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Discovered decades ago, the quantum Hall effect remains one of 
the most studied phenomena in condensed matter physics and 
is relevant for research areas such as topological phases, strong 
electron correlations and quantum computing1–5. The quantized 
electron transport that is characteristic of the quantum Hall effect 
typically originates from chiral edge states—ballistic conducting 
channels that emerge when two-dimensional electron systems are 
subjected to large magnetic fields2. However, whether the quantum 
Hall effect can be extended to higher dimensions without simply 
stacking two-dimensional systems is unknown. Here we report 
evidence of a new type of quantum Hall effect, based on Weyl 
orbits in nanostructures of the three-dimensional topological 
semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-
like surface states) on opposite surfaces of the sample connected 
by one-dimensional chiral Landau levels along the magnetic field 
through the bulk6,7. This transport through the bulk results in an 
additional contribution (compared to stacked two-dimensional 
systems and which depends on the sample thickness) to the 
quantum phase of the Weyl orbit. Consequently, chiral states can 
emerge even in the bulk. To measure these quantum phase shifts 
and search for the associated chiral modes in the bulk, we conduct 
transport experiments using wedge-shaped Cd3As2 nanostructures 
with variable thickness. We find that the quantum Hall transport 
is strongly modulated by the sample thickness. The dependence of 
the Landau levels on the magnitude and direction of the magnetic 
field and on the sample thickness agrees with theoretical predictions 
based on the modified Lifshitz–Onsager relation for the Weyl orbits. 
Nanostructures of topological semimetals thus provide a way of 
exploring quantum Hall physics in three-dimensional materials 
with enhanced tunability.

The quantum Hall effect is important for probing electronic states 
via transport experiments and is a hallmark of two-dimensional (2D) 
electron systems2,3. It has been widely used in research and applica-
tions, including the metrological resistance standard and research 
on many-body problems2,4,5,8. By contrast, three-dimensional (3D) 
systems normally do not exhibit the quantum Hall effect owing to 
the band dispersion along the direction of the magnetic field, which 
smears the energy gap between the Landau levels. As an exception, the 
quantum Hall effect may occur in a 3D system when the Fermi level 
lies inside a gap9–11, and scenarios involving either weak interlayer 
hopping or density-wave gaps have been proposed accordingly11,12. 
Over the years, several material systems, such as semiconductor 
superlattices13, Bechgaard salts14,15, η-Mo4O11 (ref. 16), highly doped 
Bi2Se3 (ref. 17), EuMnBi2 (ref. 18) and ZrTe5 (ref. 19), have been found 
to exhibit signatures of the quantum Hall effect in their 3D bulk 
forms. However, in these cases, the underlying physics resembles that 
of stacked 2D quantum Hall systems, and the corresponding systems 
can therefore be regarded as such.

Here we report the realization of a new type of quantum Hall effect 
based on Weyl orbits in nanostructures of the Dirac semimetal Cd3As2. 
Weyl orbits are inter-surface, 3D cyclotron orbits that consist of Fermi-
arc surface states and bulk chiral Landau levels in Dirac and Weyl sem-
imetal films under magnetic fields6,20–22. When driven into quantum 
Hall states, Weyl orbits exhibit chiral edge states that extend along the 
thickness (z) direction. Owing to the propagation process through the 
chiral Landau level, the Landau-level energy of a Weyl orbit is a func-
tion of both magnetic field and sample thickness. By using wedge-
shaped samples, we show that the quantum Hall resistance is strongly 
modulated by a small variation in thickness (several nanometres). This 
spatially non-uniform quantum Hall resistance comes from the in-bulk 
chiral ‘edge’ states (which although they occur in the bulk rather than 
at an edge have the same physics as edge states) when the Landau levels 
shift with the variation in sample thickness and then intersect the Fermi 
level. The angular dependence of the quantum Hall resistance further 
reveals a connection between the Landau level and the k-space sepa-
ration of pairs of Weyl nodes. These features highlight the Weyl-orbit 
nature of the quantum Hall effect in Cd3As2 nanostructures, opening 
up a new way of creating quantum Hall states in 3D systems.

Dirac and Weyl semimetals both have pairs of monopoles of the 
Berry curvature in 3D momentum space (also known as Weyl nodes). 
A typical example of a Dirac semimetal is Cd3As2 with two opposite 
pairs of Weyl nodes overlapping in the [001] axis23–26. When the 3D 
bulk is terminated by a 2D surface, exotic surface states appear in the 
form of Fermi arcs connecting the surface projections of pairs of Weyl 
nodes27–30. In the presence of a magnetic field, electrons following 
semi-classical equations of motion traverse a Fermi arc on the surface, 
tunnel along the bulk chiral Landau level to the opposing surface, where 
they continue their paths along the Fermi arc, and then tunnel through 
the bulk via the counter-propagating chiral Landau level back to the 
initial surface (Fig. 1a)6. This overall transport process forms a closed 
orbit, which behaves like a 2D state when projected on the surface, 
but with a unique bulk propagation process that gives rise to quantum 
oscillations, as observed in Cd3As2

