

of feature coverage since these systems typically run in an

operationally optimized setting and to collect data outside

this narrow range is usually expensive or even unsafe, if at all

possible; 2) expensive data: in some instances, for example

manufacturing facilities, collection of data may be disruptive

or require destructive measurements; 3) poor quality data:

quality of data collected from physical infrastructure systems

is usually poor (e.g., missing, corrupted, or noisy data) since

they typically have old and legacy components.

We posit that in these situations, model performance can

be significantly improved by integrating domain knowledge,

which might readily be available for these physical processes

in the form of physical models, constraints, dependencies

relationships, and knowledge of valid ranges of features. In

particular, we ask:

1) When data is limited or noisy, can model performance

be improved by incorporation of domain knowledge?

2) When data is expensive, can satisfactory model per-

formance be achieved with reduced data sizes through

incorporation of domain knowledge?

To address these questions, in this paper, we propose

DANN (domain adapted neural networks), where domain-

based constraints are integrated into the training process. As

shown in Fig. 1, DANN attempts to find a balance between

inductive loss and domain loss. Specifically, we address the

problem of incorporating monotonic relationships between

process variables (monotonicity constraints [9]) as well as

incorporating knowledge relating to the normal quantitative

range of operation of process variables (approximation con-

straints [9]). We also study the change in model performance

when multiple domain constraints are incorporated into the

learning model. In each case, we show that our proposed

domain adapted neural network model is able to achieve

significant performance improvements over domain agnostic

models.

Our main contributions are as follows:

1) We propose DANN which augments the methodology

in [10] to incorporate both monotonicity constraints

and approximation constraints in the training of deep

neural networks.

2) We conduct a rigorous analysis by characterizing the

performance of domain based models with increasing

data corruption and decreasing training data size on

synthetic and real data sets.

3) Finally, we also showcase the effect of incorporating

multiple domain constraints into the training process

of a single learning model.

II. RELATED WORK

In recent times, with the permeation of machine learning

into various physical sciences, there has been an increas-

ing attempt to leverage the power of learning models to

augment, simplify experimentation and otherwise replace

costly simulations in these fields. However, owing to the

underlying complexity of the function space and the cor-

responding lack of representative datasets, there have been

a number of attempts at incorporating already existing

domain knowledge about a system into a machine learning

framework or to overcome drawbacks of existing simulation

frameworks using mahcine learning models. In [11], the au-

thors utilize a stacked generalization approach to incorporate

domain knowledge into a logistic regression classifier for

predicting 30 day hospital readmission. In [12], the authors

utilize random forests for reconstructing discrepancies in

a Reynolds-Averaged Navier-Stokes system (RANS) for

modeling industrial fluid flows. It is a well known problem

that the predictive capabilities of RANS models exhibit

large discrepancies. Wang et al. try to reconstruct these

discrepancies through generalization of machine learning

models in contexts where data is not available. There have

also been efforts to utilize machine learning techniques to

quantify and reduce model-form uncertainty in decisions

made by physics driven simulation models. In [13], [14]

the authors achieve this goal using a Bayesian network

modeling approach incorporating physics-based priors. From

a Bayesian perspective, our approach to integrating domain

knowledge into the loss function is equivalent to adding it

as a prior.

In addition to incorporating domain knowledge, there have

also been attempts to develop models that are capable

of performing more fundamental operations like sequential

number counting, and other related tasks which require the

system to generalize beyond the data presented during the

training phase. Trask et al. [15] propose a new deep learning

computational unit called the Neural Arithmetic Logic Unit

(NALU) which is designed to perform arithmetic operations

like addition, subtraction, multiplication, division, exponen-

tiation etc. and posit that NALUs help vastly improve the

generalization capabilities of deep learning models. Another

related research work is the paper by Arabshahi et al. [16]

in which the authors employ black-box function evaluations

and incorporate domain knowledge through symbolic ex-

pressions that define relationships between the given func-

tions using tree LSTMs. Bongard et al. [17] propose the

inverse problem of uncovering domain knowledge given

time-series data in a framework for automatically reverse-

engineering the functioning of a system. Their model learns

domain rules through the intrusive approach of intelligently

perturbing the operation of a system and analyzing the

resulting consequences. In addition, they assume that all the

data variables are available for observation which is quite

often not the case in many machine learning and physical

system settings.

