
n×m , and the output matrix C ∈ R

p×n. 

They implement, in that order, the mean linear relationships 

between the recurrent effect of the state on itself, the effect 

of external inputs on the state, and the effect of the state on 

the observed outputs. Furthermore, such matrices correspond 

to the linearization [2] of a possibly nonlinear system in the 

close vicinity of a fixed operating point x(k) = x̄. The variable 

v(k) ∈ R
p is referred to as additive observation noise, and is 

commonly associated with uncertainties in the measurement 

of the outputs. Correspondingly, w(k) ∈ R
n is referred to as 

Figure 1. The system identification approach. The cognitive (i.e. 
task-related) and physiological inputs u(k) ∈ R

m, along with 
the outputs y(k) ∈ R

p, are presented to the subspace system 
identification algorithm, which produces estimates for the system 
matrices A, B and C (and noise matrices Q, R, and S in the 
stochastic case). In the experiments conducted, we have p  =  148 for 
the parcellated time series, and p  =  64984 for the spatially dense 
time series.
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process noise and might, for example, account for the effect 

of unobserved inputs to the system. These are assumed to be 

zero-mean random variables jointly distributed according to

[

w(k)

v(k)

]

∼ N

([

0

0

]

,

[

Q S

ST R

])

, (2)

where Q ∈ S
n
++, R ∈ S

p
++ and S ∈ R

n×p are the matrices 

associated with the stochastic component of the linear 

system representation. The parameters of this approximating 

model will be estimated by subspace identification methods, 

subject to a model complexity constraint given by the state 

dimension n (a parameter of choice). In this respect, we seek 

estimates that, provided with the original inputs u(k) and ini-

tial state estimate x̂(0), are able to produce output estimates 

ŷ(k) that approximate the originally measured outputs y(k) 
with good accuracy, as evaluated by their mutual correlation 

⟨ŷ, y⟩.

2.2. Input encoding

In the context of a task-based fMRI experiment, we con-

sider two classes of exogenous signals to the model, which we 

refer to as cognitive and physiological. Cognitive (i.e. task-

related) inputs are designed to trigger different aspects of the 

brain’s neural response, and are therefore specific to the type 

of experiment under investigation. Each task (e.g. motor 

task) defines a repertoire of stimuli issued to the subject par-

ticipating in the experiment, with each stimulus type being 

referred to as a task condition. Concretely, task conditions are 

implemented as specific visual or auditory commands issued 

to the subject at different times during the experiment. For 

example, one task condition in the motor experiment is ‘tap 

right finger’ (rh), which prompts the subject to act accord-

ingly, after the presentation of a visual cue on a screen. To 

encode these inputs, considering task conditions j = 1, . . . , mc 

(identified with corresponding input channels [uc(k)]j), we 

assign [uc(k)]j = 1 if task condition j occurs on time k, and 

set [uc(k)]j = 0 otherwise (see figure  2). In contrast, physi-

ological signals (e.g. heart cycles, respiration, and head move-

ment) are usually treated as non-neural disturbances affecting 

the measured output signal. In this case, it is common practice 

to numerically remove the effect of the physiological signals 

from the output measurement by means of a regression proce-

dure [4] (as we specify in section 3.2).

2.3. Identification via subspace methods

To formalize our system identification problem, we consider 

a batch of L input and output observations {u(k), y(k)}L−1

k=0
 

generated by an unknown discrete-time, time-invariant linear 

system described by (1), i.e. our approximating model. We 

wish to recover estimates (ÂT , B̂T , ĈT) of the determin-

istic system description, estimates (Q̂T , R̂T , ŜT) of the noise 

matrices, and an estimate x̂T(0) of the initial condition. Here, 

the subscript T denotes the fact that estimates are obtained up 

to an invertible linear transformation of the state representa-

tion, represented by a matrix T ∈ R
n×n, i.e. x̂T(k) = Tx(k). 

This transformation accounts for an invariance effect inherent 

to the problem, since any such T can be applied to a given 

state representation and still preserve the same input–output 

relationship [31].

To estimate system parameters, we apply and extend 

algorithms derived from the class of subspace identifica-

tion methods [21]. Such methods rely on the construction, 

using the observed input and output data, of Hankel- and 

Toeplitz-structured matrices to establish a linear matrix equa-

tion  between the data and the system parameters. The key 

characteristic enabling a solution to this problem lies in the 

notion that such matrices exhibit a specific low-rank structure 

that can be leveraged via a singular value decomposition, as 

will be seen shortly. For the sake of simplicity in our exposi-

tion, we will assume v(k) ≡ 0 and w(k) ≡ 0 in (1), and that 

no feedback effect is present. Details of the treatment for 

cases when these noise components follow normal distribu-

tions with arbitrary covariance matrices is given in the sup-

plementary methods (stacks.iop.org/JNE/15/066016/mmedia) 

document accompanying this article.

We will begin our technical description by addressing a 

simple configuration, which considers the model for one sub-

ject in isolation, and whose output measurements are defined 

Figure 2. Input encoding of task and physiological signals for 
the motor task. The input vector is partitioned into two blocks: 
the block of cognitive (i.e. task-related) input channels (uc) and 
the block of physiological input channels (up). For uc, a set of six 
task conditions is considered: cue (a visual cue preceding the 
occurrence of other task conditions), lf (squeeze left toe), lh (tap 
left fingers), rf (squeeze right toe), rh (tap right finger), and t 
(move tongue). As the physiological inputs up, a set of eight input 
channels is considered: heart (heart signal), resp (breathing signal), 
head translation tx, ty, tz (in the three spatial axes), and head rotation 
rx, ry, and rz (in the three spatial axes).
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in the lower-dimensional output spatial resolution (parcellated 

case). The treatment of the extended configurations (i.e. multi-

subject models and large dimensionality of output measure-

ments) will be given in sections 2.4 and 2.5, respectively.

First, we note that using (1), the output at time k with an ini-

tial condition x(0) and past inputs u(r), for r = 0, . . . , k − 1, 

satisfies

y(k) = CAkx(0) +
k−1∑

r=0

CAk−r−1Bu(r) (3)

when k ! 0. Using (3), a sequence of s output samples y(k) at 

times k = 0, . . . , s − 1 can be written in matrix form as
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(0)

y(1)

y(2)
.
.
.

y(s−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=:Y0,s

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

CA2

.

.

.

CAs−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=:Os

x(0)+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0

CB 0 0

CAB CB 0

.

.

.
.
.
.

. . .
.
.
.

CAs−2B CAs−3
· · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=:Ts

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u(0)

u(1)

u(2)
.
.
.

u(s−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

=:U0,s

.

 (4)

Here, Os ∈ R
sp×n is a block-row matrix with each block of size 

p × n, and Ts ∈ R
sp×sm  is a structured block-Toeplitz matrix 

having each block having size p × m. The block-row matrices 

Y0,s ∈ R
sp×1 and U0,s ∈ R

sm×1 have each block of size p × 1 

and m × 1, respectively, with the first subscript denoting the 

sample time index of the block element in their first row. By 

horizontally concatenating N block-row matrices Yi,s (for 

i = 0, . . . , N − 1), we obtain the structured block-Hankel 

matrix Y0,s,N ∈ R
sp×N having each block of size p × 1, i.e.