21,22.
The quantum Hall effect is an extension of the semi-classical 

Shubnikov–de Haas oscillations in 2D systems. The chiral edge state 
that forms in the open edge of a quantum Hall system provides a bal-
listic transport channel and gives rise to the quantized Hall resistance 
(Fig. 1b)2. Similarly, for the Weyl orbit, the chiral edge state is pre-
dicted to emerge on the planar edge of a 3D Weyl or Dirac semimetal 
in a magnetic field7 (Fig. 1c). The quantum Hall effect based on Weyl 
orbits is distinct from purely 2D quantum Hall effects, which have been 
widely studied previously, because the chiral edge state is extended 
along the out-of-plane (z) direction and intersects both the top and 
the bottom surfaces. The quantum Hall effect was recently observed in 
the surface states of Cd3As2 nanostructures22,31, but it remains unclear 
whether it is due to the Weyl orbits or to the topological-insulator-type 
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surface states that result from the chirality mixing effect of Dirac sem-
imetals6. The latter corresponds to a conventional quantum Hall state 
without interaction between two surfaces.

Taking advantage of the recent progress in relation to the quantum 
Hall effect in Cd3As2 nanostructures22, here we use samples with wedge 
geometries to detect directly the quantum phase from the bulk propaga-
tion in Weyl orbits. As illustrated in Fig. 1d, the sample has a thickness 
gradient along the x direction. As a result, the accumulated quantum 
phase is position-dependent. Following the modified Lifshitz–Onsager 
relation in Weyl orbits20, the quantization condition is also position- 
dependent, which results in a non-uniform filling factor υ along the x 
direction. In the quantum Hall states, the quantization condition gives 
rise to chiral ‘edge’ states in the bulk that do not meet an edge, with υ 
changing by 1 at these edge states (Fig. 1d, e). The in-bulk chiral modes 
are dispersive along contours of equal thickness, localized along the x 
direction and extend along the z direction. However, despite extending 
over the entire thickness, each in-bulk chiral mode is a single mode, 
which is fundamentally different from what is observed in stacked 2D 
quantum Hall systems. These in-bulk chiral modes, and the edge modes 
that are induced by the sharp boundaries at the edges, all come from 
the intersection of a Landau level with a Fermi level (Fig. 1f). As the 
magnetic field changes, the real-space locations of the chiral modes 
also shift. For instance, an increase in the field strength reduces the 
contribution to the phase by the surface Fermi arcs, requiring the chi-
ral mode to compensate by moving to positions with larger thickness 
until it annihilates with the counter-propagating mode at the edge. 
We carried out numerical simulations for the wedge geometry using a 
tight-binding model (see Supplementary Information for details). The 
local density of states that we obtain (Extended Data Fig. 1a) clearly 
demonstrates the existence of chiral modes at certain x positions in the 
bulk—those at which the sample thickness satisfies the quantization 
relation. We also find that the in-bulk chiral modes are robust against 
moderate disorder, surface roughness, the Lifshitz energy and the 

hybridization effect due to breaking of the crystal symmetry (Extended 
Data Figs. 1–3). Using the wedge geometry, we can detect directly the 
thickness-variation-modulated chiral modes via the quantum Hall 
resistance in different regimes, confirming the Weyl-orbit nature of 
the quantum Hall states.

To probe in-bulk chiral modes experimentally, we carried out  
magneto-transport on Cd3As2 nanobelts (belt-shaped nanostruc-
tures) with slightly inclined top surfaces (see Methods). Using this 
geometry, we probe directly the thickness-dependent quantum phase  
within a single sample. By contrast, comparing the thickness effect 
from a series of samples of different thickness would require exclud-
ing sample-to-sample variations in Fermi energy. First, we selected  
a sample (sample 1) with a gradual change in thickness along the  
longitudinal direction (Fig. 2a–c) for transport measurements. 
Three sets of parallel Hall electrodes (1–2, 3–4 and 5–6) were fab-
ricated on the sample, with thicknesses of about 59 nm, 66 nm and 
71 nm, respectively, at the corresponding contact regions. On the 
basis of the analysis of Fig. 1d–f, we schematically show in Fig. 2d the  
anticipated distribution of quantum Hall chiral modes with such a 
thickness variation, which can be detected through the local quan-
tum Hall resistance. In Fig. 2e we show the Hall resistance Rxy meas-
ured at the three terminals. We find that although the classical Hall  
resistances for three pairs of electrodes are almost identical in the low-
field regime, a systematic shift in the positions of the Hall plateaus 
for different thicknesses occurs as the systems enter the quantum 
Hall states. For a fixed filling factor, the Hall resistance in the thinner 
regimes enters the corresponding plateau at lower magnetic fields. 
That is to say, as the magnetic field increases, each Landau level is 
first depleted at the thinner positions of the sample. From the unequal 
filling factors detected at different terminals, we anticipate the exist-
ence of diverted chiral modes across the sample width at certain lon-
gitudinal positions. In Fig. 2f, in which we compare the two adjacent 
Hall resistances (1–2 and 3–4) with the corresponding longitudinal 
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Fig. 1 | The quantum Hall effect in Weyl orbits. a, Illustration of the Weyl 
orbit under magnetic field B. Two pairs of Weyl nodes of opposite chirality 
(+ and −) in the bulk are connected by Fermi arcs (black arcs) on two 
surfaces in the kx−ky plane. Electrons propagate between the two surfaces 
(blue and orange arrows) in real space along the z direction via the chiral 
Landau levels to complete the cyclotron motion. b, Cyclotron quantum 
Hall orbits of a 2D electron liquid in a magnetic field perpendicular to 
the x–y plane. The chiral mode forms along the edge (left). c, Weyl orbits, 
which consist of surface Fermi arcs and bulk chiral Landau levels of a 3D 
Weyl semimetal in a magnetic field perpendicular to the x–y plane. The 
solid blue and dashed red trajectories correspond to Fermi arcs on the top 
and bottom surfaces, respectively, which are connected through the chiral 
Landau levels in the bulk. d, A geometry with varying thickness z along 

