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Optimal Resource Allocation for Competitive

Spreading Processes on Bilayer Networks
Nicholas J. Watkins , Cameron Nowzari , Victor M. Preciado , and George J. Pappas

Abstract—We consider a competitive epidemic process in a bi-
layer network, and develop a framework to find an optimal al-
location of control resources to eliminate one of the epidemics.
We consider the SI1SI2S model, a recent generalization of the
popular SIS model to the case of two competitive epidemics. We
start our analysis by extending the standard SI1SI2S formu-
lation with homogeneous parameters to a heterogeneous setting
with edge-dependent infection rates, and node-dependent recov-
ery rates. We then find necessary and sufficient conditions under
which the mean-field approximation of a chosen epidemic process
stabilizes to extinction exponentially quickly. Leveraging this re-
sult, we develop a framework for the solution of two optimization
problems. In the first, we find an optimal allocation of control re-
sources in order to eradicate the chosen epidemic at a minimum
cost. In the second, we are given a fixed budget and propose a
method which provably attains the extinction condition when suf-
ficient capital is available, and otherwise mitigates the spread of the
unwanted epidemic as much as possible. We explore the efficacy of
our methods through extensive simulation.

Index Terms—Behavioral science, optimization, stochastic sys-
tems.

I. INTRODUCTION

M
ODELING, analysis, and control of spreading processes

in complex networks has recently garnered significant

attention from the research community. The potential applica-

tions for such methods are diverse: the spread of biological

epidemics, social behaviors, and cybersecurity threats can all be

formalized within this framework. Prior efforts have focused pri-

marily on the case of single-layer spreading networks; however,

such an abstraction is limited in modeling capacity. In principle,

spreading over networks can take place through markedly differ-

ent channels, which motivates the study of multilayer models.

This paper studies a multilayer, heterogeneous compartmen-

tal epidemic model, in which the spread of competing epidemics,

such as beliefs and behaviors, can be modeled. We direct our
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attention to the problem of controlling a spreading process in

order to quickly eliminate a chosen epidemic in a competitive

environment. This is a natural concept in modeling several so-

cially relevant problems. For example, we may use this model

to study the effects of political strategies on the opinions of

the populace, predict the ramifications of gossip in professional

networks, and understand the influence of marketing strategies

on consumer behavior.

Literature Review: Many well-known models of spreading

processes in networks are developed for the case of a single

contagion spreading over a single network layer; we refer the

reader to [1]–[3] for an overview. Recent efforts have been

made in extending this body of work to account for the possi-

bility of competitive and/or coexistent processes on single-layer

networks. Particular examples include investigations into the

effects of multiple pathogens in a single-layer “Susceptible-

Infected-Removed” (SIR) model [4]–[6], a study of an ex-

tension to the SIR model (SICR) for assessing the effects

of competition and cooperation between pathogens spreading

on a single network [7], and the development of a model for

the spread of competing ideas using the “Susceptible-Infected-

Susceptible” (SIS) model on scale-free networks [8].

A more recent trend is the investigation into systems with

multiple pathogens and multiple spreading layers, in which each

contagion spreads over a specified layer. An overview of this

research area can be found in [9]. Particular examples of interest

include an investigation into the effects of pathogen interaction

on overlay networks with SIR dynamics [10], the development

of a model in which disease awareness and infection spread on

separate layers of SIS dynamics [11], [12], the development

of a model (SI1SI2S) that generalizes the classic SIS model

to a competitive multilayer framework [13], and work to find

conditions under which processes in the SI1SI2S model can

coexist [14].

We concern ourselves with the design of an optimization

framework for allocating resources to achieve an optimal cost

network design. Similar problems have been studied for control-

ling the single layer SIS model in [15], and a noncompetitive

multilayer model in [16]. The work we present here is the first

to consider an allocation problem which leverages interprocess

competition, which we incorporate by studying a variant of the

SI1SI2S process.

Statement of Contributions: We develop a computational

framework for determining resource allocations which real-

ize an optimal-cost network which controls the SI1SI2S pro-

cess presented in [13] and [14] to a desired equilibrium. More
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specifically, we begin by introducing a heterogeneous version

of the model with edge-dependent spreading rates and node-

dependent recovery rates in order to enable us to capture the

effects of asymmetric influence among agents. We leverage this

added flexibility to design networks which exploit interprocess

competition in eliminating a chosen epidemic. This equilibrium

concept is useful in modeling various situations in which com-

petitive epidemics may occur, such as a marketing firm wanting

to influence their customer base in order to eliminate competi-

tors. Our technical contributions evolve from addressing this

task, and address several control-theoretic facets of the mean-

field SI1SI2S model left previously unexplored.

Organization: The remainder is organized as follows. In Sec-

tion III, we determine necessary and sufficient conditions for

exponentially stabilizing the desired equilibrium of the mean-

field model. In Section IV, we formulate an optimal resource

allocation problem in which costs can be paid to change the

parameters of the model. We then develop two tractable opti-

mization methods. Our first computes a minimal-cost resource

allocation which attains the desired equilibrium. Our second

addresses the situation in which a budget is specified, and we

aim to mitigate the prevalence of the unwanted epidemic pro-

cess when the available budget is not sufficient for realizing the

desired equilibrium. In Section V, we explore the efficacy of

the mean-field control policies developed against the stochastic

process behavior through extensive Monte Carlo simulations.

With respect to the preliminary work presented in [17], this

paper extends the results pertaining to the effects of competi-

tion, provides proofs of our main results, and adds significant

simulations comparing the mean-field model to the stochastic

SI1SI2S process.

A. NOTATION AND BACKGROUND

Let R, R≥0 , and R>0 denote the set of real, non-negative

real numbers, and positive real numbers, respectively. We use

the notation �x ∈ R
n to denote an n-dimensional column vector,

and �xT to denote its transpose, both with components xi ∈ R.

Fix a probability space (Ω,F , P ), and let X : Ω �→ R be a

random variable; we denote its expectation by E[X]. We use

|S| to denote the cardinality of a finite set.

We say a matrix A is irreducible if no similarity transfor-

mation exists which places A into block upper-triangular form.

