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Optimal Resource Allocation for Competitive
Spreading Processes on Bilayer Networks

Nicholas J. Watkins =, Cameron Nowzari

Abstract—We consider a competitive epidemic process in a bi-
layer network, and develop a framework to find an optimal al-
location of control resources to eliminate one of the epidemics.
We consider the SI, SI1,S model, a recent generalization of the
popular SIS model to the case of two competitive epidemics. We
start our analysis by extending the standard SI,SI,S formu-
lation with homogeneous parameters to a heterogeneous setting
with edge-dependent infection rates, and node-dependent recov-
ery rates. We then find necessary and sufficient conditions under
which the mean-field approximation of a chosen epidemic process
stabilizes to extinction exponentially quickly. Leveraging this re-
sult, we develop a framework for the solution of two optimization
problems. In the first, we find an optimal allocation of control re-
sources in order to eradicate the chosen epidemic at a minimum
cost. In the second, we are given a fixed budget and propose a
method which provably attains the extinction condition when suf-
ficient capital is available, and otherwise mitigates the spread of the
unwanted epidemic as much as possible. We explore the efficacy of
our methods through extensive simulation.

Index Terms—Behavioral science, optimization, stochastic sys-
tems.

I. INTRODUCTION

ODELING, analysis, and control of spreading processes
M in complex networks has recently garnered significant
attention from the research community. The potential applica-
tions for such methods are diverse: the spread of biological
epidemics, social behaviors, and cybersecurity threats can all be
formalized within this framework. Prior efforts have focused pri-
marily on the case of single-layer spreading networks; however,
such an abstraction is limited in modeling capacity. In principle,
spreading over networks can take place through markedly differ-
ent channels, which motivates the study of multilayer models.
This paper studies a multilayer, heterogeneous compartmen-
tal epidemic model, in which the spread of competing epidemics,
such as beliefs and behaviors, can be modeled. We direct our
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attention to the problem of controlling a spreading process in
order to quickly eliminate a chosen epidemic in a competitive
environment. This is a natural concept in modeling several so-
cially relevant problems. For example, we may use this model
to study the effects of political strategies on the opinions of
the populace, predict the ramifications of gossip in professional
networks, and understand the influence of marketing strategies
on consumer behavior.

Literature Review: Many well-known models of spreading
processes in networks are developed for the case of a single
contagion spreading over a single network layer; we refer the
reader to [1]-[3] for an overview. Recent efforts have been
made in extending this body of work to account for the possi-
bility of competitive and/or coexistent processes on single-layer
networks. Particular examples include investigations into the
effects of multiple pathogens in a single-layer “Susceptible-
Infected-Removed” (STR) model [4]-[6], a study of an ex-
tension to the STR model (SICR) for assessing the effects
of competition and cooperation between pathogens spreading
on a single network [7], and the development of a model for
the spread of competing ideas using the “Susceptible-Infected-
Susceptible” (S1.5) model on scale-free networks [8].

A more recent trend is the investigation into systems with
multiple pathogens and multiple spreading layers, in which each
contagion spreads over a specified layer. An overview of this
research area can be found in [9]. Particular examples of interest
include an investigation into the effects of pathogen interaction
on overlay networks with ST R dynamics [10], the development
of a model in which disease awareness and infection spread on
separate layers of SIS dynamics [11], [12], the development
of a model (S1; 51, 5) that generalizes the classic ST.S model
to a competitive multilayer framework [13], and work to find
conditions under which processes in the SI;.S15S model can
coexist [14].

We concern ourselves with the design of an optimization
framework for allocating resources to achieve an optimal cost
network design. Similar problems have been studied for control-
ling the single layer S5 model in [15], and a noncompetitive
multilayer model in [16]. The work we present here is the first
to consider an allocation problem which leverages interprocess
competition, which we incorporate by studying a variant of the
S1, 51,5 process.

Statement of Contributions: We develop a computational
framework for determining resource allocations which real-
ize an optimal-cost network which controls the S1;.515.S pro-
cess presented in [13] and [14] to a desired equilibrium. More
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specifically, we begin by introducing a heterogeneous version
of the model with edge-dependent spreading rates and node-
dependent recovery rates in order to enable us to capture the
effects of asymmetric influence among agents. We leverage this
added flexibility to design networks which exploit interprocess
competition in eliminating a chosen epidemic. This equilibrium
concept is useful in modeling various situations in which com-
petitive epidemics may occur, such as a marketing firm wanting
to influence their customer base in order to eliminate competi-
tors. Our technical contributions evolve from addressing this
task, and address several control-theoretic facets of the mean-
field S1;.515S model left previously unexplored.

Organization: Theremainder is organized as follows. In Sec-
tion III, we determine necessary and sufficient conditions for
exponentially stabilizing the desired equilibrium of the mean-
field model. In Section IV, we formulate an optimal resource
allocation problem in which costs can be paid to change the
parameters of the model. We then develop two tractable opti-
mization methods. Our first computes a minimal-cost resource
allocation which attains the desired equilibrium. Our second
addresses the situation in which a budget is specified, and we
aim to mitigate the prevalence of the unwanted epidemic pro-
cess when the available budget is not sufficient for realizing the
desired equilibrium. In Section V, we explore the efficacy of
the mean-field control policies developed against the stochastic
process behavior through extensive Monte Carlo simulations.
With respect to the preliminary work presented in [17], this
paper extends the results pertaining to the effects of competi-
tion, provides proofs of our main results, and adds significant
simulations comparing the mean-field model to the stochastic
S1, 51,5 process.

