The effect of strong purifying selection on genetic diversity
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Purifying selection reduces genetic diversity, both at sites under direct selection and at
linked neutral sites. This process, known as background selection, is thought to play
an important role in shaping genomic diversity in natural populations. Yet despite
its importance, the effects of background selection are not fully understood. Previous
theoretical analyses of this process have taken a backwards-time approach based on
the structured coalescent. While they provide some insight, these methods are either
limited to very small samples or are computationally prohibitive. Here, we present a new
forward-time analysis of the trajectories of both neutral and deleterious mutations at a
nonrecombining locus. We find that strong purifying selection leads to remarkably rich
dynamics: neutral mutations can exhibit sweep-like behavior, and deleterious mutations
can reach substantial frequencies even when they are guaranteed to eventually go extinct.
Our analysis of these dynamics allows us to calculate analytical expressions for the full
site frequency spectrum. We find that whenever background selection is strong enough
to lead to a reduction in genetic diversity, it also results in substantial distortions to the
site frequency spectrum, which can mimic the effects of population expansions or positive
selection. Because these distortions are most pronounced in the low and high frequency
ends of the spectrum, they become particularly important in larger samples, but may
have small effects in smaller samples. We also apply our forward-time framework to
calculate other quantities, such as the ultimate fates of polymorphisms or the fitnesses

of their ancestral backgrounds.

Purifying selection against newly arising deleterious
mutations is essential to preserving biological func-
tion. It is ubiquitous across all natural populations,
and is responsible for genomic sequence conserva-
tion across long evolutionary timescales. In addi-
tion to preserving function at directly selected sites,
negative selection also leaves signatures in patterns
of diversity at linked neutral sites that have been
observed in a wide range of organisms (Begun and
Aquadro, 1992; Charlesworth, 1996; Comeron, 2014;
Cutter and Payseur, 2003; Elyashiv et al., 2016;
Flowers et al., 2012; McVicker et al., 2009). This
process is known as background selection, and un-
derstanding its effects is essential to characterizing
the evolutionary pressures that have shaped a pop-
ulation, as well as to distinguishing its effects from
less ubiquitous events such as population expansions
or the positive selection of new adaptive traits.

At a qualitative level, the effects of background
selection are well-known: it reduces linked neu-
tral diversity by reducing the number of individu-
als that are able to contribute descendants in the
long run. Since individuals that carry strongly dele-
terious mutations cannot leave descendants on long
timescales, all diversity that persists in the popula-
tion must have arisen in individuals that were free
of deleterious mutations. Since all of these indi-

viduals are equivalent in fitness, this suggests that
diversity should resemble that expected in a neu-
tral population of smaller size — specifically, with
size equal to the number of mutation-free individu-
als (Charlesworth et al., 1993).

However, an extensive body of work has shown
that this intuition is not correct, and that back-
ground selection against strongly deleterious mu-
tations can lead to non-neutral distortions in di-
versity statistics (Charlesworth et al., 1993, 1995;
Good et al., 2014; Gordo et al., 2002; Hudson and
Kaplan, 1994; Nicolaisen and Desai, 2012; O’Fallon
et al., 2010; Tachida, 2000; Walczak et al., 2011;
Williamson and Orive, 2002). The reason for this is
simple: even strong selection cannot purge deleteri-
ous alleles instantly. Instead, deleterious haplotypes
persist in the population on short timescales, allow-
ing neutral variants that arise on their backgrounds
to reach modest frequencies. This is most readily ap-
parent in statistics based on the site frequency spec-
trum (the number, p(f), of polymorphisms which
are at frequency f in the population), such as the
number of singletons or Tajima’s D (Tajima, 1989).
As we show below, even when deleterious mutations
have a strong effect on fitness, the site frequency
spectrum shows an enormous excess of rare variants
compared to the expectation for a neutral popula-



tion of reduced effective size.

These signatures in genetic diversity are quali-
tatively similar to those we expect from popula-
tion expansions and positive selection (Keinan and
Clark, 2012; Rannala, 1997; Sawyer and Hartl, 1992;
Slatkin and Hudson, 1991). A detailed quantitative
understanding of background selection is therefore
essential if we are to disentangle its signatures from
those of other evolutionary processes.

The traditional approach to analyzing the effects
of purifying selection has been to use backwards-
time approaches based on the structured coalescent
(Hudson and Kaplan, 1994, 1988). This offers an
approximate framework to model how background
selection affects the statistics of genealogical histo-
ries of a sample, and hence the expected patterns
of genetic diversity. The approximations underlying
this method are valid when selection is sufficiently
strong that deleterious mutations rarely fix (Neher
and Shraiman, 2012), the same regime we will con-
sider in this work. However, while these backwards-
time structured coalescent methods make it possible
to rapidly simulate genealogies, they are essentially
numerical methods and do not lead to analytical pre-
dictions. Furthermore, they give limited intuition as
to the conditions under which their approximations
are valid. A more technical but crucial limitation
is that they rapidly become very computationally
demanding in larger samples. This is becoming an
increasingly important problem as advances in se-
quencing technology now make it possible to study
sample sizes of thousands (or even hundreds of thou-
sands) of individuals. The poor scaling of coalescent
methods with sample size is of particular importance
in studying background selection: since purifying se-
lection is expected to result in an excess of rare vari-
ants, its effects increase in magnitude as sample size
increases. This can reveal deviations from neutrality
in large samples that are not seen in smaller samples.

Here, we use an alternative, forward-time ap-
proach to analyze how purifying selection affects pat-
terns of genetic variation at a nonrecombining ge-
nomic segment. Our method is based on the ob-
servation that to predict single-locus statistics, such
as the site frequency spectrum, it is not necessary
to model the entire genealogy. Instead, we model
the frequency of the lineage descended from a single
mutation as it changes over time due to the com-
bined forces of selection and genetic drift, and as it
accumulates additional deleterious mutations. We
then use these allele frequency trajectories to pre-
dict the site frequency spectrum, from which any
other single-site statistic of interest can then be cal-
culated (note however that multi-site statistics such

as linkage disequilibrium or correlations between al-
lele frequencies at different sites cannot be calculated
from the site frequency spectrum).

We show that background selection creates large
distortions in the frequency spectrum at linked neu-
tral sites whenever there is significant fitness varia-
tion in the population. These distortions are con-
centrated in the high and low frequency ends of the
frequency spectrum, and hence are particularly im-
portant in large samples. We provide analytical ex-
pressions for the frequencies at which these distor-
tions occur, and can therefore predict at what sam-
ple sizes they can be seen in data.

Aside from single-timepoint statistics such as the
site frequency spectrum, we also obtain analytical
forms for the statistics of allele frequency trajec-
tories. These trajectories have a very non-neutral
character, which reflects the underlying linked se-
lection. Our approach offers an intuitive explana-
tion for how these non-neutral behaviors arise in
the presence of substantial linked fitness variation,
which explains the origins of the distortions in the
site frequency spectrum.

The statistics of allele frequency trajectories can
also be used to calculate any time-dependent single-
site statistic. For example, we analyze how the fu-
ture trajectory of a mutation can be predicted from
the frequency at which we initially observe it, and we
discuss the extent to which the observed frequency
of a polymorphism can inform us about the fitness
of the background on which it arose.

We emphasize that we focus throughout on mod-
eling a perfectly linked genomic region. In the
presence of recombination, our results offer insights
about the effects of linked selection on diversity
within regions that are effectively fully linked on
the relevant timescales. In the Discussion, we dis-
cuss how our results can be used to provide a lower
bound on the length of these segments, and there-
fore on the amount of linked selection relevant in
sexually reproducing populations, and comment on
possible future extensions of our analysis to include
recombination explicitly.

We begin in the next section by providing an in-
tuitive explanation for the origins of the distortions
in the site frequency spectrum in the presence of
strong background selection, and explain why these
distortions always accompany a reduction in diver-
sity. This section summarizes the importance of cor-
rectly accounting for background selection, particu-
larly when analyzing large samples, and should be
accessible to all readers. We next define a specific
model of background selection and summarize our
main quantitative results.
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FIG. 1 (A) The (unfolded) average site frequency spectrum of neutral alleles along a nonrecombining genomic
segment experiencing strong background selection deviates strongly from the prediction of neutral theory. The purple
line shows the simulated neutral site frequency spectrum in Wright-Fisher simulations of an asexual population of
N = 4-10° individuals, where deleterious mutations occur at rate NUy = 5000 and all have the same effect on fitness
Ns = 1000. The black lines show the neutral expectation for the site frequency spectrum of a population of N and
N. = Ne~Y4/% individuals (full and dashed line, respectively). The inset shows the same data, but with the z-axis
linearly scaled to emphasize intermediate frequencies. Simulated site frequency spectra were obtained by measuring
whole-population neutral site frequency spectra in 10° Wright-Fisher simulations in which neutral mutations were set
to occur at rate NU,, = 10, and by averaging and then smoothing the obtained curve using a box kernel smoother
of width much smaller than the scale on which the site frequency spectrum varies (the kernel width was set to
< 10% of the minor allele frequency). (B, C) Statistics of the simulated site frequency spectrum (purple) can deviate
from predictions of neutral theory (black) by many orders of magnitude in large samples, even though the effect of
background selection will be small in small samples. Here shown: (B) The average ratio of the number polymorphisms
present as derived singletons (f = %, full lines) or ancestral singletons (f =1 — %, dotted lines) in the sample to
the number present at 50% frequency and (C) the average minor allele frequency of the sampled alleles.

STRONG BACKGROUND SELECTION DISTORTS
THE SITE FREQUENCY SPECTRUM

We then present the analysis of our model. We be-
gin by reviewing how dynamical aspects of allele fre-
quency trajectories can be related to site frequency

spectra, using the trajectories of isolated loci as an e begin by presenting a more detailed description

example. Readers already familiar with this intu-
ition may choose skip ahead, but those less inter-
ested in the technical details may find that this sec-
tion provides useful intuition for the calculations in a
simpler context. We then explain how this approach
must be modified to account for linkage between
multiple selected sites, and present an intuitive de-
scription of the key features of allele frequency tra-
jectories. These sections may be of interest to read-
ers who wish to understand the intuitive origins of
non-neutral behaviors of alleles in the presence of
strong background selection. Finally, in the Analy-
sis, we turn to a formal stochastic treatment of the
trajectories of neutral and deleterious mutations. In
the last section, we use these trajectories to calcu-
late the site frequency spectrum and other statistics
describing genetic diversity within the population.

of the effects of background selection on linked neu-
tral alleles. We focus on analyzing the allele fre-
quency spectrum, defined as the expected number,
p(f), of mutations that are present at frequency f
within the population in steady state. This allele
frequency spectrum contains all relevant informa-
tion about single-site statistics: any such statistic
of interest can be calculated by subsampling appro-
priately from p(f).

In Figure 1A, we show an example of the site
frequency spectrum of neutral mutations at a lo-
cus experiencing strong background selection, gen-
erated by Wright-Fisher forward time simulations.
This example shows several key generic features of
background selection. First, at intermediate fre-
quencies the site frequency spectrum has a neu-
tral shape, p(f) oc f~!, with the total number of
such intermediate-frequency polymorphisms consis-
tent with the simple reduced effective population
size prediction (Charlesworth et al., 1993). How-



ever, at both low and high frequencies p(f) is sig-
nificantly distorted. At low frequencies, we see an
enormous excess of rare alleles, qualitatively similar
to what we expect in expanding populations (Ran-
nala, 1997; Slatkin and Hudson, 1991). We also
see a large excess of very high frequency variants,
leading to a non-monotonic site frequency spectrum.
This is reminiscent of the non-monotonicity seen in
the presence of positive selection (Sawyer and Hartl,
1992). Notably, these distortions at both high and
low frequencies arise in populations of constant size
in which all variation is either neutral or deleterious.

The excess of rare derived alleles arises because
selection takes a finite amount of time to purge dele-
terious genotypes. Thus we expect that there can be
substantial neutral variation linked to deleterious al-
leles that, though doomed to be eventually purged
from the population, can still reach modest frequen-
cies. At the very lowest frequencies, we expect that
neutral mutations arising in all individuals in the
population (independent of the number of delete-
rious mutations they carry) can contribute. Thus,
at the lowest frequencies, the site frequency spec-
trum should be unaffected by selection, and should
agree with the neutral site frequency spectrum of
a population of size N. On the other hand, as
argued above, the total number of common alleles
must reflect the (much smaller) number of deleteri-
ous mutation free individuals, because only neutral
mutations arising in such individuals can reach such
high frequencies. Since the overall number of very
rare alleles is proportional to the census population
size N, and the number of common alleles reflects a
much smaller deleterious mutation-free subpopula-
tion, there must be a transition between these two:
between these extremes the site frequency spectrum
must fall off more rapidly than the neutral prediction
p(f) ~ f~1. This transition reflects the fact that as
frequency increases, the effect of selection will be
more strongly felt, and neutral mutations arising in
genotypes of increasingly lower fitnesses will become
increasingly unlikely.

As the frequency increases even further, we see
from our simulations that the total number of poly-
morphisms increases again, until at very high fre-
quencies it matches the prediction for a neutral pop-
ulation of size equal to the census size N. Note
that at these frequencies, the total number of back-
grounds contributing to the diversity is constant (i.e.
all mutations reaching these frequencies must arise
in the small subpopulation of mutation-free individ-
uals). This suggests that fundamentally non-neutral
behaviors must be dominating the dynamics of these
high frequency neutral polymorphisms. To under-

stand this, as well as the details of the rapid fall-off
at very low frequencies, we will need to develop a
more detailed description of the trajectories of neu-
tral alleles in the population; we analyze this in
quantitative detail in a later section.

However, a simple argument can explain the
agreement with the neutral prediction at the highest
frequencies. Polymorphisms observed at these very
high frequencies correspond to neutral variants that
have almost reached fixation. The ancestral allele
is still present in the population, but at a very low
frequency. In principle, the dynamics of the derived
and ancestral alleles should depend on the fitnesses
of their backgrounds. However, once the frequency
of the ancestral allele is sufficiently low, the effects
of drift will once again dominate over the effects of
selection. Thus, at extremely high frequencies of
the derived allele, its dynamics must become neu-
tral. In addition to having neutral dynamics, the
overall rate at which neutral mutations enter this
high frequency regime also agrees with the rate in
a neutral population at the census population size.
This is because at steady state, the total rate at
which neutral mutations fix is equal to the product
of the rate at which they enter the population at any
point in time (NU,) and their fixation probability,
%, (Birky and Walsh, 1988). Thus, since the total
rate at which alleles enter this high frequency regime
is unaffected by selection, and since their dynamics
within this regime are neutral, we expect that the
site-frequency spectrum should also agree with the
neutral prediction for a population of size N.

Although these simple arguments do not provide
a full quantitative explanation of the site frequency
spectrum, they already offer some intuition about
the presence and magnitude of the distortions due to
background selection. First, these distortions arise
in part as a result of the difference in the num-
ber of backgrounds on which mutations that remain
at the lowest frequencies and mutations that reach
substantial frequencies can arise. Thus, they will
always occur when background selection is strong
enough to cause a substantial reduction in the “ef-
fective population size”: if the pairwise diversity  is
at all reduced compared to the neutral expectation
o (Wl0 < 1, or, in terms of McVicker’s B-statistic,
B < 1, (McVicker et al., 2009)), these distortions ex-
ist (see Figure 1A). Second, because the distortions
from the neutral shape are limited to high and low
ends of the frequency spectrum, they will have lim-
ited effect on site frequency spectra of small samples,
but will have dramatic consequences as the sample
size increases (see Figure 1B,C). On a practical level,
this means that extrapolating conclusions from small



samples about the effects of background selection
can be grossly misleading.

MODEL AND RESULTS

In the next few sections, we will analyze the dy-
namics of neutral mutations under background se-
lection in detail. We focus on the simplest possible
model of purifying selection at a perfectly linked ge-
netic locus in a population of N individuals. We
assume neutral mutations occur at a per-locus per-
generation rate U, and deleterious mutations occur
at rate Uy (Ug < 1). Throughout the bulk of the
analysis, we will assume that all deleterious muta-
tions reduce the (log) fitness of the individual by
the same amount s, though we analyze the effects
of relaxing this assumption in a later section. We
assume that s < 1, since this is the interesting case
for biologically relevant mutation rates, though we
also consider the effects of more strongly deleteri-
ous (or lethal) mutations in the Discussion. We ne-
glect epistasis throughout, so that the fitness of an
individual with k deleterious mutations at this lo-
cus is —ks. For simplicity we consider haploid indi-
viduals, but our analysis also applies to diploids in
the case of semidominance (h = 1/2). We assume
that selection is sufficiently strong that alleles car-
rying deleterious mutations cannot fix in the popu-
lation (Nse~Y4/¢ >> 1). The opposite case, in which
deleterious mutations are weak enough to routinely
fix (Nse~U4/s < 1), has been the subject of earlier
work (Good and Desai, 2013; Good et al., 2014; Ne-
her and Hallatschek, 2013). In the Discussion we
comment on the connection between these earlier
weak-selection results and the strong-selection case
we study here.