the x direction. Two pairs of counter-propagating chiral modes (dark 
and light blue lines, with directions marked by the purple circles) occur 
on the side walls and at certain critical thicknesses, but with opposite 
Fermi velocities owing to the opposite signs of the thickness gradient. 
e, The same sample geometry as in d but showing the x–y cross-section, 
where we have introduced a non-infinite width along the y direction. Two 
chiral modes occur and close the loop of chiral modes. Possible chiral 
modes, corresponding to the lower Landau levels, around the exterior of 
the system are not shown. f, A schematic of the energy E landscape of the 
Weyl orbits as a function of x and therefore the thickness variation in d; 
different curves correspond to different Landau levels for the Weyl orbit. 
As the energy is pushed across the Fermi level µ, gapless states occur at 
that particular x position.
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magneto-resistance Rxx (1–3), Shubnikov–de Haas oscillation peaks 
appear at the averaged positions of the Hall transitions, with relatively 
large peak widths.

We performed another set of experiments with a second sample 
(sample 2), in which the surface is tilted along the transverse direction 
(y axis) with respect to the direction of current. As shown in Fig. 3a–c, 
the sample thickness on the right side (about 55 nm) is less than that 
on the left side (about 61 nm). Upon performing the same analysis as 
for sample 1, Fig. 3d schematically illustrates the mode distribution in 
sample 2, with emergent in-bulk chiral modes along the equal-thick-
ness contours. Here, instead of changing with electrode position, the 
transition fields of quantum Hall plateaus shift when the direction of 
the magnetic field switches from being along the positive to the negative 
z axis (Fig. 3e). The transitions of the filling factor from υ = 2 to υ = 1 
occur at around 21 T and 28 T for the positive and negative z directions, 
respectively, with a large difference of 7 T. This kind of non-uniform 
thickness along the [441] direction (y axis) is more commonly observed 
in as-grown Cd3As2 nanobelt samples. Note that here the asymmetric 
behaviour with respect to the magnetic field does not necessarily indi-
cate the spontaneous breaking of time-reversal symmetry because the 
reciprocity of the conductance coefficients for four-terminal measure-
ments would require both inverting the magnetic field direction and 
swapping the current and voltage terminals32. In a quantum Hall sys-
tem, the chiral mode responsible for charge transport switches to its 
counter-propagating counterpart when the magnetic field switches 

direction. In our set-up, Rxy measures the channel number at the right 
and left edges for the magnetic field in the positive and negative z direc-
tions, respectively. Meanwhile, unlike the uniform-thickness case, in 
which Rxy is not affected by a small misalignment of the electrodes in 
the localized state (because Rxx is zero in the four-terminal measure-
ment), the Hall plateau in Fig. 3e is interrupted by a peak in Rxx between 
terminals 2 and 4 on the left edge at around −15.6 T. This finding 
suggests that one edge of the sample has entered the extended state 
while the other remains in the localized state at the corresponding field 
of the peak. In Fig. 3f–h we show Rxx measured between terminals 1 
and 3 and between terminals 2 and 4, and Rxy measured between ter-
minals 1 and 2. Two small peaks for terminals 2–4 are enlarged in 
Fig. 3i, and correspond to the filling factor transitions υ = 3 to υ = 2 
and υ = 2 to υ = 1. Once again, in comparison to the right edge, the 
features on the thicker left edge are shifted to higher magnetic fields. 
Hence, the field-asymmetric behaviour of the Hall resistance in sample 
2 is consistent with the Landau-level shift along the longitudinal direc-
tions in sample 1, suggesting a thickness-dependent Landau-level 
energy for the quantum Hall state in Cd3As2. By comparing the bulk 
quantum oscillations with in-plane magnetic fields (see Methods), we 
rule out the possible thickness-variation-induced change in the Fermi 
levels as the origin of the Landau-level shift.