Mustafa in [9] proposes a framework for learning from

hints in inductive learning systems. The proposed framework

incorporates different types of hints using a data assimilation

process wherein data is generated in accordance with a

particular domain rule and fed into a machine learning model

as an extension of the normal training process. Each such

domain based data point is considered one of the hints that

guides the model toward more domain amenable solutions.

Generating data that is truly representative of a particu-

lar piece of innate knowledge without overtly biasing the

model is costly and non-trivial. Also, as stated in [9],

direct implementation of hints in the learning process is

much more beneficial than are methods of incorporating

domain knowledge through data assimilation. Hence, we

develop methods wherein innate knowledge about a system

is directly incorporated into the learning process and not

through external costly means like data assimilation. We

show that incorporating domain constraints directly into the

loss function can be used to greatly improve model quality

of a learning algorithm like a deep neural network (NN)

even if it is trained using a sparse, noisy dataset that is

not completely representative of the spectrum of operational

characteristics of a system.

Research closest to ours has been conducted by Karpatne

et al. [10]. Here, the authors propose a physics guided

neural network model for modeling lake temperature. They

utilize the increasing monotonic relationship of water density

measurements with increasing depth as the physical domain

knowledge that is incorporated into the loss function. They

predict the density of water in a lake at different depths and

utilize the predicted densities to calculate the corresponding

water temperature at those depths using a well established

physical relationship between water temperature and density.

However, they incorporate only a single type of domain

knowledge (i.e., monotonic relationships). In this work, we

have augmented the approach in [10] to model other types

of domain rules and characterize model behavior in many

challenging circumstances (to be detailed in later sections).

III. PROBLEM FORMULATION AND SOLUTION

APPROACH

Problem Statement: Leverage domain knowledge to train

a robust, accurate learning model that yields good model

performance even with sparse, noisy training data.

Innate knowledge about the functioning of a system S may

be available in several forms. One of the most common

forms of knowledge is a quantitative range of normal oper-

ation for a particular process variable Y in S. Another type

of domain knowledge could be incorporating monotonically

increasing or decreasing relationships between different pro-

cess variables or measurements of the same process variable

taken in different contexts. To incorporate these domain

based constraints into the inductive learning process, we

develop domain adapted neural networks (DANN).

We select deep neural network models as the inductive

learner owing to their ability to model complex relationships

and adopt the framework proposed in [10] for incorporating

domain knowledge in the training of deep neural network

models.

The generic hybrid loss function of the deep learning model

is depicted in Eqn. 1. Here, Loss(Y, Ŷ) is a mean squared

error loss used in many inductive learning applications for

regression and Y , Ŷ are the ground-truth and predicted

values, respectively, of the target system variable. R(f) is an

L2 regularization term used to control model complexity of

the model f . The LossD(Ŷ) term is the domain loss directly

incorporated into the neural network loss function used to

enforce that the model learned from training data is also in

accordance with certain accepted domain rules.

argmin
f

Loss(Y, Ŷ) + λDLossD(Ŷ) + λR(f) (1)

Here λD is a hyper-parameter determining the weight of

domain loss in the objective function. We chose the value

of λD empirically (see Fig. 3). λ is another hyper-parameter

determining the weight of the regularizer. We model two

types of constraints: 1) Approximation Constraints; and, 2)

Monotonicity Constraints.

A. Approximation Constraints

Noisy measurements quite often cause significant deviation

in model quality. In such cases, the insights domain experts

possess about reasonable ranges of normal operation of the

target variable could help in training higher quality models.

We wish to incorporate these approximation constraints

during model training, to produce more robust models.