Our model is equivalent to the non-epistatic case
of the model formulated by Kimura and Maruyama
(1966) and Haigh (1978) and to the h = 1 case of
the model considered by Charlesworth et al. (1993)
and Hudson and Kaplan (1994), and later studied by
many other authors (Gordo et al., 2002; Nicolaisen
and Desai, 2012; Seger et al., 2010; Walczak et al.,
2011). However, instead of modeling the genealogies
of a sample of individuals from the population back-
wards in time, we offer a forward-time analysis of
this model, in which we analyze the full frequency
trajectory of alleles.

In the presence of strongly selected deleterious
mutations (Nse~U4/5 > 1), we find that the magni-
tude of the effects of background selection critically
depends on the ratio, A, of the deleterious muta-
tion rate, Uy, to the selective cost of each deleterious

mutation, s, A = Uy/s (Figure 2). This ratio con-
trols the overall variance in the number of deleterious
mutations carried by individuals in the population,
which is equal to A = % (Kimura and Maruyama,
1966). Whenever A < 1, both the overall genetic
diversity and the full neutral site frequency spec-
trum p(f) are unaffected by background selection
and the site frequency spectrum p(f) is to leading
order equal to

2NU,
p(f) = 7 when A < 1.

(1)
This prediction agrees with the results of forward-
time simulations (see Figure 2). The intuition be-
hind this result is simple: in the limit that A < 1, a
majority of individuals in the population are free of
deleterious mutations; neutral alleles are therefore
rarely linked to deleterious mutations. This results
in a neutral site frequency spectrum.

However, we will show that the site frequency
spectrum of neutral mutations follows a very differ-
ent form when A > 1:

2NU, 1
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2NU,

, forl — f < ﬁ,
(2)
where ¢ = +/Uys represents the standard deviation
in fitness in the population, and line 2 in Eq. 2 is
valid up to a constant factor (see Appendix I.1 for
details). Comparisons between Eq. 2 and simula-
tions of the model are shown in Figure 2. We note
that p(f) matches the site frequency spectrum of a
neutral population with a smaller effective popula-
tion size N. = Ne™ for Nsi,A < f<1- ﬁ,
but deviates strongly outside this frequency range.
This implies that summary statistics based on the
site frequency spectrum (e.g. the average minor al-
lele frequency) will start to deviate from the neutral
expectation in samples larger than Nse™» = “N,s”
individuals, but not in smaller samples (Fig. 1B,C).
Our results also offer an intuitive interpretation
of the origins of these distortions, which are sum-
marized in Figure 3. When Uy > s, a large major-
ity of individuals in the population will carry some
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FIG. 2 Comparison between the theoretical predictions for the site frequency spectrum and Wright-Fisher simulations.
In all simulations, Nse~Y4/® = 1000-e~® ~ 6.73, while the parameter A = Ua/s varies from 5 to 0.1 (values shown on
figure). Dashed lines show the expectations for a neutral population at reduced effective population size N. = N e
At frequencies smaller than ﬁ (where o = \/Ugs) and larger than 1 — ﬁ, the theoretical predictions agree with
the predictions for a neutral population with census size N (black line). Within the range ﬁ < f<1l-— ﬁ,
the theoretical predictions (Eq. 2) are given by colored lines. A single theory curve was constructed from Eq. 2 by
joining the piecewise forms using sigmoid functions (for details see Appendix 1.4). Note that this involves fitting
O(1) constants to the curve, for reasons explained in Appendix 1.1 and Appendix I.4. The values of the constants
used are tabulated in Appendix I.4. In simulations in which A > 1, N = 10° whereas N = 10" for smaller A. In

all simulations, the per-individual per-generation neutral mutation rate is U,, = 0.1, and site frequency spectra were

obtained from these simulations as described in the caption of Figure 1.

deleterious mutations at the locus, which results in
substantial fitness variation within the population.
However, the majority of neutral alleles are present
on backgrounds that are within O(o) of the mean of
the distribution. Thus, at frequencies f < ﬁ and
1-fx ﬁ the effects of genetic drift dominate over
any effects of linked selection for the majority of neu-
tral alleles. At these frequencies, the site frequency
spectrum agrees with that of a neutral population of
size N (see Figure 3).

In contrast, the effects of linked selection have a
crucial impact on allele frequency trajectories at fre-
quencies f for which ﬁ < fx1l- ﬁ As we show
in a later section, this region of the site frequency
spectrum is dominated by alleles that arise on un-
usually fit backgrounds (with fitness with respect to
the mean larger than O(c)). For these alleles, a cru-
cial distinction arises between their short-term and
long-term behavior: although genotypes that carry
any polymorphic strongly deleterious variants are
guaranteed to be eventually purged from the popula-
tion, those that contain fewer than average deleteri-
ous mutations are still positively selected on shorter
timescales. This results in strong non-neutral fea-
tures in the frequency trajectories of these alleles.
Their trajectories are characterized by rapid initial
expansions, followed by a peak, and eventual expo-

nential decline (Figure 4). These deterministic as-
pects of allele frequency trajectories are similar to
those seen by Neher and Shraiman (2011) in models
of linked selection in large facultatively sexual pop-
ulations. We describe them in detail in the section
titled ‘Key features of lineage trajectories’. A part
of the rapid falloff in the site frequency spectrum
between f = ﬁ and f = ﬁ results from these
deterministic effects: alleles arising on backgrounds
with more deleterious variants can reach more lim-
ited frequencies than alleles arising on backgrounds
with fewer deleterious variants. Thus, the number
of backgrounds on which neutral alleles could have
arisen declines with the frequency, leading to a falloff

of the site frequency spectrum.

However, these deterministic aspects of the allele
frequency trajectory are not sufficient to produce the
site-frequency spectrum in Eq. 2, even if stochastic
effects in the early phase of the trajectory are taken
into account (i.e. during ‘establishment’, see Desai
and Fisher (2007) and Neher and Shraiman (2011)).
This is because fluctuations in the numbers of most-
fit individuals that occur after establishment con-
tinue to drive fluctuations in the overall allele fre-
quency. This is closely related to the fluctuations
in the population fitness distribution studied by Ne-
her and Shraiman (2012) in an analysis of Muller’s
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FIG. 3 A summary of the dominant effects shaping the site frequency spectrum. The site frequency spectrum and
1

theoretical predictions are reproduced from Fig. 1 and Fig. 2 (A = 5). At frequencies below ﬁ and above 1 —
the allele frequency trajectories of the majority of neutral alleles are dominated by drift, resulting in neutral site
frequency spectra corresponding to a population of size N. In contrast, linked selection has a crucial impact for
ﬁ < f<1l-— ﬁ The rapid fall-off of the site frequency spectrum for ﬁ <f< ﬁ is primarily a result of allele
frequency trajectories having fundamentally non-neutral properties. In this regime, the number of backgrounds on
which neutral alleles can arise also declines with the frequency f. As we show later, for f < W, the site frequency
spectrum is dominated by neutral mutations originating on deleterious backgrounds. In contrast to the rapid decline
at lower frequencies, the site frequency spectrum has a neutral shape between f = ﬁ and f=1-— ﬁ In this
regime, both the neutral and wild-type allele are in approximate mutation-selection balance (see blue inset, showing
the fitness distribution of such alleles), and large fluctuations of the allele frequency mirror the neutral fluctuations of
the most-fit individuals. At frequencies larger than 1 — ﬁ, the relative number of polymorphisms increases with
the frequency. This pattern results from the effective positive selection of neutral alleles that fix among the fittest

individuals (see red inset), and are as a result linked to fewer deleterious mutations than the wild type.

ratchet. to a given frequency.

Finally, we will demonstrate that the non-
monotonicity in the site-frequency spectrum at fre-
quencies between 1 — ﬁ and 1 — ﬁ arises as a
result of sweep-like behaviors of neutral alleles that
have fixed among the most fit individuals in the pop-
ulation (see Figure 3). Because these derived alleles
carry on average fewer deleterious mutations than
the wild type, they are positively selected despite
having no inherent benefit. We will show that this
difference in the average number of linked deleteri-
ous mutations gives rise to an effective frequency-
dependent selection coefficient seg(f). This selec-
tion coefficient changes with the frequency f of
the mutation as high-fitness wild type individuals
ratchet to extinction:

In the Analysis, we quantify how these fluctu-
ations propagate to shape the statistics of allele
frequency trajectories, finding that fluctuations in
the number of most-fit individuals that happen on
a timescale shorter than % are smoothed out due
to the finite timescale on which selection can re-
spond. In contrast, fluctuations that happen on
timescales longer than % are faithfully reproduced
in the allele frequency trajectory, which leads to
quasi-neutral statistics of allele frequency trajecto-
ries at frequencies between ﬁ and 1 — ﬁ
(see Figure 3). The smoothing of fluctuations on
a finite timescale introduces an additional funda-
mentally non-neutral feature in the total allele fre-
quency trajectory. This distorts the site frequency
spectrum at frequencies below ﬁ above and be- _ 1
yond what would be predicted if we asserted a simple sett(f) = log, Nse= 21— f) 5
frequency-dependent effective population size equal
to the number of backgrounds that can contribute fl-fr< Nse—X"

(3)




In the next sections, we derive the form of the site
frequency spectrum in Eq. 2 and explain these effects
in more detail. We begin by presenting background
necessary for understanding these results. We first
revisit the intuition behind the shape of the site fre-
quency spectra of isolated loci (Ewens, 1963; Sawyer
and Hartl, 1992). We show that in the absence of
linkage between multiple selected sites, background
selection does not lead to a site frequency spectrum
of the form in Eq. 2. Next, we explain how link-
age between multiple selected sites modifies allele
frequency trajectories. We revisit the key determin-
istic aspects of allele frequency trajectories in the
presence of background selection, previously studied
by Etheridge et al. (2007) and others, and extend
these results to identify the key timescales important
for understanding this problem. Finally, we turn to
a full stochastic treatment of allele frequency tra-
jectories in the ‘Analysis’, where we also derive the
expressions for the site frequency spectra of neutral
and deleterious mutations. In the ‘Discussion’, we
comment on the practical implications of our results,
as well as on connections to previous work and other
models.

BACKGROUND

Isolated loci

To gain insight into the more complicated case of
linked selection, we first begin by reviewing the sim-
plest case of a single locus isolated from any other
selected loci. The probability that an allele at that
locus is present at frequency f at time t, p(f,t), is
described by the diffusion equation

o 0 o [fA=F)
= s+ o [T

Ewens (1963) showed that the expected site fre-
quency spectrum (SFS) can be obtained from this
forward-time description of the allele frequency tra-
jectory: because mutations are arising uniformly in
time, and the time at which a mutation is observed is
random, the SF'S is proportional to the average time
an allele is expected to spend in a given frequency
window.

In this section, we show that the low and high fre-
quency ends of the site frequency spectrum of iso-
lated loci can be obtained from a simple heuristic
argument that emphasizes this connection between
allele frequency trajectories and the site frequency
spectrum. These calculations are not intended to be
exact (resulting frequency spectra are only valid up

to O(1) factors), but they provide intuition for the
origins of key features of the site frequency spectrum
that we will return to more formally below.

Consider the simplest case of isolated purely neu-
tral loci. Neutral mutations will arise in the pop-
ulation at rate NU,. In the absence of selection,
the trajectories of these mutations are governed by
genetic drift. At steady state, the number of mu-
tations we expect to see at frequency f is simply
proportional to the number of mutations that reach
that frequency and the typical time each of these
mutations spend at that frequency before fixing or
going extinct. In the absence of selection, a new
mutation that arises at initial frequency fo = 4 will
reach frequency f before going extinct with proba-
bility fT‘J = ﬁ Standard branching process calcula-
tions (Fisher, 2007) show that, given that it reaches
frequency f, the mutation will spend about N f gen-
erations around that frequency (defined as log(f)
not changing by more than O(1)), provided that f
is small (f < 1).

By combining these results, we can calculate the
expected site frequency spectrum for small f. The
rate at which new mutations reach frequency f is
NU,, - ﬁ Those that do will remain around f (in
the sense defined above) for about N f generations.
Thus the total number of neutral mutations within
df of frequency f is p(f)df ~ NUn-Nif-Nf-d(log ).
In other words, we have

(5)

This argument is valid when f is rare, but will
start to break down at intermediate frequencies.
However, because the wild type is rare when the
mutant approaches fixation, an analogous argument
can be used to describe the site frequency spec-
trum at high frequencies. The mutant trajectory
still reaches frequency f with probability Nif It will
then spend roughly N (1— f) generations around this
frequency (i.e. within O(1) of log(1— f)). This gives
p(f) =~ % ~ NU, in the high frequency end of the
spectrum. This simple forward-time heuristic argu-
ment reproduces a well-known result of coalescent
theory (Wakeley, 2009) and agrees with the more
formal calculation of sojourn times in the Wright-
Fisher process (Ewens, 1963).

We can use a similar argument to calculate the
frequency spectrum of strongly selected deleterious
mutations with fitness effect —s (with Ns > 1)
that occur at a locus that is isolated from any other
selected locus. Provided that the deleterious mu-
tation is rare (below the “drift barrier” frequency,
f < ), its trajectory is dominated by drift. Thus



for f < ﬁ, the mutation trajectory will be the same
as for a neutral mutation, and the frequency spec-
trum will therefore be neutral. In contrast, at fre-
quencies larger than Nis selection is stronger than
drift, which prevents the mutation from exceeding
this frequency. Combining these two expressions, we
find that the frequency spectrum of an isolated dele-

terious mutation is to a rough approximation given

by
NU; -
p(f) = 7o <
0 otherwise

(6)

For completeness, we also show how a similar ar-
gument can be used to obtain the frequency spec-
trum of beneficial mutations. Though it is not imme-
diately obvious that this is relevant to background
selection, we will later see how similar trajectories
emerge in the case of strong purifying selection.
Just like deleterious alleles, strongly beneficial al-
leles with fitness effect s (with Ns > 1) will not feel
the effects of selection as long as they do not exceed
the drift barrier (f < 7). Their trajectory and
frequency spectrum will therefore be neutral below
the drift barrier. As a result, only a small fraction
s of beneficial mutations will reach frequency ﬁ
However, those that do will be destined to fix, since
at frequencies larger than ﬁ, selection dominates
over drift. Above this threshold, selection will cause
the frequency of the mutation to grow logistically
at rate s (% = sf(1 — f)), spending ﬁ gen-
erations near frequency f. This is valid as long as
f<1l- ﬁ, at which point the effects of drift be-
come dominant due to the wild type being rare, and
the trajectory of the mutant is once again the same
as the trajectory of a neutral mutation. Combining
these expressions, we obtain a rough approximation
for the frequency spectrum of an isolated beneficial

mutation

N, if f < 5
p(f) ~ fé\{gl})v ifﬁ<f<1_ﬁ' (7)
NU,-Ns, if f>1— -

Linked loci under background selection

We now turn to the analysis of background selection.
Since we assume that all mutations have the same
effect on fitness, the population can be partitioned
into discrete fitness classes according to the num-
ber of deleterious mutations each individual carries
at the locus. When the fitness effect of each mu-
tation is sufficiently strong, the population assumes

a steady-state fitness distribution in which the ex-
pected fraction of individuals with & deleterious mu-
tations, hy, follows a Poisson distribution with mean
k = X\ (Haigh, 1978; Kimura and Maruyama, 1966),

k
he=e o0 (8)
A new allele in such a population will arise on a
background with k existing mutations with proba-
bility hy.

From the form of hjy, we see that depending on
the value of A\, the population can be in one of two
regimes. In the first regime, the rate at which muta-
tions are generated is smaller than the rate at which
selection can purge them (A < 1). In this case, the
majority of individuals in the populations carry no
deleterious mutations (hg ~ 1), with only a small
proportion, 1 — hg &~ A, of backgrounds in the pop-
ulation carrying some deleterious variants. To lead-
ing order in A, all new neutral mutations will arise
in a mutation-free background and will remain at
the same fitness as the founding genotype. Their
trajectories are thus the same as the trajectories of
mutants at isolated genetic loci of the same fitness
as the founding genotype (see Appendix D for de-
tails). This means that the full site frequency spec-
trum can be calculated by summing the contribu-
tions of site frequency spectra of isolated loci that
we calculated above. The neutral and deleterious
site frequency spectra are, to leading order in A,
given by Equations 5 and 6, respectively (for details
see Appendix H). Thus, background selection has
a negligible impact on mutational trajectories and
diversity when \ < 1.