We present in Fig. 4 another piece of evidence for the connection 
between the Landau level and the k-space separation of pairs of Weyl 
nodes. The separation of pairs of Weyl nodes (defined by the Weyl 
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Fig. 2 | Quantum Hall effect in sample 1, which is wedge-shaped 
along the x axis. a, Optical image of the Hall bar device with terminals 
indexed. Scale bar, 15 µm. b, Schematic of the sample geometry. The 
sample thickness increases slightly along the x axis. The electric current 
I is applied along the x axis. c, Cross-sectional thickness profiles (offset 
for clarity) determined using atomic force microscopy near the three 
pairs of Hall electrodes (1–2, 3–4 and 5–6). The root-mean-square 
roughness in the thickness is roughly 2.0–2.6 nm. d, Schematic of the 
quantum Hall edge states for the wedge-shaped sample with a thickness 
gradient along the x axis. The electrodes are marked by the yellow boxes 
with the current I along the x direction. The light and dark red curves 

indicate the chiral modes. The magnetic field B is applied along the out-
of-plane direction, as marked by the green circle. e, Hall resistance Rxy (h, 
Planck constant; e, electronic charge) measured at the three pairs of Hall 
electrodes. The values of Rxy at the plateaus are labelled. f, Comparison of 
the magnetoresistance Rxx between terminals 1 and 3 (red, left axis) and 
Rxy between terminals 1 and 2 (blue, right axis) and between terminals 3 
and 4 (green, right axis). The Shubnikov–de Haas oscillation peaks in Rxx 
are wide and cover the whole shifted regime between the two sets of Hall 
resistances. The vertical blue and red dashed lines mark the fields at which 
the Hall plateau changes, which agree with the peaks in Rxx.
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vector kw) is along the [001] axis (Fig. 4a). When we tilted the mag-
netic field away from the normal direction in opposite directions (two 
tilting directions shown in Fig. 4b), we obtained different phase terms 
related to the Weyl vector. On the other hand, other potential mecha-
nisms associated with the variable-thickness geometry, such as thick-
ness-modulated changes in the Fermi level or band structure, would 
produce no distinction for the opposite tilting directions. In Fig. 4c we 
show a series of Hall resistances for sample 2 with the same tilting angle 
but opposite tilting directions (as illustrated in Fig. 4b). For low fields 
Hall resistance curves overlap, indicating no substantial deviation in the 
calibration of the zero-angle position in experiments. But several pla-
teaus at high fields exhibit a notable difference between the two tilting 
directions. In Fig. 4d we summarize the shift in several Hall plateaus 
as a function of tilting angle. The shifts of even and odd Landau levels 
are generally opposite. We attribute this behaviour to the contributions 
from the phase shift due to kw and from the Zeeman effect. Because the 
two contributions are coupled with the magnetic field direction in a 
similar manner, it is difficult to evaluate them separately. For the plateau 
corresponding to υ = 3, the Landau-level shift saturates gradually as 
the angle increases and eventually starts to decrease. This decrease is 
possibly due to the Landau-level crossing behaviour when the splitting 
is changed by tilting the magnetic field.

A quantitative analysis of the thickness-dependent quantum phase 
shift can be carried out using the modified Lifshitz–Onsager relation 
for Weyl orbits. The phase shift in the inverse of the magnetic field can 
be expressed as (see Methods)

∆
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where Bn is the magnetic field at which the nth Landau level is reached, 
Sk is the momentum-space area enclosed by the surface Fermi arcs, and 

kw  and kF  are the separation between the pair of Weyl nodes and the 
Fermi wavevector, respectively, both along the magnetic field direction. 
In Cd3As2, there are two sets of overlapping Weyl cones in the bulk, 
with opposite Weyl vectors, as a result of the time-reversal and inver-
sion symmetries. Owing to the lack of a chirality-sensitive approach, 
they could not be distinguished previously22. By contrast, the two Weyl 
orbits are split in quantum oscillations by the ±kF  contribution to the 
phase shift, and the second term from the kF  contribution gives the 
overall thickness-dependent phase shift regardless of the chirality 
(Fig. 5a). From Figs. 2 and 3, we find that the thickness variation mainly 
induces a universal phase shift and the Landau-level shift is dominated 
by the contribution from kF ; the even–odd splitting between the Weyl 
orbits of opposite chirality is comparably smaller. For this reason, we 
define the Landau-level shift ratio as ∆(1/Bn)Fs, which corresponds to 
phase changes of multiples of 2π, where Fs is the quantum oscillation 
frequency of the Weyl orbit (not including the splitting-induced fre-
quency doubling). In Fig. 5b we plot the Landau-level shift ratio aver-
aged over the even and odd Landau levels of different electrodes for 
several samples as a function of the respective differences between the 
sample thicknesses at the locations of the electrodes. By performing a 
linear fit to the data, we obtain a slope of 0.068, smaller than the theo-
retical value of 1/π expected from the expression for the phase shift. 
One reason for the deviation could be that the bulk Fermi surface is no 
longer isotropic at low energy because it is at high Fermi energy24,33. 
This would affect our estimate of kF  using the in-plane bulk quantum 
oscillations, which gives the average Fermi wavevector of the (110) 
plane.

The type of quantum Hall effect described here, based on Weyl 
orbits, goes beyond the conventional scenario of stacking 2D quantum 
Hall planes. The quantum phase of the cyclotron Weyl orbits and the 
corresponding Landau levels depend on not only the magnetic field 
but also the sample thickness. In this context, it would be interesting to 
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Fig. 3 | Quantum Hall effect in sample 2, which is wedge-shaped along 
the y axis. a, Optical image of the Hall bar device with terminals indexed. 
Scale bar, 15 µm. b, Schematic of the sample geometry. The sample 
thickness slightly increases along the y axis. c, Cross-sectional thickness 
profiles across the sample along the y axis. The red dashed line highlights 
the trend of the thickness variation. d, Schematic of the quantum Hall 
edge states for the wedge-shaped sample with a thickness gradient along 
the y axis. e, Hall resistance Rxy measured with the magnetic field along 
the positive (B+) and negative (B−) z directions. The values of Rxy at the 