Y0,s,N :=











y(0) y(1) · · · y(N − 1)

y(1) y(2) · · · y(N)
.
.
.

.

.

.
. . .

.

.

.

y(s − 1) y(s) · · · y(N + s − 2)











.

Likewise, U0,s,N ∈ R
sm×N is a block-Hankel matrix with each 

block of size m × 1, following the same structure as in Y0,s,N . 

Hence, by defining the block-row matrix X0,N ∈ R
n×N , where 

X0,N := [x(0) x(1) . . . x(N − 1)], we can write, from (4), the 

data equation

Y0,s,N = OsX0,N + Ts U0,s,N . (5)

This equation will be subsequently analyzed to produce the 

estimates for the state-space representation matrices A, B and 

C, as well as for the initial state x(0).

2.3.1. Estimates of A and C. We consider the projection 

matrix Π⊥

U0,s,N
∈ R

N×N , defined by

Π
⊥

U0,s,N
:= IN − U

T

0,s,N(U0,s,NU
T

0,s,N)
†
U0,s,N ,

which can be explicitly computed from the set of observed 

inputs {u(k)}N+s−2

k=0
. By right-multiplying both sides of the 

data equation (5) by Π⊥

U0,s,N
, this projection matrix cancels the 

term Ts U0,s,N , yielding

Y0,s,NΠ
⊥

U0,s,N
= OsXNΠ

⊥

U0,s,N
. (6)

We now observe that the l.h.s. of (6) can be computed based 

on the observed output data {y(k)}N+s−2

k=0
 and on the projec-

tion matrix Π⊥

U0,s,N
, which is also constructed from the known 

inputs. As we will see next, this term provides a basis for esti-

mating a basis for the linear space spanned by the system’s 

observability matrix, a key object in this method. To do so, we 

perform the singular value decomposition

UΣV
T

:= Y0,s,NΠ
⊥

U0,s,N
, (7)

and produce associated matrices Un,Σn, Vn where the sub-

script n indicates that only the left and right singular vectors 

associated with the n largest singular values are retained. 

Here, n is the dimension of the state of the system being esti-

mated. In the deterministic case, this singular value decom-

position produces exactly n nonzero singular values, so that 

UΣV = UnΣnVn. In the presence of noise, there will be typi-

cally more than n nonzero singular values, and n becomes a 

parameter of choice in the method.

Proceeding with the deterministic case, right-multiplying 

(7) by VnΣ
−1

n
 and comparing with (6) gives

Un=Y0,s,NΠ
⊥

U0,s,N
VnΣ

−1
n

= OsXNΠ
⊥

U0,s,N
VnΣ

−1
n

=OsT ,

where we have defined T := XNΠ
⊥

U0,s,N
VnΣ

−1 as a similarity 

transformation matrix. Provided that T preserves the column 

space of Os (which can be assured by the conditions presented 

in [20, lemma 9.1]), we may write

Un = OsT =











CT

CT(T−1
AT)

.

.

.

CT(T−1
AT)s−1











=:













CT

CTAT

.

.

.

CTA
s−1

T













, (8)

and verify that the column space of Un is equivalent to the 

column space of the extended observability matrix of the 

system being estimated. This fact will allow us to use the com-

puted matrix Un to determine the matrices ÂT  and ĈT , which 

are similarity-transformed estimates of the matrices A and C, 

as follows. First we note that (8) allows us to write






CT

.

.

.

CTA
s−2

T






AT =







CTAT

.

.

.

CTA
s−1

T






,

which can be equivalently written in terms of sub-matrices 

derived from Un as

[Un]1:n(s−1),1:n
AT = [Un]n+1:ns,1:n

. (9)

This is an overdetermined linear equation in the matrix vari-

able AT, whose least-squares solution

ÂT = argmin
AT

∥

∥

∥
[Un]1:n(s−1),1:n

AT − [Un]n+1:ns,1:n

∥

∥

∥

2

F

 (10)
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can be obtained in closed-form as

ÂT :=
(

[Un]1:n(s−1),1:n

)†

[Un]n+1:ns,1:n
,

where the dagger symbol denotes the Moore–Penrose pseudo-

inverse matrix. Similarly, the estimate for C can be obtained 

by letting

ĈT := [Un]1:p,1:n,

i.e, by retrieving the top n × n submatrix of Un.

A comment is in order with respect to the set of eigen-

values {λi(ÂT) : i = 1, . . . , n} of the estimated state trans-

ition matrix ÂT . It is a known fact that an unstable system 

is implied if |λi(ÂT)| > 1 for any i = 1, . . . , n [31]. In that 

respect, we mention two possible approaches to enforce sta-

bility. The first, simpler, is to perform an eigen-decomposition 

of ÂT  and reconstruct it by imposing that any eigenvalues 

with absolute value greater than one be restricted to a stable 

value (i.e. to a value equal or slightly smaller than one). The 

second approach consists of introducing an explicit stability 

constraint on the minimization problem (10). This alternative, 

described in detail in [32], is more computationally-intensive, 

and involves the application of an iterative convex optim-

ization algorithm to account for the required constraint in the 

resulting semi-definite program (SDP).

2.3.2. Estimates for B and x(0). Given the estimates ÂT  and 

ĈT , as well as the input–output data {y(k), u(k)}L−1

k=0
, one can 

find similarity-transformed estimates x̂T(0) for x(0), and B̂T  

for B, as follows. We apply the vectorization operator in (3) 

and use the identity vec(LXR) = (RT
⊗ L)vec(X), to get

y(k)=vec(y(k))

=vec

(

CTAk
TxT(0) +

k−1
∑

r=0

CTAk−r−1

T Bu(r)

)

=CTAk
TxT(0)+

(

k−1
∑

r=0

u(r)T⊗ CTAk−r−1

T

)

vec(BT),

which is a linear equation  in the variables xT(0) and 

vec(BT). We now define a set of coefficient matrices 

{φ(k) ∈ R
n(m+1)×p}L−1

k=0
, whose computation is based on the 

existing estimates ÂT  and ĈT , such that

φ(k) :=

[

ĈT Â
k

T

∣

∣

∣

∣

∣

(

k−1
∑

r=0

u(r)T ⊗ ĈT Â
k−r−1

T

)]T

.

Further, we define the auxiliary parameter variable 

θ ∈ R
n(m+1), with θ := [ xT(0)

T
vec(BT)

T ]T, and note that we 

can find an estimate θ̂ by solving the minimum least squares 

problem

θ̂ := arg min
θ

L−1
∑

k=0

1

2

∥

∥y(k)− φ(k)Tθ
∥

∥

2

2
. (11)

A solution to the optimization problem in (11) can be 

found in closed-form by defining the vector yL ∈ R
Lp with 

yL := [y(0)T, · · · , y(L − 1)T]T and the coefficient matrix 

Φ ∈ R
pL×n(m+1) with Φ := [φ(0)| · · · |φ(L − 1)]T, such that

θ̂ = (ΦT
Φ)−1

ΦyL = Φ
†yL, (12)

where Φ† is the Moore–Penrose left pseudo-inverse of Φ. 