A. NOTATION AND BACKGROUND

Let R, R>¢, and R.( denote the set of real, non-negative
real numbers, and positive real numbers, respectively. We use
the notation € R" to denote an n-dimensional column vector,
and 2T to denote its transpose, both with components z; € R.
Fix a probability space (€2, F,P), and let X : Q+— R be a
random variable; we denote its expectation by E[X]. We use
|S| to denote the cardinality of a finite set.

We say a matrix A is irreducible if no similarity transfor-
mation exists which places A into block upper-triangular form.
We denote by diag(a@) a matrix with entries diag(a@);; = a; for
all 7 and O elsewhere. We use the notation A, .y (A) to de-
note the maximum taken over the real parts of the eigenvalues
of a matrix A4, i.e., Anax(A) = max; {R(1;(A))}. We call a
matrix A such that A,y (A) < 0 Hurwitz, or stable. We will
make repeated use of the Perron-Frobenius Lemma, stated as
follows:

Proposition 1 (Perron-Frobenious [18]): Let A be a non-
negative, irreducible matrix. Then, there exists a vector @ such
that u; > 0 for all 4, and Au = A*u, where 1* > 0 is the eigen-
value of A with the maximum absolute value, that is, the leading
eigenvalue.

Graph Theory: A directed graph (digraph) is given by a
triplet G = (V, E, A) in which V is the set of vertices, F C
V x V the ordered set of edges, and A € {0, 1}V IV the ad-

jacency matrix, that is, a;; = 1 if and only if there exists an
edge (i,7) € E connecting node 4 to node j. We define the
set of in-neighbors of node i given the adjacency matrix A as
NAR = (5 €V | ays = 1}.

A path p is given by an ordered set of vertices p =
(v1,v2,...,0,) such that (vy,vgs+1) is an edge in F for all
ke {1,2,...,m — 1}. We say that some path p connects node
v; and v; if the path starts at node v; and ends at node v;. We say
a digraph is strongly connected if there exists a path connecting
node v; to node v; for all v;, v; € V. The adjacency matrix of a
strongly connected digraph is irreducible.

A bilayer graph is a collection of two graphs G = (G4, Gp)
which satisfy the following property: the vertex set V' and edge
set £ of Garesuchthat V = V4 U VP and E = EA U EB,
where V4 and V' are the vertex sets of G4 and G, respec-
tively, and E4 and EF are the edge sets of G4 and Gp, re-
spectively. Note that the components G4 and G of G define
separate layers, and so allow for the specification of spread-
ing topologies for different phenomenon in a precise, compact
notation.

Geometric Programming: A function f:RZ,; — R is
called a monomial if it can be written in the form f(&) =
cay'zy? ... a), where ¢ > 0 is used to denote a leading con-
stant, the r; terms represent constant powers to which the argu-
ments are raised, and the x; terms represent f’s arguments. A
function is said to be a posynomial if it can be written as a sum
of monomials. Geometric programs form a class of quasiconvex
optimization problems which have posynomial objective func-
tions, posynomial inequality constraints, and monomial equality
constraints.

Geometric programs can be transformed into convex opti-
mization problems by performing a logarithmic change of vari-
ables and a logarithmic transformation of the objective and con-
straint functions. For further details on geometric programs and
their solution, we refer the reader to [19] and [20].

To ease the formal statement of some of our results, we will
introduce the notion of a posynomial transformation:

Lemma 1 (Posynomial Transformations): Any function
f(x) of the form f(z) =Y, cx(Z — z)?* with domain (0, Z)
withZ > 0, ¢, > 0, and p;, € R can be written as a posynomial
function of a new variable z = £ — x defined on the domain
(0, 2).

Proof: Consider the variable substitution z = & — . Then,
we may write the posynomial transformation f (z—2z)=
>k ¢k (2)P%, where we see that a value z =0+— 2 = & and
z = & — x = 0. Since the transformation is continuous, the do-
main of f is (0, &), as specified by the hypothesis. |

We will denote the class of functions with domain (0, d)
which admit a posynomial transformation in the sense of Lemma
1 by P(0,d). This class of functions will appear repeatedly in
the remaining sections.

II. MODEL AND PROBLEM STATEMENT

We begin our technical discussion by extending the SI; S1».S
model proposed in [13] and analyzed further in [14]. Our
primary contribution in extending this model is to allow the
processes to be influenced by heterogeneous parameters, and
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Fig. 1. A diagram of the S1; SIS process, with the spreading graph for .4
given by red edges, and the spreading graph for 53 given by blue edges. The
transition process for node 3 is explicitly illustrated, where we note that node
3is aBmember of both spreading graphs, and so may have transitions to [ A
and I°.

allowing for the graph layers to be strongly connected digraphs
with arbitrary node sets. This extends the work in [ 14], which as-
sumes homogeneous spreading parameters and undirected lay-
ers with identical node sets. The extension allows the possibility
of modeling asymmetric influence and nodal immunity, and is
required to formulate the resource allocation problem.

We consider the spread of epidemics A and B over a bi-
layer graph G = (Ga,Gp), where A spreads over G4 =
(VA EA, A), B spreads over Gp = (VB EP B), and |V|
n. At any time ¢, we assume that each node can belong to one
of three compartments: I if the node is infected by epidemic
A, I8 if the node is infected by epidemic B, and S if the node
is infected by neither. We let XA, X5, and X denote indicator
functions corresponding to the compartments I, 15, and S,
respectively. We define XZ-A(t) = 1 if node ¢ is in compartment
I at time ¢ and X7'(¢) = 0 otherwise. We define X7 and X
similarly.