plateaus are labelled. f–h, Rxx measured between terminals 1 and 3 (f) 
and between terminals 2 and 4 (g), and Rxy measured between terminals 
1 and 2 (h), at different temperatures. Some shifts in the Landau levels 
are observed in the two sets of Rxx curves (f, g), but the peak positions 
are generally located near the transition of Rxy. The vertical blue and red 
dashed lines mark the fields at which the Hall plateau changes, which agree 
with the peaks in Rxx. i, Enlarged view of g, with two small peaks marked 
by arrows.
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investigate the real-space distribution of the chiral modes via scanning 
probe experiments and the effect of correlations with a higher magnetic 
field or lower carrier density. The interplay between topological Weyl 
and Dirac semimetals and quantum Hall physics will open up new 

research into topological phenomena and device applications in three 
dimensions beyond 2D electron systems.
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arrows denote the crystallographic directions. Tilting the magnetic field 
B by an angle θ along the two opposite directions shown will result in 

identical behaviour in real space, but yields different angles with respect 
to the Weyl vector kw. c, Hall resistance Rxy of sample 2 for the same tilt 
angle but different tilting directions, as illustrated in b; blue and red lines 
correspond to positive and negative θ, respectively, and different shades 
correspond to different θ (as labelled). The values of Rxy at the plateaus 
are labelled. d, Angular dependence of the Landau-level shifts ∆(1/B) for 
different Hall plateaus (illustrated by the tilt angle θ). Opposite Landau-
level shifts take place for even and odd fillings υ. The error bars represent 
the deviations in the shifts for different regimes in the transition.
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METHODS
Modified Lifshitz–Onsager relation in a Weyl orbit. As derived in a phase-space 
quantization analysis20, the Lifshitz–Onsager relation of a Weyl orbit is

γ= π ⎡

⎣
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+ −

π
+

⎤
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e
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n L k k1 2
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( 2 )
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where n is an integer index for the Landau level, L is the sample thickness, ħ =  
h/(2π) and γ represents a constant phase offset generated from other quantum 
effects20. Compared to a conventional cyclotron orbit, the additional term 
− + / π! !L k k( 2 ) (2 )w F  results from the phase accumulated during the propagation 
through the bulk, which gives the thickness dependence of the Landau-level energy 
and can be used as the signature of Weyl orbits20. However, isolating this phase 
from other parameters, such as the change in the Fermi surface in a quantum 
oscillation study, is difficult and a direct probe is still lacking in experiments. So 
far, the only evidence for this bulk propagating process is from a qualitative com-
parison of Shubnikov–de Haas oscillations between rectangular- and triangu-
lar-shaped Cd3As2 microstructures21. In the triangular case, the Weyl-orbit 
oscillations vanish owing to destructive interference from the large thickness var-
iation.
Finite thickness effect in Cd3As2 nanostructures. The Fermi level interacts with 
both the surface Fermi arcs and the bulk state of the Weyl orbit. With a Fermi level 
away from the Weyl nodes, the electrons on the surface Fermi arcs may tunnel into 
the bulk before moving all the way to the projections of the Weyl node.

All bulk Landau levels, including the chiral mode, become continuous  
owing to the energy dispersion along the magnetic field (Extended Data Fig. 4a). 
This is very different from 2D systems such as graphene. Therefore, bulk  
Laudau levels cannot host quantized transport because there are too many  
modes. As discussed previously22, to realize the quantum Hall effect, the  
bulk states need to have discrete energy levels as well. In our case, the finite  
quantum well structure in the Cd3As2 nanobelts forms a series of sub-bands, 
among which only a few bands are occupied, owing to the relatively low Fermi 
level (Extended Data Fig. 4b). Therefore, the band degeneracy for the Weyl orbit 
will be the sub-band number times the number of pairs of Weyl nodes. A sub-
band number of 2 was observed previously, determined by the ratio between 
the quantum Hall mode number and the Landau-level index22. Here we choose 
thinner samples to reduce the degeneracy from the bulk sub-bands. The occupied 
sub-band number is determined to be 1 for sample 2 (possibly due to the smaller 
thickness and lower carrier density in sample 2) and 2 for sample 1. The different 
sub-band numbers explain why the quantum Hall resistance is very different 
whereas the surface and bulk oscillation frequencies (Fermi levels) are similar 
in these samples. Thinner samples can also help to suppress the conduction of 
the bulk channel.

