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Abstract—Preserving privacy in machine learning on multi-
party data is of importance to many domains. Existing solutions
suffer from several critical limitations, such as significantly
reduced utility after enforcing differential privacy, excessive
communications burden between information fusion center and
local participants who contribute data, etc. These severely limit
their practical adoption. In this paper, we propose and implement
a new distributed deep learning framework that addresses these
shortcomings and preserves privacy in a more accurate and
efficient way than prior methods. During the stochastic gradient
descent process in training a deep neural network, we focus
on the parameters with large gradient values to save privacy
budget consumption, and adopt a generalization of the Report-
Noisy-Max algorithm in differential privacy to select and release
these gradients in order to prevent indirect privacy leakage.
Inspired by the recent novel work of [1], we also limit the
shared gradient for each parameter to be one of three floating
numbers {−B, 0, B}, where B is the bound for each gradient.
This method can significantly reduce the communication burden
without severely affecting accuracy. Furthermore, we evaluate
the performance of our system on a real-world credit card fraud
dataset consisting of millions of transactions.

Index Terms—differential privacy, deep learning, distributed
machine learning, credit card fraud detection

I. INTRODUCTION

Detecting fraudulent credit card transactions is one of the
biggest challenges in the banking industry. Modern technology,
especially innovation in machine learning, has been applied to
both analyze the spending patterns of customers and to block
transactions that are irregular or possibly fraudulent [2]–[5].
Among various machine learning approaches, neural network
models have demonstrated exceptional performance, provided
an abundant supply of labeled training data is available [6],
[7]. Financial transaction information, however, is considered
sensitive in both its relationship to customer privacy and its
importance as a source of proprietary advantage to banks.
Because of these privacy issues, neural network models for
fraud detection are typically trained using only the in-house
data collected by each bank individually. The increasing
concern over data privacy imposes restrictions and barriers
to data sharing and make it difficult to coordinate large-scale
collaborative studies. Privacy preserving multi-party machine

learning offers the promise that it can take advantage of
data sets from different banks and thereby construct a model
superior to stand-alone efforts.

Consider the example where the transactions in different
banks or credit card companies focus on different merchant
categories (e.g. retail stores, wholesale trade, transportation).
The spending patterns of customers differ vastly across mer-
chant categories and stand-alone efforts to build fraud detec-
tion model in each bank fail to generalize well to unseen
transactions due to lack of information in other merchant
categories. To resolve this impasse, it is crucial to design
a multi-party machine learning mechanism to facilitate the
collaboration among different banks without violating cus-
tomer privacy or leaking business secret. It should be noted
that similar opportunities are present in other fields as well
[8]. In medical or psychological studies, for example, central
aggregation of data sets may not be possible or permitted due
to logistic complexities or privacy concerns associated with
patient records or sensitive human-subject data.

This paper aims to provide a privacy preserving method
for training deep neural networks from multiple sources of
data. The performance of the proposed method is evaluated
using a real-world credit card fraud detection dataset. Our
work bridges the gap between collaborative machine learning
and privacy-preserving machine learning, with the aim of
providing a framework that can be the basis for banks and
other entities to share their data without revealing sensitive
information.

There have been various attempts to address the privacy
challenge, such as anonymization and encryption [9]–[11].
However, some of the existing solutions either have high
communication and computation burden or do not have mathe-
matically rigorous privacy guarantees [12], [13]. Indeed, many
of the previous work along these lines have been proven to
not be private at all [14], [15]. Here, we follow a prevalent
theoretical framework for differential privacy [16] and propose
a differentially private and effective method to train a deep
neural network. There are numerous efforts focused on training
differentially private machine learning models from multi-
party data sets. One line of work is to develop algorithms to



combine classifiers from different participants. Pathak, Rane,
and Raj [17] leverage cryptography to securely average over
local classifiers and release a perturbed version of the averaged
model. This work lacks theoretical justification regarding
accuracy optimality of the averaged model (as critiqued by
[18]), and performs poorly when irregular or imbalanced
data are present across different organizations. A recent pa-
per [19] proposes an ensemble learning (of majority voting)
and (pseudo)labeling solution to make the previous solution
less restricted to averaging. It designates a trusted authority
to compose an ensemble model of local models and use this
model to label privacy-free (public) auxiliary data. The newly-
labeled data are then used to train a global differentially private
classifier, which can be released safely. The difficulty with this
approach is the assumption that a trusted authority exists; the
primary motivation for multi-party learning derives from the
impossibility of establishing such an entity in practice.