We denote by diag(�a) a matrix with entries diag(�a)ii = ai for

all i and 0 elsewhere. We use the notation λmax(A) to de-

note the maximum taken over the real parts of the eigenvalues

of a matrix A, i.e., λmax(A) = maxi{�(λi(A))}. We call a

matrix A such that λmax(A) < 0 Hurwitz, or stable. We will

make repeated use of the Perron-Frobenius Lemma, stated as

follows:

Proposition 1 (Perron-Frobenious [18]): Let A be a non-

negative, irreducible matrix. Then, there exists a vector �u such

that ui > 0 for all i, and Au = λ
∗u, where λ

∗ > 0 is the eigen-

value of A with the maximum absolute value, that is, the leading

eigenvalue.

Graph Theory: A directed graph (digraph) is given by a

triplet G = (V,E,A) in which V is the set of vertices, E ⊆
V × V the ordered set of edges, and A ∈ {0, 1}|V |×|V | the ad-

jacency matrix, that is, aij = 1 if and only if there exists an

edge (i, j) ∈ E connecting node i to node j. We define the

set of in-neighbors of node i given the adjacency matrix A as

NA in
i = {j ∈ V | aj i = 1}.

A path p is given by an ordered set of vertices p =
(v1 , v2 , . . . , vm ) such that (vk , vk+1) is an edge in E for all

k ∈ {1, 2, . . . ,m − 1}. We say that some path p connects node

vi and vj if the path starts at node vi and ends at node vj . We say

a digraph is strongly connected if there exists a path connecting

node vi to node vj for all vi , vj ∈ V . The adjacency matrix of a

strongly connected digraph is irreducible.

A bilayer graph is a collection of two graphs G = (GA , GB )
which satisfy the following property: the vertex set V and edge

set E of G are such that V = V A ∪ V B , and E = EA ∪ EB ,

where V A and V B are the vertex sets of GA and GB , respec-

tively, and EA and EB are the edge sets of GA and GB , re-

spectively. Note that the components GA and GB of G define

separate layers, and so allow for the specification of spread-

ing topologies for different phenomenon in a precise, compact

notation.

Geometric Programming: A function f : R
n
>0 → R is

called a monomial if it can be written in the form f(�x) =
c xr1

1 xr2
2 . . . xrn

n , where c > 0 is used to denote a leading con-

stant, the ri terms represent constant powers to which the argu-

ments are raised, and the xi terms represent f ’s arguments. A

function is said to be a posynomial if it can be written as a sum

of monomials. Geometric programs form a class of quasiconvex

optimization problems which have posynomial objective func-

tions, posynomial inequality constraints, and monomial equality

constraints.

Geometric programs can be transformed into convex opti-

mization problems by performing a logarithmic change of vari-

ables and a logarithmic transformation of the objective and con-

straint functions. For further details on geometric programs and

their solution, we refer the reader to [19] and [20].

To ease the formal statement of some of our results, we will

introduce the notion of a posynomial transformation:

Lemma 1 (Posynomial Transformations): Any function

f(x) of the form f(x) =
∑

k ck (x̂ − x)pk with domain (0, x̂)
with x̂ > 0, ck > 0, and pk ∈ R can be written as a posynomial

function of a new variable z = x̂ − x defined on the domain

(0, x̂).
Proof: Consider the variable substitution z = x̂ − x. Then,

we may write the posynomial transformation f̂(x̂ − x) =
∑

k ck (z)pk , where we see that a value z = 0 �→ x = x̂ and

z = x̂ �→ x = 0. Since the transformation is continuous, the do-

main of f̂ is (0, x̂), as specified by the hypothesis. �

We will denote the class of functions with domain (0, d)
which admit a posynomial transformation in the sense of Lemma

1 by P(0, d). This class of functions will appear repeatedly in

the remaining sections.

II. MODEL AND PROBLEM STATEMENT

We begin our technical discussion by extending the SI1SI2S

model proposed in [13] and analyzed further in [14]. Our

primary contribution in extending this model is to allow the

processes to be influenced by heterogeneous parameters, and
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Fig. 1. A diagram of the SI1SI2 S process, with the spreading graph for A
given by red edges, and the spreading graph for B given by blue edges. The
transition process for node 3 is explicitly illustrated, where we note that node
3 is a member of both spreading graphs, and so may have transitions to IA

and IB .

allowing for the graph layers to be strongly connected digraphs

with arbitrary node sets. This extends the work in [14], which as-

sumes homogeneous spreading parameters and undirected lay-

ers with identical node sets. The extension allows the possibility

of modeling asymmetric influence and nodal immunity, and is

required to formulate the resource allocation problem.

We consider the spread of epidemics A and B over a bi-

layer graph G = (GA , GB ), where A spreads over GA =
(V A , EA , A), B spreads over GB = (V B , EB , B), and |V | =
n. At any time t, we assume that each node can belong to one

of three compartments: IA if the node is infected by epidemic

A, IB if the node is infected by epidemic B, and S if the node

is infected by neither. We let XA
i , XB

i , and XS
i denote indicator

functions corresponding to the compartments IA, IB, and S,

respectively. We define XA
i (t) = 1 if node i is in compartment

IA at time t and XA
i (t) = 0 otherwise. We define XB

i and XS
i

similarly.

We model the spread of A and B as a Markovian contact

process in which a node i in compartment S transitions to

IA whenever it is a contacted by a node j in compartment

IA, with similar considerations holding for transitions from S

to IB. We assume all of the contact processes are stochasti-

cally independent, and occur at rates βA
j i for the transitions

from S to IA and βB
j i for the transitions from S to IB, which

we refer to as spreading rates. From this description, it then

follows that the process which transitions node i from com-

partment S to compartment IA is a Poisson process with rate

Y A
i (t) =

∑

j∈NA in
i

βA
j iX

A
j (t), and the process which transitions

node i from compartment S to compartment IB is a Poisson

process with rate Y B
i (t) =

∑

j∈NB in
i

βB
j iX

B
j (t). The processes

which transition a node i from IA to S and from IB to S are

Poisson processes with rates δAi and δBi , which we refer to as

healing rates. A compartmental diagram of the process model

is illustrated in Fig. 1.