In the opposite regime where A > 1, mutations
are generated faster than selection can purge them
and there will be substantial fitness variation at the
locus. Consider a new allele (i.e. a new mutation
at some site within the locus) that arises in this
population. A short time after arising, individuals
that carry this allele will accumulate newer delete-
rious mutations, which will lead the allele to spread
through the fitness distribution. The fundamental
difficulty in calculating the frequency trajectory of
this allele, f(t), stems from the fact that a short time
after arising, individuals that carry the allele will
have accumulated different numbers of newer dele-
terious mutations. The total strength of selection
against the allele depends on the average number of
deleterious mutations that the individuals that carry
the allele have. This will change over time in a com-
plicated stochastic way, as the lineage purges old
deleterious mutations, accumulates new ones, and
changes in frequency due to drift and selection. To
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FIG. 4 (A) The average fitness of a lineage composed of individuals carrying k deleterious mutations at time ¢ = 0
(blue dot and blue inset). As the descendants of these individuals accumulate further deleterious mutations, the
fitness of the lineage declines until the individuals accumulate an average of A deleterious mutations (red dot) and
reach their own mutation-selection balance, which is a steady-state Poisson profile with mean A that has been shifted
by the initial deleterious load, —ks, (red inset). (B) In the absence of genetic drift, the lineage will increase at a rate
proportional to its relative fitness. Lineages arising in the class with £ = 0 deleterious mutations reach mutation-

selection balance about t4 = @

fitness of these lineages changes on a shorter timescale, -

(k)

after arising, after which the size of the lineage asymptotes to no(t = 0)e*. The

(C) In contrast, lineages arising in classes with k& > 0

deleterious mutations peak in size after a time ¢, when their average relative fitness is zero, after which they decline

exponentially at rate ks.

calculate the distribution of allele frequency trajec-
tories in this regime, we will need to model these
changes in the fitness distribution of individuals car-
rying the allele. Although we will formally be treat-
ing A as a large parameter, in practice our results
will also adequately describe allele frequency trajec-
tories in the cases of moderate A (i.e. A 2 2, see
Figure 2).

To make progress, we classify individuals carrying
this allele (the “labeled lineage”) according to the
number of deleterious mutants they have at the lo-
cus. We denote the total frequency of the labelled in-
dividuals that have i deleterious mutations as f;(t),
so that the total frequency of the lineage, f(¢), is
given by

f(t) = Z fi(t). (9)

The time evolution of the allele frequency in a
Wright-Fisher process is commonly described by a
diffusion equation for the probability density of the
allele frequency (Ewens, 2004). Instead, for our pur-
poses it will be more convenient to consider the
equivalent Langevin equation (Van Kampen, 2007),
df; o

d% = (—is+ k(t)s) fi — Uafi + Uafi—1 + Cs(2).
(10)

Here, C;(t) is a noise term with a complicated cor-
relation structure necessary to keep the total size of
the population fixed (see Good and Desai (2013) for
details) and k(t) is the mean number of mutations
per individual in the entire population at time ¢. In
the strong selection limit that we are interested in
here (Nse™ >> 1), fluctuations in the mean of the
fitness distribution of the population are small and

k(t) ~ A (Neher and Shraiman, 2012).

Key features of lineage trajectories

Before turning to a detailed analysis of Eq. 10, it is
helpful to consider some of the key features of lin-
eage trajectories that we will model more formally
below. To begin, imagine a lineage founded by a
neutral mutation in an individual with k deleterious
mutations. Let the lineage be composed of ny(0) in-
dividuals at some time t = 0 shortly after arising,
all of which carry k deleterious mutations (see blue
inset in Figure 4A). At this time, the relative fitness
of this lineage is simply —ks — (—ks) = Uy — ks.
Thus, lineages founded in classes with k& > A will
tend to decline in size. In contrast, the more inter-
esting case arises if £ < A, since these lineages will
tend to increase in size.



However, though the overall number of individu-
als that carry the allele will tend to increase when
k < A, the part of the lineage in the founding class
k (the ‘founding genotype’) will tend to decline in
size, because it loses individuals through new dele-
terious mutations (at per-individual rate —Uyg). As
a result, the founding genotype feels an effective se-
lection pressure of Uy —ks— Uy = —ks, which is neg-
ative for all £ > 0 and 0 for £ = 0. This means that
the lineage will increase in frequency not through an
increase in size of the founding genotype, but rather
through the appearance of a large number of delete-
rious descendants in classes of lower fitness. The lin-
eage must therefore decline in fitness as it increases
in size.

In the absence of genetic drift, we can calculate
how the size and fitness of the lineage change in time
by dropping the stochastic terms in Eq. 10 (sub-
ject to the initial condition ng(t = 0) = nk(0) and
ng4i(t = 0) = 0 for all ¢ # 0). These deterministic
dynamics of the lineage have been analyzed previ-
ously by Etheridge et al. (2007), who showed that
the number of additional mutations that an indi-
vidual in the lineage carries at some later time ¢ is
Poisson-distributed with mean A\(1—e~%). Thus the
average number of additional deleterious mutations
eventually approaches A after t 2> t4 = % genera-
tions. At this point, the lineage has reached its own
mutation-selection balance: the fitness distribution
of the lineage has the same shape as the distribution
of the population (i.e. n;4x(t) = h; - ng(t)), but is
shifted by —ks compared to the distribution of the
population (see red inset in Figure 4A).

The average relative fitness x(t) of individuals in
the lineage (Fig. 4A) is therefore equal to

x(t) = Uge " — ks, (11)

and the total number of infiividuals in the lineage is
simply n(t) = ng(t = 0)elo W = p; (t = 0)gi(t),
where we have defined

gk(t) _ efkst+/\(lfe_s"). (12)

Thus, we can see from Equations 11 and 12 that lin-
eages founded in the O-class will on average steadily
increase in size at a declining rate until they asymp-
tote at a total size equal to ni(t = 0)e* roughly
tg = % generations later (see Figure 4B). In con-
trast, lineages founded in the k-class will increase in

size for only

() _ w (13)

generations, when they peak at a size of ng(t = 0)-gx
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individuals (see Figure 4C), where we have defined

o= (";) (14)

The lineages remain near this peak size for about

1

generations (Fig. 4C). At longer times, they expo-
nentially decline at rate —ks (Fig. 4C).

These simple deterministic calculations capture
the average behavior of an allele and show that
all alleles founded in classes with k& > 0 are likely
to be extinct on timescales much longer than t((ik),
whereas sufficiently large lineages founded in the
0-class should simply reflect the frequency in the
founding class about t4 generations earlier, (f(t)) ~
e fo(t—tq). This is the forward-time analogue of the
intuition presented by Charlesworth et al. (1993).

Of course, this deterministic solution neglects the
effects of genetic drift, which will be crucial, partic-
ularly because drift in each class propagates to af-
fect the frequency of the lineage in all lower-fitness
classes (for a more detailed heuristic describing why
drift can never be ignored, see Appendix B.1). Al-
though these effects are complex, there is a hierar-
chy in the fluctuation terms which we can exploit
to gain some intuition. From the deterministic solu-
tion above, we can see that a fluctuation of size d f;
in class 7 will on average eventually cause a change
in the total size of the lineage proportional to 0 f;g;
after a time delay tg). Thus, the fluctuations that
have the largest effect on the total size of the lineage
are those that occur in the class of highest fitness
(i.e. the founding class k). These fluctuations will
turn out to be the most important to describing the
frequency trajectory of the entire allele, though fluc-
tuations in classes of lower fitness will still matter in
lineages of small enough size.

One could imagine that this result means that
fluctuations in the total size of the lineage simply
mirror the fluctuations in the founding class, am-
plified by a factor gp and after a time delay tfik).
If fluctuations in the founding class are sufficiently
slow, this is indeed the case. However, for fluctu-
ations that occur on shorter timescales, this is not
true. Consider for example the case where a neutral
mutation is founded in the mutation-free (k = 0)
class. Imagine that the frequency of the allele in the
founding class changes by a small amount from f
to fo+ dfo as a result of genetic drift (shown in the
first panel of Figure 5). Based on the deterministic
solution, this fluctuation will lead to a proportional
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FIG. 5 A schematic showing how a change in the frequency of the lineage in the mutation-free class propagates to
affect the frequency in all classes of lower fitness. At time ¢t = 0, the lineage is in mutation-selection balance at total
frequency f, when the frequency of the portion of the lineage in the zero class changes suddenly from fy to fo + 6§ fo.
This change is felt in the 1-class é generations later, and propagates to the 2-class yet another % generations later.
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change in the frequency of the portion of the lin-
eage in the 1l-class, and this change will take place
over ~ % generations (see Appendix A for details).
During this time, the change in the 1-class begins to
lead to a shift in the frequency in the 2-class, which
will mirror the change in the 0-class a further 2—15
generations later (see Fig. 5). This change will then
propagate in turn to lower classes, and ultimately
results in a proportional change in the total allele
frequency a total of S0 L log(A)

im1 i = ——— generations
later (see Fig. b).

Now consider what happens if there is another
change in the frequency in the founding class. If
this change occurs within the initial % generations,
it will influence the 1-class simultaneously with the
first fluctuation, and thus the effect of these two
fluctuations on the overall lineage frequency will be
“smoothed” out. In contrast, if the changes are
separated by more than % generations, they will
propagate sequentially through the fitness distribu-
tion, and are ultimately mirrored in the total al-
lele frequency. Similar arguments apply to lineages
founded in other fitness classes, though the relevant

timescales and scale of amplification are different.

Together, these arguments suggest that fluctua-
tions in the founding class will have the largest im-
pact on overall fluctuations in the lineage frequency,
and these overall fluctuations will represent an am-
plified but smoothed-out mirror of the fluctuations

generations later, when the total allele frequency is proportional

in the founding class. This smoothing will be cru-
cial: the size of the lineage in the founding class will
typically fluctuate neutrally, but the smoothed-out
and amplified versions will have non-neutral statis-
tics. As we will see below, this smoothing ultimately
leads to distortions in the site frequency spectrum at
low frequencies (f < 3-1=x).

ANALYSIS

Formally, we analyze all of the effects described
above by computing the distribution of the fre-
quency trajectories f(t) of the allele, p(f,t), from
Eq. 10 for an allele arising in class k. This pro-
cess is complicated by the correlation structure in
the C;(t) terms required to keep the population size
constant. These correlations are important once the
lineage reaches a high frequency, and in the pres-
ence of strong selection they result in a complicated
hierarchy of the moments of f, which do not close
(Good and Desai, 2013; Higgs and Woodcock, 1995).
However, we can simplify the problem by considering
low, high, and intermediate-frequency lineages sepa-
rately. First, at sufficiently low frequencies (f < 1),
the C;(t) in Eq. 10 reduce to simple uncorrelated
white noise. At these low frequencies, Eq. 10 thus



simplifies to

% = (—is+As) fi = Uafi + Uafi1 + \/Zni(t)v
t N

(16)
where the noise terms have (n;(¢)) = 0 and covari-
ances (n;(t)n;(t')) = 6;;0(t —t') and should be in-
terpreted in the It0 sense. At very high frequen-
cles (1 — f <« 1), a similar simplification arises. In
this case, the wild-type lineage is at low frequency,
and we can model the wild-type frequency using an
analogous coupled branching process with uncorre-
lated white noise terms. Finally, at intermediate fre-
quencies, we cannot simplify the noise terms in this
way. Fortunately, for the case of strong selection we
consider here, we will show that for Nsi, y < fK

1— ﬁ, lineage trajectories have neutral statistics
on relevant timescales. As we will see below, these
low, intermediate, and high frequency solutions can
then be asymptotically matched, giving us allele fre-
quency trajectories and site frequency spectra at all
frequencies.

In the next several subsections, we focus on the
analysis of the distribution of trajectories at low and
high frequencies (f < 1 or 1 — f <« 1), where Eq. 16
is valid. We then return in a later subsection to the
analysis of trajectories at intermediate frequencies.

The dynamics of the lineage within each fitness class

To obtain the distribution of trajectories of the allele
p(f,t) at low frequencies (f < 1) from Eq. 16, we
will first compute the generating function of f(t).
This generating function is defined as

Hy(z,t) = <e—zf<t>>, (17)

where angle brackets denote the expectation over the
probability distribution of the frequency trajectory
f(t). Hy(z,t) is simply the Laplace transform of
the probability distribution of f(t), and it therefore
contains all of the relevant information about the
probability distribution of f(¢).

As we have already anticipated from our discus-
sion above, the time evolution of f(t) depends on
the distribution of the lineage among different fitness
classes. In order to understand how this distribution
changes under the influence of drift, mutation and
selection in these classes, we can consider the joint
generating function for the f;(t),

H({z},1) = (" Zesh), (18)

13

The generating function for the total allele frequency
H¢(z,t) can then be obtained from this joint gener-
ating function by setting z; = z. We will use this
relationship between the two generating functions to
evaluate the importance of drift, mutation and se-
lection within each of the fitness classes on the total
allele frequency.

By taking a time derivative of Eq. 18 and substi-
tuting the time-derivatives % from Eq. 16 (where
the stochastic terms should be interpreted in the
It sense, see Appendix C), we can obtain a par-
tial differential equation describing the evolution of
the joint generating function,

OH ‘ 22\ OH
o Z - (Zszi —Uazit1 + 2N> 52 (19)

K2

We see from Equation 19 that the joint generating
function is constant along the characteristics z; (t—t')
defined by

2
Ccl;: =152; — Udzi+1 + % (20)
Thus, the joint generating function can be obtained
by integrating along the characteristic backwards in
time from ¢ = 0 to t’ = ¢, subject to the boundary
condition z;(t) = z. Note that the linear terms in
the characteristic equations arise from selection and
mutation out of the 7 class, and that the nonlinear
term arises from drift in class .

In Appendix E.2, we show that when considering
the distribution of trajectories p(f,t) at frequencies
> ﬁsie)‘ (é)l = ﬁmgi, the nonlinear terms in
Eq. 20 are of negligible magnitude uniformly in time
in all classes containing ¢ or more deleterious muta-
tions per individual as long as i < A, Nse™ > 1
and A > 1. Here, g; represents the peak of the ex-
pected number of individuals in a lineage founded by
a single individual in class i (see Eq. 14 and Fig. 4C).
Thus, when f > ﬁ Gi, the effect of genetic drift is
negligible in classes with ¢ or more deleterious mu-
tations. Conversely, when f < ﬁ G;, genetic drift
in the class with ¢ deleterious mutations does affect
the overall allele frequency.

Since drift is negligible in classes with ¢ or more
mutations, total allele frequencies of f(t) > 53—3;
require that f;(t — tS)) > sa—. This threshold is
reminiscent of the ‘drift barrier’, but its origin for
classes below the founding class (i > k) is more
subtle. We offer an intuitive explanation for this
threshold in Appendix B.2. Thus, drift in class ¢
has an important impact on the overall frequency
trajectory as long as f; < ﬁ However, once f;

exceeds 5 J\lfsi, the effect of genetic drift in that class,




as well as all classes below i, becomes negligible, be-
cause the frequencies of the parts of the lineage in
all classes below i are then also guaranteed to ex-
ceed the corresponding thresholds. Note that the
frequency of the founding genotype fj is exponen-
tially unlikely to substantially exceed ﬁ This
is because, as we explained earlier, the frequency
trajectory of the founding genotype fi(t) has the
same statistics as the trajectory of a mutation of fit-
ness —ks at an isolated locus (see Equation 16 and
Appendix F). Thus, because fj is unlikely to ex-
ceed ﬁ, the overall allele frequency f of an allele
founded in class k is exponentially unlikely to sub-
stantially exceed 3 - -

In summary, by analyzing the generating function
for the components of the lineage in different fitness
classes, we have found that there is a clear separa-
tion between high fitness classes in which mutation
and drift are the primary forces, and classes of lower
relative fitness in which mutation and selection dom-
inate. The boundary between the stochastic and
deterministic classes can be determined from the to-
tal allele frequency, allowing us to reduce a compli-
cated problem involving a large number of coupled
stochastic terms to what we will see is a small num-
ber of stochastic terms feeding an otherwise deter-
ministic population.

Statistics of trajectories with 51— 71 < f < 1

At this point, we are in a position to calculate a
piecewise form for the generating function Hy(z,t)
valid near any frequency f. For example, consider
the allele frequency trajectory in the vicinity of some
frequency ﬁsgl < f <« 1. As we have explained
above, at these frequencies contributions from muta-
tions arising in class k > 1 are exponentially small,
since they would require the frequency of the lin-
eage in that class to substantially exceed 2—&,5, which
happens only exponentially rarely. Thus, in this fre-
quency range we will only see mutations arising in
the mutation-free class (k = 0). In addition to this,
we have shown that at these frequencies genetic drift
can be neglected in all classes but the 0-class. To ob-
tain the generating function at these frequencies, we
can therefore integrate the characteristic equations
by dropping the nonlinear terms in Eq. 20 for all
1 > 0 (see Appendix E.2 for details). This yields the
generating function for the frequency of the labelled
lineage,

Hy(z,t) = <e*2(fo+Ud Jie dffo<f>91<H>)> , (21)
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FIG. 6 Schematic of (A) the trajectory of the total al-
lele frequency, and (B) the trajectory of the frequency
of the portion of the allele that remains in the found-
ing class. Soon after arising in the founding class, the
allele frequency rapidly increases in the spreading phase
of the trajectory. Early in this phase, the total allele
frequency (purple) becomes much larger than the fre-
quency of the founding genotype (black; left inset, panel
A). In the peak phase of the trajectory, the total al-
lele frequency trajectory represents a smoothed out and
amplified version of the trajectory in the founding class
(the relationship between the total allele frequency (pur-
ple curve) and the founding genotype frequency (black
curve) is based on Eq. 22). In the extinction phase of the
trajectory, the allele frequency declines at an increasing
rate (right inset, panel A). We describe the extinction
phase in more detail in Appendix E and in the section of
the main text titled ‘The trajectories of high frequency
alleles, 1 — f < 1’, where we also explain how the rate
of extinction changes with the frequency.

where the average is taken over all possible realiza-
tions of the trajectory in the founding class fo(t).