Another line of work attempts to improve over [20] by
proposing differentially private versions of iterative numerical
optimizers, such as private (stochastic) gradient descent. These
solutions often work by adding noise to the gradients in each
iteration. However, it is possible that the model performance
will be severely affected for practical deployment in multi-
party learning. Moreover, in a large model like a deep neural
network, there are often hundreds of thousands parameters to
train and the excessive interactions/iterations results in fairly
quick privacy budget consumption.

In summary, our principal contributions are:

• We provide end-to-end differential privacy guarantee on
distributed deep learning, which improves recent propos-
als in terms of utility and privacy budget consumption.

• We propose a novel differentially private algorithm for
choosing the most important gradients in each iteration
and prove its privacy properties rigorously.

• We adapt the newly proposed idea of Terngrad to imple-
ment an efficient learning process with less communica-
tion bandwidth requirement.

• We evaluate our method on a real-world fraud detec-
tion data set with multi-million transactions and achieve
performances comparable to previous work even under
privacy constraints.

The next section reviews basic concepts and theorems in
differential privacy. Section III and Section IV present our
method and give a theoretical analysis of its privacy-preserving
property. Section V describes the dataset and the experimental
results. Finally, in Section VI, we conclude our work. Proofs
are given in the Appendix.

II. PRELIMINARIES

Differential privacy [21] is a mathematically rigorous notion
of privacy. More formally:

Definition 2.1 (Differential Privacy [22]): A randomized al-
gorithm M (with output space Ω and well-defined probability
density P ) is (ε, δ)-differentially private if for all adjacent data

sets D,D′ that differ in a single record and for all measurable
sets ω ∈ Ω:

Pr[M(D) ∈ ω] ≤ eεPr[M(D′) ∈ ω] + δ.

Differential privacy essentially implies that even when a strong
adversary knows the whole private dataset D except for the
target record, he or she still cannot infer much information
about the existence of the target in D because the output of the
randomized algorithm is almost unchanged. The parameter ε
is also defined as the privacy budget which quantifies the level
of privacy guarantee of the algorithm. When we think about
ε, we should understand it as a “budget” rather than a purely
statistical upper bound of the probability ratio in definition
2.1. A differentially private algorithm with smaller ε means
that it is more private. Every time the private dataset of a
participant is queried by a ε-differentially private algorithm
(e.g. gradient calculation), the amount of the privacy budget
ε will be consumed. When the private dataset is queried by a
composition of algorithms, the consumed privacy budget will
sum up following the composition theorems for differential
privacy [23]. In practice, each participant sets a total privacy
budget based on the desired level of privacy guarantee. When
the consumed privacy budget exceeds the total budget, algo-
rithms or queries can no longer be applied to the dataset.
The other privacy parameter δ quantifies the probability of the
algorithm failing to satisfy differential privacy and is usually
set to a very small number or zero.

A popular way to achieve differential privacy in machine
learning algorithms is output perturbation, which works by
adding noise to the output. The amount of noise is carefully
calibrated to the sensitivity of the output and ε. The sensitivity
measures the maximum change of the algorithm when a single
record in the input data is changed.

Definition 2.2 (Sensitivity [22]): The l2 sensitivity of func-
tion f is defined as:

S(f) = max
D,D′

‖f(D)− f(D′)‖2 ,

where ‖.‖2 denotes the l2 or Euclidean norm and D,D′ are
two neighboring datasets differeing only in one data point.

The Laplace Mechanism is one of the standard output
perturbation methods in differential privacy. It has been shown
to preserve (ε, 0)-differential privacy [22].

Definition 2.3 (The Laplace Mechanism [22]): Given any
function f : D → Rd, the Laplace mechanism M is defined
as:

M(D, f, ε) = f(D) + (n1, ..., nd)

where ni are i.i.d. random variables drawn from the Laplacian
distribution Lap(S(f)/ε).