Finally, the desired estimates are directly obtained from θ̂ by 

letting x̂T(0) := [θ̂]1:n,1 and B̂T := vec−1
m,n

(

[θ̂]n+1:n(m+1),1

)

.

2.4. Dense time series

We now propose a computationally efficient method for iden-

tifying our approximating model for spatially dense time 

series data, i.e. the case when the output variables y ∈ R
p are 

defined in a space where p ! n, L. In the case of the Human 

Connectome Project dataset explored in this paper (see descrip-

tion in section 3), the dense data consists of p = 64 984 brain 

surface coordinates, with the first 32 492 being related to the 

left hemisphere, and the remaining 32 492 to the right hemi-

sphere. These values become relevant from a computational 

aspect when we consider the steps in fitting a model using 

the above described subspace method. In particular, we high-

light two specific steps: (i) the singular value decomposition 

in (7), required for the estimation of the parameters ÂT  and 

ĈT , and (ii) the least-squares solution in (12), required for the 

estimation of the parameters B̂T  and initial state x̂T(0). In (i), 

the SVD is applied on the matrix Y0,s,NΠ
⊥

U0,s,N
∈ R

sp×N , with 

e.g. sp = 194 952 (for s  =  3) and N  =  284; whereas in (ii) the 

solution involves storing and calculating a pseudo-inverse of 

the matrix Φ of size e.g. pN × n(m + 1) = 18.45 · 10
6
× 280, 

accounting for potentially up to 5.17 · 10
9 entries. The com-

putational cost for performing such operations is further com-

pounded when one considers a collection of subjects, and 

when the behavior of the model at different parameters is ana-

lyzed, requiring many model-fitting iterations. By applying 

recent developments in numerical linear algebra and optim-

ization, we propose computationally efficient solutions for 

both of these problems, enabling such computations to be per-

formed within a reasonable time.

First, we address the SVD in (7) using a randomized algo-

rithm with approximation guarantees, introduced in [33]. 

The principle enabling the gain in computational efficiency 

in the proposed approach lies in the fact that the SVD com-

putation will be performed on a representative matrix of 

smaller dimensions (also called a sketch) S ∈ R
n×ζ, which is 

appropriately sampled from the original matrix Y0,s,NΠ
⊥

U0,s,N
. 

The result of this SVD is then related to the original matrix 

decomposition UΣV
T := Y0,s,NΠ

⊥

U0,s,N
, yielding the desired 

matrices Ũn, S̃n, Ṽn such that ∥UnSnVn − ŨnS̃nṼn∥F ! ε. It is 

worth noticing that the quality of the approximation can be 

guaranteed and controlled by the sketch size parameter ζ in 

the order of n/ε. For example, for rank n  =  30 and tolerance 

ε = 3 · 10
−3 we select ζ ∼ 1 · 10

4. The computational steps 

are presented in algorithm 1, following [34, section 5.2].
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Algorithm 1. Large-scale approximate SVD.

Require: Y0,s,N , # of singular values n, sketch size ζ

1: Generate a sketch matrix S := sketch(Y0,s,N , ζ)

2: Let C := Y0,s,NS

3: Perform QR decomposition [Q, R] := qr(C)

4: Perform n-SVD [Ũ0, S̃n, Ṽn] := svd(QTY0,s,N , n)

5: Let Ũn := QŨ0

6: return ŨnS̃nṼn ≈ Y0,s,N

Next, we propose a computationally efficient solution for 

the least-squares problem (12) in the dense time series case. 

To do so, we address the problem in its optimization form 

as in (11), and describe an iterative solution using proximal 

methods [35]. The method is based on the proximal operator 

proxf ,λ,θ : Rn(m+1)
→ R

n(m+1), which is defined according to 

the objective function in (11) as follows:

proxf ,λ,θ(w) := arg min
θ

f (θ) +
1

2λ
∥w − θ∥2

2

= arg min
θ

L−1
∑

k=0

1

2

∥

∥y(k)− φ(k)Tθ
∥

∥

2

2
+

1

2λ
∥w − θ∥2

2,

where λ is a scaling parameter. This implicit definition of the 

proximal operator, in terms of its quadratic minimization in θ, 

can be solved and alternatively represented in closed-form as

proxf ,λ,θ(w) =

(

In(m+1) + λ

L−1
∑

k=0

φ(k)φ(k)T

)

−1

×

(

L−1
∑

k=0

φ(k)y(k) + λw

)

.

 

(13)

Seeking gains in computational efficiency, we further 

express factors in (13) by defining a parameter matrix 

W ∈ R
n(m+1)×n(m+1) with

W :=

(

In(m+1) + λ

L−1
∑

k=0

φ(k)φ(k)T

)

−1

, (14)

and a parameter vector h ∈ R
n(m+1) where h :=

∑L−1

k=0
y(k)φ(k). 

Importantly, we note that, for a given value of the parameter λ, 

both W and h can be precomputed, since they do not depend 

on the argument w of the proximal operator. In addition, since 

the dimensions of these parameters do not depend on the large 

dimension p of the output measurements y(k) or the number 

of time samples L, these parameters can be conveniently 

stored and used across iterations. The proximal operator thus 

becomes a simple affine transformation

proxf ,λ,θ
(w) = W(h + λw), (15)

which can be evaluated at a much lower computational cost.

The optimization algorithm (summarized in algorithm 2) 

consists of iteratively applying the proximal operator on iter-

ates θ[l] of the optimization variable θ, indexed by iteration 

l, until a termination criterion is met (e.g. relative tolerance
 

ξ over the norm of the difference in θ over successive itera-

tions). With respect to the scaling parameter λ, convergence 

to the set of minimizers of the objective function is guaranteed 

provided λ[l]
> 0 and 

∑
∞

l=1
λ
[l]
= ∞ [35, p 143], which is 

satisfied by letting λ[l]
= 1 for all l, as we adopt in this paper.

Algorithm 2. Proximal method for dense time series.

Require: Scaling parameter λ, tolerance ξ

1: Let θ[1] = 0

2: while ∥θ[l+1] − θ[l]∥2/∥θ
[l]∥2 ! ξ  do

3:     θ[l+1] = proxf ,λ,θ(θ
[l])

4: end while

5: return θ̂ = θ
[l] = [ x̂T(0)

T, vec(B̂T)
T ]T

2.5. Multi-subject identification

We consider a set of subjects {h : h ∈ 1, . . . , q} associated 

with a given task, and we seek a common state-space represen-

tation across all subjects. We denote the input block-Hankel 

matrices associated with subject h as Y
(h)
s,Nh

≡ Y
(h)
0,s,Nh

, drop-

ping the first subscript for brevity, and allowing for different 

block column dimensions Nh. Correspondingly, we denote 

the output block-Hankel matrix U
(h)
s,Nh

≡ U
(h)
0,s,Nh

 and block-row 

state matrices X
(h)
Nh

≡ X
(h)
0,Nh

. We can write a multi-subject data 

equation, analogous to (5), as

[

Y
(1)
s,N1

| . . . |Y
(q)
s,Nq

]

=Os

[

X
(1)
N1

| . . . |X
(q)
Nq

]

+ Ts

[

U
(1)
s,N1

| . . . | U
(q)
s,Nq

]

.