For a general instance of the SI1SI2S process, studying the

exact dynamics would require the enumeration of a Markov pro-

cess with O(3n ) states, arising from the need to explicitly ac-

count for all permissible combinations of compartmental mem-

berships allowed by the instance of the problem. There are at

least two methods of dealing with this complexity: 1) restricting

considerations to simple graph topologies and 2) approximating

the dynamics by a lower-dimensional system. Since our goal is

to design resource allocations on graphs with arbitrary graph

structures, we consider here a mean-field approximation of the

process, which reduces the dimension of the system’s state space

to O(2n).
To clearly demonstrate how we arrive at the mean-field

dynamics and give insight as to what effects the enacted

approximations make, we first consider the exact equations of

the expectation of the process dynamics

dE[XA
i ]

dt
= E

⎡

⎣(1 − XA
i − XB

i )
∑

j∈NA in
i

βA
j iX

A
j − δAi XA

i

⎤

⎦ ,

dE[XB
i ]

dt
= E

⎡

⎣(1 − XA
i − XB

i )
∑

j∈NB in
i

βB
j iX

B
j − δBi XB

i

⎤

⎦ ,

(1)

where we have used the substitution XS
i = (1 − XA

i − XB
i ) in

order to reduce dimension. Note that the equations described

by the system (1) are not closed: they contain terms of the

form E[XA
i XA

j ] and E[XB
i XA

j ], which cannot be represented

in terms of the dynamics of E[XA
i ] and E[XB

i ] without in-

curring error. However, without a closed set of equations, we

cannot perform analysis, and so we make the approximations

E[XA
i XA

j ] ≈ ΦA
i ΦA

j and E[XB
i XA

j ] ≈ ΦB
i ΦA

j , where we have

introduced the symbols ΦA
i and ΦB

i to denote the mean-field

states approximating the probability that node i is in IA, and the

probability that node i is in IB, respectively.

Using this substitution, we arrive at a mean-field approxima-

tion of SI1SI2S in the style of [21]:

Φ̇A
i = (1 − ΦA

i − ΦB
i )

∑

j∈NA in
i

βA
j iΦ

A
j − δAi ΦA

i , (2)

Φ̇B
i = (1 − ΦA

i − ΦB
i )

∑

j∈NB in
i

βB
j iΦ

B
j − δBi ΦB

i , (3)

where we note that the summation for the evolution of epiedmic

A is indexed over the set of neighbors in GA , and the evolution

of epidemic B is indexed over the set of neighbors in GB in

order to reflect the fact that A spreads through layer GA , and B
spreads through layer GB .

We will more thoroughly examine the interrelation of the

mean-field model and the stochastic process in Section V. How-

ever, the majority of our work will be guided by seeking answers

to the following questions with respect to the mean-field model:

a) Extinction: what conditions are sufficient to extinct a cho-

sen process quickly?

b) Optimal extinction: can we compute an optimal allocation

of resources to attain a desired extinction quickly?

c) Fixed budget mitigation: given a fixed budget, can we limit

the prevalence of a desired process effectively?

Answers to these questions are of interest to the community

of researchers currently engaged in the study of competitive

epidemic spreading processes. As a particular example, we may

consider a situation in which a firm would like to quell smear

campaigns occurring on its network of customers in the most

expedient and cost-effective manner possible. We may repre-

sent this within the framework of our model as a problem of

finding conditions under which an unwanted process is driven

out of existence as quickly and efficiently as possible. Our work
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shows that computing an optimal cost network to realize this

goal is feasible in the mean-field regime, and provides a step

forward from the earlier works considering single-layer spread-

ing processes.

III. EXTINCTION CONDITIONS

This section addresses the first of our stated problems, that is,

finding conditions under which an unwanted epidemic extincts,

or more concretely:

Problem 1 (Extinction): For a specified SI1SI2S spreading

process on a bilayer graph G = (GA , GB ), determine condi-

tions for the parameters of the subgraph GA under which a

chosen behavior A extincts quickly.

In particular, we are concerned with stabilizing a mean-field

equilibrium Φ̄ = [(Φ̄A)T , (Φ̄B)T ]T where Φ̄A
i and Φ̄B

i are the

steady states of ΦA
i and ΦB

i , Φ̄A
i = 0 for all i, and the values of

Φ̄B
i are given by the solutions of the system

Φ̄B
i

(1 − Φ̄B
i )

=
1

δBi

∑

j∈NB in
i

βB
j iΦ̄

B
j . (4)

Note that the solution of (4) may be computed numerically

by methods similar to those used in [22] for the SIS steady-

state equations, and is unique due to the uniqueness of the SIS

endemic equilibrium [23]. With the ability to claim knowledge

of the values {Φ̄B
i |Φ̄A

i =0}i∈V , we may now construct a result to

Problem 1. In fact, we find necessary and sufficient conditions

for the desired equilibrium to be exponentially stable:

Theorem 1 (Mean-Field Exponential Stability): For any SI1

SI2S spreading process on a strongly connected bilayer graph G

with mean field dynamics given by (2) and (3), the equilibrium

Φ̄ = [(Φ̄A)T , (Φ̄B)T ]T with Φ̄A
i = 0 for all i and Φ̄B given by

the solutions of (4) is (locally) exponentially stable if and only

if

J11 = diag
(

1 − Φ̄B
)

(βA)T − diag
(

�δA
)

, (5)

is Hurwitz, where �δA is the vector of A’s recovery rates, and βA

is the matrix of A’s spreading rates, which we assume to inherit

A’s sparsity pattern.

Proof: See Appendix A. �

Remark 1 (Homogeneous Threshold): Note that this is sim-

ilar to, but more general than, the stability results presented in

[14]. In particular, the condition in [14] requires that all in-

fection rates βA
ij and recovery rates δAi take on homogeneous

values β and δ such that β
δ

< 1
λm a x (diag(1−Φ̄B)A)

. By inspection,

our result permits parameter choices which are excluded by this

condition.