As before, g1 (t — 7) represents the expected num-
ber of individuals descended from an individual
present in class in the 1-class t — 7 generations earlier
(see Eq. 12). Thus, the two terms in the exponent
in Eq. 21 represent the frequency of the lineage in
the founding class fy and the total frequency of the
deleterious descendants of that lineage. The latter
are seeded into the 1-class at rate NUqfo(T), and
each of these deleterious descendants founds a lin-
eage that ¢ — 7 generations later contains g1 (t — 7)
individuals, so that the total frequency of the allele



is simply

F(8) = folt) + Ua / drfo(Mn(t— 7). (22)

Thus, we have obtained a simple expression for
the frequency of the entire allele in which all of
the stochastic effects have been reduced to a sin-
gle stochastic component, fo(t). Furthermore, the
stochastic dynamics of fo(¢) are those of a simple,
isolated, neutral mutation (see schematic of such
a trajectory in Figure 6B). Note however that the
statistics of the fluctuations in f(¢) are not neces-
sarily the same as the statistics of the trajectory in
the founding class (see Figure 6A). This is because
f(t) depends on an integral of fo(t) (see Eq. 22),
and therefore has different stochastic properties than
fo (t) itself.

From Eq. 22, we can see that the frequency tra-
jectory of the allele still has the same qualitative
features as those we have seen in the deterministic
behavior of mutations. Shortly after being founded,
the lineage will become dominated by the delete-
rious descendants of the founding class, which are
captured by the second term in Eq. 22 (see left in-
set in Fig. 6A). At early times (t < tq = @),
the total allele frequency must rapidly grow, as
the lineage spreads through the fitness distribution
and approaches mutation-selection balance (see Fig-
ure 6A). About ¢y generations after founding, the
peak phase of the trajectory begins (see Fig. 6A).
During this phase, the average fitness of the lin-
eage is approximately 0 and the allele traces out a
smoothed-out and amplified version of the trajectory
in the founding class (Fig. 6B). Finally, ¢4 genera-
tions after the descendants of the last individuals
present in the founding class have peaked, the aver-
age fitness of the lineage will fall significantly below
0, and the extinction phase of the trajectory begins.

As we show in Appendix I, the peak phase of the
trajectory is the most important for understand-
ing the site frequency spectrum. This is also the
phase during which the trajectory of the mutation
spends the longest time near a given frequency. In
contrast, the spreading phase (see Fig. 6A) has a
negligible effect on the site frequency spectrum: by
this we mean that the site frequency spectrum at
a given frequency will always be dominated by the
peak phase of trajectories that peak around that fre-
quency, and not influenced by the spreading phase
of trajectories that peak at much higher frequencies.
We will therefore not consider the spreading phase
in the main text, but discuss it in Appendix I1.3.
The extinction phase of the trajectory can also be
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neglected for a similar reason, except when consid-
ering the very highest frequencies, f > 1 — ﬁ
(Appendix 1.2). At these frequencies, the wild type
frequency is small and the mutant is in the process of
fixation. To analyze the allele frequency trajectory
at these frequencies, we model the wild type using
the coupled branching process in Eq. 16, and hence
describe these trajectories by the extinction phase of
the wild type.

To calculate the distribution of f(¢) in the peak
phase, we need to calculate the distribution of the
time integral of fo(t) in Eq. 22. We can simplify this
integral by observing that g;(¢) is highly peaked in

time between tgll) — AtTm and t&l) + At;) , where tfil)
and At() are given by Equations 13 and 15 and
annotated in Figure 4C. In other words, starting
at times around tgl) generations after the lineage
reaches a substantial frequency in the founding class,
the labelled lineage is dominated by the deleterious
descendants of individuals extant in the founding
class between t&l) —AtM and t&l) + At generations
earlier, with individuals extant in the founding class
at other times having exponentially smaller contri-
butions (see Appendix E.2 for details). Thus, the
total size of the lineage will be proportional not to
the frequency fo(t — tgll)) in the founding class tgl)
generations earlier, but to the total time-integrated
frequency within some window of width ~ At() cen-
tered around that time. We call this quantity the

“weight” and denote it by Wa,1), where

t+ Atz(l)

War (t) = fo(tdt'. (23)

A1)
t— a8t

The total allele frequency in the peak phase is there-
fore equal to

@) = UaWayo) (t = ta) g1(ta). (24)

Thus, to calculate the distribution of the allele
trajectory, we only need to calculate the distribu-
tion of the weight in the founding class over a win-
dow of specified width, At(). Tt is informative to
consider the time-integrated form of the distribu-
tion of this weight, p(Wa,m) = fix;o dt p(Wary, t),
since this form is also directly relevant to the site
frequency spectrum (for a discussion of the time-
dependent distribution Wa,a)(t), see Appendix F).
In Appendix F we show that p(Wx,q)) is given by

1 A At®?

VoN= Wi Warn < N

p(Warm) = A 2
L W > A

Wae’ At N

(25)



This distribution has a form that can be simply un-
derstood in terms of the trajectory in the founding
class. Since genetic drift takes order N fy genera-
tions to change f substantially, drift will not change
fo significantly within At(!) generations when the
frequency in the founding class exceeds Af\il) = ﬁ
As a result, the weight, Wx,a), will be approxi-
mately equal to Wa,) = fo - At = % There-
fore, at these large frequencies, the weight simply
traces the feeding class frequency, and the two quan-
tities have the same distributions. At lower fre-
quencies, fo < %, the founding genotype will typi-
cally have arisen and gone extinct in a time of or-
der N fomax generations (where fomax the maxi-
mal frequency the lineage reaches over the course
of its lifetime). By assumption, this time is much
shorter than % Thus, the weight in a window
of width 1 that contains this trajectory is simply
Wary = fo max * N f0,max- ThlS large a trajectory is

obtained with probability —7— f , from which it fol-

lows (by a change of Varlable) that the distribution

of weights in the founding class scales as W t({?

As we anticipated in our discussion of the prop-
agation of fluctuations of the founding genotype
through the fitness distribution (Fig. 5), we have
found that the trajectory of the allele in the peak
phase looks like a smoothed out, time-delayed and
amplified version of the trajectory in the found-
ing class (Fig. 6) At sufficiently high frequencies,
f(t) > Ugr - 5z ~ §o—=, the timescale of the
smoothing is shorter than the typical timescale of
the fluctuations in the founding class. At these fre-
quencies the statistics of the fluctuations of the al-
lele simply mirror the statistics of the fluctuations

in the founding class, with a time delay equal to
t(l) _ log A
d — s -

At lower frequencies, 2N n < f< _A, the
timescale of smoothing is much longer than the typ-
ical lifetime of the founding genotype. As a result,
the deleterious descendants of the entire original
genotype rise and fall simultaneously and fluctua-
tions in the founding class are not reproduced in de-
tail. Instead, the peak phase of the allele frequency
trajectory consists of a single peak with size pro-
portional to the total lifetime weight of the found-
ing genotype, W = [*_ f(r)dr. As we calculated
above, the distribution of these peak sizes falls off
more rapidly than neutrally. This gives us a com-
plete description of the statistics of the peaks of
allele frequency trajectories in the frequency range

> =01
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Statistics of trajectories with f < ﬁgh

So far, we have only considered trajectories of lin-
eages that reach a maximal allele frequency larger
than 5 ]{, g1, all of which must have arisen in the
mutatlon free class. At lower frequencies, ; 1{75 g2 K
[ <3 N g1, the effects of genetic drift in class i =1
must also considered, but the behavior in classes
with ¢ > 2 is deterministic. In this case, by re-
peating our earlier procedure, we obtain a slightly
different form for the generating function H(z,t),

b

(26)

Hp(z,t) = <e*Z(fo+f1+Ud It dffl(T)QQ(t,T))>
so that the total allele frequency is

£ = folt) + f1(t) + U / dr f1(7)ga(t — 7).

(27)
The total allele frequency is once again dominated
by the last term, which represents the bulk of the
deleterious descendants. Thus, by an analogous ar-
gument, the peak size of the lineage is proportional

to the weight in the 1-class in a window of width

2) 1
AtU_E,

F(t) m UgWayeo (t — 1)) (28)

There are two types of trajectories that can reach
these frequencies: trajectories that arise in the 1-
class and reach a sufficiently large frequency in their

. A\1/2
founding class (f; > JANT
and trajectories that arise in the 0-class and reach
a smaller frequency in their founding class (fy <

AL/2
V2NU,
descendants in the 1-class that the overall frequency

see Appendix G),

), but still leave behind enough deleterious

in that class exceeds f1 > J%lTﬂUd By the argument

that we outlined before, this ensures that genetic
drift will negligible in classes of lower fitness (i.e.
for i > 2), and is guaranteed to happen if fo > Al/‘l
(see Appendix G).

The trajectories of the former type are simple to
understand, since in this case, the trajectory fi(t)
is that of a simple, isolated, deleterious locus with
fitness —s (and fo(t) = 0 at all times). By repeating
the same procedure as above, we find that the time-
integrated distribution of the weights in the 1-class
is

At NEW o 42)

PWar) ® ————5¢ 2 . (29
V2rN 3{5?2)

Note that since the trajectory of a mutation in the
founding 1-class is longer than ~ % generations only



exponentially rarely, a window of length At(?) nearly
always contains the entire founding class trajectory
(see Appendix F). This is reflected in the form of
the weight distribution in Equation 29, which falls
as W;%? with an exponential cutoff at % Thus,
the frequency trajectory of an allele that arises in
the 1-class will not mirror the fluctuations in the
founding genotype. Instead, the peak phase of the
allele frequency trajectory will nearly always consist
of a single peak, just as we have seen in the case of
alleles peaking at frequencies 2—1{[8 n < fx ﬁ

We now return to the other type of trajectory that
can peak in this range: alleles arising in the 0-class,
but reaching a small enough frequency that the ef-
fects of genetic drift in the 1-class cannot be ignored

(fo < Nié‘d) Because the trajectory of these alleles
in the 1-class represents the combined trajectory of
multiple clonal sub-lineages each founded by a muta-
tional event in the 0O-class, the distribution of weights
in the 1-class will be different (p(Wau2)) ~ WA_%?,
see Appendix G), which leads to a different distri-
bution of overall allele frequencies f. However, as
we show in Appendix I.1, these trajectories have
a negligible impact on the site frequency spectrum:
because the overall number of mutations arising in
class 1 is substantially larger than the overall num-
ber of mutations arising in class 0, trajectories that
arise in class 0 and peak in the same frequency range
as mutations originating in class 1 are less frequent
by a large factor (A\3/%, see Appendix G), .
Similarly, at even lower frequencies in the range
mgiﬂ < f < 37=Gi, we will see the peaks of
trajectories arising on backgrounds with ¢ or fewer
deleterious mutations. These trajectories all have a
single peak of width equal to At(+1) = 6\/14_71 The
maximal peak sizes are, once again, proportional to
the total weight in the i-class, which will be dis-
tributed according to a different power law depend-
ing on the difference in the number of deleterious
mutations A = k — i between the founding class k
and the i-class (see Appendix G for details). As we
show in Appendix 1.1, the most numerous of these
mutations are those that arise in the i-class (k = ).
The index of this most numerous class is a quantity
that we return to at multiple points, and we denote
it with k.(f). We can obtain an explicit form for how
k.(f) depends on the frequency f by solving the im-
plicit condition mgkcﬂ < fx Tlskc g, for
k.. We show in Appendix 1.1 that, to leading order,

ko(f) + 1 =~ log) ( ) ,when k.(f) > 1.
(30)

f <

1
Nse 2 f

Finally, at the very lowest frequencies,
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A‘g = N , the site frequency spectrum is domi-

nated by the trajectories of lineages that arise in a
class that is within a standard deviation o of the
mean of the fitness distribution (i.e. lineages with
AN—Fk S 2 = V/A). Unlike the trajectories of
lineages that arise in classes of higher fitness that
we discussed above, allele frequency trajectories of
lineages arising within a standard deviation of the
mean are typically dominated by drift throughout
their lifetime (see Appendix E.3). This is because
the timescale on which these lineages remain above
the mean of the fitness distribution (which is limited
by tq(k)) is shorter than the timescale that it takes
them to drift to a frequency large enough for the ef-
fect of selection to be felt (~ m ta(k)). Lin-
eages arising in these classes do not reach frequen-
cies substantially larger than ﬁ, and have largely
neutral trajectories at frequencies that remain below
this threshold.

The mirrored fluctuatlons of the aIIeIe at intermediate
frequencies, ,A L f<kl- ﬁ

e

We have seen that the effects of genetic drift in mul-
tiple fitness classes may be important when f <
~o—, but that at frequencies larger than -,
genetic drift in all classes apart from the 0-class
can be neglected. At these frequencies, the trajec-
tory of the allele mirrors the fluctuations in the 0-
class that occur on timescales longer than % genera-
tions. We have also seen that overall allele frequen-
cies larger than 1, < correspond to O-class frequen-

cies fo > Ns.

At more substantial allele frequencies (for which
the condition that f < 1 is not satisfied), the cou-
pled branching process in Eq. 16 cannot be used
to adequately model the allele frequency trajectory.
This is because at these frequencies the correlations
between fluctuations in the frequencies of the mutant
and of the wild-type, which are imposed by the finite
size constraint of the population, become important.
However, we can account for these correlations sim-
ply by making use of the fact that the effect of ge-
netic drift in all classes but the 0-class will remain
negligible as long as both the mutant and the wild
type remain at sufficiently large frequencies. Thus,
to model the overall allele frequency trajectory at
these intermediate frequencies, we can use a sim-
ple, neutral model to describe the frequency of the
mutant in the O-class, fo(t), and the frequency of
the wild type in the O-class, fwto = ho — fo(t) =



e = folt),

- _
% — fO (6 fO)nO(t) (31)
t N
and treating the remainder of the population deter-
ministically (which yields an expression for the rela-
tionship between fy(t) and f(¢) that is identical to
Eq. 22).

Furthermore since We have assumed that
Nse — L fK1- 7,), an additional simpli-
fication arises. In thrs frequency range, the fre-
quency of both the mutant and of the wild type
0-class exceed ﬁ Thus, large fluctuations in the
frequency of the mutant and of the wild type oc-
cur on timescales that are longer than % genera-
tions. Because this timescale is longer than the
timescale on which selection in lower classes re-
sponds ( ), large fluctuations in the 0-class are mir-
rored by the overall frequency trajectory, after a
time-delay. In other words, on timescales longer
than % generations, we can expand the exponent in
the integrand in Eq. 22 around its peak and approx-
imate the total allele frequency of the mutant and

the wild type alleles as f(t) ~ e*fy (t — %) and

Furt) = - [ho — fo (¢ — 15
model for the total allele frequency of the mutant

)}7 which yields a

g [fa=7)

i =\ TN 1 (32

where n(t) is an effective noise term with mean
(n(t)) = 0, variance (n(t)?) = 1 and auto-correlation
(n(t)n(t')) that vanishes on timescales longer than
l Thus, on timescales longer than L <, the allele fre-
quency trajectory is just like that of a neutral mu-
tation in a population of smaller size Ne~*. On
shorter timescales, the allele frequency trajectory
will be more correlated in time than the frequency
trajectory of a neutral population in a population of
that size and will appear smoother. However, since
large frequency changes of alleles at these frequen-
cies will only occur on a timescale of order Ne™*f,
which is much longer than , this description will be
sufficient for describing 51te frequency spectra.

We emphasize that Eq. 32 relies on the overall fluc-
tuations in the fitness distribution of the population
being negligible on relevant timescales, so that the
average number of deleterious mutations per individ-
ual, k(t) is approximately equal to A (and, crucially,
independent of f). We expect that this approxima-
tion is valid when Nse™* >> 1, because the overall
fluctuations in k(t) are small compared to A in this
limit (Neher and Shraiman, 2012). However, it is
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less clear whether this approximation continues to
be appropriate as Nse™ approaches more moder-
ate, O(1) values. A more detailed exploration of
these effects would require a path integral approach
similar to that of Neher and Shraiman (2012), and
is beyond the scope of this work.