In this case, since the functional dependency between the 

system dependent matrices Os and Ts  is the same as the one 

in (5), the steps for obtaining the common matrix estimates 

ÂT  and ĈT  are exactly the same as those presented in sec-

tion  2.3, in this case considering Y0,s,N := [Y
(1)
s,N1

|. . . |Y
(q)
s,Nq

], 

X0,N = [X
(1)
N1

|. . . |X
(q)
Nq

] and U0,s,N := [U
(1)
s,N1

|. . . | U
(q)
s,Nq

]. In con-

trast, because the internal state x
(h)
T

(k), and in particular the 

initial state x
(h)
T

(0) is specific for each subject, the estima-

tion step involving the common parameter BT and the indi-

vidual condition x
(h)
T

(0) requires us to examine the individual 

equations

y(h)(k) = ĈT Âk
Tx

(h)
T (0) +

k−1∑

r=0

ĈT Âk−r−1

T BTu(h)(r) (16)

for each h = 1, . . . , q. We note that these equations are cou-

pled through the common parameter BT. To address this, we 

define b := vec(BT), xh ≡ x
(h)
T

(0), and

Yh :=













y(h)(0)

y(h)(1)
.
.
.

y(h)(L − 1)













, OL :=













ĈT

ĈT ÂT

.

.

.

ĈT ÂL−1

T













.

We also define Kh = [K(h)(0)T, · · · , K
(h)(L − 1)T]T, where
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K
(h)(k) :=

k−1∑

r=0

u
(h)(r)T ⊗ ĈT Â

k−r−1

T
.

Then, we propose to solve the quadratic problem

min
{xh}

q

h=1
,b

∑q

h=1
1

2
∥Yh −OLxh −Khb∥

2

2 (17)

by proximal algorithms. Similarly to (13), the corresponding 

proximal operators can be derived in closed-form, respec-

tively for b and x0,h, as:

proxf ,λ,b(w) =

(

Imn + λ

q
∑

t=1

K
T

h Kh

)

−1

×

(

w − λ

q
∑

h=1

K
T

h Khb + λ

q
∑

h=1

K
T

h Yi

)

,

proxf ,λ,xh
(w) =

(

In + λO
T

L OL

)

−1

×

(

w − λO
T

L Khb + λO
T

L Yh

)

.

We can now solve (17) by recursively evaluating
{

x
(l+1)
h = proxf ,λ,xh

(x
(l)
h ), h = 1, . . . , q

b(l+1) = proxf ,λ,b(b
(l)),

until the stopping criterion is met. Finally, we can retrieve the 

estimates B̂T := vec−1
m,n(b) and x̂

(h)
T

(0) = xh, as desired.

3. Experimental description

3.1. The Human Connectome Project dataset

The dataset that we explore in this paper is derived from the 

Human Connectome Project (HCP) [36], as part of the HCP 

900 subjects release. The acquisition and pre-processing pipe-

lines are discussed in [37], and described in detail in [38]. 

Here, we provide a brief summary of the aspects that are most 

relevant to our problem.

3.1.1. Acquisition and pre-processing. Functional MRI 

data were acquired using a Gradient-echo EPI sequence, at 

a TR (sampling rate) of 720 ms, and additional parameters 

TE  =  33.1 ms, flip angle  =  52
◦, FOV  =  208 × 180 mm 

(RO  ×  PE), 72 slices, 2.0 mm isotropic views, multi-band 

acceleration factor of 8, echo spacing of 0.58 ms and a BW of 

2290 Hz Px
−1. The pre-processing of the data comprised the 

following steps: gradient unwarping, motion correction, field-

map-based EPI distortion correction, brain-boundary-based 

registration of EPI to structural T1-weighted scan, non-linear 

(FNIRT) registration into MNI152 space, and grand-mean 

intensity normalization. These procedures were executed 

according to the HCP data analysis pipelines using the FSL 

and FreeSurfer software packages, and following the steps 

described in [37].

3.1.2. Surface registration and spatial encoding. The 

HCP project provides cortical neuroimaging data in a 

surface-constrained format, as an alternative to the standard 

volumetric format. A motivation for the surface format is 

that distances defined in the geodesic surface of the brain are 

more neurobiologically relevant than the distances evaluated 

in volumetric space. In addition, in the surface format, the 

voxels of the cortical gray matter ribbon are projected onto 

a registered surface mesh with a standard number of vertices 

that is more efficiently encoded and stored. The coordinates 

defined by this mesh are referred to as grayordinates. In this 

system, each brain hemisphere is represented by 32 492 gray-

ordinates, which are appended by a volumetric representa-

tion of subcortical structures, in sum providing 91 282 spatial 

points per fMRI frame. Excluding the subcortical grayordi-

nates (not analyzed in this paper), we refer to this spatially 

dense representation of 64 984 grayordinates per time frame 

as dense. Alternatively, the spatial representation of the sur-

face can be summarized into regions-of-interest (ROI) by the 

use of a standard cortical atlas. More specifically, we adopted 

the Destrieux 2009 atlas, which is composed of 74 regions 

per hemisphere, following internationally accepted nomencla-

ture and criteria [39]. In this case, the signal intensities in all 

grayordinates associated with a region are averaged together 

to account for the representative signal intensity at that region. 

Following the HCP nomenclature, we refer to this type of spa-

tial encoding as the aparc parcellation.

3.1.3. Physiological data. Cardiac signals were measured by 

a pulse oximeter, sampled at 400 Hz (288 samples per frame of 

functional image), and synchronized with the scanner. Respi-

ratory signals, also sampled at 400 Hz, were measured by an 

elastic respiratory belt transducer. These signals account for 

oscillations occurring typically at 60 to 100 cycles a minute 

for the cardiac signals, and at 6 to 20 cycles per minute for the 

respiratory signals. Head motion was acquired by an optical 

motion tracking camera system in real-time using an infrared 

camera mounted in the scanner bore. The estimates of motion 

parameters were derived from a rigid-body transformation 

to the SBRef image acquired at the start of each fMRI scan, 

and comprise six parameters: transx, transy, transz , rotx(deg), 
roty(deg), and rotz(deg).

3.1.4. The motor task. In the motor task [40], a set of six task 

conditions is considered. The participants are presented with 

(i) visual cues that ask them to tap their (ii) left or (iii) right 

fingers, squeeze their (iv) left or (v) right toes, or (vi) move 

their tongue. The task is intended to map motor areas in the 

cortex, and its design is inspired by [41], where its motivation 

for an examination of cognitive function is discussed. Each 

task run has a duration of 3 min 34 s, corresponding to 284 

samples in time, i.e. 284 full spatial acquisition frames. The 

time-of-occurrence of each task condition is recorded with a 

precision of milliseconds, enabling its consideration as input 

data in our model.