With the basic techniques for designing a differentially
private algorithm, it is also important to investigate how
much privacy budget is consumed after composition of various
differentially private algorithms. For example, when training
a neural network, it is necessary to iterate numerous times
over the dataset in order to optimize the parameters due to
the non-convexity of the objective function. Reducing the



consumption of the privacy budget while achieving satisfactory
model performance remains an interesting and challenging
question. The following theorems are the basic and advanced
composition theorems in differential privacy and based on
these theorems we will present our approach to controlling
privacy budget consumption in the next section.

Theorem 2.4 (Basic composition theorem [22]): Let Mi be
an (εi, δi)-differentially private algorithm (i = 1, 2, ...,K).
Then the composition of all the K algorithms M[K](D) =
(M1(D), ...,MK(D)) is (

∑
i εi,

∑
i δi)-differentially private.

Theorem 2.5 (Advanced composition theorem [22]): For all
ε, δ, δ′ ≥ 0, the class of (ε, δ)-differentially private mecha-
nisms satisfies (ε′, kδ + δ′)-differential privacy under k-fold
adaptive composition for:

ε′ =
√

2k ln(1/δ′)ε+ kε(eε − 1).

III. METHODS

In this section, we present our privacy-preserving distributed
deep learning system in detail, which enables multiple partic-
ipants to jointly train a neural network model without sharing
raw data. There are in total K participants (banks), each own-
ing a private dataset Dk = {Xk

i , y
k
i }|

nk
i=1 (k = 1, 2, 3, ...,K),

where Xk
i is the feature vector, yki is the corresponding label

and nk is the size of the dataset associated with participant
k. In addition, there is a parameter server, which oversees
information integration and dissemination. All the participants
will communicate directly with the server (fetching param-
eters, uploading gradients, etc). The server is responsible for
updating the parameters iteratively and make them available to
all participants. Here we assume both the participants and the
server are honest but curious. They will follow the protocols
honestly, but meanwhile try to learn as much information as
possible about the other participants from their views of the
protocols. It can be potentially privacy leaking as shown in
[24]. Therefore, all the information coming out of a participant
has to be differentially private in order to protect its private
dataset. The structure and basic workflow of the distributed
learning framework is illustrated in figure 1.

Fig. 1. Diagram of the distributed deep learning system. W represents the
parameters and G represents the gradient information.

In our privacy-preserving multi-banks credit card fraud de-
tection system, we are aiming to protect the privacy of bank’s
customers, or more exactly, whether a certain transaction
happened in a certain bank, by enforcing differential privacy.
Before jointly training the models, all participants will first
agree on a common model (the architecture of the neural
network, features, activation function in each hidden layer,
loss functions etc). The parameter server will initialize the
parameters randomly and pass them to the first participant.
The first participant trains the model on its own private dataset
and uploads the differentially private gradients to the server,
who updates the parameters accordingly. Then the server will
contact the next participant and pass the new parameters to
it for more training, and so on. The whole training process
will go on for T iterations. During each iteration, all the
participants will be contacted once in a round-robin manner.
The privacy budget consumption for each participant can be
carefully calculated and maintained. Following the setting of
most existing works [25], [26], each participant will fix its
total privacy budget and number of iterations ahead of time
and avoid adaptive choice of privacy parameters.

During each iteration, after downloading the current param-
eters from the server, the participant will sample a small subset
from its own private dataset and compute the average gradient
on this subset. To deal with exploding gradients problem, the
gradient will first be clipped element-wise if it exceeds in
absolute value a fix bound B , which is a common trick
in deep learning [27], [28]. Then we apply the differentially
private Report-Noisy-Top-N (RNTN) algorithm (Algorithm 3)
repeatedly in order to pick the parameters with large absolute
gradient values. By focusing on these “effective” gradients, we
can save privacy budget because the privacy budget spent is
linearly related to the number of gradients uploaded to the
server. A similar idea was adopted in the work of Shokri
and Shmatikov [25], which used a sparse vector technique
for this purpose, but the privacy and accuracy analysis was
incomplete and unclear. Moreover, instead of uploading the
noisy gradients to the server, we upload the “ternary gradient”
{−B, 0, B} based on the sign of the selected noisy gradients
in order to reduce the communication burden. This idea is
proposed by the recent work of Wen et al. [1].