We model the spread of A and 5 as a Markovian contact
process in which a node ¢ in compartment S transitions to
I* whenever it is a contacted by a node j in compartment
T4, with similar considerations holding for transitions from S
to I5. We assume all of the contact processes are stochasti-
cally independent, and occur at rates ﬁﬁ for the transitions
from S to I* and ﬁjBi for the transitions from S to I, which
we refer to as spreading rates. From this description, it then
follows that the process which transitions node ¢ from com-
partment S to compartment I is a Poisson process with rate
YA = > A ﬂ;“-X;—“(t), and the process which transitions

K3
node ¢ from compartment S to compartment /% is a Poisson
process with rate Y5 (t) = EjEMB w B5 X P (t). The processes
which transition a node i from I to S and from 1% to S are
Poisson processes with rates 67* and 62, which we refer to as
healing rates. A compartmental diagram of the process model
is illustrated in Fig. 1.

For a general instance of the S1;.SI,S process, studying the
exact dynamics would require the enumeration of a Markov pro-
cess with O(3™) states, arising from the need to explicitly ac-
count for all permissible combinations of compartmental mem-
berships allowed by the instance of the problem. There are at
least two methods of dealing with this complexity: 1) restricting
considerations to simple graph topologies and 2) approximating
the dynamics by a lower-dimensional system. Since our goal is
to design resource allocations on graphs with arbitrary graph
structures, we consider here a mean-field approximation of the

process, which reduces the dimension of the system’s state space
to O(2n).

To clearly demonstrate how we arrive at the mean-field
dynamics and give insight as to what effects the enacted
approximations make, we first consider the exact equations of
the expectation of the process dynamics

dE[X/] A B AyA _ sAyA

T:E (1-X7-X7) Zﬁjin =07 X",
L jEMAm

dE[XIB] - F 1 XA XB BXB 6BXB

—a (1-X7—-X7) Z ﬁji j %A
L je/\/'ll?in

6]

where we have used the substitution X = (1 — X/* — X¥) in
order to reduce dimension. Note that the equations described
by the system (1) are not closed: they contain terms of the
form E[XAX ]A} and E[XPX jA], which cannot be represented
in terms of the dynamics of F[X7] and E[X?] without in-
curring error. However, without a closed set of equations, we
cannot perform analysis, and so we make the approximations
E[X;“X]A] R~ fb;“ql;“ and E[XZ-BXJA] R fb?@f, where we have
introduced the symbols ®7* and ® to denote the mean-field
states approximating the probability that node i is in 74, and the
probability that node 1 is in I, respectively.

Using this substitution, we arrive at a mean-field approxima-
tion of S1;.51,5 in the style of [21]:

D
jej\/'Ain

o= (1-o -af) >
jeMBin

Bt =5l (@

2

gref —sfef,  (3)
where we note that the summation for the evolution of epiedmic
A is indexed over the set of neighbors in GG 4, and the evolution
of epidemic B is indexed over the set of neighbors in G in
order to reflect the fact that A spreads through layer G 4, and B
spreads through layer G .

We will more thoroughly examine the interrelation of the
mean-field model and the stochastic process in Section V. How-
ever, the majority of our work will be guided by seeking answers
to the following questions with respect to the mean-field model:

a) Extinction: what conditions are sufficient to extinct a cho-

sen process quickly?

b) Optimal extinction: can we compute an optimal allocation

of resources to attain a desired extinction quickly?

¢) Fixed budget mitigation: given a fixed budget, can we limit

the prevalence of a desired process effectively?

Answers to these questions are of interest to the community
of researchers currently engaged in the study of competitive
epidemic spreading processes. As a particular example, we may
consider a situation in which a firm would like to quell smear
campaigns occurring on its network of customers in the most
expedient and cost-effective manner possible. We may repre-
sent this within the framework of our model as a problem of
finding conditions under which an unwanted process is driven
out of existence as quickly and efficiently as possible. Our work
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shows that computing an optimal cost network to realize this
goal is feasible in the mean-field regime, and provides a step
forward from the earlier works considering single-layer spread-
ing processes.

III. EXTINCTION CONDITIONS

This section addresses the first of our stated problems, that is,
finding conditions under which an unwanted epidemic extincts,
or more concretely:

Problem 1 (Extinction): For a specified S1; 51,5 spreading
process on a bilayer graph G = (G4, Gp), determine condi-
tions for the parameters of the subgraph G4 under which a
chosen behavior A extincts quickly.

In particular, we are concerned with stabilizing a mean-field
equilibrium ® = [(®4)T, (®5)T]" where & and ®¥ are the
steady states of @7 and ®F, 4 = 0 for all 4, and the values of
@B are given by the solutions of the system

iy 1 _
e F 2 HE 4)

z jeMBin

Note that the solution of (4) may be computed numerically
by methods similar to those used in [22] for the SIS steady-
state equations, and is unique due to the uniqueness of the SIS
endemic equilibrium [23]. With the ability to claim knowledge
of the values {®%|54_( }icr, we may now construct a result to
Problem 1. In fact, we find necessary and sufficient conditions
for the desired equilibrium to be exponentially stable:

Theorem 1 (Mean-Field Exponential Stability): Forany ST,
S1, S spreading process on a strongly connected bilayer graph G
with mean field dynamics given by (2) and (3), the equilibrium
o = [(@HT, (®5)T]" with & = 0 for all i and ®F given by
the solutions of (4) is (locally) exponentially stable if and only
if

Ji = diag (1 - ) (547 —diag (5), )

is Hurwitz, where 54 is the vector of A’s recovery rates, and ﬁA
is the matrix of A’s spreading rates, which we assume to inherit
A’s sparsity pattern.