Such constraints may be specified as a quantitative range

of operation of the target variable Y . Let (yl, yu) be the

range of normal operation of a particular target variable

Y ∈ Rm×1, i.e., Y ∈ [yl, yu] (yl, yu can be provided by

a domain expert or estimated empirically). Then, g(Ŷ) in

Eqn. 2 represents the functional form of the approximation

constraint while Eqn. 3 depicts how we incorporate g(Ŷ)
directly into the training loss function of a deep feed-forward

neural network.

g(Ŷ) =











0 if Ŷ ∈ [yl, yu]

|yl − Ŷ | if Ŷ < yl

|yu − Ŷ | if Ŷ > yu

(2)

LossD(Ŷ) =

m
∑

i=1

ReLU(yl − yi) +ReLU(yi − yu) (3)

ReLU(z) = z+ = max(0, z) (4)

A ReLU term is appropriate here as its output is non-zero

when the input is positive and thus suitable for modeling the

constraints.

B. Monotonicity Constraint

Physical, chemical, and biological processes quite often have

facets which are related monotonically. Let x1, x2 represent

measurements of a single phenomenon in different contexts

in a system (e.g., x1, x2 could be pressure at different

heights, air temperature at different times of the day). If we

consider a function h(x) = y such that x1 > x2 ⇒ h(x1) >
h(x2), then x1, x2 and h(x1), h(x2) are said to share a

monotonic relationship. We can incorporate such monotonic-

ity constraints using the formulation represented in Eqn. 5.

Here, LossD(Ŷ1, Ŷ2) represents the domain loss calculated

by enforcing the monotonicity constraint Ŷ1 < Ŷ2.

In Eqn. 5, I(·) represents the identity function which eval-

uates to true if the result of the logical AND (∧) opera-

tion evaluates to true and is false otherwise. The identity

function essentially serves to produce a boolean mask of

cases where measurements obey the monotonicity constraint

being enforced while the predictions by the neural network

model violate the constraint. Applying this mask to the

ReLU function (described in Eqn. 4) allows us to capture

errors only of the instances wherein the domain constraint

is violated. Formulating the domain loss LossD(·) in this

manner causes the model to change course to a region in

the (learned) function space more amenable to the injected

domain constraint.

LossD(Ŷ1, Ŷ2) =
m
∑

i=1

I

(

(xi
1 < xi

2) ∧ (ŷi1 > ŷi2)

)

·ReLU(ŷi1 − ŷi2) (5)

IV. DATASET DESCRIPTION

A. Synthetic Datasets

We use the popular Bohachevsky function as the basis for

generating synthetic datasets to evaluate the effectiveness

of incorporating domain knowledge in our experiments. A

Bohachevsky function is typically given by an expression

similar to Eqn. 6. In our experiments we use a variant with

positive amplitudes for the cosine functions i.e a1 = 0.3,

a2 = 0.4. Similarly, we set p1 = 3, p2 = 4 and k1 = 1,

k2 = 2,K = 0.7.

f(x1, x2) = k1x
2

1 + k2x
2

2 + a1 cos(p1πx1)+

a2 cos(p2πx2) +K
(6)

The values of x1, x2 are randomly sampled positive values

from a normal distribution. We sample m values each of

x1 and x2 to form our input data vector X ∈ R
m×2. For

each row xi ∈ R
1×2 in X, we generate the corresponding

target value yi using Eqn. 6 to form our target vector Y ∈
R

m×1. The dataset X,Y is used for experiments involving

approximation constraints.

In order to conduct experiments to test the effectiveness of

incorporating monotonicity constraints, we create two more

synthetic datasets X ′, X ′′ such that each x′

i,1 = 6xi,1,

x′′

i,1 = 12xi,1. Hence, for the monotonicity constraint

experiments, we generate three datasets X,X ′, X ′′ such that

xi,1 < x′

i,1 < x′′

i,1 and the outputs calculated for X,X ′, X ′′

using Eqn. 6 are Y, Y ′, Y ′′ respectively with yi < y′i < y′′i .