The details of the model training process are described in
Algorithms 1 through 3. Algorithm 1 is the overall parameter
update process controlled by the parameter server. Algorithm 2
is the noisy gradients calculation and uploading process going
on in a participant during each iteration. Algorithm 3 describes
how to pick the top noisy gradients in a differentially private
way.

IV. PRIVACY ANALYSIS

In this section, we analyze the privacy-preserving property
of the proposed algorithms. First we will demonstrate that
mini-batch stochastic gradient descent method in each iteration
will greatly save the privacy budget consumption.



Algorithm 1 Server Side
Require: neural network model M (neural network structure,

activation function, loss function L(W, X, y), features
schema, etc), total iteration T , number of participants K,
learning rate at iteration t {rt}

Ensure: final differentially private parameter W ∈ Rd
1: Initialize the parameter W (by default initialized to 0) and

disseminate the model M to all the participants
2: for t = 1 to T do
3: for k = 1 to K do
4: Communicate with the k-th participant and pass the

current parameter W to it
5: Receive the differentially private ternary gradient

vector G̃ = DPSTGD() from the participant k.
6: Update the current parameters W := W − rtG̃
7: end for
8: end for
9: Return W

Lemma 4.1: Let D be a dataset and M be a ε-differentially
private algorithm on the domain of D. Define the algorithm
Mq as follows:

1) Sample a random subset Dq from D with sampling
probability q

2) Run M on Dq and return the results
Then Mq is a ln(1+(eε−1)q)-differentially private algorithm.

See Appendix A for proof.
Note that ln(1 + (eε − 1)q) < ε when 0 < q < 1.

Lemma 4.1 confirms that by sampling from the whole dataset
for the gradient calculation, which is a common method
in stochastic gradient descent and deep neural network, we
can save on spending the privacy budget. The savings are
illustrated in Figure 2. When ε is small, the saving is almost
linear with q. However, when ε is large, the sampling does
not have a significant impact on the privacy budget saving
since the saving vanishes quickly with respect to q. Luckily,
in our situation, the privacy budget ε for each iteration is
small because we are expecting many iterations and many
parameters. Therefore, mini-batch sampling is indeed a great
way to save on the privacy budget.

The following theorem provides a rigorous proof of the
privacy preserving property of our proposed method.

Theorem 4.2: Algorithm 2 is (2nεg, 0)-differentially private,
where

εg = ln(1 + (eε − 1)q).

Alternatively, for any cryptographically small privacy parame-
ter δ (e.g. 2−30), Algorithm 2 is (

√
4n ln(1/δ)εg+2nεg(e

εg−
1), δ)-differentially private.

See Appendix B for proof.
Next, we will present the utility analysis of the RNTN

algorithm (Algorithm 3) in selecting the top largest absolute
gradients. Since it is a generalization of Report-Noisy-Max
[22], we will focus on bounding the probability ratio of

Algorithm 2 Participant Side: differentially private Stochastic
Ternary Gradient Descent (DPSTGD)
Require: parameters W ∈ Rd, loss function L(W, X, y),

privacy budget ε, number of gradients to upload n, mini-
batch sampling ratio q, private dataset D, gradient bound
B > 0

Ensure: ternary gradient vector G̃ ∈ {−B, 0, B}d
1: Randomly sample a subset Dq from the private dataset D

with sampling probability q.
2: For each point (Xi, yi) in the subset
Dq (i = 1, 2, ..., |Dq|):
calculate gradient:

gi = ∇L(W, Xi, yi)

clip gradient:

ĝi = gi/max(1,
|gi|
B

)

3: Take the average of the clipped gradients of all the points
in Dq

G :=
1

|Dq|
∑
i

ĝi

4: Calculate sensitivity λ of the absolute value of each
gradient j (j = 1, 2, ..., d)

λ = max
D,D′

(|Gj(D)| − |Gj(D′)|)

= max
D,D′

1

|Dq|
(|
∑
i

ĝji (D)| − |
∑
i

ĝji (D
′)|)

=
2B

|Dq|
5: Run Report-Noisy-Top-N() with privacy budget ε and

sensitivity λ to pick the index set I of the n gradients
with the largest noisy absolute values.