Proof: See Appendix A. |

Remark 1 (Homogeneous Threshold): Note that this is sim-
ilar to, but more general than, the stability results presented in
[14]. In particular, the condition in [14] requires that all in-
fection rates ﬁ;f} and recovery rates 67 take on homogeneous
values 3 and ¢ such that g < m. By inspection,
our result permits parameter choices which are excluded by this
condition.

The form of the matrix we need to stabilize to guarantee
the extinction of epidemic A is similar to the matrix needed to
guarantee extinction when we ignore competition. In particular,
we note that a simple consequence of prior work on the S1.5
process (see, for example, [ 15], [24]) is that a sufficient condition
for the exponentially fast elimination of the process spreading .A
is that Ay ax ((84)7 — diag(64)) < 0 holds. By accounting for
persistent competition among the epidemic processes, we might
expect that our condition allows for more aggressive parameter
selections. We will show that this is true in a rigorous sense

with our next result, which we will develop by first considering
a technical lemma, and then specializing to our setting.

Lemma 2 (Row Compression Inequality): Let M € RYj",
£ €[0,1]", and § € R". Then, the following inequality holds:

Amax (diag(R)M — diag(¥)) < Amax (M — diag(¥)). (6)

Proof: See Appendix B. |

An immediate consequence of Lemma 2 is that competition
in any particular node helps to prevent the persistence of an
unwanted behavior. We make this formal as follows:

Proposition 2 (Benefits of Competition): Take any set of val-
ues (34, 64) such that 64 > 0 forall i, and epidemic A meets the
SIS extinction condition, i.e., Apayx ((34)7 — diag(64)) < 0.
Then, for any realization of the S1;.51,S process, we must also
have exponential elimination of .A. Moreover, if ®% > 0 for
some 7, then there exists some BA with ﬁ;‘} > ﬁ;‘]‘- for all 7 and 7,
and B;;‘ > ﬁ{‘]‘» for some ¢ and j such that the set of parameters

(34, 54) exponentially eliminates A.

Proof: Exponential elimination of 4 is a direct consequence
of Theorem 1 when we apply Lemma 2 with M = (84)", & =
(1 — ®%) and 7 = 6. To prove the existence of a pair (34, 64)
satisfying our claim, consider the matrix BA with entries Bﬁ =
ﬁ /1. Then

diag(1 — BF)(34)T = (34"

Since we only consider §* > 0 for all 7, we have that ®% € [0,1)
for all 7. Hence, BA;‘J‘ > ﬁ;‘j‘- for all 7 and j, where the inequality
is strict for the case where ®% > 0. u

Remark 2 (Benefits of Competition): Proposition 2 admits
an explicit characterization of how much competition helps:
for all agents i € V4, we can guarantee extinction even when
the spreading rates associated with the incoming edges of node
1 are increased by a factor of up to ﬁ compared to the SIS
case. While the quantitative utility of this observation depends
on the particular cost functions in a given problem instance,
this result qualitatively shows that the existence of a persistent
spreading process I3 that is competing with A is guaranteed to

make it easier to make process A extinct quickly.

IV. OPTIMAL RESOURCE ALLOCATION

Having established conditions for the exponential stability of
the desired equilibrium, we now focus our attention on estab-
lishing means for designing resource allocations which create
networks with desirable control properties. We first consider the
problem of designing a set of resource allocations in order to
eliminate a chosen process at optimal cost when we are given
functions which relate the chosen process parameter values to
resource expenditures.

In the context of a marketing problem, we may think of spend-
ing on resources such as product giveaways, consumer incentive
programs, advertisement campaigns, etc. designed to affect the
perception of a company within a given market. To model this
effect, we assume that for every designable parameter 6;;‘- and
6{4, we are given cost functions f;; and g; which relate a desired
parameter value to a capital expenditure, the particular charac-
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teristics of which we assume to be application specific. With
this notion developed, we may state our problem more formally
as follows:

Problem 2 (Optimal Extinction): Consider an S SIS
spreading process on a bilayer graph G = (G4,Gp). Given
sets of cost functions { fi; }; jyer4 , {9i }iev 4 » determine a min-
imum cost allocation of resources to enforce the extinction con-
ditions for the equilibrium of Problem 1.

From the discussion in Section III, we may formally cast
Problem 2 as the following optimization program:

minimize Z fii (B) Z g: (64
{54,604} (i,j)eEA icVA
subject to )\max(JM(ﬂA, g‘A)) <0, 7

where .J11 is defined by (5). Note that (7) is nonconvex in gen-
eral; it is an eigenvalue problem. However, if we allow our-
selves to restrict considerations to a reasonable class of cost
functions, we may develop a computational method for arriv-
ing at a solution tractably. Our work follows a similar line of
development to that which was studied in [15] for single-layer,
susceptible-infected-susceptible contagions, in which a convex-
ification scheme was developed for an epidemic control resource
allocation problem.

In particular, we will consider a method for transforming (7)
into a convex problem when the cost functions are structured
to make aggressive processes (i.e., those with higher spreading
rates) cost more.