B. Real Datasets

We also demonstrate the performance of our models on a

real-world application for prediction of oxygen solubility

in water. The solubility of oxygen in water is primarily

governed by three factors, the water temperature, salinity

and pressure. We obtained temperature (t), salinity (s) and

pressure (p) samples for the North Atlantic and Iceland

Basin Biofloat 483. This data is then used to calculate

the amount of dissolved O2 (f(p, s, t)) using the physical

relationship detailed in Eqn. 7. We also compute the amount

of O2 solubility by increasing the pressure by 5.0 decibar

and 10.0 decibar while keeping the temperature and salinity

levels the same, thus once again obtaining three datasets

X,X ′, X ′′ and X(p) < X ′(p) < X ′′(p).

f1 = α1 + α2 (100/t) + α3 ln(t/100)− α4 (t/100)

f2 = f1 + s(−α5 + α6 (t/100)− α7 ((t/100)
2))

f(p, s, t) = ef2(p/100)

(7)

Here α1–α7 are the constant terms. These terms are defined

by researchers who measured the O2 solubility by empirical

evaluation.

V. EXPERIMENTAL FINDINGS

Objective: We test our DANN framework on Monotonicity

and Approximation constraints by trying to answer two

questions:

1) How well does DANN perform when available training

data is noisy?

2) Can DANN perform well even if it is trained with

limited training data?

A. Performance With approximation constraints in sparse

and noisy contexts.

Experimental Setup: For the purposes of this experiment,

we consider the dataset X ∈ R
m×2 as defined in section

IV-A. Each row xi of X can be denoted as xi = [xi,1, xi,2].
The values of x1 and x2 in each row are then used to

calculate the corresponding output function value f(x1, x2)
as described in Eqn. 6 to yield Y ∈ Rm×1. It must be

noted that for the purposes of this experiment, x1 and x2

are randomly sampled and x1 ∈ N (5, 1), x2 ∈ N (20, 1).
The location and scale for random sampling were chosen

arbitrarily, ensuring only that x1 and x2 distributions were

distinct.

Imputing Noise: We randomly select a subset of rows

in X and interchange the values of x1 and x2 in those

rows leading to the calculated value of f(x1, x2) in Y for

those rows being outside an expert-determined approximate

normal range. This is done to intentionally corrupt a subset

3https://www.bco-dmo.org/dataset/3426

set with noise-free data.

• Noisy Model Selection: Model selection is done using

a noisy validation set.

• Noise-Free Model Selection: Model selection is done

using a noisy-free validation set

Discussion of Results: We evaluated our DANN model

using approximation constraints and the results are de-

picted in Fig. 2a and 2b. Fig. 2a shows the comparative

performance of the DANN model relative to the domain

knowledge agnostic neural network (NN) model at different

levels of data corruption (ρ). We vary the percentage of

data corruption from 10%–50% and observe that the DANN

model outperforms the NN model significantly in all cases.

We observe an expected upward trend of both models

with increasing ρ with a significant increase at ρ= 30%.

The DANN model shows a mean percentage improvement

of 14.67% over the domain agnostic NN model. We see that

even at extreme noise levels close to ρ = 50%, the DANN

model significantly outperforms the NN model.

We also study the characteristics of the DANN and NN

models in sparse data settings by varying the available

data used to train the models from 10%–50% and observe

once again that DANN comfortably outperforms the domain-

agnostic NN model with a mean percentage improvement

of 22.98%. In fact, we observe in Fig. 2b that the DANN

model is able to incorporate more training data and improve

its performance indicating that there exists no strong bias

of the applied domain constraint preventing the model from

assimilating useful inductive signals if any, as more data

becomes available.

Frequently, in noisy and sparse settings, there is a minimum

acceptable error threshold that is desired and a method that

learns a stronger representation of the function space in

such contexts is highly valuable. For example, if an RMSE

value of 25.0 was desired, from Fig. 2b, we observe that

it is possible to achieve with just about 40% of available

training data using the DANN model while the NN model

never breaches this error threshold.

Hyperparameter Selection: One of the primary concerns in

the context of the DANN model is how the hyperparameter

λD which controls the influence of the domain constraint is

set. We set the value of λD empirically. We plot the RMSE

score for several values of λD in Fig. 3. As λD = 1.0
rewards us with the best performance, we set the value λD =
1.0 in all our experiments. We also set the value of λ = 1.0
for this experiment.