Apart from the formation of bulk sub-bands, the effect of the finite (non-in-
finite) thickness in Cd3As2 nanostructures also induces a bandgap in the 2D limit24. 
Density function calculations were carried out using the Vienna ab initio simula-
tion package (VASP)34 with the Perdew–Burke–Ernzerhof exchange-correlation 
functional35. We used a plane-wave cut-off of 300 eV and a 4 × 4 × 2 k-point 
grid, with spin–orbit coupling included in all calculations. The experimentally 
determined I41/acd crystal structure was used. The Hamiltonian was projected 
onto a basis of Cd 5s and As 4p states, using a Wannier projection36. We used this 
scheme to study the slab geometries in our experiments. As shown in Extended 
Data Fig. 4c–e, we find that for slabs with thicknesses of less than 10 nm, the bulk 
gap is substantial. The gap decreases rapidly as the thickness increases. For slabs 
with thicknesses of about 40 nm or 60 nm, the finite-thickness effect is negligible, 
with a gap value of less than 5 meV.
Material growth. The Cd3As2 nanobelts were grown by chemical vapour deposi-
tion using Cd3As2 powder as the precursor and argon as a carrier gas, similarly to 
previous reports22,37,38. The temperature was ramped rapidly to the growth tem-
perature within 20 min, held constant for 30 min and then cooled naturally with 
the flow of argon. The precursor was placed in the hot centre of the furnace (around 
760 °C) and the dull-polished quartz substrates were placed down-stream (around 
200–250 °C). The as-grown Cd3As2 nanobelts adopt surfaces in the (112) crystal 
plane, with the longitudinal direction along the [110] axis—the same as the bulk 
crystals39,40. In our study, we specifically selected samples with inclined top surfaces 
to achieve non-uniform thicknesses. This type of Cd3As2 nanobelt forms naturally 
during chemical vapour deposition owing to differences in growth rates along 
different orientations, which originate from factors such as non-uniform flux 
flow41. The growth process results in a wedge-shaped cross-section, with the thick-
ness varying slightly across the sample. We examine the sample-thickness profiles 
using atomic force microscopy. The carrier density and mobility for the as-grown 
nanobelts at low temperatures are usually of the order of 1017 cm−3 and 
105 cm2 V−1 s−1, respectively. These parameters enable easy access to the quantum 
Hall regime in transport.

Extended Data Fig. 5a shows a scanning electron microscopy (SEM) image of 
Cd3As2 nanostructures grown by chemical vapour deposition. Here, we selected 
one area with large nanobelts so that the wedge shape can be seen directly in side-
wall SEM. As circled in Extended Data Fig. 5a, the wedge shape is very common 
in the as-grown nanobelts. The largest surface in the nanostructures is the (112) 
plane, consistent with previous reports39,40. Extended Data Fig. 5b shows the X-ray 
diffraction pattern of a large Cd3As2 belt with the (112) plane.
Device fabrication and measurements. Cd3As2 nanobelts were first transferred 
to pre-patterned silicon substrates with 285-nm thermal SiO2. Samples with a 
thickness in the range 50–100 nm were chosen for transport measurements to 
suppress bulk conduction and to avoid inter-surface hybridization. The Hall bar 
devices were fabricated using electron beam lithography and wet-etched by stand-
ard buffered HF solution for about 3 s at the electrode area with deposition of Ti/Au  
(3 nm/150 nm) bilayers as the contact metal. The devices were pre-measured  
in a physical property measurement system (Quantum Design) to find low- 
carrier-density samples for high-magnetic-field experiments. High-magnetic-field 
transport experiments were carried out in water-cooled resistive magnets at the 
High Magnetic Field Laboratory in Hefei and the National High Magnetic Field 
Laboratory in Tallahassee. The high magnetic field (up to 34.4 T) in our experi-
ment settings allows more quantum Hall plateaus to be resolved than in previous 
studies22.
Excluding other possible mechanisms for the thickness-dependent Landau-
level shift. Although the thickness dependence of Landau-level energy fits the 
scope of Weyl orbits, we now discuss whether there are other possible origins. 
Recent experiments have shown that with an out-of-plane magnetic field the 
quantum oscillations in Cd3As2 are dominated by the surface states for sample  
thicknesses of tens to a few hundreds of nanometres, especially for low- 
Fermi-level samples21,22,42. Apart from the Weyl-orbit scenario proposed here, 
the quantum Hall effect may also come from topological-insulator-type surface 
states. First, the connection between the steady change in sample thickness and 
the Landau-level shifts excludes randomly distributed defects for the spatially 
non-uniform quantum Hall resistance. Unlike Weyl orbits, topological-insulator- 
type surface states are generally not sensitive to the sample thickness unless 
there is inter-surface hybridization43. The thickness of our samples is still very 
large compared with the typical penetration depth of surface states. To confirm 
this, we rotated the magnetic field in-plane to eliminate the dominant surface 
quantum oscillations. Another set of quantum oscillations with a much smaller 
frequency (about 7.8 T) was detected in sample 2 and in other measured samples 
(Extended Data Figs. 6–8, Extended Data Table 1). This set corresponds to the 
bulk Fermi surface, indicating a well-defined bulk regime without strong hybrid-
ization between the top and bottom surface states. In addition, these quantum 
oscillations with the in-plane magnetic field show no thickness dependence in 
either sample (Extended Data Figs. 6e, 7a), suggesting that the Fermi energy does 
not vary with thickness and hence an interpretation in terms of a steady change in 
the Fermi energy with thickness is unlikely. Therefore, topological-insulator-type 
surface states cannot account for the strong thickness dependence of the Landau-
level shift observed here.
Discussion of proper sample thickness. In Weyl-orbit assisted quantum Hall 
states, the overall sample thickness is very important. If the sample is too thick, 
the bulk conduction will overwhelm the surface transport and the electrons may 
suffer phase de-coherence over the long path across the thickness. If the sample is 
too thin, the strong quantum confinement effect and inter-surface hybridization 
will lead to a phase transition from a Dirac semimetal to a gapped insulator (or a 
topological insulator)24, in which the Fermi arcs can be substantially deformed. 
Our density functional theory calculations (Extended Data Fig. 4) suggest that the 
bulk bandgap from the finite-thickness effect is prominent only below 10 nm and 
becomes negligible above 40 nm. Therefore, we estimate that the ideal thickness 
for the emergence of the non-trivial quantum Hall effect based on Weyl orbits 
in Cd3As2 should range from about 40 nm to roughly 100–200 nm. In addition, 
a relatively flat surface profile (the ratio between the surface roughness and the 
total thickness) is important to avoid strong phase de-coherence from thickness 
fluctuations. In contrast to the Cd3As2 nanostructures obtained by chemical vapour 
deposition22 and focused ion beam fabrication21, only bulk-state quantum oscilla-
tions are observed for 100-nm-thick thin films grown by pulsed laser deposition44. 
This is possibly related to the random terrace- or island-like features that typically 
form during thin-film deposition, especially for low-temperature deposition45,46, 
which may induce extra scattering and phase de-coherence to the Weyl orbit. The 
surface roughness of our samples is only a few nanometres. Still, many small fea-
tures of additional oscillations show up in Rxx at very low temperatures, possibly 
corresponding to the contributions from areas of different thickness, and they 
smear out above 4 K (Extended Data Figs. 6d, 7c).
Comparison of even and odd Landau levels. By taking a closer look at the quan-
tum Hall data, we find that not only the transition positions but also the plateau 
widths change simultaneously with thickness (Figs. 2d, 3d). Because the quantum 
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oscillations are periodic with respect to the inverse of the magnetic field B, we 
define the plateau width in terms of 1/B and plot the change in plateau width 
against the sample thickness. The even and odd Landau levels adopt opposite 
trends in terms of the decrease in thickness (Extended Data Fig. 9). This behaviour 
is usually associated with the change in the Zeeman splitting energy influenced by 
related parameters such as the magnetic field, which modifies the gap between the 
split Landau levels with opposite spins or pseudospins. In our case, the Zeeman 
effect and the phase-shift term from kw  (discussed in the main text) will both lead 
to splitting behaviour of even and odd energy levels with the magnetic field. 
Although the g factor of the surface state should not be affected by the sample 
thickness, the global Landau-level shift results in a change in the magnetic field, 
which modifies the Zeeman energy. However, this change in the field is typically 
small compared to the magnetic field itself (for example, ∆B ≈ 4 T for B ≈ 20 T 
and υ = 5 in sample 1). By ignoring the contribution of the Zeeman effect, we 
estimate kw  = 0.154 nm−1 and kw = 0.188 nm−1 for ∣ ∣∆ / = ∆ / πB F k L(1 ) (2 )n s w