The form of the matrix we need to stabilize to guarantee

the extinction of epidemic A is similar to the matrix needed to

guarantee extinction when we ignore competition. In particular,

we note that a simple consequence of prior work on the SIS

process (see, for example, [15], [24]) is that a sufficient condition

for the exponentially fast elimination of the process spreadingA
is that λmax((β

A)T − diag(�δA)) < 0 holds. By accounting for

persistent competition among the epidemic processes, we might

expect that our condition allows for more aggressive parameter

selections. We will show that this is true in a rigorous sense

with our next result, which we will develop by first considering

a technical lemma, and then specializing to our setting.

Lemma 2 (Row Compression Inequality): Let M ∈ R
n×n
≥0 ,

�κ ∈ [0, 1]n , and �γ ∈ R
n . Then, the following inequality holds:

λmax (diag(�κ)M − diag(�γ)) ≤ λmax (M − diag(�γ)) . (6)

Proof: See Appendix B. �

An immediate consequence of Lemma 2 is that competition

in any particular node helps to prevent the persistence of an

unwanted behavior. We make this formal as follows:

Proposition 2 (Benefits of Competition): Take any set of val-

ues (βA, �δA) such that δAi > 0 for all i, and epidemicAmeets the

SIS extinction condition, i.e., λmax((β
A)T − diag(�δA)) < 0.

Then, for any realization of the SI1SI2S process, we must also

have exponential elimination of A. Moreover, if Φ̄B
i > 0 for

some i, then there exists some β̂A with β̂A
ij ≥ βA

ij for all i and j,

and β̂A
ij > βA

ij for some i and j such that the set of parameters

(β̂A, �δA) exponentially eliminates A.

Proof: Exponential elimination of A is a direct consequence

of Theorem 1 when we apply Lemma 2 with M = (βA)T , �κ =

(1 − Φ̄B) and �γ = �δA. To prove the existence of a pair (β̂A, �δA)

satisfying our claim, consider the matrix β̂A with entries β̂A
j i =

1
(1−Φ̄B

i )
βA

j i . Then

diag(1 − Φ̄B)(β̂A)T = (βA)T .

Since we only consider δAi > 0 for all i, we have that Φ̄B
i ∈ [0, 1)

for all i. Hence, β̂A
ij ≥ βA

ij for all i and j, where the inequality

is strict for the case where Φ̄B
i > 0. �

Remark 2 (Benefits of Competition): Proposition 2 admits

an explicit characterization of how much competition helps:

for all agents i ∈ V A , we can guarantee extinction even when

the spreading rates associated with the incoming edges of node

i are increased by a factor of up to 1
(1−Φ̄B

i )
compared to the SIS

case. While the quantitative utility of this observation depends

on the particular cost functions in a given problem instance,

this result qualitatively shows that the existence of a persistent

spreading process B that is competing with A is guaranteed to

make it easier to make process A extinct quickly.

IV. OPTIMAL RESOURCE ALLOCATION

Having established conditions for the exponential stability of

the desired equilibrium, we now focus our attention on estab-

lishing means for designing resource allocations which create

networks with desirable control properties. We first consider the

problem of designing a set of resource allocations in order to

eliminate a chosen process at optimal cost when we are given

functions which relate the chosen process parameter values to

resource expenditures.

In the context of a marketing problem, we may think of spend-

ing on resources such as product giveaways, consumer incentive

programs, advertisement campaigns, etc. designed to affect the

perception of a company within a given market. To model this

effect, we assume that for every designable parameter βA
ij and

δAi , we are given cost functions fij and gi which relate a desired

parameter value to a capital expenditure, the particular charac-
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teristics of which we assume to be application specific. With

this notion developed, we may state our problem more formally

as follows:

Problem 2 (Optimal Extinction): Consider an SI1SI2S

spreading process on a bilayer graph G = (GA , GB ). Given

sets of cost functions {fij}(i,j )∈E A , {gi}i∈V A , determine a min-

imum cost allocation of resources to enforce the extinction con-

ditions for the equilibrium of Problem 1.

From the discussion in Section III, we may formally cast

Problem 2 as the following optimization program:

minimize
{βA,�δA}

∑

(i,j )∈E A

fij

(

βA
ij

)

+
∑

i∈V A

gi

(

δAi
)

subject to λmax(J11(β
A, �δA)) < 0, (7)

where J11 is defined by (5). Note that (7) is nonconvex in gen-

eral; it is an eigenvalue problem. However, if we allow our-

selves to restrict considerations to a reasonable class of cost

functions, we may develop a computational method for arriv-

ing at a solution tractably. Our work follows a similar line of

development to that which was studied in [15] for single-layer,

susceptible-infected-susceptible contagions, in which a convex-

ification scheme was developed for an epidemic control resource

allocation problem.

In particular, we will consider a method for transforming (7)

into a convex problem when the cost functions are structured

to make aggressive processes (i.e., those with higher spreading

rates) cost more.

Theorem 2: Consider a realization of the dynamics (2)–(3)

with an equilibrium point of the form Φ̄ = [(Φ̄A)T , (Φ̄B)T ]T

with Φ̄A
i = 0 for all i, and Φ̄B given by the solutions of

(4). Define zi = (1 − Φ̄B
i ) for all i ∈ V B , and consider any

set of monotonically decreasing posynomial cost functions

{fij}{(i,j )∈E A }, any set of functions {gi ∈ P(0, δ̂Ai )}
|V A |
i = 1 , and

any ε ∈ (0,mini{δ̂
A
i }). Then, an optimal solution of (7) can be

computed by the solution of the following geometric program:

minimize
{βA,�t,λ,�u}

∑

(i,j )∈E A

fij

(

βA
ij

)

+
∑

i∈V A

ĝi (ti)

subject to

∑

j∈NA in
i

βA
j iziuj + tiui + εui

λui

≤ 1, ∀i ∈ V A ,

ti

δ
≤ 1, ∀i ∈ V A ,

(

δ − δ̂Ai

)

ti
≤ 1, ∀i ∈ V A ,

βA
ij , ui ≥ 0, ∀i, j ∈ V A ,

0 ≤ λ ≤ δ, (8)

where δ > maxi

{

δ̂Ai

}

, ĝi denotes the posynomial transforma-

tion of gi and we set δA�
i = δ − t�i , where t�i is given by the

optimal solution to (8).