3.2. Time series pre-processing

3.2.1. Centering and normalizing. For each region 

i = 1, . . . , p, the output samples {[y(k)]i}
L−1

k=0
 were subtracted 
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by their mean values ȳi := 1/L
∑L−1

k=0
[y(k)]i and scaled by 

(1/σi), with σ2

i := 1/L
∑L−1

k=0
([y(k)]i − ȳi)

2 being the squared 

sample standard deviation.

3.2.2. Filtering. Within the spectrum of the fMRI BOLD 

signal, a specific frequency sub-band is predominantly asso-

ciated with neural activity [42]. We therefore consider two 

alternatives of the frequency content of the signal, which we 

refer to as all-pass and band-pass. In the all-pass case, 

the whole frequency band of the signal is preserved; in the 

band-pass case, we attenuate the frequencies outside the 

0.06–0.12 Hz band by applying a band-pass filter, defined as 

follows. We design an order 50 FIR-type filter using Matlab’s 

‘equiripple’ method, so as to achieve a 20 dB attenuation out-

side the pass band. The initial stop and pass frequencies con-

sidered were fs1 = 0.04 Hz, fp1 = 0.06 Hz, and the final stop 

and pass frequencies were fp2 = 0.12 Hz and fs2 = 0.15 Hz, 

respectively. Both filter alternatives are explored in the experi-

ments analyzed in this paper.

3.2.3. Physiological signals. We perform a linear regression 

of the physiological inputs on the outputs, using cognitive 

inputs uc(k) ∈ R
mc, and physiological inputs up(k) ∈ R

mp , 

defined as

uc(k) :=



















cue(k)

lf(k)

lh(k)

rh(k)

rh(k)

t(k)



















up(k) :=



























heart(k)

resp(k)

transx(k)

transy(k)

transz(k)

rotx(k)

roty(k)

rotz(k)



























,

with mc  =  6 and mp  =  8. To do so, we build a data 

matrix Up ∈ R
mp×L containing the physiological inputs, 

Up := [up(0) . . . up(L − 1)], and a data matrix Y ∈ R
p×L con-

taining the measured outputs, Y := [y(0) . . . y(L − 1)]. We 

then find a matrix of linear regression coefficients Ĥ ∈ R
p×mp 

corresponding to the least-squares solution to

Ĥ := arg minH∥Y − HUp∥
2
F = YU†

p .

Finally, we define the set of physiologically regressed outputs 

{yr(k)}
L−1

k=0
 by

[ yr(0) . . . yr(L − 1)] := Y − ĤUp = Y(IL − U†
p Up),

i.e. by removing the direct linear prediction of the physiolog-

ical inputs on the outputs.

3.3. System identification parameters

The system identification method presented in section  2.3 

depends on the parameters s and N, associated with the block-

Hankel matrices, as well as on the parameter n, corresponding 

to the dimension of the state representation of the system. We 

note that, for a given value of the parameter s (the number 

of block-rows) and number of samples L, the structure of the 

Hankel matrix allows a maximum value for the parameter N 

to be Nmax := L − s + 1. In the following experiments, unless 

otherwise noted, we adopt s  =  3. Given that L  =  284 for the 

motor task, we have N = Nmax = 282. Finally, we set the 

sketch size ζ = 1 · 10
4 (yielding tolerance ε ∼ 1 · 10

−3), and 

proximal algorithm stopping tolerance ξ = 1 · 10
−6.

4. Results

4.1. Task-fMRI time series is well approximated with a low 

degrees-of-freedom model

In this section, we analyze the quality of the approximated 

output signal when the method described in section  2.3 is 

applied individually to each subject h = 1, . . . , q in the dataset. 

For each subject, we consider experimental data collected 

from the motor task in the form of a set of inputs {u
(h)(k)}L−1

k=0
 

and a set of outputs {y(h)(k)}L−1

k=0
. First, we obtain the indi-

vidual system matrix estimates (Â
(h)
T

, B̂
(h)
T

, Ĉ
(h)
T

) and the initial 

state x̂
(h)
T

(0) estimate, given chosen values for (n, s, N). Next, 

using the original inputs {u
(h)(k)}L−1

k=0
 and the initial condition 

x
(h)
T

(0), we produce the outputs {ŷ(h)(k)}L−1

k=0
 as the response 

generated by the estimated system (Â
(h)
T

, B̂
(h)
T

, Ĉ
(h)
T

). We then 

measure the quality of the approximation obtained for each 

region i = 1, . . . , p, by computing the Pearson correlation 

coefficient between the original and the approximated time 

series, i.e. γ
(h)
i := ⟨[y(h)]i, [ŷ

(h)]i⟩.
The results from performing this procedure, when con-

sidering the parcellated times series (p  =  148) for both the 

all-pass and band-pass filters, are presented in figure 3. 

The dimension of the state was defined to be n  =  25, by 

inspection of the singular values in (7), fulfilling the condi-

tion that sp  >  n. We display the original and reconstructed 

outputs for the three regions with highest γ
(h)
i

 (left) and for 

the three regions with γ
(h)
i

 around the median across regions 

(right), considering the subject h whose across-regions 

average correlation coefficient (i.e. 1

p

∑ p

i=1
γ
(h)
i ) was in the 

median of the across-subjects distribution. We observe that 

the approximate output captures the main features of the 

BOLD signal in all cases, with especially high accuracy for 

the band-pass filter.

In figure 4, we build the sample covariance matrices F ∈ S
p 

where each entry [F]i,j is given by the sample correlation 

coefficient between the output signal at every pair of regions 

(i, j) ∈ {1, . . . , p}2, i.e. [F]i,j := ⟨[y]i, [y]j⟩. We also compare F 

obtained from the original inputs y(k) with F̂  obtained from 

the approximated outputs ŷ(k) by displaying the matrix of the 

absolute values of their difference, which were found to be of 

low magnitude on average.

In figure 5, we consider the dense times series (p = 64 984), 

and apply the method described in section 2.4 with both the 
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all-pass and band-pass filters, considering the state dimen-

sion parameter n  =  35. We display the original and recon-

structed outputs for the three regions with highest γ
(h)
i

 and the 

three regions with γ
(h)
i

 around the median across regions, for 

the subject h whose across-regions average correlation coef-

ficient (i.e. 1

p

∑ p

i=1
γ
(h)
i ) was the median in the across-subjects 

distribution. We observe that, in this finer parcellation, the 

noise content of the all-pass filter is relatively high, while 

the approximation quality for the band-pass filter achieves 

an accuracy that is comparable to the one observed in the 

aparc parcellation.