The trajectories of high frequency alleles, 1 — f < 1

The neutral model from the previous section breaks
down when the allele frequency of the mutant ex-
ceeds 1 — ﬁ These total allele frequencies are
attained when the frequency of the founding geno-
type fo exceeds the frequency hy — . When this
occurs, the frequency of the wild- type 1n the found-
ing class will fall below ﬁ and fluctuations that
occur on timescales shorter than % generations will
once again become important. Mutant lineages that
reach such high frequencies are almost certain to
fix in the O-class. Once this happens, all individ-
uals that carry the wild type allele at the locus will
also be linked to a deleterious variant. Thus, though
the mutant carries no inherent fitness benefit, it will
thereafter appear fitter than the wild type, because
it has fixed among the most fit individuals in the
population. The mutant will therefore proceed to
perform a true selective sweep and will drive the
wild type allele to extinction.

At these high allele frequencies, 1 — f < ﬁ <
1, we can once again use the coupled branching pro-
cess in Eq. 16 to describe the allele frequency trajec-
tory of the wild type, fwt(t) =1 — f(t). Seen from
the point of view of the wild type, the fixation phase
of the mutant corresponds to the extinction phase of
the wild type (see right inset in Figure 3). To ob-
tain a description of the allele frequency trajectory
of the wild type at these times, we can expand the
generating function in Eq. 21 at long times, which
yields

1 e—(k+1)s(t—t0)> 7 (33)

Hy, . (,z7 ) ~ <efz Nee—X

for some choice of ¢y (see Appendix E.2 for details).
Note that, as before, Eq. 33 is valid only as long as
Jwt > ﬁgl (i.e. as long as the size of the lineage in
the 1-class exceeds ﬁ) Once the frequency of the
wild type in the 1-class falls below ﬁ, we can no
longer treat this class deterministically. Once this
happens, the part of the wild type that is in the
1-class will drift to extinction within about % gen-
erations, whereas its bulk will continue to decay at
a rate proportional to its average fitness, —2s. This
will go on for as long as the frequency in the 2-class



is larger than ﬁ, corresponding to the total fre-
quency of the lineage being larger than 4—11[8 g2 Once
the frequency of the wild type in the 2-class also falls
below %Ns, the bulk of the lineage will continue to
decay even more rapidly, at rate —3s, and so on. In
general, once the frequency of the lineage in class k.,
but not in class k.+1, falls below ﬁskc, which corre-
sponds to the total frequency of the wild type being
in the range sx—qydk+1 < fur < gyap 0. the
average fitness of the bulk of the wild type will be
equal to seg = —s - (k. + 1) (see Fig. 3).

Thus, the wild type goes extinct in a staggered
fashion, dying out in classes of higher fitness first,
and declining in relative fitness in this process. As
a result, the effective negative fitness of the wild
type increases as its frequency declines, leading to
an increasingly rapid exponential decay of the allele
frequency (see right inset in Fig. 6A). By solving
the implicit condition for k.(fyt) above as previ-
ously (see Appendix E.2, Eq. E19 — Eq. E21), we
find that average fitness of the bulk of the wild type
distribution seg(fwt) is to leading order equal to

1
Seft (fwt) = —s(ke(fwt) +1) = —slogy (M)
(34)
when fg < ﬁ This means that the frequency
trajectory of the wild type in this phase obeys

Fonlt) o e~ (=)t (35)

THE SITE FREQUENCY SPECTRUM IN THE
PRESENCE OF BACKGROUND SELECTION

Having obtained a distribution of allele frequency
trajectories, we are now in a position to evaluate
the site frequency spectrum. Since the trajectory of
any lineage depends on the fitness of the background
that it arose on, we will find it convenient to divide
the total site frequency spectrum p(f) into the site
frequency spectra of mutations with different ances-
tral background fitnesses, p(f, k). By definition, the
total site frequency spectrum p(f) is the sum over
these single-class frequency spectra,

p(f) =Y _p(f.k). (36)
k

We evaluate the site frequency spectrum in three
overlapping regimes, f < 1, ﬁ < fx1-
ﬁ and 1 — f < 1.
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The site frequency spectrum of rare alleles, f < 1

The rare end of the frequency spectrum (f < 1) con-
sists of neutral alleles that (because they are rare)
occurred on different genetic backgrounds. These al-
leles thus have independent allele frequency trajec-
tories that can be described by the coupled branch-
ing process, Eq. 16. As long as f(t) < 7, most
lineage trajectories are dominated by genetic drift.
Intuitively this result is simple: provided that the
lineage is rare enough, selection pressures in any fit-
ness class (or more precisely, the bulk of the fitness
classes where the vast majority of such alleles arise)
can be neglected compared to drift. Thus, the re-
sulting site frequency spectrum is

_2NU, Iy

p(fok) ~ for f < ——

. 37
7 No (37)
At these frequencies, the total site frequency spec-
trum is equal to

INU,,

I (38)

1
f —_
, 01rf<<NJ

p(f) =Y p(f k)~
k

This agrees with our earlier intuition that at the
lowest frequencies the entire population contributes
to the site frequency spectrum, and also with the
results of Wright-Fisher simulations (see Figure 3).
Since the effects of selection are negligible, each fit-
ness class contributes proportionally to its size, with
the largest fitness classes contributing the most (see
Figure 7). The deleterious mutation-free (k = 0)
class has a negligible effect on the site frequency
spectrum, contributing only a small proportion (pro-
portional to its total frequency, hg = e~ ) of all
variants seen at these frequencies.

At larger frequencies, f > ﬁ, selection plays an
important role in shaping allele trajectories and the
site frequency spectrum. The overall contribution of
mutations originating in class k near some frequency
f is determined not only by the overall rate NU, h
at which such mutations arise, but also by the prob-
ability that these mutations reach f, which declines
with the initial deleterious load k. As a result, as f
increases, the site frequency spectrum will become
increasingly enriched for alleles arising in unusually
fit backgrounds (see Figure 7).

The contributions to the site frequency spectra
p(f, k) are straightforwardly obtained by integrating
in time the distributions of allele frequency trajecto-
ries that we have described in the Analysis section,

oo

p(fak):NUnhk/ p(f k,t)dt.  (39)

—00
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FIG. 7 Proportions of polymorphisms at a given frequency that arose in genotypes that had a specified number
of additional deleterious mutations compared to the most fit genotype at the locus at the time they arose. The
parameters in these simulations are the same as the parameters used to generate site frequency spectra in Fig. 1 and

1
Nse—X)

Fig. 3. Note that for frequencies f >

the entire site frequency spectrum is composed of lineages that arose

due to neutral mutations in the k = 0 class (with only a few exceptions that arise due to rare ratchet events).

This integral is dominated by the peak phase of allele
frequency trajectories, during which we have seen
that the allele frequency is simply proportional to

the weight in class k.(f) ~ log, (ﬁ‘*f)’ which

corresponds to the class of lowest fitness in which
the dynamics are not deterministic,

p(f,k,t) = {

(40)
The overall site frequency spectrum is equal to the
sum of these terms (Eq. 36). In Appendix 1.1 we
show that this sum is well-approximated by the last
term, corresponding to k = k.(f), and obtain that
the site frequency spectrum in the rare end is, to
leading order

NUy oN 1
p(f) ~ Nsf2y/Nogy (1/Nsfe=>) for NUq <f< Nse=X
—A
2NU}16 for N827A < f < 1’

(41)
where the form of the frequency spectrum for f <
ﬁ is valid up to a constant factor (see Ap-
pendix I.1 for details). A comparison between these
predictions and site frequency spectra obtained in
Wright-Fisher simulations of the model is shown in
Figure 2.

These results reproduce much of what we may
have anticipated from our analysis of allele frequency
trajectories. At frequencies f > ﬁ7 these peaks
represent the mirrored and amplified trajectories in
the mutation-free (k = 0) founding class. To reach
these frequencies, mutations need to arise in the

D [f=Ud§chAt(kc> (t—tfikC))} > k< ke(f),

0, otherwise .

mutation-free class (which happens at rate NU,,e=*)
and drift to substantial frequencies (fo > 7).
Since fluctuations in the founding class of lineages
that exceed this frequency are slow compared to the
timescale on which their deleterious descendants re-
main at their peak (At = 1), the entire allele fre-
quency trajectory reproduces the fluctuations of the
neutral founding class. Thus, neutral site frequency

spectra proportional to f -1 emerge.

At smaller frequencies, f < ﬁ, allele fre-
quency trajectories reflect the smoothed out fluc-
tuations in the high-fitness classes. At these fre-
quencies, the site frequency spectrum is composed
of a rapidly increasing number of polymorphisms
as the frequency decreases for three reasons (see
Fig. 3 and Fig. 7). First, lower frequencies corre-
spond to smaller feeding class weights, which are
more likely simply due to the effects of drift. Note
that because in this frequency range the overall al-
lele frequency is proportional to the total weight in
the founding class and not the frequency, this effect
leads to the site frequency spectrum falling off at
a faster rate than the baseline expectation of f~1,
which would occur in the absence of smoothing of
fluctuations in the founding class due to the finite
timescale of selection. Second, the number of in-
dividuals with %k deleterious mutations in the locus
increases with k (for k& < \), causing an increase in
the overall rate at which alleles peaking at lower fre-
quencies arise. This variation in the overall number
of such alleles gives rise to the steeper power law,
f~2, which can be compared to the distribution of
peaks of individual lineages, which decays at most



as f~3/2. Finally, peaks that occur at frequencies
1~ 1 -

sk () Ik (1) < < o =) ke (1)1 have du-

ration of order At(ke()) ~ kl

c S

which declines

)

with the frequency f, giving rise to the root loga-
rithm factor.

The site frequency spectrum at intermediate and high
frequencies

At frequencies much larger than ﬁ but still
1

smaller than 1 — ==, the allele frequency trajec-
tory is described by an effective neutral model on
coarse enough timescales (> 1). At these frequen-

cies, the site frequency spectrum is

Y
o)~ 42)

for

L fxl-

Nse=> Nse='

Note that this agrees with the result of the branch-
ing process calculation, which is valid in a part of
this range, at frequencies corresponding to ﬁ <
f<landl- = <1-f< 1

This breaks down at even higher frequencies 1 —
f < ﬁ These frequencies correspond to the
extinction phase of the wild type, during which the
allele frequency no longer mirrors the frequency in
the 0-class, but instead declines exponentially at an
accelerating rate (see Eq. 35). Equation 35 can
be straightforwardly integrated in time (see Ap-
pendix 1.2 for details), which yields the form of the
site frequency spectrum at these high frequencies

Un
p(f) = s(1—f) log,, (Y/Ns(1 = f)e ™) ’

(43)

for

L <l-fx
No Nse=>'

Finally, once the wild type frequency falls below
ﬁ, it will be in an analogous situation as the mu-
tant at very low frequencies: independent of how it is
distributed among the fitness classes, its trajectory
will be dominated by drift, since most individuals
in the population have fitness that does not differ
from the mean fitness by more than o. Thus, at
these frequencies, the site frequency spectrum will
once again agree with the site frequency spectrum
of neutral loci isolated from any selected sites in the
genome

1
p(f) = 20Uy, for 1 — f < —. (44)
No
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By comparing our predictions to the results of
Wright-Fisher simulations, we can see that this argu-
ment correctly predicts the form of the site frequency
spectrum in these regimes, as well as the frequencies
at which these transitions happen (see Figure 3).

The deleterious site frequency spectrum

So far, we have focused primarily on describing the
trajectories and site frequency spectra of neutral mu-
tations. However, because the trajectory of a neu-
tral mutation that arises in an individual with k
deleterious mutations is equivalent to the trajectory
of a deleterious mutation that arises in an individ-
ual with £ — 1 deleterious mutations, descriptions of
trajectories of deleterious mutations follow without
modification from our descriptions of trajectories of
neutral mutations. The deleterious site frequency
spectrum can thus be constructed from the single-
class site frequency spectra of neutral mutations by
a simple modification of the total rates at which
new deleterious mutations arise (specifically, with
the contribution to the deleterious site frequency
spectrum of mutations arising in class k being equal
to pdel(fa k) = #ﬁz:lpneutral(ﬁ k+ 1) ) By sum-
ming these contributions, we find that the deleteri-
ous site frequency spectrum is to leading order

M, for f < ﬁ
1 e 1 1
pdel(f) = fQ\/)\logA(l/ste*A)’ if No < f < NUge=> >
0, otherwise
(45)
where the form proportional to

log(1/Nsfe=*)  is once again valid up to
a constant factor (for the same reason as described
in Appendix I.1).

DISTRIBUTIONS OF EFFECT SIZES

The model we have thus far considered assumes that
all deleterious mutations have the same effect on fit-
ness, s. In reality, different deleterious mutations
will have different fitness effects. In Appendix J,
we show that as long as the variation in the dis-
tribution of fitness effects (DFE) is small enough
that Va;ﬁs) < log(éd 75 the effects of background
selection are well-captured by a single-s model. In
practice, this means that when considering moder-
ate values of Uy/5 < €5, fractional differences in se-
lection coefficients up to m 2 20% will not
substantively alter allele frequency trajectories. In




this case, the combined effects of these mutations
are well-described by our single-s model.

However, when mutational effect sizes vary over
multiple orders of magnitude, properties of the DFE
will have an important impact on the quantitative
details of the mutational trajectories that are not
captured by our single-s model. The qualitative
properties of allele frequency trajectories will remain
the same (see Appendix J): alleles arising on un-
usually fit backgrounds will rapidly spread through
the fitness distribution, peak for a finite amount of
time about t; generations later, and then proceed
to go extinct at a rate proportional to their aver-
age fitness cost. However, the quantitative aspects
of these trajectories will be different. For instance,
small differences in the fitness effects of mutations
ds ~ ti that do not impact the early stages of tra-
jectories will be revealed on timescales of order tg4,
and affect the size and the width of the peak of the
allele frequency trajectory. We have seen that these
two quantities play an important role in determining
the properties of allele frequency trajectories and of
the site frequency spectrum.

As a result of the fact that weaker effects and
smaller differences in effect sizes play a more impor-
tant role in later parts of the allele frequency trajec-
tory, the DFE relevant during the early phases of the
trajectory may be different than the DFE relevant
in the later phases of the trajectory. Furthermore,
since longer-lived trajectories are also those reach
higher frequencies (having originated in backgrounds
of higher fitness), this can result in a different DFE
that is relevant at larger frequencies, compared to
the DFE relevant at lower frequencies. As a result,
it is possible that for certain DFEs, no single ‘effec-
tive’ effect size can be used to describe the trajecto-
ries at all frequencies. The full analysis of a model
of background selection in which mutational effect
sizes have a broad distribution remains an interest-
ing avenue for future work.

DISCUSSION

In this work, we have analyzed how linked purifying
selection changes patterns of neutral genetic diver-
sity in a process known as background selection. We
have found that whenever background selection re-
duces neutral genetic diversity, it also leads to signif-
icant distortions in the neutral site frequency spec-
trum that cannot be explained by a simple reduction
in effective population size (see Figure 1). These
distortions become increasingly important in larger
samples and have more limited effects in smaller
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samples (Fig. 1B,C). In this sense, the sample size
represents a crucial parameter in populations expe-
riencing background selection.

By introducing a forward-time analysis of the tra-
jectories of individual alleles in a fully linked ge-
netic locus experiencing neutral and strongly se-
lected deleterious mutations, we derived analyti-
cal formulas for the whole-population site frequency
spectrum (see Equations 1 and 2). These results can
be used to calculate any diversity statistic based on
the site frequency spectrum in samples of arbitrary
size. Our results also offer intuitive explanations of
the dynamics that underlie these distortions, and
give simple analytical conditions that predict when
such distortions occur (Figure 3). In addition to
single-timepoint statistics such as the site-frequency
spectrum, our analysis also yields time-dependent
trajectories of alleles. We suggest that these may
be crucial for distinguishing between evolutionary
models that may remain indistinguishable based on
site frequency spectra alone. We explain how this
intuition about the time-dependent behavior can, in
principle, be used to make simple predictions about
the history and future of alleles, and we explain that
it suggests new statistics of time-resolved samples
that can be used to distinguish between different
evolutionary models. We discuss these implications
in turn below.

The frequency of a mutation tells us about its history
and future

In addition to describing the expected site frequency
spectrum at a single time point, our analysis of allele
frequency trajectories allows us to calculate time-
dependent quantities such as the posterior distribu-
tion of the past frequency trajectory of polymor-
phisms seen at a particular frequency, their ages,
and their future behavior. For example, since the
maximal frequency a mutation can attain strongly
depends on the fitness of the background in which
it arose (with lower-fitness backgrounds constrain-
ing trajectories to lower frequencies), observing an
allele at a given frequency places a lower bound on
the fitness of the background on which it arose. This
in turn is informative about its past frequency tra-
jectory. For example, alleles observed at frequen-
cies f > W almost certainly arose in an indi-
vidual that was among the most fit individuals in
the population and experienced a rapid initial expo-

nential expansion at rate Uy, while alleles observed

. k .
at frequencies f > W (%) very likely arose

on backgrounds with fewer than %k deleterious mu-



tations compared to the most fit individual at the
time. We emphasize that these thresholds are sub-
stantially smaller than the naive thresholds obtained
by assuming that a mutation arising on a back-
ground with & mutations can only reach the ‘drift
barrier’ Nﬁl_ = corresponding to isolated deleterious
mutations of fitness ks in a population of effective
size N, = Ne™ ™.