Theorem 2: Consider a realization of the dynamics (2)—(3)
with an equilibrium point of the form ® = [(®4)T, (®5)T T
with ®A =0 for all i, and ®° given by the solutions of
(4). Define z; = (1 — ®F) for all i € V7, and consider any
set of monotonically decreasing posynomial cost functions

{fij }4(i.j)epay» any set of functions {g; € P(0, 3;4)}‘ _ 1, and
any € € (0, min; {6*}). Then, an optimal solution of (7) can be
computed by the solution of the following geometric program:

minimize Z fi5 (B) Z gi (i)
{8480 a} (i,j)EEA ievA
S enam BAziug + tiu; + eu;
subject to JeN, A - ! <1, Vie VA7
)\.’qu
L <1, VieVA,
6
(¢-%) 5““)
<1, VieVA4,
sz,ut>0 szEVA
0<A<9, ®)

where § > max; {3;4} , §i denotes the posynomial transforma-

tion of g; and we set §/** = § — ¢, where ¢} is given by the
optimal solution to (8).

Proof: Recall that the condition that we need to attain to
guarantee local exponential stability is that J;; is Hurwitz.

Noting that the only negative values of .J;; are from the term
— diag(04), we can assert that the matrix Jy; 4+ 01 + el is a
non-negative matrix, since each 6;4 <95 by definition. More-
over, since J;; is irreducible, J;; + 01 + I must be so as well.

Proposition 1 then gives the existence of A > 0 and 4 with
u; > 0 for all ¢ such that the equation

(Ji1 + 01 + el)i = A

is satisfied. If we relax the equation and make the substitution
ti=0— 5;4 for all 4, we can see that the inequalities

Z]-e',\/”mn ﬂﬁz;uj + tiqu + €U;
)\.qu
compose eigenvalue equations when met with equality. It re-
mains to show that any optimal solution to the geometric pro-
gram is such that the constraints defined by (9) are met with
equality.

For purposes of identifying a contradiction, assume that there
exists an optimal solution in which ﬁf“»* is the computed optimal
value of 6 for some constraint ¢ for which (9) was not met with
equality. Notlng that (7} ;

<1 YieVA (9

affects no other constraint, we may

increase ﬁ;‘}* to some other value B;;‘ > B;;‘-* such that (9) is met
with equality. In doing so, we improve the value of the objective
function, since f;; was specified as monotonically decreasing.
It must then be that our assumed solution was not optimal, and
we have proven that (9) is met with equality at any optimal
solution. By noting that the constraint 0 < A < ¢ holds, we see
that the leading eigenvalue of .J;; is negative, and the extinction
condition required by Theorem 2 is realized. By applymg our
use of the posynomial transformation, we may set (5“4* =5

Proving the existence of a feasible solution for any perm1s51—
ble choice of program data remains. We proceed by construc-
tion. Select [3“4 — oA and 54 = fyf. Then, we can write the
eigenvalue constraint as

Amax (diag (1 — @B) (aA)" — I +681+e€l) <30,

where if we choose v = min {3;“}, we can reduce this to
(3

o (ding (1 - @) (4)7) < 1=
Since we can choose any « > 0, our proof is complete. |

Remark 3 (Cost Function Restrictions): We have found a
convex formulation for Problem 2 for the specified class of
cost functions. However, the restriction is slight within the con-
text of the problem. Given that the parameter ﬂ;‘} is a rate of
spread, it is natural to associate it with a monotonically de-
creasing cost function; this captures the intuition that enforcing
a phenomenon to be less aggressive is costly when attempting
to extinct it. Since we may choose any g; € P(0, 5;4) possible
choices for g; are many. To make the extent of this flexibility
concrete, we note that P(0, %) includes the class of shifted
finite-order polynomials with positive coefficients.

We now shift our focus to a setting in which exponential
extinction may not be possible. In particular, we consider a
situation in which we are given a fixed operating budget € > 0,
and we are tasked with mitigating the spread of the unwanted
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behavior insofar as is possible. In the interest of making best use
of the resources available, we concern ourselves with solving
the following problem:

Problem 3 (Fixed Budget Mitigation): Consider an STy
SIS spreading process on a bilayer graph G = (G4,Gp).
Given sets of cost functions { f;; }(; jjep4, {9i }icv 4, determine
an allocation of resources which conforms to a budget € > 0
such that the chosen behavior A extincts if possible, and
mitigates the extent of its spread otherwise.

Our approach to this problem may be formalized as choosing
the real component of the leading eigenvalue as the objective to
our program, and adjusting the feasible set accordingly. This re-
covers the exponential extinction condition of Theorem 1 when-
ever possible, and otherwise uses the eigenvalue as a proxy for
the aggregate spread of the unwanted epidemic. We formalize
this as follows.

Theorem 3: Consider a realization of the dynamics (2)—(3)
with an equilibrium point of the form ® = [(®4)T, (®5)T]T
with @A = 0 for all i, and ®” given by the solutions of (4). De-
fine z; = (1 — ®¥) foralli € V4, and consider any set of mono-
tonically decreasing posynomial cost functions { f;; }{ (i,)€EA}>

and any set of functions {g; € P(0, 3;4)}“/ . Then, Problem 3
can be solved by the following geometric program:

minimize A

{BAT i1}
> pdin ﬂ“‘}Z;U + 1y
subject to JENT T ’ o <1, VieVA4,
)\.U,j
A ~
A Jij i i + gi (L
Z(z.])€E4 f,l (ﬁj) g ( ) Sl, ViEVA,
¢
L A
=<1, VieV
o
(5-4)
<1,VieV4,

(]
B, ui >0,Vi,jevA (10)
where § > max; {67!} and §; denotes the posynomial transfor-
mation of g;, and we set 57 = & — t*, where t7 is given by the
optimal solution to (10).