6: For each j in the index set I, set

G̃j = sign

(
Gj + Lap

(
λ

ε

))
×B;

otherwise, set G̃j = 0.
7: Return G̃.

selecting the largest value and second largest value in the
Report-Noisy-Max algorithm.

Theorem 4.3 (Accuracy analysis of Report-Noisy-Max):
Let ε be the privacy parameter in the Report-Noisy-Max
algorithm and λ be the sensitivity of absolute value of gradient.
The probability of selecting the gradient with largest absolute

value is at least exp

(
∆ε

λ

)
/

(
∆ε

4λ
+

1

2

)
− 1 larger than that

of selecting gradient with the second largest absolute value,
where ∆ is the difference between the largest absolute gradient
and the second largest absolute gradient.
See Appendix C for proof.

The theorem above gives utility guarantee in the sense
that small gradients are exponentially less likely selected



Algorithm 3 Report-Noisy-Top-N (RNTN)
Require: privacy budget ε, gradient functions

gi (i = 1, 2, ..., d) each with sensitivity at most λ, number
of gradients to select N , dataset D

Ensure: index and noisy values of the top N gradients with
largest noisy values

1: Compute the noisy gradients of D: ĝi(D) = gi(D) + νi,
where νi ∼ Lap(λ/ε).

2: Return the top N indices with the largest noisy values,
and also their noisy values ĝi(D) (i ∈ I).
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Fig. 2. Visual illustration of Lemma 1: “eps” is the privacy budget consumed
without mini-batch sampling and “new eps” is the privacy budget consumed
under varying mini-batch sampling ratio.

by Report-Noisy-Max algorithm after adding noise to the
gradients.

V. EXPERIMENTS

The main goal of the experiment is to implement our
method and evaluate its utility-privacy trade-off on a real-
world credit card fraud dataset. The objective of the dataset
is to detect fraudulent transactions given information about
the transaction. Imposing privacy requirements will generally
degrade the model performance due to the random noise added
to the gradients. We build and train neural networks on the pre-
processed dataset under varying settings of privacy parameters,
mini-batch ratio and ratio of uploaded gradients. In particular,
we are interested in how the performance of the neural network
varies with the privacy budget, which determines the amount
of noise. The results demonstrate that the proposed method
achieves performance close to the non-private baseline even
under relatively strict privacy requirement.

A. Dataset Preprocessing

In the experiment, a real-world credit card transaction data
set contributed by a US bank is studied. All the 78 million
transactions from over 2 million accounts happened in the first
eight month of 2013 and are labeled as either non-fraudulent
or fraudulent. There are 69 categorical and numeric features in

the original dataset, including transaction amount, transaction
date and time, merchant code, account-level information, card
present or not, distance to merchant, etc. In addition, we de-
rived new features reflecting the spending pattern of customers
with the help of domain expertise, such as amount difference
and distance difference from last transaction, time duration
since last transaction, velocity variables , standard deviation of
transaction amount for each account over time, etc. We apply
effect coding to all the categorical variables and standardize
all numerical variables. There are in total 264 features in the
processed data set.

The percentage of fraudulent transaction in the entire data
set is 0.136%. Since it is extremely unbalanced, we decide to
under-sample the non-fraudulent transactions at the account-
level. To be more specific, we kept all the accounts with
fraudulent transactions and randomly sample the same amount
of accounts from the remaining accounts without fraudulent
transactions. All the fraudulent transactions and a random
20% of all the non-fraudulent transactions from these accounts
are used as our sample for building and testing the neural
network model. After pre-processing, there are about 0.7
million transactions with a fraud rate of 14% in the sample.