The fitness of the ancestral background that a mu-
tation arose on is not only interesting in terms of
characterizing the history of a mutation, but is also
informative of its future behavior. In the strong se-
lection limit of background selection that we have
considered here (Nse™® > 1), deleterious muta-
tions can fix in the population only exponentially
rarely (Neher and Shraiman, 2012). Thus, muta-
tions arising on backgrounds already carrying dele-
terious mutations must eventually go extinct. We
have shown that the site frequency spectrum at fre-
quencies [ < ﬁ is dominated by mutations
arising on deleterious backgrounds. Furthermore,
we have shown that most polymorphisms seen at
these frequencies are at the peak of their frequency
trajectory. This means that we expect the fre-
quency of such polymorphisms to decline on aver-
age. Thus, if we were to observe the population at
some later timepoint, we expect that the polymor-
phisms present at such low frequencies should on av-
erage be observed at a lower frequency. In Figure 8
we show how the average change in frequency after
Ne~* generations depends on the original frequency
that a mutation was sampled at, f. Note that the
expectation for a neutral population of any size is
that the average allele frequency change is exactly
equal to zero. In the presence of background se-
lection, this is no longer true for neutral mutations
previously observed at frequencies f < ﬁ and
f>1— 5= (sce Fig. 8).

In contrast, since polymorphisms observed in the
range ﬁ < fxl- ﬁ must have originated
in a mutation-free background, and since their dy-
namics reflects neutral evolution in this 0O-class, the
overall dynamics of such alleles are neutral. There-
fore, though drift will lead to variation in the out-
comes of individual alleles in this range, the average
expected frequency change is equal to zero. This
expectation is confirmed by simulations (Fig. 8).

Finally, we have seen that polymorphisms seen
at frequencies f > ﬁ will typically already
have replaced the wild type allele within the 0-class.
Thus, the wild-type allele must eventually go extinct
(except for exponentially rare ratchet events). In
other words, polymorphisms seen at these frequen-
cies are certain to fix, replacing the ancestral allele at
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FIG. 8 The average change in frequency of an allele ob-
served at frequency f in an earlier sample. The pairs
of frequencies were sampled in two consecutive sampling
steps in Wright-Fisher simulations in which N = 10°,
NUy = 4Ns = 2-10*. In the first step, the frequencies
of all polymorphisms in the population and their unique
identifiers were recorded. In the second sample, which
was taken 6t = Ne~VY4/S generations later, the frequen-
cies of all polymorphisms seen in the first sample were
recorded (if a polymorphism had gone extinct, or fixed,
a frequency f(0t) =0, or 1, was recorded). The average
represents the average frequency change over many dis-
tinct polymorphisms, and the curve has been smoothed
using a Gaussian kernel with width < 5% of the minor
allele frequency.

some later point in time (see Fig. 8). Together, these
results show that the site frequency spectrum can
be divided into three regimes, in which the dynam-
ics of individual neutral alleles are effectively neg-
atively selected, effectively neutral, and effectively
positively selected. These effective selection pres-
sures arise indirectly, as a result of the fitnesses of
the variants a neutral mutation at a given frequency
is likely to be linked to. This effect is important
to bear in mind when analyzing time-resolved sam-
ples, where these effective selection pressures could
nalvely be misinterpreted as evidence of direct neg-
ative selection on low-frequency derived neutral al-
leles, and direct positive selection on high-frequency
derived neutral alleles.

The distinguishability of models based on site
frequency spectra

As has long been appreciated, background selection
can lead signatures in the site frequency spectrum
that are qualitatively similar to population expan-
sions and selective sweeps (Charlesworth et al., 1993,
1995; Good et al., 2014; Gordo et al., 2002; Hud-
son and Kaplan, 1994; Nicolaisen and Desai, 2012;
O’Fallon et al., 2010; Tachida, 2000; Walczak et al.,
2011; Williamson and Orive, 2002). Here we have



shown that these similarities are not only qualita-
tive, but (up to logarithmic corrections) also quan-
titatively agree with the site frequency spectra pro-
duced under these very different scenarios (Lea and
Coulson, 1949; Mandelbrot, 1974; Yule, 1924). This
suggests that distinguishing between these models
based on site frequency spectra alone may not be
possible. We emphasize that these effects of back-
ground selection that mimic population expansions
are seen in neutral site frequency spectra in a model
in which the population size is fixed, so using syn-
onymous site frequency spectra to ‘correct’ for the
effects of demography may not always be justified.

The quantitative agreement between the effects
of background selection and positive selection that
we have seen in the high frequency end of the fre-
quency spectrum is not purely incidental. In the
presence of substantial variation in fitness, alleles
that fix among the most fit genotypes in the pop-
ulation are in a sense truly positively selected, be-
cause they are linked to fewer deleterious mutations
than average. As a result, sweep-like behaviors can
occur in the absence of positive selection, as long
as there is substantial fitness variation, independent
of the source of this variation (i.e. whether it arose
as a result of beneficial or deleterious mutations).
In this case, these models may be indistinguishable
even using time-resolved statistics, because the al-
lele frequency trajectories themselves have similar
features.

In other cases, time-resolved statistics may be able
to differentiate between models that produce simi-
lar site frequency spectra. For example, under back-
ground selection the low frequency end of the site
frequency spectrum is dominated by mutations that
are linked to a larger than average number of dele-
terious variants; alleles in this regime are therefore
expected to decline in frequency on sufficiently long
timescales (of order %) In contrast, in an expo-
nentially expanding population mutations present at
these frequencies are very unlikely to change in fre-
quency during the expansion. Thus we may be able
to distinguish between these models using samples
from the same population spaced far enough apart
in time.

The effect of very strong deleterious mutations
(s ~O(1))

In our analysis of background selection, we have fo-
cused on mutations with small absolute effects on
fitness (s < 1). We make this choice because while
deleterious mutations with very strong effect (e.g.
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lethal mutations) do exist, they are unlikely to lead
to a substantial reduction in genetic diversity unless
they also occur at a very high rate (Ug; ~ s ~1). In
other words, these mutations can only have a sub-
stantial effect on reducing diversity if a large fraction
of individuals in the population acquire them every
generation. Thus, such mutations appear less likely
to lead to strong effects on diversity in natural popu-
lations than mutations with smaller absolute effects
on fitness.

Relationship to the structured coalescent

Throughout this work, we have assumed that se-
lection against deleterious mutations is strong (i.e.
Nse=* > 1), such that they are exponentially un-
likely to fix (i.e. Muller’s ratchet is rare). This
is the same limit in which the structured coales-
cent of Hudson and Kaplan (1994) is valid. Since
our forward-time analysis of mutational trajectories
uses similar approximations as are implicit in that
method, it therefore has the same expected range of
validity and accuracy. Although this limit has occa-
sionally been referred to as ‘weak selection’ in some
prior literature, we emphasize that an assumption
that is implicit in the structured coalescent is that
selection against deleterious mutations is sufficiently
strong that they do not routinely fix. In Fig. S1, we
show that our theoretical predictions indeed produce
site frequency spectra that agree with the results of
forward-time simulations roughly as well as numer-
ical predictions generated using the structured coa-
lescent. The advantage of our method is that it pro-
vides analytical predictions and scales to arbitrary
sample sizes, in contrast to the structured coales-
cent, which is a numerical algorithm for conducting
backwards-time simulations.

Relationship to results on weakly selected deleterious
mutations

In the case where selection is weak enough that dele-
terious mutations have a substantial probability of
fixation (which occurs when Nse™ < 1), the popu-
lation ratchets to lower fitness at the locus. In this
limit, much like in the strong selection case that we
have studied here, the magnitude of the effects of
background selection on diversity is controlled by
whether or not deleterious mutations lead to sub-
stantial fitness variation at the locus. When delete-
rious mutation rates are weak enough that the scaled
standard deviation in fitness satisfies No < 1, site
frequency spectra look largely neutral (see Figure S2



and Good et al. (2014)). However, if the deleterious
mutation rate is large enough that No > 1, previ-
ous work has shown that substantial distortions can
result (Good et al., 2014; Kosheleva and Desai, 2013;
Neher and Hallatschek, 2013; Neher and Shraiman,
2011). By analyzing evolutionary dynamics in this
limit, Neher and Hallatschek (2013) have shown that
the resulting site frequency spectrum scales as f~?2
at low frequencies, and as [(1 — f)log(1/a - )] ~*
at high frequencies. These forms are similar to our
limiting expressions in the high and low frequency
ends of the spectrum, but do not contain the neutral
region at intermediate frequencies. This neutral re-
gion shrinks as Nse™ declines and disappears when
Nse ™ a 2. Thus, the form of the site frequency
spectrum in Eq. 2 approaches the limiting forms for
weak selection as Nse™ — 1 (Figure S2), exactly
as expected for the transition to the weakly selected
regime (see also Good et al. (2014)).

Earlier work has argued that genealogies in this
weak selection limit (Nse™* < 1) approach the
Bolthausen-Sznitman coalescent when fitness vari-
ance in the population is sufficiently large, No > 1
(Good et al., 2014; Kosheleva and Desai, 2013; Neher
and Hallatschek, 2013; Neher and Shraiman, 2011).
Recently, Hallatschek (2017) has studied allele fre-
quency trajectories that arise in the forward-time
dual of the Bolthausen-Sznitman coalescent. Our
analysis of trajectories in the presence of strong
background selection reveals many of the interesting
features seen in that work. For instance, we have
seen that once an allele spreads through the fitness
distribution and reaches mutation-selection balance,
an effective frequency-dependent selection coefficient
emerges,

Seff(f) =

log (Nse‘Af) s, if f< ﬁ

0, if s < f < 1— 5=

log (W(l_f)) s, otherwise.

(16)
This effective selection coefficient arises due to the
deleterious mutations that neutral mutations are
linked to, and changes with the frequency f of the
mutation as high-fitness individuals within the neu-
tral lineage drift to extinction or fixation (see Fig-
ure 3 and Appendix E.2), and is equal to 0 in
the quasi-neutral regime (Fig. 3). This is analo-
gous to the fictitious selection coefficient, sg.(f) =

log (%), that emerges in the model analyzed by

Hallatschek (2017). The difference in the frequency
dependence of the effective selection coefficient be-
tween our results and the Hallatschek (2017) model
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is large when Nse™ > 1, but becomes negligible as
Nse~™ — 1; it underlies the differences between the
site frequency spectra of rapidly adapting or ratchet-
ing populations and the strong background selection
limit that we have considered here.

Note however that there still exists a clear dis-
crepancy between the form of the site frequency
spectrum at low frequencies that arises in the
Bolthausen-Sznitman coalescent, and the functional
form that is obtained by analyzing evolutionary
models of weak selection (Figure S3). This suggests
that the correspondence between these evolutionary
models and the Bolthausen-Sznitman coalescent is
only approximate, even in the limit that No — oo.
In particular, though the two seem to share dynam-
ical properties which arise once the lineage spreads
out through the fitness distribution (including the
frequency-dependent selection coefficient), as well as
similarities in some aspects of fluctuations in the
numbers of high-fitness individuals as they accumu-
late further mutations (i.e. due to genetic draft, see
e.g. Kosheleva and Desai (2013)), it is not imme-
diately obvious that other aspects that we have de-
scribed here, such as the smoothing of fluctuations
due to drift, are identical in both models.

Extensions and limitations of our analysis

We have studied a simple model of a perfectly linked
locus at which all mutations are either neutral or
deleterious with the same effect on fitness, s. Our
primary goal has been to describe the qualitative and
quantitative effects of background selection on fre-
quency trajectories and the site frequency spectrum
within this simplest possible context. However, it is
important to note that the assumptions of our model
are likely to be violated in natural populations. In
many cases, these additional complications do not
change the general conclusions of our analysis. For
example, the qualitative properties of the trajecto-
ries and site-frequency spectra described here apply
when deleterious mutations have a broader distribu-
tion of effect sizes, and we have shown here that our
results are quantitatively unchanged when the dis-
tribution (DFE) of effect sizes is sufficiently narrow

(vaégs) < 1og(l}d/§))' On the other hand, when the

DFE is very broad, additional work will be required
to determine the quantitative properties of site fre-
quency spectra. We anticipate different parts of the
DFE may be important at different frequencies in
sufficiently broad DFEs. If this is true, this would
be an unusual feature of strong negative selection
that does not arise in the case of strong positive se-




lection, in which the effects of DFEs can usually be
summarized by a single, predominant fitness effect
(Good et al., 2012).

Finally, our assumption of perfect linkage in the
genomic segment is likely to be violated in sexual
populations, in which sites that are separated by
shorter genomic distances are more tightly linked
than distant sites. However, even in the presence of
recombination, alleles will remain effectively asexual
on short enough genomic distances, and are effec-
tively freely recombining on long enough genomic
distances (Franklin and Lewontin, 1970; Slatkin,
1972). In this case, a standard heuristic is to treat
the genome as composed of freely recombining asex-
ual blocks. In rapidly adapting or ratcheting popula-
tions, this heuristic has been shown to yield a rough
approximation to diversity statistics when the ‘effec-
tive block length’ is set by the condition that each
block typically recombines once on the timescale of
coalescence (Good et al., 2014; Neher et al., 2013;
Weissman and Hallatschek, 2014).

However, our analysis highlights that many of the
interesting features of allele frequency trajectories
in the presence of background selection occur on
timescales much shorter than the timescale of co-
alescence. On these timescales, alleles will be fully
linked on much longer genomic distances than this
effective block length. This effect will be particu-
larly important for young alleles, which are linked
to long haplotypes because of the limited amount
of time that recombination has had to break them
up. On longer timescales, the length of the genomic
segments that these alleles are linked to will become
progessively shorter, but will typically not fall below
the ‘effective block length’ on any timescale. Given
the strong dependence of allele frequency trajecto-
ries on the total mutation rate along this segment, it
is less clear what effect such linkage to increasingly
shorter genomic segments has on the statistics of
allele frequency trajectories. A more detailed anal-
ysis of the effects of background selection in linear
genomes remains an interesting direction for future
work.

It is interesting to note that the effects of back-
ground selection on the site frequency spectrum
in recombining genomes have been studied pre-
viously using forward-time (see e.g (Kaiser and
Charlesworth, 2008; McVean and Charlesworth,
2000; Zeng and Charlesworth, 2010)) as well as us-
ing backward-time simulations based on extensions
of the structured coalescent (see e.g. (Hudson and
Kaplan, 1994; Zeng and Charlesworth, 2011)). How-
ever, much like in the asexual case, analytical predic-
tions for the magnitude of the effects of background
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selection in recombining populations are usually lim-
ited to samples of two individuals (Hudson and Ka-
plan, 1995; Nordborg et al., 1996). More recently,
there has been some interest in exploring the com-
bined effects of background selection and population
subdivision (Zeng and Corcoran, 2015), or partial
asexuality and selfing (Agrawal and Hartfield, 2016;
Roze, 2016). Analytical results in these cases also
are often limited to very small samples, and to the
limit Uy < s in which the effects of background se-
lection are modest. We hope that our forward-time
approach can be extended in future work to explore
the effect of background selection in the presence of
such factors more fully.

DATA AVAILABILITY

Code used to generate the simulated data is avail-
able at:

https://github.com/icvijovic/background-selection.
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FIG. S1 A comparison between our analytical results and numerical site frequency spectra obtained using the struc-
tured coalescent for a sample of 1000 individuals. Population sizes, mutation rates and selection coefficients are the
same as in Figure 2. Thicker, translucent lines represent the results of forward time simulations, and were obtained
by downsampling the whole-population site frequency spectra in Fig. 2. Theoretical predictions are shown in dashed
lines and were obtained by numerically downsampling the theoretical prediction for the whole-population site fre-
quency spectrum in Eq. (I125) (Appendix I). Full lines represent site frequency spectra of samples of 1000 individuals
measured from backwards-in-time structured coalescent simulations, and averaged over 10° runs per parameter set.
Apart from the slight discrepancy between the theoretical predictions and the simulated data and very high and
very low frequencies, there is almost perfect agreement between the predictions of the structured coalescent and our
1

analytical results. This discrepancy arises because our theoretical prediction that p(f) =~ % when f < - or

f>1- N%T slightly overestimates the site frequency spectrum near the transitions at f = N%T and f~1-— N%; (see
also Figure 2).
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FIG. S2 The site frequency spectrum as a function of Nse™» (A = const = 4 for all curves). The regime of effective
neutrality narrows as Nse » decreases, and disappears when Nse » < 2. Note that because ) is the same for all
parameter sets, the expectation for the site frequency spectrum of a neutral population with a reduced “effective
population size” is the same for all parameters and is given by the black dashed line. For Nse > > 2 the site
frequency spectrum agrees with this prediction for f between ﬁ and 1 — ﬁ (marked by vertical dashed
colored lines). Note that our theoretical predictions show good agreement with simulations even for N se™ & 2,
which is the value of Nse™> at which the region of effective neutrality just disappears. However, for Nse > < 2, the
site frequency spectrum has a form that is not described by our model (grey lines). Simulated site frequency spectra

were obtained as described in the caption of Figure 1.
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FIG. S3 For Nse™* < 2, the site frequency spectrum interpolates between a neutral model, which is obtained in
the limit that the variation in fitness No — 0 and approaches the Bolthausen-Sznitman coalescent (BSC, red line)
when No — co. Note that for Nse™* ~ 2, our theoretical predictions agree well with the observed form of the site
frequency spectrum. Note however the discrepancy between the form of the BSC and the site frequency spectrum
at low frequencies. This suggests that the correspondence between the BSC and the evolutionary model of weak
selection is only approximate (see Discussion).