Proof: We will show that the stated geometric program is an
equivalent problem to minimizing the eigenvalue of J;;. This
will ensure that when the specified cost is above the optimal
cost threshold, we recover the desired extinction condition; we
otherwise minimize the eigenvalue as a heuristic. Noting that
Ji is irreducible by construction and that ¢ is an upper bound
for all terms 6;4, it must be that .J;; + 61 is non-negative and
irreducible. Hence, Proposition 1 applies and we must have
the existence of some 1 such that uw; > 0 for all 7 such that
(Ji1 + 61)i = Adl.

As in the proof for Theorem 2, we can relax the eigenvalue
equations with the substitution ¢; = J — 6/ to obtain the in-
equalities

Zje\/’mn 6ﬁz7uj + tiu,'
)\.’U,qj

<1, VieVA, (11)

To show how we may attain equality of (11) at an optimal
solution of (10), we may make a similar argument as to the proof
of Theorem 2. However, in this case, we will show that there
always exists an optimal solution which meets the constraint
with equality, and construct it.

Suppose that there exists some optimal solution

{{ﬁu }7] cpA ,{5“4* u“t;}‘,l, *}

at which (11) is not met with equality for some ¢. Since the
fij functions are monotonically decreasing, we may increase
the value of ﬂ;‘} for some edge (4, j) until equality is attained
without violating the budget constraint. Since this increase nei-
ther changes the value of A nor makes the solution infeasible,
it must be that the new solution is again optimal. Hence, given
any optimal solution of (10), we may compute an optimal so-
lution with equality in (11) by increasing values of 5;?. Given
an optimal solution in which (11) is met with equality, we may
then set 07 = § — 1 to recover the values necessary to solve
Problem 3. |

Remark 4: Note that the program is convex for any speci-

fied {g; € P(0, 5;4)}‘ _ 1,however particular choices of g; may
have strictly positive minimum values. Hence, there exists the
possibility that (10) is infeasible. This difficulty is avoided if
we restrict our choices of g; further, for example, to functions
which satisfy lim. g+ gi(2) = 0.

Remark 5: Formal proof that the eigenvalue minimization
specified is a good proxy for optimizing the attained steady
state of the chosen behavior is unavailable; however, we show
in Section V that the approach works well in simulation.

We close this section by noting that the optimization pro-
grams (8) and (10) may be specialized to particular applications
by the addition of further parameter constraints. Of particular
interest may be the inclusion of box constraints, such that we
have ﬂf]l- € [ﬁ;‘;, 6_;‘]‘} for all i and j, and &7 € [5;4, 5] for all 4,
which models a scenario in which some parameter values are
only partially designable. In addition, we may add constraints
which enforce equality between various parameters in order to
reflect a situation in which control of each spreading or healing
rate cannot happen in isolation. However, since these exten-
sions occasion no further mathematical difficulties, we will not
explicitly consider them here.

V. SIMULATIONS AND DISCUSSION

Our simulations accomplish two tasks. In Section V-A, we
consider the performance of the optimization methods designed
with respect to the intended goals of the procedures, and find that
in the mean-field regime, both methods work well. In Section V-
B, we consider the accuracy of the mean-field model studied by
comparison to a simulation of the exact Markov process. We
find that the extinction problem studied works well for the exact
process, but the mean-field model for S1;.51,S suffers from
inaccuracy otherwise.
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Fig.2. A plotstudying the sensitivity of the steady states of the heterogeneous

mean-field S7; SI5.S model to scaling of solutions generated by (7), denoted
here by 34*. The average mean-field steady-state values for 44 = a/34* are
plotted on the y-axis, with the scale factor « plotted on the z-axis.
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Fig. 3. Plot of the mean steady-state mean-field values of A and B of the

solution of the optimization of Theorem 3 with the budget given by or@* against
«, where €* is the optimal budget of Theorem 2.

A. Optimization Simulations

We consider the mean-field dynamics of a 100-node multi-
layer graph G = (G4, Gp), with 80 nodes in G4, 80 nodes
in Gp, and 60 nodes in G4 N Gp. Each graph layer stud-
ied is a randomly generated strongly connected digraph with
connection probability 0.5, with the set of nodes in the in-
tersection selected uniformly at random from each subgraph.
As cost functions, we study f;; (ﬁf]‘) = %A for each edge, and

9:(64) = (64 — 642 4 (64 — 67) for each node.

In our analysis, we have proven that any solution generated
by (8) will have tight spectral constraints. Hence, we expect
that if the contagion were made any more aggressive, it would
survive. This is exactly what happens in Fig. 2, in which we
consider the results of a study of the sensitivity of the solutions
generated by (8). Here, we plot the attained mean-field steady
states of a process with parameters a3 as a function of «,
where « is a scaling factor and 3* is a solution computed by
(8). It is precisely when o > 1 that the behavior survives in an
endemic state, as expected.

We study the efficacy of the fixed budget network design in
Fig. 3, where we perform a similar sensitivity analysis as the
one presented in Fig. 2. We plot the average mean-field steady-
state values attained by a graph designed by (10) with a budget
given by a€*, where €* is the optimum value of the budget of
the given problem instance, as computed by (8). We see that for
all values of o > 1, extinction is attained, as predicted by con-
struction. For values of o« < 1, we see that the behavior survives
in an endemic state. Moreover, the simulations indicate that the
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Fig. 4. The spreading behavior of the S1; SIS process is compared to the

mean-field approximation. These simulations were performed on the graphs
used for the simulations of Section V-A. The confidence bounds plotted contain
60% of the sample paths of the simulations: a) epidemic A and b) epidemic B.

attained steady state grows continuously and monotonically with
a decreasing budget, which suggests that the eigenvalue mini-
mization performed serves as a suitable approach to network
design when the given budget is fixed.