Finally, to evaluate the approximation capacity of the 

models, we examine the ratio between the number of degrees 

of freedom allowed by the parameters of the model against 

the number of constraints imposed by the input and output 

observations, taking the deterministic system model as a ref-

erence. Considering L samples, we have that the set of inputs 

u(k) ∈ R
m and outputs y(k) ∈ R

p generates L( p + m) con-

straints. On the side of the model, the matrices (A, B, C) cor-

respond, respectively, to (n2,nm,pn) scalar parameters, i.e. 

a total of n(n + m + p) degrees of freedom. Therefore, the 

deterministic degree of parametrization of the models can be 

quantified by the ratio of the degrees of freedom

η :=
n(n + m + p)

L( p + m)
. (18)

When applied to our case, for single-task models, with p  =  148, 

m  =  6, n  =  25, and L  =  284 we have η ≈ 0.123. Furthermore, 

we note that the degrees of freedom ratio decreases linearly with 

Figure 3. Original and reconstructed output times series for the motor task with the aparc parcellation, for filters all-pass (a) and (b), 

and band-pass (c) and (d). Values are presented for the subject h whose across-regions average correlation coefficient (i.e. 1

p

∑ p

i=1
γ
(h)
i ) 

was in the median of the across-subjects distribution. In (a) and (c), we display values for the reconstructed outputs {[y(k)]i}
L−1

k=0
 for regions 

i ∈ Ihigh ⊂ {1, . . . , p} with p  =  148, where the subset Ihigh consists of the three regions for which the correlation γ
(h)
i

 was highest. In (b) 

and (d), values correspond to the reconstructed outputs {[y(k)]i}
L−1

k=0
 for regions i ∈ Imed ⊂ {1, . . . , p}, where the subset Imed consists of 

the three regions for which the correlation γ
(h)
i

 was adjacent to the median. The vertical dotted lines across each plot mark the time-of-
occurrence of each task condition, with the task condition number being indicated in the small box on top.

J. Neural Eng. 15 (2018) 066016



C O Becker et al

11

the number of samples L. For dense time series, where p ! m, n 

we have that η ≈ n/L. In this case, for n  =  25 and L  =  284 we 

have η ≈ 0.102, while for n  =  35 we have η ≈ 0.123. Based on 

the average correlations obtained for both the parcellated and 

dense time series, we can conclude that the models derived from 

the subspace methods are able to approximate the task-fMRI 

signal with a low degrees-of-freedom model.

4.2. Input–output transfer function identified is compatible 

with hemodynamic response function

We refer as hemodynamic response function (HRF), at a cor-

tical point-of-interest and with respect to a stereotyped stim-

ulus, to the time sequence of BOLD values occurring at that 

cortical point following the presentation of that stimulus. In 

terms of dynamical systems, this quantity can be also defined 

as an impulse response function [27]. In this regard, the state-

space representation (A, B, C) contains the required informa-

tion to generate the approximated impulse response on every 

brain region (or grayordinate) i = 1, . . . , p due to an impulse 

(i.e. task condition event occurrence) at any input channel 

j = 1 . . . , m. Subsequently, we denote the impulse response 

(IR) for an individual h due to an impulse at the jth input 

channel at time index k  =  0 by y(h)(k)
∣

∣

δ( j)
. The IR corresponds 

to the system’s output computed according to (16) for an 

input defined as δ( j) : [u(0)]j = 1 and [u(k)]j = 0 for k > 0, 

applied at the jth input channel, with x(0) = 0. With the above 

definitions, in figure 6, we investigate the IR associated with 

two specific sets of regions of the cortex, occipital and 

paracentral.

First, we examine the occipital pole regions, which are 

areas associated with the visual cortex, whose HRF is commonly 

studied [6]. In figure 6(a), the across-subjects average impulse 

response function, i.e. ȳ(k)
∣

∣

δ( j)
:= 1

q

∑q

t=1
y(h)(k)

∣

∣

δ( j)
, is pre-

sented for all j = 1, . . . , 6 input channels (corresponding to 

the six different task conditions). If compared in terms of 

their overall form (time-to-peak and total duration), it can be 

said that the HRF’s obtained are in good agreement with the 

HRF’s typically reported for that cortical area [6].

Next, we examine the IR for an area associated with motor 

control [43, 44], the paracentral lobule and sulcus in the 

Destrieux atlas [39]. In line with the previous experiment, 

we computed and presented in figure 6(b) the across-subjects 

average IR for that region, for all of the six task conditions. 

One notable aspect is the crossed association between a high 

amplitude of the response in the left-hemisphere region (‘L-G-

and-S-paracentral’) for the rf (squeeze right toe) task condi-

tion. The corresponding crossed association in the symmetric 

right-hemisphere region (‘R-G-and-S-paracentral’ versus lf, 

squeeze left toe) is also present, possibly indicating some 

form of lateralization effect associated with motor function 

[45, 46]. Overall, we note that both the shape and time scales 

of the IR’s obtained are also compatible with HRF’s reported 

in the literature (see [27]).

4.3. Pairwise input–output H2 norm reveals region activation

The state-space formulation allows the representation of the 

multi-input multi-output transfer function of the system, 

which can be analyzed in terms of the typical and maximum 

rates of signal energy transfer between inputs and outputs, 

i.e. between task-related inputs and ensuing BOLD signal 

response. Formally, the transfer function H(z) associated with 

the state-space parameters (A, B, C) is given by

H(z) = C(zI − A)−1
B,

where H(z) is a p × m matrix whose entries are scalar 

transfer functions, i.e. rational polynomials, of the com-

plex variable z. Given the transfer functions, one can asso-

ciate an H2 norm ∥[H(z)]i,j∥2 to each input–output pair 

(i, j) ∈ {1, . . . , p}× {1, . . . , m}, which can be computed, for 

stable systems and under a stationarity assumption, as

∥[H(z)]i,j∥
2
2 =

∞
∑

k=0

[

y(k)
∣

∣

δ( j)

]

i

[

y(k)
∣

∣

δ( j)

]

∗

i

where the symbol ∗ denotes complex conjugation. Such 

expression accounts for the sum of the squared abso-

lute values of the ith output response [y(k)
∣

∣

δ( j)
]i due to an 

impulse applied at the jth input channel. Intuitively, this H2 

norm accounts for the total output energy observed at output 

region i as a result of a unit energy impulse input at channel 

j. In terms of the input–output brain models, this corresponds 
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Figure 4. Covariance matrices F(h)
∈ S

p, where each entry [F(h)]i,j 

is given by the correlation coefficient [F(h)]i,j := ⟨[y(h)]i, [y
(h)]j⟩ 

between the output signal at every pair of regions (i, j) ∈ {1, . . . , p}2. 