2 . 
We find that this value of kw is four times smaller than the values estimated previ-
ously21 from the size of the Fermi surface of the Weyl orbit (about 0.8 nm−1). This 
difference suggests that the k-space area enclosed by the Weyl orbit in Cd3As2 along 
the magnetic field direction is largely contributed by the curvature of the Fermi 
arc rather than the separation of the Weyl nodes.

Data availability
The data shown in the plots and that support the findings of this study are available 
from the corresponding author on reasonable request.
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Extended Data Fig. 1 | Numerical simulations of a wedge-shaped Weyl 
semimetal. a, b, The local density of states (DOS; colour scale) in different 
cross-sections of a clean system with random impurities W = 0 (a) and 
a system with random impurities W = 0.1 (both in the bulk and on the 
surface; b), showing the location and extent of the modes. The system 
size is Lx = 120, Ly = 100 and Lz ∈ [21, 35], with sharp side walls at both 
ends. The upper panels show trapezoidal x–z cross-sections, with the local 
DOS averaged across y ∈ [0.1Ly, 0.9Ly] to exclude contributions from 
the modes on the side walls at both ends in the y direction. The lower 
panels show the x–y cross-sections, with the local DOS averaged across 
the thickness Lz. We set the Fermi energy to µ = 0.4. c, d, Real-space 

thickness profile in the x–y plane (Lz, colour scale; c) and the local DOS 
(d). The settings are the same as in a, except that we consider a system with 
an uneven top surface (see c). e, Local DOS across the x–z cross-section, 
averaged over y ∈ [0.1Ly, 0.9Ly]; µ = 0.41. f, Local DOS in the x–y cross-
section, averaged over the thickness Lz, for Fermi energies of µ = 0.41, 
µ = 0.40 and µ = 0.39. As the Fermi energy shifts, the x position of the 
bulk modes moves accordingly. g, Schematic of the Landau levels. A chiral 
mode appears where the Landau level crosses the Fermi energy µ (red 
dotted lines). The energy profile also illustrates the origin of the counter-
propagating chiral modes on the right side wall. The system size is Lx = 90, 
Ly = 100 and Lz ∈ [21, 49]; W = 0.