Proof: Recall that the condition that we need to attain to

guarantee local exponential stability is that J11 is Hurwitz.

Noting that the only negative values of J11 are from the term

−diag(�δA), we can assert that the matrix J11 + δI + εI is a

non-negative matrix, since each δAi ≤ δ by definition. More-

over, since J11 is irreducible, J11 + δI + εI must be so as well.

Proposition 1 then gives the existence of λ > 0 and �u with

ui > 0 for all i such that the equation

(J11 + δI + εI)�u = λ�u

is satisfied. If we relax the equation and make the substitution

ti = δ − δAi for all i, we can see that the inequalities
∑

j∈NA in
i

βA
j iziuj + tiui + εui

λui

≤ 1 ∀i ∈ V A , (9)

compose eigenvalue equations when met with equality. It re-

mains to show that any optimal solution to the geometric pro-

gram is such that the constraints defined by (9) are met with

equality.

For purposes of identifying a contradiction, assume that there

exists an optimal solution in which βA�
ij is the computed optimal

value of βA
ij for some constraint i for which (9) was not met with

equality. Noting that βA
ij affects no other constraint, we may

increase βA�
ij to some other value β̃A

ij > βA�
ij such that (9) is met

with equality. In doing so, we improve the value of the objective

function, since fij was specified as monotonically decreasing.

It must then be that our assumed solution was not optimal, and

we have proven that (9) is met with equality at any optimal

solution. By noting that the constraint 0 ≤ λ ≤ δ holds, we see

that the leading eigenvalue of J11 is negative, and the extinction

condition required by Theorem 2 is realized. By applying our

use of the posynomial transformation, we may set δA�
i = δ − t�i .

Proving the existence of a feasible solution for any permissi-

ble choice of program data remains. We proceed by construc-

tion. Select βA = αA and �δA = γ�1. Then, we can write the

eigenvalue constraint as

λmax

(

diag
(

1 − Φ̄B
)

(αA)T − γI + δI + εI
)

< δ,

where if we choose γ = min
i

{

δ̂Ai

}

, we can reduce this to

λmax

(

diag
(

1 − Φ̄B
)

(A)T
)

<
(γ − ε)

α
.

Since we can choose any α > 0, our proof is complete. �

Remark 3 (Cost Function Restrictions): We have found a

convex formulation for Problem 2 for the specified class of

cost functions. However, the restriction is slight within the con-

text of the problem. Given that the parameter βA
ij is a rate of

spread, it is natural to associate it with a monotonically de-

creasing cost function; this captures the intuition that enforcing

a phenomenon to be less aggressive is costly when attempting

to extinct it. Since we may choose any gi ∈ P(0, δ̂Ai ), possible

choices for gi are many. To make the extent of this flexibility

concrete, we note that P(0, δ̂Ai ) includes the class of shifted

finite-order polynomials with positive coefficients.

We now shift our focus to a setting in which exponential

extinction may not be possible. In particular, we consider a

situation in which we are given a fixed operating budget C > 0,

and we are tasked with mitigating the spread of the unwanted
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behavior insofar as is possible. In the interest of making best use

of the resources available, we concern ourselves with solving

the following problem:

Problem 3 (Fixed Budget Mitigation): Consider an SI1

SI2S spreading process on a bilayer graph G = (GA , GB ).
Given sets of cost functions {fij}(i,j )∈E A , {gi}i∈V A , determine

an allocation of resources which conforms to a budget C > 0
such that the chosen behavior A extincts if possible, and

mitigates the extent of its spread otherwise.

Our approach to this problem may be formalized as choosing

the real component of the leading eigenvalue as the objective to

our program, and adjusting the feasible set accordingly. This re-

covers the exponential extinction condition of Theorem 1 when-

ever possible, and otherwise uses the eigenvalue as a proxy for

the aggregate spread of the unwanted epidemic. We formalize

this as follows.

Theorem 3: Consider a realization of the dynamics (2)–(3)

with an equilibrium point of the form Φ̄ = [(Φ̄A)T , (Φ̄B)T ]T

with Φ̄A
i = 0 for all i, and Φ̄B given by the solutions of (4). De-

fine zi = (1 − Φ̄B
i ) for all i ∈ V A , and consider any set of mono-

tonically decreasing posynomial cost functions {fij}{(i,j )∈E A },

and any set of functions {gi ∈ P(0, δ̂Ai )}
|V A |
i = 1 . Then, Problem 3

can be solved by the following geometric program:

minimize
{βA,�t,λ,�u}

λ

subject to

∑

j∈NA in
i

βA
j iziuj + tiui

λui

≤ 1, ∀i ∈ V A ,

∑

(i,j )∈E A fij

(

βA
ij

)

+ ĝi (ti)

C
≤ 1, ∀i ∈ V A ,

ti

δ
≤ 1, ∀i ∈ V A ,

(

δ − δ̂Ai

)

ti
≤ 1, ∀i ∈ V A ,

βA
ij , ui ≥ 0, ∀ i, j ∈ V A (10)

where δ > maxi{δ̂
A
i } and ĝi denotes the posynomial transfor-

mation of gi , and we set δA�
i = δ − t�i , where t�i is given by the

optimal solution to (10).

Proof: We will show that the stated geometric program is an

equivalent problem to minimizing the eigenvalue of J11 . This

will ensure that when the specified cost is above the optimal

cost threshold, we recover the desired extinction condition; we

otherwise minimize the eigenvalue as a heuristic. Noting that

J11 is irreducible by construction and that δ is an upper bound

for all terms δAi , it must be that J11 + δI is non-negative and

irreducible. Hence, Proposition 1 applies and we must have

the existence of some �u such that ui > 0 for all i such that

(J11 + δI)�u = λ�u.

As in the proof for Theorem 2, we can relax the eigenvalue

equations with the substitution ti = δ − δAi to obtain the in-

equalities

∑

j∈NA in
i

βA
j iziuj + tiui

λui

≤ 1, ∀i ∈ V A . (11)

To show how we may attain equality of (11) at an optimal

solution of (10), we may make a similar argument as to the proof

of Theorem 2. However, in this case, we will show that there

always exists an optimal solution which meets the constraint

with equality, and construct it.