31

Appendix A: The propagation of fluctuations in the size of the founding class

In this Appendix, we consider in more detail how fluctuations in the size of the lineage in the founding class
propagate to affect the total allele frequency. For this purpose, it will be convenient to consider a neutral
mutation that arose in the k = 0 class sufficiently long ago that it is in mutation-selection balance. Let the
total frequency of the lineage be f. As in the main text, we denote the frequency of the part of the lineage
that is in class ¢ by f;. In mutation-selection balance, the f; will satisfy

)\i
fi= ey, (A1)
Consider what happens if the frequency fy of the founding genotype changes suddenly to some value
fo + 0fo. Based on the deterministic solution, after a time ¢, this will lead to a change in the frequency of
the part of the lineage in class i, 0 f;(t) , of

5fi(t) = 5foM- (A2)

il
In other words, the relative change in the frequency of the lineage in the i-class is

S I (A3)
fo

This approaches - at long times as the allele re-establishes mutation-selection balance. However, we can
see from Eq. (A3) that this change is not felt at the same time in all classes. In the 1-class, the frequency
changes gradually, at rate s (Eq. (A3)), and results in a proportional change roughly 7 = é generations
later. In general, in the i-class, this change is felt after a total delay of roughly 7, = @ generations. Thus,
the change propagates from class i to class ¢ + 1 over the course of

(A4)

Titl — Ty ~ m

generations.

Ultimately, 7 = @ = tq generations later, this change will have been felt in a substantial fraction
of the fitness distribution. Fitness classes near the mean of the distribution (which is A classes below the
O-class) are those that exhibit the largest absolute change in frequency, since they contain the largest number
of individuals when the lineage is in mutation-selection balance. Thus, changes in these classes account for a
large proportion of the change in the total allele frequency, which explains the origin of the delay timescale,

tq, that we have introduced in the main text.

Appendix B: The large deviations from average behavior caused by genetic drift

In this Appendix, we consider the importance of drift in each individual fitness class on the overall allele
frequency. In the first subsection, we revisit a standard argument to explain why fluctuations due to genetic
drift in the frequency of the founding genotype can never be neglected, framing it in terms that will be
useful when considering the importance of drift in classes below the founding class. In the next subsection,
we build on this argument to explain why the effects of drift become negligible in all classes i in which the
frequency, f;, of the component of the lineage in that class satisfies f; > N%%., but cannot be neglected in all
classes in which the frequency does not exceed that threshold.

1. The importance of genetic drift in the founding class

The essential reason why drift can never be neglected in the early phase of a trajectory is that deviations
from the low frequency average behavior caused by drift are not small perturbations, but are extremely
broadly distributed. Consider for instance a mutation that arises in class k. As we explain in the main text,
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the founding genotype feels an effective selection coefficient equal to —ks. The deterministic trajectory of
the founding genotype is therefore

(fu(t)) = fu(0)e™Fs". (B1)

In other words, the ‘deterministic trajectory’ of a neutral founding genotype (k = 0) is a flat line, whereas
the deterministic trajectory of a deleterious founding genotype (k > 0) decays exponentially at rate ks.

However, we know that drift leads to large deviations from the deterministic behavior in Eq. (B1). In
fact, we have mentioned that when f; < ﬁ, drift can lead to an z-fold increase above this expectation
with probability % (Fisher, 2007). Thus, the deviations from the deterministic expectation due to drift are
distributed according to an extremely broad power law. As a result, large deviations from Eq. (B1) are very
likely. For lineages arising in the 0-class, these deviations can take the frequency of a lineage all the way to
fixation. However, deleterious founding genotypes with £ > 0 are exponentially unlikely to exceed the drift
barrier at ﬁ Thus, the distribution of deviations from the mean, deterministic behavior of these founding
genotypes also follows the same power law at low frequencies (f < ﬁ), but is capped by selection at
frequencies exceeding ﬁ As a result, the effects of drift on trajectories of deleterious mutations become
perturbative at sufficiently large frequencies and can therefore be neglected when fi > ﬁ

Because fluctuations in fj always propagate to classes of lower fitness, drift in the founding class has an
important impact on the overall allele frequency whenever it has an important impact on f;. This means
that the overall frequency trajectory of alleles founded in the 0-class will always be affected by drift in
fr, which will cause large, power law distributed deviations from the deterministic expectation of the total
allele frequency trajectory. Similarly, the overall frequency trajectory of alleles founded in a class with k& > 0
deleterious mutations will be impacted by drift in the founding class when the overall allele frequency satisfies
< ﬁ - gr. (which correspond to founding class frequencies fj < ﬁ), but prevented by selection from
exceeding frequencies larger than ﬁ - g (see also Appendix E).

2. The importance of genetic drift in classes below the founding class

Given these arguments, one may wonder whether the effects of drift are also important in classes below
the founding class, in which individuals carry ¢ > k deleterious mutations. Deviations from deterministic
behavior in these classes (i.e. in f;) are also propagated to classes of lower fitness. Such deviations in
fi(t), if large, will also have a large impact on the overall frequency trajectory of the allele, f(¢). However,
since classes below the founding class receive substantial mutational input from higher classes, it is not
immediately clear whether the effects of drift on f;(¢) will ‘average out’ as a result of these mutations, or
whether drift can still lead to large deviations from the deterministic expectation for f;(¢). In Appendix E
we show by formally analyzing the distribution of allele frequency trajectories that drift in class i is negligible
when f; > ﬁ, and in this Appendix we give a heuristic argument explaining why this threshold arises.
This heuristic argument does not reproduce O(1) factors that are obtained using formal methods (i.e. the
factor of % in 5 1\1751)7 but it offers additional intuition on the existence of this threshold and its dependence
on the parameters N, s, and i.

The threshold ~ ﬁ is reminiscent of the drift barrier relevant for single deleterious loci of fitness is.
However its relevance in classes below the founding class is not immediately obvious. Although the individuals
in class i also feel an effective selection pressure equal to —is, new mutational events from class ¢ — 1 counter
these effects of selection. Thus, it is not obvious that the combination of the opposing effects of mutation
into the class and selection within the class will be stronger than the effects of drift whenever f; > lei (as
opposed to some other threshold that also depends on Uy f;—1).

To gain insight into this, we consider in more detail the effects of individual mutational events into class .
Each of these mutational events can be thought of as founding a new ‘sub-lineage’ in class . The frequency
trajectory of each sub-lineage is the same as that of a single locus with fitness —is and the overall trajectory
fi(t) is equal to the sum of the trajectories of these sub-lineages. When a sub-lineage is small, drift will lead
to large deviations from its average (deterministic) frequency trajectory, which is also given by Eq. (B1).
However, as in the founding class, at frequencies larger than ﬁ7 these deviations are capped by the effects
of selection. Thus, the drift barrier - represents the frequency above which fluctuations cannot lead to

Nsi
large deviations of individual sub-lineages from the average behavior.
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To understand when drift has an important impact on the overall i-class trajectory, f;(t), we can consider
how these deviations in the trajectories of the sub-lineages add. At sufficiently small frequencies f; < ﬁ,
the overall trajectory f; will be equal to the sum of random trajectories that have an extremely broad
distribution. In this case, the sum will be dominated by the trajectory of the largest sub-lineage, which will
be very different than the average trajectory. Thus, even when the total number of mutational events into
class i is large, the effects of genetic drift in class ¢ may not be negligible if each of these mutational events
results in a relatively small trajectory. In other words, fluctuations due to drift in the frequency trajectories
do not ‘average out’, but are rather dominated by the largest deviation from the mean. Conversely, when
the total number of sub-lineages is large enough that many of them reach the frequency N%% (which is
guaranteed to happen if the total number of mutational events into the i-class is much larger than %), the
overall frequency of the lineage will be much larger than lei. In this case, the largest event is no longer
be very different than the average event; the effects of genetic drift are therefore negligible compared to
the effects of selection. The transition between these two behaviors happens when f; ~ ﬁ, which roughly
corresponds to exactly one sub-lineage exceeding 1\%1 We discuss these effects using a more formal approach
in Appendix G. Note that by extending this argument to classes i+ 1 and lower, we can verify that once the
frequency trajectory in class i exceeds lei and becomes predominantly shaped by mutation and selection, the
frequency of the allele in all lower fitness classes is also guaranteed to exceed the corresponding frequency
thresholds, which is why we can also neglect the effects of drift in all classes below a class in which the

L1
frequency exceeds ;-

Appendix C: The generating function for the total size of the labelled lineage

In this Appendix, we consider the generating function for the total frequency of the lineage,

Hy(z,1) = (710, (C1)

and derive a partial differential equation describing how it changes in time. As described in the main text,
when the size of the lineage is small (f(¢t) < 1), its dynamics are described by the coupled system of
Langevin equations for the components f;(t) of the total frequency f that denote the frequency of the part
of the lineage that carry 7 deleterious mutations,

df;gt) = —is;fi + Uafiy1 + \/ﬁ%(t) (€2)

In Eq. (C2), the n; are independent uncorrelated Gaussian noise terms. The total allele frequency is equal
to the sum of these components, f(t) =", fi(t).

Note that the total allele frequency f(¢) is not a Markov random variable, since its evolution depends on
the details of the distribution of the individuals within the lineage among the fitness classes. However, the
frequencies of the components f;(t) are jointly Markov, with their joint distribution described by the joint
generating function

H({z:},t) = <exp (— > fz-(t)> > . (C3)

The generating function for f(¢) can be obtained from the joint generating function by setting z; = z for
all 7. We can obtain a partial differential equation for the joint generating function by Taylor expanding
H({z;},t+dt) and substituting in the differentials df;(t) = —isfidt+ Uy fi—1dt++/ fﬁx/@n, (t) from Eq. (C2),
which yields

OH ) 22 OH

E = XZ: — <ZSZZ' + ﬁ — Udzi+1> 8721 (C4)

We can solve this PDE for the joint generating function by using the method of characteristics. The
characteristic curves z;(t —t') are defined by
du 2

o = iszi — Uszia + ﬁ (C5)



34

and satisfy the boundary condition z;(¢t) = z. The linear terms in the characteristic equation arise from
selection and mutation out of the ¢ class, and the nonlinear term arises from drift. Along these curves,
the generating function is constant, and so H({z;},t) = H({z(0)},0) = e~ 2: fi(0)2(0) " where the initial
condition f;(0) = %5% corresponds to a single individual present in class k at ¢ = 0. Thus, to obtain a
solution for the joint generating function we need to integrate along the characteristics in Eq. (C5) backwards
in time from ¢ = 0 to ¢ = t. In the next few Appendices, we obtain these solutions in the limits of weak
(Ug < s) and strong mutation (Ug > s).

Appendix D: Trajectories in the presence of weak mutation (Ug < s)

When deleterious mutations arise more slowly than selection removes them (% = X < 1), deleterious
descendants of a lineage are much less numerous than the founding genotype. To see this, we can expand
the characteristics z;(t — t') in powers of the small parameter A. At leading order, the characteristics are
uncoupled and can be straightforwardly integrated to obtain

—ist
90) = i —
! 1+ 53 (1 —eist)

z (D1)

By substituting this zeroth order solution into Eq. (C5), we find that corrections due to deleterious descen-
dants are O()), and are therefore small uniformly in z. Thus, the generating function for the total f of the
labelled lineage t generations after arising in class k is

1, ,—kst
rze

izt = o | =y

+O(N), (D2)

which agrees with classic results by Kendall (1948) for the generating function of independently segregating
loci of fitness —ks.
Eq. (D2) can be inverted to obtain the probability distribution, p(f,t), by an inverse Laplace transform,

0= [ el H . (D3)
—ico 211
This distribution is well known, and can be obtained by standard methods. Noting that Hy(t,z) =
1 —kst
exp ——H_Q?l_e_m)] has a single essential singularity at z = —7(131:_“’,?”), we can perform the integral
2Nsk

above either exactly by contour integration (by closing the contour using a large semicircle in the left half-
plane and a straightforward application of the residue theorem, which gives a solution in terms of Bessel
functions), or approximately by the method of steepest descents (taking care to deform the contour to pass
through the saddle point on the right of the essential singularity). By carrying out this inverse Laplace
transform, we obtain that the extinction probability by time ¢ is

25k _,
p(f=0,1) = exp [_1—6—3“6 kt} ) (D4)

which becomes of order one when ¢t > i, in agreement with our intuition that a lineage of fitness ks can

only survive for order ﬁ generations. For non-extinct lineages, the probability distribution of the frequency
is

2
2Nks ) e kst

—3/4
e | N7

p(f, f>0,t)~

The site frequency spectrum can be obtained from this distribution of frequencies by integrating Eq. (D5)
in time, or by an alternative method that we present in Appendix F.
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Appendix E: Trajectories in the presence of strong mutation (Uqg > s)

When deleterious mutations arise faster than selection can remove them, mutation will play an important
role in shaping the trajectory. The relative strength of mutation and selection compared to drift will depend
on the frequency of the lineage. Drift will remain the dominant force at frequencies f < ﬁ However, at
larger frequencies, the mutation and selection terms will become important, and we will see that the effects
of drift in classes of low enough fitness become negligible.

1. Small lineages (f < N%]d)

The dominant term in the characteristic equation in this regime (which corresponds to z > NUy in the
generating function) is the drift term

dz; _ 22 (E1)
dt’ ~ 2N’
which has the solution
z
zi(0) 8 ———.
O~ 7= (E2)

We can verify that mutation and selection are negligible compared to drift on timescales of order ¢ ~ U%,

as long as ¢ < 2\. Note that this condition (i < \) is satisfied for essentially all of the individuals in the

21 ,(—22+1) log(2+1/X)+A
by

population since Z?io hi ~1— ~ 1. By summing the z;(0) terms, we find that on

these timescales the generating function for the frequency of the mutation is

z

Hy(z,t) = exp [— N 7 ] , (E3)
1+ 2

which is just the generating function for the frequency of a neutral lineage (cf. Eq. (D2)). On longer

timescales (¢ > ﬁ), this approximation breaks down, and mutation and selection cannot be neglected for

lineages arising in fitness classes far above the mean of the fitness distribution (with k& < X\ — v/A). This
is because the probability that a portion of the lineage in a class with fewer than A — v/A mutations has
drifted to a high enough frequency to feel the effects of mutation and selection becomes substantial on longer
timescales, which can also be seen from the probability distribution of non-extinct lineages (Eq. (D5)). We
consider the generating function of these unusually fit mutations at these higher frequencies in the next
subsection. In contrast, mutations that arise on more typical backgrounds with & > X\ — /A mutations can

drift to higher frequencies, of order NL(Z’ before feeling the effects of selection, but cannot substantially
exceed a total frequency Nié‘d We analyze their trajectories in the following subsection.

2. Large lineages (f > N%]d) arising on unusually fit backgrounds (k < A — v/\)

In lineages that reach higher frequencies, a large number of deleterious descendants arise every generation.
This leads to strong couplings between the sizes of the components of the lineage in different fitness classes,
and diminishes the importance of genetic drift in classes of lower fitness, which receive large numbers of
deleterious descendants from classes of higher fitness. We find that in classes of low enough fitness, the
effects of genetic drift are negligible and the dominant balance is between the linear mutation and selection
terms.

The solution to the linear (deterministic) problem has been obtained by Etheridge et al. (2007), but we
reproduce the derivation briefly for completeness. In the absence of drift, the characteristics evolve according
to

dZi
dt’

=15z, — Ugziy1 = Z ﬁijzj7 (E4)
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which defines the linear operator £;;. £ has right eigenvectors @) with eigenvalues —js given by

—N\) . .
o9 = oy 0=i<y (E5)
! 0, otherwise ,
and corresponding left eigenvectors
AT . .
(J') — ) GG=5)b t>] E6
Vi {0, otherwise. (E6)

We can verify that the left and right eigenvectors are orthonormal () . @) = > wl(i)qﬁl(j) = 0;;). By
eigenvalue decomposing z;(¢) and integrating backwards in time from ¢’ = 0 to t’ = ¢, we obtain z;(t — ') =

Zj e’jSt/quS(j), Where the amplitudes b; are set by the boundary condition at t' = 0, b; = P . z(t) =

P .z = P (i‘t J),zj Finally, a summation yields
Al - e_St J
St —t) = i z Wa=e)F e (1)

Setting the boundary condition at t = 0 to fi(0) = 6y; and evaluating zj(0), we reproduce the result
by Etheridge et al. (2007): in the absence of genetic drift, the descendants of the labelled lineage follow a
Poisson distribution that starts in class k and has mean A\(1 — e~%!) and amplitude %e*k“e’\(lfe_“).