B. Performance with monotonicity constraints in sparse and

noisy contexts.

We also evaluate the performance of our DANN model

augmented with monotonicity constraints on the synthetic

dataset described in section IV-A as well as a real-world

dataset described in section IV-B. We first discuss the

experimental setup and results for the synthetic data case

and then proceed with the experimental setup and discussion

of results for the real world application.

Experimental Setup - Synthetic Data

Bohachevsky Function Value Prediction: For this exper-

iment, we consider the datasets X,X ′, X ′′ which are as

described in section IV-A. Each row i of X,X ′, X ′′ has

the monotonic relationship xi,1 < x′

i,1, < x′′

i,1 in tact and

consequently yi < y′i < y′′i where each of yi, y
′

i, y
′′

i

corresponds to the ith target value of Y, Y ′, Y ′′ respectively.

Imputing Noise: Let us first consider Y, Y ′. We know that

there exists a monotonic relationship of the form yi,1 < y′i,1
for each instance of the two target datasets. We randomly

sample a subset of rows and switch the values of y and

y′ in those rows in order to create the effect of noisy data

where expected monotonicity constraints are violated. Let us

call the percentage of randomly sampled indices ρ. For the

purposes of our experiment, we vary the value of ρ between

10%–50% to evaluate the performance of the DANN model

on increasingly noisy datasets. We repeat the same process

of randomly exchanging values of a subset of rows for Y ′

and Y ′′ in order to violate the monotonicity constraint y′i <

y′′i . The two sets of randomly sampled indices are disjoint.

Domain Knowledge Injection: The domain knowledge

being injected in this case checks for consistency in mono-

tonicity between input measurements and model predictions

i.e for a particular input instance i, the constraints enforced

are xi,1 < x′

i,1 ⇒ ŷi < ŷ′i & x′

i,1 < x′′

i,1 ⇒ ŷ′i < ŷ′′i
Model Architecture: We once again compare DANN with

a vanilla neural network (NN) model. DANN and NN both

employ an architecture with two hidden layers where the first

hidden layer has a size of 512 units and 256 units is the size

of the second hidden layer. The rest of the architecture and

model design is similar to the architecture described in the

Model Architecture part of section V-A.

Evaluation Strategy: We once again employ a 60-20-20

split for training, validation and testing respectively. The

RMSE score of the predictions Ŷ , Ŷ ′, Ŷ ′′ compared against

the true values Y, Y ′, Y ′′ respectively is used for evaluating

model performance. Both NN and DANN are trained for

200 epochs and the best NN and DANN model are selected

based on the performance on the validation set. We then

calculate the performance of the selected model on the test

set and report results. The test and validation experiments

are organized similar to those described in the Evaluation

Strategy of section V-A.

Discussion of Results: We run two sets of experiments,

one wherein we evaluate the model performance of NN

and DANN models with increasingly noisy training data

and the other where we evaluate the model performance

by continuously decreasing the amount of training data

available for the NN and DANN models to be trained on,

to simulate sparse data settings.

Fig. 4 shows the prediction performance comparison of NN

10% training data case, with a mean average performance

improvement of 18.32%.

Experimental Setup - Real Data:

O2 solubility prediction: The solubility of O2 generally

depends on three factors. The first two are the temperature

of the water and its salinity level. It has been observed

that O2 solubility in water is inversely proportional to both

temperature and salinity [18]. The other factor is pressure.

Higher pressure leads to increased O2 solubility [19].

Dataset generation by changing one factor: We use

samples of temperature, salinity and pressure taken from

North Atlantic and Iceland Basin Biofloat 484. This dataset

contains the temperature, salinity and pressure levels for a

period of time. We calculate the amount of O2 dissolved in

the water using Eqn. 7 given the above parameters. Apart

from this computation, we also compute the amount of

dissolved O2 by raising the pressure level by 5.0 and 10.0

decibar while keeping the temperature, salinity level same as

defined in the dataset. In this way, we obtain three datasets

Y , Y ′, and Y ′′ of different O2 levels.