Suppose that there exists some optimal solution

{

{

βA�
ij

}

(i,j )∈E A ,
{

δA�
i , u�

i , t
�
i

}|V A |

i = 1
, λ�

}

,

at which (11) is not met with equality for some i. Since the

fij functions are monotonically decreasing, we may increase

the value of βA
ij for some edge (i, j) until equality is attained

without violating the budget constraint. Since this increase nei-

ther changes the value of λ nor makes the solution infeasible,

it must be that the new solution is again optimal. Hence, given

any optimal solution of (10), we may compute an optimal so-

lution with equality in (11) by increasing values of βA
ij . Given

an optimal solution in which (11) is met with equality, we may

then set δA�
i = δ − t�i to recover the values necessary to solve

Problem 3. �

Remark 4: Note that the program is convex for any speci-

fied {gi ∈ P(0, δ̂Ai )}
|V A |
i = 1 ; however, particular choices of gi may

have strictly positive minimum values. Hence, there exists the

possibility that (10) is infeasible. This difficulty is avoided if

we restrict our choices of gi further, for example, to functions

which satisfy lim{z→0+ } gi(z) = 0.

Remark 5: Formal proof that the eigenvalue minimization

specified is a good proxy for optimizing the attained steady

state of the chosen behavior is unavailable; however, we show

in Section V that the approach works well in simulation.

We close this section by noting that the optimization pro-

grams (8) and (10) may be specialized to particular applications

by the addition of further parameter constraints. Of particular

interest may be the inclusion of box constraints, such that we

have βA
ij ∈ [βA

ij
, β̄A

ij ] for all i and j, and δAi ∈ [δAi , δ̄Ai ] for all i,

which models a scenario in which some parameter values are

only partially designable. In addition, we may add constraints

which enforce equality between various parameters in order to

reflect a situation in which control of each spreading or healing

rate cannot happen in isolation. However, since these exten-

sions occasion no further mathematical difficulties, we will not

explicitly consider them here.

V. SIMULATIONS AND DISCUSSION

Our simulations accomplish two tasks. In Section V-A, we

consider the performance of the optimization methods designed

with respect to the intended goals of the procedures, and find that

in the mean-field regime, both methods work well. In Section V-

B, we consider the accuracy of the mean-field model studied by

comparison to a simulation of the exact Markov process. We

find that the extinction problem studied works well for the exact

process, but the mean-field model for SI1SI2S suffers from

inaccuracy otherwise.
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Fig. 2. A plot studying the sensitivity of the steady states of the heterogeneous
mean-field SI1 SI2S model to scaling of solutions generated by (7), denoted
here by βA� . The average mean-field steady-state values for βA = αβA� are
plotted on the y-axis, with the scale factor α plotted on the x-axis.

Fig. 3. Plot of the mean steady-state mean-field values of A and B of the
solution of the optimization of Theorem 3 with the budget given by αC� against
α, where C

� is the optimal budget of Theorem 2.

A. Optimization Simulations

We consider the mean-field dynamics of a 100-node multi-

layer graph G = (GA , GB ), with 80 nodes in GA , 80 nodes

in GB , and 60 nodes in GA ∩ GB . Each graph layer stud-

ied is a randomly generated strongly connected digraph with

connection probability 0.5, with the set of nodes in the in-

tersection selected uniformly at random from each subgraph.

As cost functions, we study fij (β
A
ij ) = 1

βA
i j

for each edge, and

gi(δ
A
i ) = (δ̂Ai − δAi )2 + (δ̂Ai − δAi ) for each node.

In our analysis, we have proven that any solution generated

by (8) will have tight spectral constraints. Hence, we expect

that if the contagion were made any more aggressive, it would

survive. This is exactly what happens in Fig. 2, in which we

consider the results of a study of the sensitivity of the solutions

generated by (8). Here, we plot the attained mean-field steady

states of a process with parameters αβA� as a function of α,

where α is a scaling factor and βA� is a solution computed by

(8). It is precisely when α > 1 that the behavior survives in an

endemic state, as expected.

We study the efficacy of the fixed budget network design in

Fig. 3, where we perform a similar sensitivity analysis as the

one presented in Fig. 2. We plot the average mean-field steady-

state values attained by a graph designed by (10) with a budget

given by αC
� , where C

� is the optimum value of the budget of

the given problem instance, as computed by (8). We see that for

all values of α ≥ 1, extinction is attained, as predicted by con-

struction. For values of α < 1, we see that the behavior survives

in an endemic state. Moreover, the simulations indicate that the

Fig. 4. The spreading behavior of the SI1 SI2 S process is compared to the
mean-field approximation. These simulations were performed on the graphs
used for the simulations of Section V-A. The confidence bounds plotted contain
60% of the sample paths of the simulations: a) epidemic A and b) epidemic B.

attained steady state grows continuously and monotonically with

a decreasing budget, which suggests that the eigenvalue mini-

mization performed serves as a suitable approach to network

design when the given budget is fixed.

B. Mean-Field Simulations

To give an honest account of the utility of our results, it is

necessary to investigate the relation between the behavior of the

mean-field approximation we study and the SI1SI2S process

itself. We first study networks generated as solutions to (8) with

data generated as in Section V-A. A typical result of this simula-

tion is given in Fig. 4. Here, we note that the transient response

of the mean-field approximation is not tight, but the steady-state

values appear to be accurate. This may be an effect of the equi-

librium considered in our analysis: since epidemic A extincts,

epidemic B’s dynamics eventually recover the standard SIS

dynamics, which has been reported as a good approximation for

sufficiently large graphs [22]. The reader should note, however,

that there is a lack of scientific consensus as to when mean-

field approximations are accurate, and how exactly “accuracy,”

should be assessed. In particular, it is known that for many epi-

demic spreading models, including the SI1SI2S model studied

here, all nodes will be susceptible with probability one in finite

time. Hence, any approximation for which the approximated

probability of infection does not also tend to zero as time tends

to infinity will be significantly in error, asymptotically. The un-

derdeveloped understanding of mean-field approximation in the

literature is a principle motivation for our inclusion of detailed

simulations in this paper.