B. Results

The model we are trying to build is a generic neural network
with 2 hidden layers of neurons. The number of neurons in
each hidden layer are 50 and 20 respectively. Therefore, the
total number of weights and bias parameters in the neural
network is 14,312. To simulate the multi-participant situation,
the accounts are divided evenly into each participant and also
a test set.

First, we present the amount of the privacy budget consumed
at each iteration and how the privacy budget is affected by the
number of uploaded gradients n and the mini-batch sampling
ratio q. The results are displayed in table I. We can see that
without mini-batch sampling and top gradients selection, the
privacy budget consumed at each iteration will explode, which
makes the differentially private method impractical. Sampling
a mini-batch and uploading a proportion of all the gradients
will save a lot privacy budget without hurting the model
performance (see the experiments below). Moreover, if we can
tolerate a tiny probability of the algorithm failing to preserve
privacy (e.g. δ = 2−30), the advanced composition theorem
will greatly save the privacy budget compared to the basic
composition theorem.

To illustrate the utility-privacy trade-off, we compare the
AUC of the model on the test set of our approach to a non-
private neural network baseline under different values of ε. In
addition, we also test the impact of the number of participants
in the systems, the mini-batch sampling ratio, and the number
of uploaded gradients. The whole analysis was repeated 10
times with different seeds for random number generator. The
results are very similar for different trials, for sake of clarity
only a single result is presented.

Figure 3 shows the AUC on the test set under different
privacy budgets in each iteration for 5 participants. We set



TABLE I
PRIVACY BUDGET CONSUMPTION AT EACH ITERATION. ε IS THE PRIVACY
PARAMETER IN ALGORITHM 2, q IS THE MINI-BATCH SAMPLING RATIO,

AND n IS THE NUMBER OF UPLOADED GRADIENTS. εbasiciter IS THE PRIVACY
BUDGET CONSUMED BY BASIC COMPOSITION THEOREM; εadviter IS THE

PRIVACY BUDGET CONSUMED BY ADVANCED COMPOSITION THEOREM
WHEN δ = 2−30

ε q n εbasiciter εadviter
0.1 0.01 1431 3.01 0.37
0.1 0.01 2862 6.02 0.52
0.1 0.05 1431 15.01 1.88
0.1 1 14312 2862.4 410.1
0.5 0.01 1431 18.50 2.35
0.5 0.01 2862 37.01 3.39
0.5 0.05 1431 91.35 13.97
0.5 1 14312 14312.4 9830.1

Fig. 3. AUC comparision under different privacy budget (5 participants, mini-
batch ratio = 0.01, ratio of uploaded gradient = 10%)

the mini-batch ratio to be 0.01 and for our DPSTGD al-
gorithm, only 10% of all the gradients are uploaded to the
sever in each iteration. As expected, a smaller privacy budget
(ε = .01, .1) gives relatively weaker performance. For an
intermediate differential privacy guarantee (ε = .5, 1), the
performance is comparable to the non-private baseline. It
is also worth noting that when the privacy budget is large
(ε = 10), the performance of our method even beats the non-
private baseline. This experiment is a proof-of-concept that
privacy preservation can give satisfactory performance even
under an intermediate differential privacy guarantee on real-
world data set. Moreover, adding a small amount of noise
and focusing on the top gradients will not only reduce the
communication burden but also help learning the model faster
and improving the accuracy. It is also consistent with the
phenomenon studied in the paper [29]. Our understanding is
that adding noise to gradients mostly likely helps the optimizer
jump out of local minimum for a non-convex problem like
deep neural network whereas exact gradient descent method
will get the optimizer stuck.

Figure 4 presents the results when there are 30 participants.
The trend of AUC curves is similar to that of Figure 3.

Lastly, we look at the impact of mini-batch ratios and ratio
of uploaded gradients with ε = 1. As expected, Figure 5 and 6

Fig. 4. AUC comparision under different privacy budget (30 participants,
mini-batch ratio = 0.01, ratio of uploaded gradient = 10%)

Fig. 5. AUC comparision under mini-batch ratio (5 participants, ε = 1, ratio
of uploaded gradient = 10%)

show that when the mini-batch ratio and the ratio of uploaded
gradients are increased, the performance are also improved.
Note that even if only 30% of all the noisy ternary gradients
are uploaded to the server, the model performance is superior
to that of the non-private baseline. It further verifies the
impression that for a deep neural network, only a proportion of

Fig. 6. AUC comparision under mini-batch ratio (5 participants, ε = 1,
mini-batch ratio = 1%)



the gradients are large enough to change the parameter and the
value of loss function, and our Report-Noisy-Top-N algorithm
is effective in selecting these gradients.