B. Mean-Field Simulations

To give an honest account of the utility of our results, it is
necessary to investigate the relation between the behavior of the
mean-field approximation we study and the S7; 5155 process
itself. We first study networks generated as solutions to (8) with
data generated as in Section V-A. A typical result of this simula-
tion is given in Fig. 4. Here, we note that the transient response
of the mean-field approximation is not tight, but the steady-state
values appear to be accurate. This may be an effect of the equi-
librium considered in our analysis: since epidemic A4 extincts,
epidemic B’s dynamics eventually recover the standard SIS
dynamics, which has been reported as a good approximation for
sufficiently large graphs [22]. The reader should note, however,
that there is a lack of scientific consensus as to when mean-
field approximations are accurate, and how exactly “accuracy,”
should be assessed. In particular, it is known that for many epi-
demic spreading models, including the S1; S15S model studied
here, all nodes will be susceptible with probability one in finite
time. Hence, any approximation for which the approximated
probability of infection does not also tend to zero as time tends
to infinity will be significantly in error, asymptotically. The un-
derdeveloped understanding of mean-field approximation in the
literature is a principle motivation for our inclusion of detailed
simulations in this paper.

To assess the limits of the mean-field model’s accuracy in
greater generality, we consider the behavior of the model when
epidemic .4 and epidemic I3 survive in an endemic state in a 100-
node bilayer random graph. We display this in Fig. 5, where the
results were taken from a 150-trial simulation of the SI; 515 S
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Fig. 5. Spreading behavior of the S1; SIS process compared to the mean-

field approximation. These simulations were performed on 100-node random
graphs with 50% sparsity. The confidence bounds plotted contain 60% of the
sample paths of the simulations. (a) Behavior .A and (b) behavior B.

process, and represent a typical case. We find that the mean-
field model is not necessarily accurate in this circumstance. For
the particular instance displayed in Fig. 5, the error incurred
between the ensemble average of the simulated SI; S1».S pro-
cess and the mean-field approximation is approximately 0.2.
Moreover, by considering the spread of the observed 60% con-
fidence bounds of the process, we conclude that the sample
paths are not well concentrated about their expectation and,
hence, there is a non-negligible amount of stochasticity which
is left unaccounted for by the mean-field model. This points to a
need to exercise caution with respect to the analysis and control
of epidemic processes, as standard heterogeneous mean-field
methods used commonly in the literature may not be accurate in
general.

With respect to the S1;515.5 model we consider here, this
simulation result suggests the difficulty of pursuing more so-
phisticated competition models in the problem, as equilibria in
which both process survive in an endemic state appear to give
rise to mean-field approximations which are not necessarily ac-
curate. It appears that it is necessary to first find a meaningful
and provably accurate approximation of the process dynamics
which occur when neither phenomenon die out before a rigor-
ous analysis of a more sophisticated competitive model can be
developed. As such, we hope that researchers in the field of epi-
demic control take heed of this result, and verify their analytical
findings of approximated models against simulations of their
stochastic counterparts.

VI. SUMMARY AND FUTURE WORK

The class of multilayer spreading processes is one with much
potential. We have defined a framework in which the earlier
work on competitive multilayer processes can be extended to a
class of heterogeneously parametrized processes on generalized
graph layers. Moreover, we have provided an early step in an-

alyzing competitive multilayer spreading processes by finding
necessary and sufficient conditions for the exponential stability
of any equilibrium of the system in which one process extincts
exponentially quickly and the other survives in a prolonged state
of infection.

Furthermore, we have developed two optimization frame-
works for determining optimal resource allocations to attain the
desired equilibrium within a given network. Our first method
computes an optimal cost distribution of resources. Our second
method studies a situation in which we are given a fixed budget,
and wish to realize the extinction condition whenever possi-
ble, while we mitigate the presence of the unwanted epidemic
otherwise. We have found that the designed optimization rou-
tines work well in simulation for both cases, with the eigenvalue
minimization heuristic used in the fixed budget case appearing
to be a good proxy for the attained average steady state of the
mean-field model.

This work opens many possible avenues for future research.
By redefining the meaning of the variable states, we can ap-
ply our model to diverse settings; potential examples include
optimizing political strategies, protecting against viral spread
and investigating the effect of marketing campaigns. A use-
ful generalization would be an extension to a k-layer, k-process
framework, as such an extension could greatly improve the mod-
eling capacity of the tools developed. Additionally, we can place
further assumptions on the set of controllable parameters and
the objective of our resources allocations. For example, it may
be reasonable to have control over both the spreading parame-
ters of A and 13, in which case it may be desirable to specify
a steady state and compute an optimal allocation which attains
it. Another interesting problem would be to study the effect of
pricing the resource allocations in the network competitively, so
as to incorporate the effect of competition among the network
designers, in addition to the contagions.