To assess the limits of the mean-field model’s accuracy in

greater generality, we consider the behavior of the model when

epidemicA and epidemicB survive in an endemic state in a 100-

node bilayer random graph. We display this in Fig. 5, where the

results were taken from a 150-trial simulation of the SI1SI2S
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Fig. 5. Spreading behavior of the SI1 SI2 S process compared to the mean-
field approximation. These simulations were performed on 100-node random
graphs with 50% sparsity. The confidence bounds plotted contain 60% of the
sample paths of the simulations. (a) Behavior A and (b) behavior B.

process, and represent a typical case. We find that the mean-

field model is not necessarily accurate in this circumstance. For

the particular instance displayed in Fig. 5, the error incurred

between the ensemble average of the simulated SI1SI2S pro-

cess and the mean-field approximation is approximately 0.2.

Moreover, by considering the spread of the observed 60% con-

fidence bounds of the process, we conclude that the sample

paths are not well concentrated about their expectation and,

hence, there is a non-negligible amount of stochasticity which

is left unaccounted for by the mean-field model. This points to a

need to exercise caution with respect to the analysis and control

of epidemic processes, as standard heterogeneous mean-field

methods used commonly in the literature may not be accurate in

general.

With respect to the SI1SI2S model we consider here, this

simulation result suggests the difficulty of pursuing more so-

phisticated competition models in the problem, as equilibria in

which both process survive in an endemic state appear to give

rise to mean-field approximations which are not necessarily ac-

curate. It appears that it is necessary to first find a meaningful

and provably accurate approximation of the process dynamics

which occur when neither phenomenon die out before a rigor-

ous analysis of a more sophisticated competitive model can be

developed. As such, we hope that researchers in the field of epi-

demic control take heed of this result, and verify their analytical

findings of approximated models against simulations of their

stochastic counterparts.

VI. SUMMARY AND FUTURE WORK

The class of multilayer spreading processes is one with much

potential. We have defined a framework in which the earlier

work on competitive multilayer processes can be extended to a

class of heterogeneously parametrized processes on generalized

graph layers. Moreover, we have provided an early step in an-

alyzing competitive multilayer spreading processes by finding

necessary and sufficient conditions for the exponential stability

of any equilibrium of the system in which one process extincts

exponentially quickly and the other survives in a prolonged state

of infection.

Furthermore, we have developed two optimization frame-

works for determining optimal resource allocations to attain the

desired equilibrium within a given network. Our first method

computes an optimal cost distribution of resources. Our second

method studies a situation in which we are given a fixed budget,

and wish to realize the extinction condition whenever possi-

ble, while we mitigate the presence of the unwanted epidemic

otherwise. We have found that the designed optimization rou-

tines work well in simulation for both cases, with the eigenvalue

minimization heuristic used in the fixed budget case appearing

to be a good proxy for the attained average steady state of the

mean-field model.

This work opens many possible avenues for future research.

By redefining the meaning of the variable states, we can ap-

ply our model to diverse settings; potential examples include

optimizing political strategies, protecting against viral spread

and investigating the effect of marketing campaigns. A use-

ful generalization would be an extension to a k-layer, k-process

framework, as such an extension could greatly improve the mod-

eling capacity of the tools developed. Additionally, we can place

further assumptions on the set of controllable parameters and

the objective of our resources allocations. For example, it may

be reasonable to have control over both the spreading parame-

ters of A and B, in which case it may be desirable to specify

a steady state and compute an optimal allocation which attains

it. Another interesting problem would be to study the effect of

pricing the resource allocations in the network competitively, so

as to incorporate the effect of competition among the network

designers, in addition to the contagions.

Perhaps the most important question left open pertaining to

this work is the relation of the mean-field approximation to the

underlying stochastic process. While some form of approxima-

tion is necessary in order to avoid the exponential state-space

of the exact representation of the system, other approximation

schemes can be considered, and it is currently unclear which

methods are most effective in which contexts. While the ap-

proximation technique applied here works well in simulation

for the extinction problem considered, it is clear that a more

precise understanding of the interrelation between the mean-

field dynamics and the exact process dynamics is a substantial

requirement for future work, for both the process studied here

and epidemic spreading models, in general.

APPENDIX

A. Proof of Theorem 1

In order to provide a rigorous proof of Theorem 1, we will

need to introduce two prior results, given by the following propo-

sitions:

Proposition 3 (Exp. Stability [25]): Let x0 be an equilib-

rium point of the nonlinear system x = f(x), where f : D →
R

n is continuously differentiable and the Jacobian matrix is



306 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

bounded and Lipschitz on D. Let

M =
∂f

∂x

∣

∣

∣

x=x0

.

Then, x0 is an exponentially stable equilibrium point for the

nonlinear system if and only if it is an exponentially stable

equilibrium point of the linear system ẋ = Mx.

Proposition 4 (SIS Exp. Stability [23]): Consider the dy-

namics of the n-Intertwined SIS model with spreading rate

matrix W and healing rate vector �d:

ṗ = diag (1 − p)W T p − diag(�d)p (12)

Suppose W and �d are chosen such that a non-zero equilibrium

of (12) exists, and denote it by p∗. Then p∗ is globally asymptot-

ically stable, and locally exponentially stable. Moreover, if no

non-zero equilibrium exists, then 0 is globally asymptotically

stable and locally exponentially stable.

We may now proceed with the proof of Theorem 1.

Proof: We begin by computing the linearization of the mean-

field dynamics given by (2) and (3) about Φ̄, which we can show

to be:

[

Ψ̇A

Ψ̇B

]

=

(

J11 0
J21 J22

) [

�ΨA

�ΨB

]

= J

[

�ΨA

�ΨB

]

, (13)

where

J11 = diag
(

1 − Φ̄B
)

(βA)T − diag(�δA),

J21 = − diag
(

(βB)T Φ̄B
)

,

J22 = diag
(

1 − Φ̄B
)

(βB)T

− diag((βB)T Φ̄B + �δB),

with �δB and βB defined analogously to �δA and βA, and �ΨA and
�ΨB are introduced as dummy variables for the linearizion of the

mean-field dynamics.