VI. CONCLUSION

In this paper, we propose a privacy-preserving method to
train deep neural networks in a distributed setting and evaluate
its utility-privacy trade-off on a real-world credit card fraud
detection dataset. In order to save privacy budget consumption,
we sample a mini-batch from the private dataset from each
participant and focus on the large gradients. In addition, we
upload ternary gradients instead of the exact gradients to
reduce communication burden. Our privacy-preserving method
achieves model performance (measured by AUC on test set )
comparable to the non-private baseline. It provides a practical
solution to the multi-party privacy preserving deep learning,
which is especially beneficial to financial institutions who are
willing to jointly learning machine learning models, but are
prohibited by privacy restriction.
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APPENDIX A
PROOF OF THE LEMMA 4.1

Proof: Let D and D′ be two neighboring datasets such
that D′ = D ∪ {x}. For any event O in the output space of
the algorithm M , we consider the following two cases:

1) x is not in D′q (probability: 1− q)
2) x is in D′q (probability: q)

When x is not in D′q , the output distribution of running Mq

on D is the same as that of running Mq on D′. Therefore,

Pr(Mq(D
′) ∈ O) = Pr(Mq(D) ∈ O).

When x is in D′q , by the definition of (ε, 0)-differential
mechanism, we have

Pr(Mq(D
′) ∈ O) ≤ eεPr(Mq(D) ∈ O).

Taking the probability of each case into account, we have

Pr(Mq(D
′) ∈ O) =

(1− q)× Pr(Mq(D
′) ∈ O|x 6∈ D′q)+

q × Pr(Mq(D
′) ∈ O|x ∈ D′q)

≤ (1− q)Pr(Mq(D) ∈ O) + qeεPr(Mq(D) ∈ O)

= (1 + (eε − 1)q)Pr(Mq(D) ∈ O).

Therefore, by the definition of differential privacy, Mq is
(ln(1 + (eε − 1)q), 0)-differentially private on the domain of
D.

APPENDIX B
PROOF OF THEOREM 4.2

Proof: First, we claim that algorithm Report-Noisy-Top-
N is 2nε-differentially private. This is a generalization of the
Report-Noisy-Max algorithm in [22] and we skip the proof
here.

By Lemma 4.1, if only a mini-batch q of the private data
set is sampled during each iteration, then the privacy budget
spent by Report-Noisy-Top-N per uploaded gradient is

εg = ln(1 + (eε − 1)q).

From basic composition theorem 2.4, the total privacy budget
spent on uploading N noisy gradients during each iteration is
2nεg .

Alternatively, from advanced composition theorem 2.5, for
any tiny privacy parameter δ, algorithm 2 is (

√
4n ln(1/δ)εg+

2nεg(e
εg − 1), δ)-differentially private.

APPENDIX C
PROOF OF THEOREM 4.3

Proof: First, given N absolute values of gradients |g1|,
|g2|,..., |gN |, we derive the probability Pi of selecting an
arbitrary i-th gradient |gi| by Report-Noisy-Max algorithm.

Pi =
∏

j=1,..,N,j 6=i

Pr(|gi|+ ni > |gj |+ nj)

=
∏

j=1,..,N,j 6=i

Pr(ni > nj + ∆j,i),

where ni, nj ∼ Lap(λ/ε) and ∆j,i = |gj | − |gi|. Then we
have

Pr(ni > nj + ∆j,i)

=

∫ ∞
−∞

Pr(ni > nj + ∆j,i|ni = t)Pr(ni = t) dt

=

∫ ∞
−∞

Pr(nj < t−∆j,i)Pr(ni = t) dt

=
ε

4λ

∫ ∆j,i

−∞
exp(

εt− ε|t| −∆j,iε

λ
) dt

+
ε

2λ

∫ ∞
∆j,i

exp(− ε|t|
λ

)

[
1− 1

2
exp(

∆j,iε− εt
λ

)

]
dt.