Perhaps the most important question left open pertaining to
this work is the relation of the mean-field approximation to the
underlying stochastic process. While some form of approxima-
tion is necessary in order to avoid the exponential state-space
of the exact representation of the system, other approximation
schemes can be considered, and it is currently unclear which
methods are most effective in which contexts. While the ap-
proximation technique applied here works well in simulation
for the extinction problem considered, it is clear that a more
precise understanding of the interrelation between the mean-
field dynamics and the exact process dynamics is a substantial
requirement for future work, for both the process studied here
and epidemic spreading models, in general.

APPENDIX

A. Proof of Theorem 1

In order to provide a rigorous proof of Theorem 1, we will
need to introduce two prior results, given by the following propo-
sitions:

Proposition 3 (Exp. Stability [25]): Let xy be an equilib-
rium point of the nonlinear system « = f(x), where f : D —
R™ is continuously differentiable and the Jacobian matrix is
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bounded and Lipschitz on D. Let

of
M= 81? =T '

Then, z( is an exponentially stable equilibrium point for the
nonlinear system if and only if it is an exponentially stable
equilibrium point of the linear system @ = M.

Proposition 4 (SIS Exp. Stability [23]): Consider the dy-
namics of the n-Intertwined SIS model with spreading rate
matrix W and healing rate vector d:

p = diag (1 - p)W" p — diag(d)p (12)
Suppose W and d are chosen such that a non-zero equilibrium
of (12) exists, and denote it by p*. Then p* is globally asymptot-
ically stable, and locally exponentially stable. Moreover, if no
non-zero equilibrium exists, then 0 is globally asymptotically
stable and locally exponentially stable.

‘We may now proceed with the proof of Theorem 1.

Proof: We begin by computing the linearization of the mean-
field dynamics given by (2) and (3) about ®, which we can show

to be:
oAl (Jn 0 gAYl A
[qu]_(Jm J22>[\I7B =/ B |7 (13)

Ji1 = diag (1 — @F) (847

— diag ((8%)" 9°),

Jay = diag (1 — @F) (85)"
— diag((8%)" ®° +6°),

where

— diag(gA),

with 6% and 3% defined analogously to 64 and 34, and ¥4 and
U5 are introduced as dummy variables for the linearizion of the
mean-field dynamics.

Since the Jacobian matrix J of the system is component-wise
bounded and Lipshitz, Proposition 3 gives us that the nonlinear
dynamics given by (2) and (3) are (locally) exponentially stable
if and only if the linearized system (13) is exponentially stable.
It remains to show that the hypothesis ensures that J is Hurwitz.

We note that, due to the block 0 in the upper-right entry of
J, the eigenvalues of .J are given by the eigenvalues of .J;; and
Joo. Noting that Jy; is indeed the matrix the hypothesis claims
to be Hurwitz, we may turn our attention to Jos.

The Jo9 matrix is exactly the Jacobian of the dynamics of
an n-Intertwined SIS system evaluated at its endemic equi-
librium. We may now use Proposition 4 to claim that ®5 is
a locally exponentially stable equilibrium point of single-layer
model. By Proposition 3 it must be that .J55 is Hurwitz, as it is
componentwise bounded and Lipshitz.

Since both Jy; and .Jy9 are Hurwitz, it must be that .J is
Hurwitz. Hence, it must be that ® is an exponentially stable
equilibrium point of the nonlinear system described by (2)-(3).
Since all of the relations used in the proof are equivalences, no
further considerations are necessary. |

B. Proof of Lemma 2:

Proof: By considering the variational characterization of
eigenvalues, it will suffice to show that

(0)" (diag(F)M — diag(¥)) @
5 ’

(0)v

[@* <M(:)§1ag<v>> 6] |

holds, where we use R to denote an operator which returns the
real part of its argument and (-)* denotes the conjugate transpose
of a vector. Our demonstration of this fact requires that we
establish two pieces: (i) we may evaluate the supremums over
U € RZ,, without affecting their attained value, and (ii) for each
ve Rio, the desired inequality follows immediately.

To argue (i), we will only explicitly consider the left hand side
of (14), the right hand side follows from similar arguments. Fix
some ¥ € C" with components v, = T, + i7,; we will show
that we may always construct some vector © € R%, which in-
creases the value of the function evaluated by the supremum.
For our choice of v, we may write the argument of the the left
hand side of (14) as

2 [Zk#(@k)*@eﬁkmu + Zk(f)k)*@k%] _

V¥

sup it
740

<suph
740

(14)

Now, consider the vector ¢ defined as ¢, = \/x2 + y2 for all
r. By construction, we have (0 )*0 = f),% holds for all &, so it
will suffice to show that

E 172171’/%"%4 <R E VR O¢ KL Mg
k#L kL

holds. This follows immediately once we establish that the in-
equality R((0)*0,) < 91, 0¢ holds for all choices of k and /.
This can be verified by direct computation of the corresponding
inequality for the squares of these values:

[R(B10)] = 2ia] + yiyi + 2zemeynye

2 .2 2 2 2 2 2 2
< wpap + Yy + 2y + 2y

= ((T*k +CUA)% (=7 +w)%>2

2492
ke

I
>

where the inequality follows from noting that
vial + 2ty — 2xpzeyrye = (eyr — zeyr)” > 0.

It remains to show that

(9)7 (diag(R)M — diag()) 7
ﬁiﬁéﬁjﬂ Gil }
@ (M - diag(7) 7
SRN[ @77 }
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holds. We prove this by fixing any 7 € R%, and noting that

Zk# Ve Ve KK Mke — Ek U%’)’k
(@)

ke VRV = 3k Vi
- ()"0 ’

follows immediately as a consequence of x5 € [0, 1] for all k
and my, > 0 for all k and /. [ |
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