Since the Jacobian matrix J of the system is component-wise

bounded and Lipshitz, Proposition 3 gives us that the nonlinear

dynamics given by (2) and (3) are (locally) exponentially stable

if and only if the linearized system (13) is exponentially stable.

It remains to show that the hypothesis ensures that J is Hurwitz.

We note that, due to the block 0 in the upper-right entry of

J , the eigenvalues of J are given by the eigenvalues of J11 and

J22 . Noting that J11 is indeed the matrix the hypothesis claims

to be Hurwitz, we may turn our attention to J22 .

The J22 matrix is exactly the Jacobian of the dynamics of

an n-Intertwined SIS system evaluated at its endemic equi-

librium. We may now use Proposition 4 to claim that Φ̄B is

a locally exponentially stable equilibrium point of single-layer

model. By Proposition 3 it must be that J22 is Hurwitz, as it is

componentwise bounded and Lipshitz.

Since both J11 and J22 are Hurwitz, it must be that J is

Hurwitz. Hence, it must be that Φ̄ is an exponentially stable

equilibrium point of the nonlinear system described by (2)-(3).

Since all of the relations used in the proof are equivalences, no

further considerations are necessary. �

B. Proof of Lemma 2:

Proof: By considering the variational characterization of

eigenvalues, it will suffice to show that

sup
�v �=0

�

[

(�v)∗ (diag(�κ)M − diag(�γ))�v

(�v)∗�v

]

≤ sup
�v �=0

�

[

(�v)∗ (M − diag(�γ))�v

(�v)∗�v

]

, (14)

holds, where we use � to denote an operator which returns the

real part of its argument and (·)∗ denotes the conjugate transpose

of a vector. Our demonstration of this fact requires that we

establish two pieces: (i) we may evaluate the supremums over

�v ∈ R
n
≥0 without affecting their attained value, and (ii) for each

�v ∈ R
n
≥0 , the desired inequality follows immediately.

To argue (i), we will only explicitly consider the left hand side

of (14), the right hand side follows from similar arguments. Fix

some ṽ ∈ C
n with components ṽr = x̃r + iỹr ; we will show

that we may always construct some vector v̂ ∈ R
n
≥0 which in-

creases the value of the function evaluated by the supremum.

For our choice of ṽ, we may write the argument of the the left

hand side of (14) as

�

[

∑

k �=�(ṽk )∗ṽ�κkmk� +
∑

k (ṽk )∗ṽkγk

ṽ∗ṽ

]

.

Now, consider the vector v̂ defined as v̂r =
√

x2
r + y2

r for all

r. By construction, we have (ṽk )∗ṽk = v̂2
k holds for all k, so it

will suffice to show that

�

⎡

⎣

∑

k �=�

ṽ∗
k ṽ�κkmk�

⎤

⎦ ≤ �

⎡

⎣

∑

k �=�

v̂k v̂�κkmk�

⎤

⎦

holds. This follows immediately once we establish that the in-

equality �((ṽk )∗ṽ�) ≤ v̂k v̂� holds for all choices of k and �.

This can be verified by direct computation of the corresponding

inequality for the squares of these values:

[�(ṽ∗
k ṽ�)]

2 = x2
kx2

� + y2
ky2

� + 2xkx�yky�

≤ x2
kx2

� + y2
ky2

� + x2
ky2

� + x2
� y

2
k

=
(

(

x2
k + y2

k

)
1
2

(

x2
� + y2

�

)
1
2

)2

= v̂2
k v̂2

�

where the inequality follows from noting that

y2
kx2

� + x2
ky2

� − 2xkx�yky� = (xkyl − x�yk )2 ≥ 0.

It remains to show that

sup
�v∈Rn

≥0

�

[

(�v)T (diag(�κ)M − diag(�γ))�v

(�v)T v

]

≤ sup
�v∈Rn

≥0

�

[

(�v)T (M − diag(�γ))�v

(�v)T �v

]

,
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holds. We prove this by fixing any �v ∈ R
n
≥0 , and noting that

∑

k �=� vkv�κkmk� −
∑

k v2
kγk

(�v)T �v

≤

∑

k �=� vkv�mk� −
∑

k v2
kγk

(�v)T �v
,

follows immediately as a consequence of κk ∈ [0, 1] for all k

and mk� ≥ 0 for all k and �. �
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[12] C. Granell, S. Gómez, and A. Arenas, “Competing spreading processes

on multiplex networks: Awareness and epidemics,” Phys. Rev. E, vol. 90,
no. 1, p. 012808, 2014.

[13] X. Wei, N. C. Valler, B. A. Prakash, I. Neamtiu, M. Faloutsos, and
C. Faloutsos, “Competing memes propagation on networks: A network
science perspective,” IEEE J. Sel. Areas Commun., vol. 31, no. 6,
pp. 1049–1060, 2013.

[14] F. D. Sahneh and C. Scoglio, “Competitive epidemic spreading over
arbitrary multilayer networks,” Phys. Rev. E, vol. 89, p. 062817,
Jun. 2014.

[15] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas,
“Optimal resource allocation for network protection against spreading
processes,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 99–108,
Mar. 2014.

[16] X. Chen and V. Preciado, “Co-infection control in multilayer networks,”
in Proc. IEEE Conf. Dec. Control, Dec. 2014.

[17] N. J. Watkins, C. Nowzari, V. M. Preciado, and G. J. Pappas, “Optimal
resource allocation for competing epidemics over arbitrary networks,” in
Proc. Amer. Control Conf.. IEEE, 2015, pp. 1381–1386.

[18] C. R. MacCluer, “The many proofs and applications of Perron’s theorem,”
SIAM Rev., vol. 42, no. 3, pp. 487–498, 2000.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[20] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optimiz. Eng., vol. 8, no. 1, pp. 67–127,
2007.

[21] F. D. Sahneh, C. Scoglio, and P. V. Mieghem, “Generalized epidemic
mean-field model for spreading processes over multilayer complex net-
works,” IEEE/ACM Trans. Netw., vol. 21, no. 5, Oct. 2013.

[22] P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 1–14, 2009.
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