We display, in (a), F(h) obtained from the original inputs y(k); in (b), 
F̂
(h) obtained from the approximated outputs ŷ(k); and in (c), the 

absolute entry-wise error from |F(h)
− F̂

(h)|. In (d), we present the 

full distribution of output correlations γ
(h)
i

 over regions i = 1, . . . , p, 

for the same subject.
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to the BOLD signal energy observed at brain region i as a 

result of the occurrence of a task condition event at input 

channel j. Alternatively, starting from the system parameters 

(A, B, C), the H2 norm associated with the (i, j) output-input 

pair ∥[H(z)]i,j∥2 can be calculated analytically, for stable sys-

tems, as follows. Denoting by Bj := [B]:,j (the jth column of 

the input matrix B), we first compute a solution Wj ∈ S
n
+ to 

the discrete-time Lyapunov equation [31, section 12.3]:

AWjA
T
− Wj + BjB

T

j = 0. (19)

Given Wj as the solution to (19), and denoting Ci := [C]i,: (the 

ith row of the output matrix C), we thus have

∥[H(z)]i,j∥
2
2 = CiWjC

T

i .

In figure 7, we display a surface plot projecting the pair-

wise input–output H2 norm values for the dense time series 

for all grayordinates i = 1, . . . , p (p = 64 984), considering 

the input j corresponding to the rh condition (i.e. ‘tap right 

finger’). We note that the regions in the neighborhood of the 

primary motor cortex present a predominantly high H2 norm 

value, suggesting a higher engagement of these regions with 

the rh cognitive input as a task condition [47].

4.4. Multi-subject model identifies common dynamic  

characteristics across subjects

To evaluate the quality of the approximated output for the 

multi-subject model identification presented in section  2.5, 

Figure 5. Original and reconstructed output times series for the motor task with the dense parcellation, for filters all-pass ((a) and (b)), 

and band-pass ((c) and (d)). Values are presented for the subject h whose across-regions average correlation coefficient (i.e. 1

p

∑ p

i=1
γ
(h)
i ) 

was in the median of the across-subjects distribution. In (a) and (c), we display values for the reconstructed outputs {[y(k)]i}
L−1

k=0
 for regions 

i ∈ Ihigh ⊂ {1, . . . , p} with p = 64 984, where the subset Ihigh consists of the three regions for which the correlation γ
(h)
i

 was highest. In 

(b) and (d), values correspond to the reconstructed outputs {[y(k)]i}
L−1

k=0
 for regions i ∈ Imed ⊂ {1, . . . , p}, where the subset Imed consists 

of the three regions for which the correlation γ
(h)
i

 was adjacent to the median. The vertical dotted lines across each plot mark the time-of-
occurrence of each task condition, with the task condition number being indicated in the small box on top.
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we consider multiple subject splits, i.e. random partitions 

of the set of subjects. More formally, we partition the set of 

subjects S = {1, . . . , q} into training and testing subsets, as 

follows. We define ℓ = 1, . . . , ℓMAX training subject splits 

Ŝ(ℓ)
⊂ S, where each subject split Ŝ(ℓ) is obtained by uni-

formly sampling a subset of q̂ < q subjects from the total 

set of individuals S = {1, . . . , q}, without replacement. For 

each training subject split, we define a corresponding training 

data split D̂(ℓ) = {y(ℓ)(k), u(ℓ)(k)}
ℓ∈Ŝ(ℓ) containing all time 

samples k = 1, . . . , L − 1 of the inputs and outputs, for each 

subject in that training subject split. Similarly, we define the 

ℓ = 1 . . . , ℓMAX testing subject splits S̃(ℓ)
= S \ Ŝ(ℓ), as well 

as their associated data-splits D̃(ℓ) containing q̃ = q − q̂ testing 

subjects per split, with corresponding input and output samples.

For each training subject split Ŝ(ℓ), we find one common 

model {Â
(ℓ)
T

, B̂
(ℓ)
T

, Ĉ
(ℓ)
T

} by applying the procedure described 

in section 2.5 to the training data split D̂(ℓ). Then, for each 

subject h ∈ Ŝ(ℓ), we produce the estimated training outputs 

ŷ
(h)
ℓ

≡ {ŷ(h)(k)}L−1

k=0
, using the inputs u(h)

∈ D̂
(ℓ) and the ini-

tial state x̂
(h)
T

(0). We then compare ŷ
(h)
ℓ

 with the original out-

puts y
(h)
ℓ

≡ {y(h)(k)}L−1

k=0
 to compute the per subject, per-region 

training approximation correlation γ̂
(h)
i (ℓ) := ⟨[y

(h)
ℓ

]i, [ŷ
(h)
ℓ

]i⟩ 

in that split. Likewise, we use the same common model 

(Â
(ℓ)
T

, B̂
(ℓ)
T

, Ĉ
(ℓ)
T

) to compute the estimated testing outputs 

ỹ
(h)
ℓ

≡ {ỹ(h)(k)}L−1

k=0
 for h ∈ S̃(ℓ), and compare with the orig-

inal outputs y
(h)
ℓ

, to compute the testing approximation cor-

relation γ̃
(h)
i (ℓ) := ⟨[y

(h)
ℓ

]i, [ỹ
(h)
ℓ

]i⟩ in that split.

Figure 6. In (a), the across-subjects average impulse response function, i.e. 1
q

∑q

h=1
y(h)(k)

∣

∣

δ( j)
, is presented for all six input channels (in 

each column), corresponding to the six different task conditions {cue, lf, lh, rf, rh, t}, for the all-pass filter. The regions considered 

(index i, as different rows) are those achieving the highest average correlation 1
q

∑q

h=1
γ
(h)
i  across subjects h = 1, . . . , q. In (b), we display 

the corresponding average impulse response functions for the left and right paracentral lobule and sulcus regions. One notable aspect is the 
crossed association between a high intensity response in the left-hemisphere region (‘L-G-and-S-paracentral’) for the ‘squeeze right toe’ 
task condition (rf). The corresponding crossed association in the symmetric right-hemisphere region (‘R-G-and-S-paracentral’ versus lf), 
is also present.
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The results obtained by applying these definitions are 

illustrated in figure  8. We consider the state dimension 

parameter n  =  35, and a number of total splits ℓMAX = 3, 

defined over a base set of q  =  100 total subjects and having 

q̂ = 30 and q̃ = 70 training and testing subjects, respec-

tively. More specifically, we summarize the distribution 

of per-region training correlation values across all splits 
⋃

ℓ
γ̂
(h)
i

(ℓ), for the regions whose across-subjects average 

correlation 1

ℓMAXq̂

∑ℓMAX

ℓ=1

∑
h∈Ŝ(ℓ) γ̂

(h)
i (ℓ) was highest. We can 

argue that the multi-subject models capture common dynamic 

characteristics across individuals, since the in-sample and 

out-of-sample correlations achieved comparable values. 

Furthermore, the regions with the highest correlations were 

the ones associated with the occipital areas (implicated in 

visual processing), as was the case for the previous experi-

ments. Finally, to compare its approximating capacity with the 

single-subject model, we can derive the multi-subject degrees 

of freedom ratio

ηmulti :=
n(n + m + p)

q̂L( p + m)
,

for which, with n  =  35, we have ηmulti ≈ 0.003, a significantly 

lower value.