© 2019 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 2 | Illustration of Weyl orbits beyond the Lifshitz 
energy. a, b, Surface Fermi arcs and projection of the bulk Fermi surfaces 
(FSs). Whereas the Fermi surfaces are separate and carry topologically 
quantized Berry curvatures in a, they merge into a single Fermi surface 
in b. Still, parts of the surface Fermi arcs remain well defined because the 
bulk is gapped at these surface wavevectors. c, Local DOS (colour scale) 

in the y–z cross-section of the Weyl semimetal lattice model with a slab 
geometry and a magnetic field at cyclotron resonance. The Fermi energy 
µ = 1.05 > 1.0 is beyond the Lifshitz transition in the bulk, yet we still 
observe clear signatures of the Weyl orbits consisting of both surface and 
bulk components.

© 2019 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 3 | Numerical simulations of a wedge-shaped 
Dirac semimetal. a–c, Local DOS (colour scale) of Dirac semimetal 
models showing the location and extent of the modes for different orbit 
hybridization amplitudes: ∆ = 0.1 in the two surface layers at the top and 
bottom surfaces (a); ∆ = 0.05 throughout the entire bulk (b); and ∆ = 0.2 
(c). The system size is Lx = 64, Ly = 100 and Lz ∈ [21, 35], with sharp side 

walls at both ends; µ = 0.4, W = 0. The upper panels are the trapezoidal 
x–z cross sections, with the local DOS averaged across y ∈ [0.1Ly, 0.9Ly] to 
exclude contributions from the modes on the side walls at both ends in the 
y direction. The lower panels show the x–y cross sections, with the local 
DOS averaged across the thickness Lz. The chiral modes vanish completely 
in c.

© 2019 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Finite-thickness effect in Cd3As2 slabs with (112) 
surface. a, Bulk Landau-level spectrum for a Weyl cone without quantum 
confinement. The blue line denotes the gapless chiral Landau level.  
b, Bulk Landau-level spectrum for a Weyl cone with quantum confinement 
along the z axis. The yellow dots denote the discrete energy levels due to 
quantization in the finite-thickness quantum well. c–d, Representative 

band structures of Cd3As2 slabs with thicknesses of about 40 nm (c) and 
about 60 nm (d). The red lines denote the Fermi arc surface states, which 
persist for the 40-nm-thick films. e, Energy gap as a function of thickness. 
The finite-size effect is only important for slabs with thicknesses of less 
than 10 nm.

© 2019 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 5 | SEM image of Cd3As2 nanoplates. a, A typical SEM image of as-grown Cd3As2 nanostructures. Scale bar, 100 µm. b, X-ray 
diffraction pattern of a large Cd3As2 belt with the (112) plane.
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Extended Data Fig. 6 | Additional transport data for sample 1.  
a, Low-field oscillations of Rxx. The inset shows the corresponding 
Landau fan diagrams, the fitting curves of which have the same slope. The 
oscillation frequency is unchanged when measured at different terminals, 
as indicated by the parallel dashed black lines, suggesting that the Landau-
level shift is not induced by the change in the size of the Fermi surface. The 
low-field oscillations are used to extract the Landau-level index. b, Hall 
resistance as a function of 1/B. c, Comparison of the Hall resistance Rxy  
at positive and negative magnetic fields for terminals 1–2, which is  

field-symmetric. d, Temperature dependence of Rxx. Small oscillation 
features are observed at very low temperature (below 1 K). Considering 
their periodicity and carrier mobility, and given that there is no 
corresponding feature in Rxy, these oscillations are not from the fractional 
quantum Hall effect. They probably come from regimes with different 
thickness, the Landau levels of which are shifted by the thickness-
dependent phase term. e, Stack view of bulk quantum oscillations with  
in-plane magnetic field measured at different terminals of sample 1.
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Extended Data Fig. 7 | Additional transport data for samples 2 and 3.  
a, b, Bulk quantum oscillations in samples 2 (a) and 3 (b) with the 
magnetic field applied in-plane. The oscillation positions are symmetric 
in B and there is no shift between the two curves, which helps to exclude 
changes in the bulk band with thickness as the origin of the Landau-level 
shift. c, Rxx measured at terminals 2–4 at different temperatures, which 
is also asymmetric under magnetic fields, similarly to Fig. 3e. The arrow 
marks the large oscillation peak, which is detected in Rxy (Fig. 3e) at the 
same field. d, Hall resistance measured at two sets of Hall terminals along 
the x axis with the same thickness profile. The inset shows an optical image 
of the Hall bar device with terminals indexed; scale bar, 15 µm.
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Extended Data Fig. 8 | Transport data for samples 3 and 4. a, b, Magnetotransport results for sample 3. c, d, Magnetotransport results for sample 4. 
Samples 3 and 4 both show strong asymmetric behaviour with magnetic field, similarly to sample 2.
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Extended Data Fig. 9 | Change in the Landau-level plateau width with 
sample thickness and field direction. a, Change in plateau width in 
sample 1 at different terminals. The trends for even and odd plateaus 

are opposite. b, Change in the plateau width for positive and negative 
magnetic fields. Here ν is the filling factor. The error bars represent the 
deviations of the transition field.

© 2019 Springer Nature Limited. All rights reserved.



LETTERRESEARCH

Extended Data Table 1 | Summary of physical parameters for the 
four samples

FB and FS represent the bulk and surface oscillation frequency, respectively. Lave and ∆L are the 
average sample thickness and thickness variation, respectively.
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