Dataset generation by changing multiple factors: To

conduct a separate experiment to test multiple domain con-

straints applied simultaneously, we generate another dataset

by changing temperature and salinity level in addition to

pressure. Specifically, we increase the temperature by 5◦

and 10◦ Celsius and the salinity level by 5 and 10 units

to obtain Y , Y ′, and Y ′′.

Impute Noise: Noise imputation has been carried out on

Y, Y ′, Y ′′ datasets in a similar manner by exchanging values

between the datasets as indicated in the Impute Noise

segment of section V-B. Through such noise imputation, we

achieve a set of noisy datasets with explicit violation of the

physical relationships.

Model Architecture: The architecture of both the DANN

and NN models is similar to that used for the synthetic

datasets as described earlier in section V-B. The only dif-

ference is that λ is set to 0.01 (recall that it is set to 1.0 for

synthetic datasets). However λD remains constant (i.e. 1.0)

Evaluation Strategy: We once again employ the same 60-

20-20 split for train,validation and test sets respectively. We

compute the RMSE score by comparing the predicted O2

solubility Ŷ , Ŷ ′, Ŷ ′′ with the target values Y, Y ′, Y ′′ respec-

tively and use this score for evaluating model performance.

We run the model for 300 epochs and select the best model

based its performance on the validation set. We then compute

the performance of the selected model on the test set report

results. The test and validation experiments are organized

similar to those described in the Evaluation Strategy of

section V-A.

Discussion of Results: We run two types of empirical

evaluations to evaluate the performance of DANN. In the first

experiment we evaluate how DANN behaves in the presence

4https://www.bco-dmo.org/dataset/3426

of increasing noisy data. The result in shown in Fig. 6. Our

observation is DANN outperforms the vanilla NN in both

types of evaluation. The improvement is generally higher

when ρ is larger. For example when ρ = 50%, the gain is

17% for noise free model selection, whereas it is only 8%
when ρ = 10%. We observe similar phenomena in noisy

model selection. Here gain in 9% when ρ = 50% while it

is 2% for ρ = 10%. Another observation is overall RMSE

is lower for noise-free model selection. Since the test data

remains noise free for both cases, the model based on noise-

free validation set provides better understanding of the test

data rather than the model trained on noisy validation set.

From this experiment we can conclude that DANN leverages

the domain constraint so that it can estimate the output better

than other model.

To evaluate how DANN performs when limited training

data is available, we train the model with fewer number of

instances (10%–50%) and compute the test RMSE same as

before. The result is shown in Fig. 7. We can see that here

also DANN outshines NN model by a good margin. For both

models RMSE score is the highest when the size of the train

data is lowest i.e. 10%. RMSE improves as more training

data is available.

Finally we test the efficacy of DANN using the dataset where

multiple factors related to O2 solubility are changed. Since

here more than one variable is changed we can also include

more than one constraint in the objective function. The result

for noisy model selection where ρ = 20% is shown in

Fig: 8. Here DANN-One leverages just one domain con-

straint i.e. pressure. Similarly DANN-Two uses two domain

constraints i.e. (pressure + temperature). Finally DANN-

Three or DANN-All uses all three domain constraints (i.e.

pressure + temperature + salinity). We observe that DANN

models i.e. DANN-One, DANN-Two and DANN-Three easily

outperform NN. Moreover, DANN-Three achieves the best

result as it exploits all three domain constraints.

C. Summary of Results

The results depicted in section V-A and section V-B show-

case that the domain-aware DANN model significantly out-

performs the domain-agnostic NN model. A summary of our

experimental results depicting mean performance improve-

ment of DANN over NN is shown in Table I.

How does DANN perform when the available training

data is noisy?

DANN models trained with approximation and monotonicity

constraints, perform well even in extremely noisy settings

highlighting the robustness that domain based constraints

bring to inductive learning models. The superior perfor-

mance of DANN relative to the NN model tells us that they

are able to extract relevant signals from noisy data and are

able to model the underlying function space in an accurate

manner. The DANN model shows a mean performance