4.5. Probabilistic inversion of the identified stochastic models 

enables input estimation

If the stochastic component of the identified models is con-

sidered (see description in supplementary methods), we may 

perform a probabilistic inversion of the input–output relation-

ship that they capture. In particular, we may derive inverted 

models that are able to express the probability of occurrence 

of specific input values given output observations. Taking 

inspiration in [48] and seeking greater clarity of exposition, 

we derive a first-principles joint state-input estimation form-

ulation based on maximum likelihood estimation criteria 

[49]. For that purpose, we resort to the full stochastic sub-

space identification algorithm (an extension to the algorithm 

presented in section  2.3), whereby estimates for the cova-

riance matrices Q, R, and S (and initial state mean m0 and 

covariance Q0) are produced (see also algorithm 4.3 in [21] 

or section 9.6 in [20]). Given estimates for the full param-

etrization Θ = (A, B, C, Q, R, S, m0, Q0), the system model in 

(1) provides us with the elements to express the joint den-

sity p(y, x|u,Θ) of the states x := {x(k)}L−1

k=0
 and outputs 

Figure 7. We display a projection of the input–output H2 system 
norm |[H(z)]i,j∥2 onto the cortical surface for the dense parcellation 
and all-pass filter. The jth input corresponds to the rh task 
condition, i.e. ‘tap right finger’, where each output i corresponds to 
a surface grayordinate, i.e. i = 1, . . . , p, with p = 64 984.

Figure 8. In (a), we present the across-subjects distribution of 

training correlations ∪hγ̂
(h)
i

 for the multi-subject model, obtained 

for ℓMAX = 3 data splits. The distribution of the correlation is 
presented for the ten regions whose across-subjects average 
correlation was highest. In (b), the corresponding testing 

correlations ∪hγ̃
(h)
i

 are presented.
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y := {y(k)}L−1

k=0
 as a function of the inputs u := {u(k)}L−1

k=0
. 

Therefore, to perform the intended probabilistic inversion, we 

apply Bayes’ theorem to express

p(u, x|y,Θ) =
p(y, x|u,Θ)p(u,Θ)

p(y,Θ)
, (20)

and, as an estimation criterion, look for estimates x̂ and ̂u such 

that

{û, x̂} := argmax
u,x

p(u, x|y,Θ).

We now proceed to find an explicit form for the likelihood 

function p(y, x|u,Θ) required on the r.h.s of (20). For com-

pactness, we denote xk ≡ x(k), yk ≡ y(k), uk ≡ u(k), and the 

system and noise matrices as

Υ :=

[

A B

C 0

]

and Ψ :=

[

Q S

ST R

]

,

with Υ ∈ R
(n+p)×(n+m) and Ψ ∈ S

n+p

++ . Further, we 

assume a prior distribution over the first observation, i.e. 

x0 ∼ N (m0, Q0). Importantly, we note that the set of equa-

tion (1) establish a Markovian property that allows us to write

p(y, x|u,Θ)= p(x0|m0, Q0)
L−1
∏

k=0

p

([

xk+1

yk

]
∣

∣

∣

∣

[

xk

uk

]

,Υ,Ψ

)

,

given its sequential dependence structure. By the process and 

noise models assumed in (1) and (2), this relationship is equiv-

alently described, for each sample k, by a normal distribution
[

xk+1

yk

]

∼ N

([

A B

C 0

] [

xk

uk

]

,

[

Q S

ST R

])

= N

(

Υ

[

xk

uk

]

,Ψ

)

having a log-likelihood given by

log p

([

xk+1

yk

]∣

∣

∣

∣

[

xk

uk

]

,Υ,Ψ

)

= −

n + p

2
log 2π

−

1

2
log detΨ−

1

2

∥

∥

∥

∥

[

xk+1

yk

]

−Υ

[

xk

uk

]
∥

∥

∥

∥

2

Ψ−1

.

By expressing the log-likelihood of the initial state and com-

bining the sum of the log-likelihood over the successive time 

samples, we have that the complete log-likelihood can be 

written as

log p(u, x|y,Θ) ∝ −
1

2
log detQ0 −

1

2
∥x0 − m0∥

2

Q
−1

0

−
1

2

N
∑

k=1

log detΨ−
1

2

L−1
∑

k=0

∥

∥

∥

∥

[

xk+1

yk

]

−Υ

[

xk

uk

]∥

∥

∥

∥

2

Ψ−1

=: L(u, x|y,Θ).

 

(21)

For simplicity, we assume a flat prior probability for u and dis-

card the probability term on the denominator of (20) (since it 

is independent of u and x). The problem of finding maximum 

likelihood estimates for the inputs û = {ûk}
N

k=1
 and state 

x̂ = {x̂k}
N

k=1
 can thus be expressed as

{û, x̂} := argmax
u,x

L(u, x|y,Θ),

which, by (21), is a convex quadratic optimization problem 

in u and x.

In figure 9, we present the estimation results for ̂u, obtained 

when the above estimation criterion is applied. We consider a 

model identified on data from a subject h whose average esti-

mated output correlation ⟨ŷ(h)
, y(h)⟩ was in the median of the 

distribution over h = 1, . . . , q, for the population of q  =  100 

subjects. It can be seen that, although the input estimate 

presents a significant noise component, by applying a fixed 

threshold to the magnitude of the signal, the binary content of 

the original signal can be recovered with reasonable accuracy.

5. Conclusion

We have proposed the use of dynamical input–output models 

for discrete linear state-space systems as a framework to ana-

lyze task-fMRI times series. Such input–output relationships 

are based on a specific encoding of task-related inputs that uses 

information about the time-of-occurrence of task conditions. 

Figure 9. Joint input and state estimation through probabilistic 
inversion. In (a), we present the original outputs y(k); in (b), the 
original inputs u(k); and in (c), the recovered input estimates û. In 
(d), we display the thresholded input estimates, obtained by setting 
[ûβ(k)]j = 1 if [û(k)]j ! β  and [ûβ(k)]j = 0 otherwise.
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In addition, we provided means to numerically characterize 

this relationship by a set of matrix parameters, whose esti-

mation algorithm relies on subspace identification methods. 

We used a comprehensive dataset comprising time series from 

multiple subjects, whose spatial configuration followed both 

a regional parcellation and a spatially dense representation. 

In the latter configuration, the estimation of the parameters 

becomes a large-scale optimization problem, for which we 

proposed a numerically efficient algorithm.

One of the advantages of the state representation of a 

dynamical system model is that it enables rich analyses of the 

system’s behavior. One example is the generation of impulse 

responses, which can be associated with the hemodynamic 

response functions and are readily computable from the system 

representation. Another example is the calculation of input–

output system norms, which provide a principled manner to 

quantify the dynamic effect of task-related inputs on the inten-

sity of the BOLD response at different regions of the cortex.

Given the dynamic nature of these models, we expect that 

our approach might have an impact in the emerging field of 

neurofeedback. In the scenario where clinical stimulation of 

the subject’s brain is studied (e.g. transcranial magnetic stim-

ulation), our method might be used to measure and compare 

the effects of potentially induced modifications in the BOLD 

dynamics. We also envision an application where our method 

is applied in real time, where both the system dynamics and 

the underlying state are measured and used to guide interven-

tions and assess treatment efficacy.
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