(1)

We consider the following two cases:



1) When ∆j,i > 0, equation 1 becomes

Pr(ni > nj + ∆j,i)

=
ε

4λ
exp(−∆j,iε

λ
)

∫ 0

−∞
exp(

2εt

λ
) dt

+
ε

4λ
exp(−∆j,iε

λ
)

∫ ∆j,i

0

dt

+
ε

2λ

∫ ∞
∆j,i

exp(− εt
λ

) dt

− ε

4λ
exp(

∆j,iε

λ
)

∫ ∞
∆j,i

exp(−2εt

λ
) dt

= exp(−∆j,iε

λ
)

(
∆j,iε

4λ
+

1

2

)
.

(2)

2) When ∆j,i < 0, Equation 1 becomes

Pr(ni > nj + ∆j,i)

=
ε

4λ
exp(−∆j,iε

λ
)

∫ ∆j,i

−∞
exp(

2εt

λ
) dt

+
ε

2λ

∫ 0

∆j,i

exp(
εt

λ
) dt

+
ε

2λ

∫ ∞
0

exp(− εt
λ

) dt− ε

4λ
exp(

∆j,iε

λ
)

∫ 0

∆j,i

dt

− ε

4λ
exp(

∆j,iε

λ
)

∫ ∞
0

exp(−2εt

λ
) dt

= 1− 1

2
exp(

∆j,iε

λ
) +

∆j,iε

4λ
exp(

∆j,iε

λ
).

(3)

Note that both Equation 2 and Equation 3 are decreasing
functions of ∆j,i, meaning that it is less likely to pick i over
j when ∆j,i increases.

Next, consider the gradient with largest absolute value and
the gradient with the second largest absolute value. Assume
the index of these two gradients are m1 and m2, respectively.

Then by Equation 2 and Equation 3, we have

Pm1
=

∏
j=1,..,N,
j 6=m1

Pr(|gm1
|+ nm1

> |gj |+ nj)

=
∏

j=1,..,N,
j 6=m1

[
1− 1

2
exp(

∆j,m1
ε

λ
)

+
∆j,m1ε

4λ
exp(

∆j,m1ε

λ
)

]
,

and

Pm2 =
∏

j=1,..,N,
j 6=m2

Pr(|gm2 |+ nm2 > |gj |+ nj)

= exp(−∆m1,m2
ε

λ
)

(
∆m1,m2

ε

4λ
+

1

2

)
∏

j=1,..,N,
j 6=m2

[
1− 1

2
exp(

∆j,m2
ε

λ
)

+
∆j,m2ε

4λ
exp(

∆j,m2ε

λ
)

]
.

Therefore,

Pm1

Pm2

=

[
1− 1

2 exp(
∆m2,m1

ε

λ ) +
∆m2,m1

ε

4λ exp(
∆m2,m1

ε

λ )
]

exp(−∆m1,m2
ε

λ )
(

∆m1,m2
ε

4λ + 1
2

)
∏

j=1,..,N,
j 6=m1,m2

[
1− 1

2 exp(
∆j,m1

ε

λ ) +
∆j,m1

ε

4λ exp(
∆j,m1

ε

λ )
]

[
1− 1

2 exp(
∆j,m2

ε

λ ) +
∆j,m2

ε

4λ exp(
∆j,m2

ε

λ )
]

︸ ︷︷ ︸
A

.

Note that each component in the product A is larger than 1
since ∆j,m1

< ∆j,m2
and equation 3 is a decreasing function.

Therefore,

Pm1

Pm2

≥

[
1− 1

2 exp(
∆m2,m1

ε

λ ) +
∆m2,m1

ε

4λ exp(
∆m2,m1

ε

λ )
]

exp(−∆m1,m2
ε

λ )
(

∆m1,m2
ε

4λ + 1
2

)
=

exp(
∆m1,m2

ε

λ )
∆m1,m2 ε

4λ + 1
2

− 1.
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