To evaluate the effect of genetic drift on the total size of the lineage at some later time point we set z; = z.
A sufficient (but not necessary) condition for genetic drift in class ¢ being negligible in determining the total
size of the lineage at some later time point ¢ is that the nonlinear term % < iz;(t —t') uniformly in ¢'.
In the vicinity of some frequency f(t) ~ f, corresponding to z(t) = z ~ 7, we find that the nonlinear term
is is negligible uniformly in ¢ as long as

emist Mi=e™) o 2Nsif forallt, 0<t <t (ES)

Note that the condition in Eq. (E8) is obtained by plugging in the relationship between z;(t — t') and

z(t) = z ~ l (from Eq. (E7)) into the condition that i(zt;,i/)Z < iz;(t — t'). Since the left hand side

in Eq. (E8) is bounded by e~ist'er(1-e = < et )l = §;, the inequality is guaranteed to be satisfied
uniformly in ¢ as long as

1
> 2N8igl. (EQ)
Defining k.(f) to be the smallest integer for which f > m Jk.+1, we can verify that genetic drift is
negligible in all classes with ¢ > k.(f) but not in class k.(f).

Note that self-consistency of the deterministic solution for k < A implies that when f > mgk 11,
the frequency of the part of the allele in class i satisfies f; > 53 for all i > k., but not for i < k.. Also note
that this inequality can only be satisfied for some k. < A if the founding class is sufficiently far above the
fitness distribution (A —k > VA, where i, > 1). We return to lineages founded in classes with k > X\ — VA
mutations in the next subsection.

Thus, since genetic drift has a negligible effect in classes containing more than k. deleterious mutations,
the characteristics z;(¢’) are given by the deterministic solution above, which we have already integrated.
The frequency of the part of the lineage in classes with i > k. is therefore a deterministic function of the
frequency trajectory in class k., fi.(t). We can solve for this deterministic function straightforwardly by
explicitly including fi.(¢) as a variable mutational source term for classes of lower fitness. This yields an
expression for the generating function of the entire lineage

Hy(o,t) = <efz ke, fi(t)—2Uq [ dr fkc<r>gkc+1(m>>, (E10)
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when
2Ns(k.+1)
L —

e, (E11)

where we have used the notation from the main text, g;(t) = et~

The relationship between the ‘feeding class’ trajectory fi_(t) and the allele frequency trajectory f(t)

Equivalently, this result can be rewritten in terms of the relationship between the allele frequency trajectory
f(t) and the trajectory of the portions of the alleles in classes with k < k.

ke t
F0) =S 1it) + U / a7 fi (D)gho 1 (t — 7), (E12)
i=k -

which is valid as long as f > mgkcﬂ. Because the expression on the right hand side of Eq. (E12)
is dominated by the last term, the full allele frequency trajectory reduces to a single stochastic term fg, .
Therefore, we can calculate the distribution of p(f,t) near any given frequency f by: (1) determining the
‘feeding class’ k.(f) which corresponds to the class of lowest fitness in which genetic drift is not negligible,
and (2) calculating the distribution of this time integral of the trajectory in that class, f, (t), subject to the
boundary condition that fx(0) = 3.

In principle, this is still challenging if k. > k, because the trajectory in class k. still depends on the
trajectories in higher-fitness classes, all of which are stochastic. In addition, calculating the distribution
of the convolution of fi_(t) and gk 41(t) is still difficult, even when k. = k. Fortunately, a simplification
arises from the highly peaked nature of gy i1(t — 7). Because the exponent in gx 1(t — 7) is peaked
in time, the integral in Eq. (E12) is, up to exponentially small terms, dominated by the region in which
Gk.+1(t — 7) fr.(7) is largest. Since the variation in the magnitude of gy 41(t — 7) is much larger than the
variation in the magnitude of fj_(7), the integral will be dominated by the window during which gy 41 (¢ —7)
is at its peak, as long as fi_(7) # 0 in that window. In that case, we can make a Laplace-like approximation
in Eq. (E12), in which we expand gi.11(t — 7) around its peak, and neglect contributions that are far away

plhert) _ g Lon(edi)

s )

from this peak, since these are exponentially small. Near 7 = ¢ —

2
Ghoar(t —7) ~ §kc+16_(k“+1)‘92 (t—r—tietD) ’ (E13)

which yields

t _ 2 (f—g_yke+D))?
dr fr(7)e (ke +1)s? (t=7 =t ")

ft) =~ Udgkcﬂ/

— 00

(E14)

(ke+1) |, Aplket1)
t—ty T4 EET—

_ _ k.
~ UgGr.+1 Frer1(M)dT = UgG,+1 Waythe+n (t — tfi +1))-

(ke+1) _ aAplket1)
=ty o =S

As a result of this simplification, the allele frequency does not depend on the full frequency trajectory in

the feeding class fi,41(t), but only on its time integral (‘weight’) in a window of width At(ke+1) = ﬁ
around t — tg%“), which we denote by W ket (£ —t((ikCH)). Note that Eq. (E14) implies a simple condition

in terms of the allele frequency trajectory in this feeding class k. that specifies when drift is negligible in
downstream classes. We have shown above that as long as the total allele frequency f > m Jhot1s

drift is negligible in classes with more than k. deleterious mutations per individual. From Eq. (E14), we can
see that this condition can be restated in terms of the weight in the feeding class as

(k1) 1

1% t—t INU,s(k. +1)
Atk ( d ) > 2NUys(k.+ 1) o

Thus, k. can also be thought of as corresponding to the class of highest fitness in which the weight exceeds
1

INUgs(ket1)
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The approximation we have used in Eq. (E14) breaks down at very early times (¢ < tl(ik)), and very late
times, during which fi_ (7) = 0 in the relevant window. These correspond to the spreading and extinction
phases of the trajectory. We show in Appendix I that the former has a negligible impact on the site frequency
spectrum. The latter phase however has an important effect at very high frequencies of the mutant, i.e. when
the wild type is rare and in its own extinction phase. During this extinction phase,

Gros1(t — 7) ~ e D) (E16)
uniformly in ¢ and the frequency trajectory is well approximated as
F(£) ~ Uge ke Vst [ o dr fie (et (E17)

Applying the Laplace approximation once again, we conclude that the integral in Eq. (E17) is dominated by
the window of width m prior to extinction in the k.-class and therefore only weakly depends on time.

Thus, during this extinction phase, the allele frequency decays exponentially at rate (k. + 1)s, and can be
written as

f(t) = fpeakei(kCJrl)s(titpeak)y (ElS)

for some choice of t,cak, Where fpeax reflects the maximal frequency the trajectory reached before the onset
of the extinction phase.

Thus, we can see that in the extinction phase of the trajectory, the effective fitness of the lineage changes
with the frequency according to

seft (f) = = (ke(f) + 1) 5. (E19)

To obtain an explicit expression for how the feeding class k.(f) and therefore sqg(f) depend on the frequency
f, we can solve the condition that mgkeﬂ] L fxK ﬁgkc for k. by setting f = %gkcﬂ for
some C(f) that satisfies 1 < C(f) < A. We find that, to leading order,

ko(f) +1 = log,, < when k.(f) > 1. (E20)

1
Nse)‘f>

By plugging this back into the expression for seg(f), we find that in the extinction phase of the trajectory
the effective selection coefficient changes with the frequency of the lineage according to

1
Nse 2 f

1

_— E21
Nse=* (E21)

seft(f) = —logy, ( ) s, iff
In summary, we have shown in this Appendix that the allele frequency trajectory in the peak phase of
the allele only depends on the time integral of the frequency in class k. over a window of specified width
Atket1) “and that outside this peak phase, the trajectory has an even simpler time-dependent form that we
described above.
As we will see in Appendix F, the generating function for this relevant weight in class k. is straightforward
to calculate when k. is the founding class (i.e. for k. = k). This case is relevant for trajectories that arise

. . 1 . . . .
in class k and exceed frequencies f5 > NOusGrD)” which means that the feeding class weight will exceed

m for a certain period of time.
However, not all trajectories that arise in class k will reach such large frequencies. We have seen in

an earlier section that trajectories that do not ever exceed frequencies much larger than ﬁ will have a

trajectory that is dominated by drift throughout its lifetime. However, even those that do exceed fi > ﬁ,
and therefore leave behind a large number of deleterious descendants will often not reach the much larger
frequency fr > Nt In this case, we will have to treat multiple fitness classes stochastically and

the weight relevant for the peak of the trajectory will be that in class k. > k. For k. > k(> 0), a further
simplification results from the fact that the width of the window At(*<+1)(¢) is longer than the lifetime
of the mutation in class k. (see Appendix F and Appendix G for details). We use this simplification to
calculate the resulting weight distribution in Appendix G. Finally, in Appendix I we use these results to
obtain expressions for the average site frequency spectrum both in the case of strong and weak mutation.
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3. Lineages arising on typical backgrounds (k — A > —v/))

Lineages founded in classes with & > A—+/A mutations will not enter the semi-deterministic regime described
above. This is because selection in each individual class ¢ in which they can be present prevents f; from
exceeding lei < lek ~ ﬁ, where the latter (ﬁ) is the necessary threshold for a large enough number
of deleterious descendants to be generated that their dynamics become dominated by selection in some class
below the i-class. This threshold equal to ﬁ emerges from our analysis of the coupled branching process
in the previous subsection and is further clarified and discussed in Appendix G.

In contrast to lineages arising far above the mean of the fitness distribution, the frequency trajectories of
lineages that arise near the mean of the fitness distribution are dominated by drift, and eventually capped
1

by negative selection at large enough frequencies. Selection becomes an important force about m ==

generations after the lineage was founded. At this time, the accumulated deleterious load since arising
becomes large enough to impact the trajectory of the mutation. This deleterious load will impact the
trajectory substantially when the frequency of the lineage f(¢) becomes comparable to the ‘drift barrier’ set
by its current relative fitness x(t), ﬁ(t) The expected fitness of a lineage founded near the mean of the
distribution (with |z(0)] < o) is (z(t)) = 2(0) — Uy (1 — e~ 5*). Provided that the lineage has not drifted to
extinction by ¢, its expected frequency at t is f(t) ~ % Thus, when f(t) ~ ﬁ(t), the effect of selection

will dominate over drift. This occurs when ¢ ~ 5 =

fitness dlstrlbutlon have a trajectory that has neutral bt&tlSthS for the majority of its lifetime, but does not
exceed 5. Finally, lineages arising in classes far below the mean of the fitness distribution (k A> VA A),
will also be dominated by drift, but limited to even lower frequencies. However, these lineages are also
comparatively rare and only have a small relative impact on the lowest frequency part of the site frequency
spectrum (f < =)

2. Thus, lineages that arise near the mean of the

Appendix F: The distribution of allele frequencies and of the weight in the founding class

In this Appendix, we calculate the distribution of frequencies fi(t) and weights Wa, (¢ f t+ 3 2 t")dt' for
the stochastic process defined by

PR I

dt N n(®), (F1)

with f(0) = % and fi(t) = 0 for ¢ < 0. This process describes the trajectory of the component of the

lineage that remains in the founding class (the ‘founding genotype’). To calculate these distributions, we
begin by defining the joint generating function for the frequency fi(¢t) and the total time-integrated weight

up to time ¢,
t
= / fr(at'. (F2)
0

The joint generating function for these two quantities is defined as

G(z,(,t) = (e72 =Wty (F3)
and satisfies the PDE
9 ( C+ksz+ 2N P (F4)

Once again, we solve this PDE using the method of characteristics. The characteristics z(¢t —t') are defined
by

dz 22 d¢
_ 55 _ F5
= Ctksat o, o2 =0, (F5)
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and are subject to the boundary condition z(t) = z, {(¢) = ¢. The generating function is constant along the
characteristics (24 = 0), and therefore satisfies

dt’
G(2,¢,t) = G(2(0),¢(0),0). (F6)

After integrating the ODEs in Eq. (F5), we find that the characteristics follow

(z —ay)exp [77(”2;\,“’)1‘/}

z—a_ —(z—ay)exp [W}’

2(t—t')=ay + (ay —a_)

with s = Nk (—1 4 /1+ 755 ).

We can verify that the correct marginal generating function for the frequency of the lineage emerges from
this result by setting ¢ = 0 and imposing the boundary condition G(z,0,t) = G(2(0),0,0) = e~ which
corresponds to the initial frequency at ¢ = 0 being %

To obtain the marginal generating function for the weight in the window between t — M and t + At , we

set z = 0, t = At, and choose a boundary condition that reflects the distribution of frequenmes fr ( Azt)
generations after the lineage was founded (see Eq. (D2)),
L2(0)eks(1=5")
Gw(z=0,(,t =At)=exp |— J\([)( ) (F8)

1+ sy (1 — eiks(tf%)) 7
where
2¢

T e C e "

The generating function in Eq. (F8) captures the full time-dependent behavior of the weight in the founding
class in a window of width At¢, and can be inverted by standard methods. However, it is in practice
unnecessary to invert Eq. (F8) to calculate the site frequency spectrum. For our purposes here, we will be
mostly concerned with two special cases: the total weight in the founding class from founding to extinction,
W = [;° f(t')dt’, and the time-integral of the distributions of frequencies p(f(t)) and weights p(Wa.(t)) in
a window of Spemﬁed width At. The former case has been calculated previously by Weissman et al. (2009).
We quote and discuss this result for completeness in the section below. We then analyze the latter case in
the following section.

2(0) =

1. The distribution of the total lifetime weight in the founding class, W = [ f(t')dt'

The first special case that will be relevant to our analysis of trajectories and allele frequency spectra is the
total integrated weight in the founding class from founding (¢ = 0) to extinction. By setting At = § in
Eq. (F8) and Eq. (F9), we find that the generating function for the total weight from founding to some later
time ¢ is

2¢

 Nsk [T+ 58w coth (52, /1+ 52557) +1]

Note that Eq. (F10) becomes independent of time when ¢ 2, ,% (uniformly in C) which agrees with our

heuristic intuition that the lifetime of a mutation in class k is not longer than ~ = generatlons Since we
have shown in Appendix E.2 that the allele frequency trajectory f(¢) depends on the weight in a window of

width At > A+ = \/klﬁs (where the > sign follows because k. > k) that is longer than ~ é for k> 1

(with k£ = 1 being the marginal case), the distribution of W ,x+1) (t) will be either equal to the total lifetime
weight of the allele (for ¢t < At**+1) or negligible for ¢ > AtF+1),

Gw ((,t) = exp (F10)
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By taking the limit ¢ — oo in Eq. (F10), we obtain that the distribution of the lifetime weight in the
founding class is

2¢
(Nsk)? +2(N

Gw () = exp [ . (F11)

The inverse Laplace transform of Eq. (F11) can be evaluated by standard methods, which yields the distri-
bution of the lifetime weight in the founding class

[ 1 1 —~vee?w 4
p(W) = mwe 2 INW (Fl?)

2. The time integrals of p(f,t) and p(Way,t)

To calculate the average site frequency spectrum, we need to calculate the time-integral of the distributions
of frequencies and weights over time. In principle, this can be done by inverting Eq. (F8) and then integrating
the distribution of Wa.(t) over time. However, since this is a somewhat laborious calculation, we will use
a convenient mathematical shortcut in which we first solve for the distribution of weights in a different
stochastic process, and then relate this back to the original process in Eq. (F1).

Specifically, we consider the stationary limit of the stochastic process defined by the Langevin equation

d
d—‘]; =60—ksf+ \/Zn(t). (F13)

This describes the time-evolution of the frequency of a lineage with fitness —ks in which individuals are
continuously generated by mutation at some rate N6 (and have frequency % at the time when they are
generated). This process is relevant because the distribution of frequencies and weights in the stationary
process are related to the time-integrals of the distributions of f(t) and Wa¢(t). More precisely, in the limit
that 8 — 0 (keeping N constant), the distributions of f (and its time integrals) in the stationary process are
the same as the time-integrated distributions of the non-stationary process, provided that we also divide by
the total rate at which new individuals are generated, N0, to ensure proper normalization. That is,

| penan = i (5§ > 0.0), (F1)

o 6—0

We denote the joint generating function for the frequency, f, and weight in this process, W(t,0) =
[y W (', 0)dt', by

Go(2,(,1) = (e /(WO =W E0), (F15)
Gy(z,(,t) satisfies the PDE
aGG(’ZvC?t) 2 aG9(2>Cat)
Aot e § e/ ) =0 . F1
5 C+ ksz+ oN o 02Gy(z,(, ) (F16)

Note that the generating functions for the two processes are related, and that by setting # = 0 in Eq. (F16),
we obtain the generating function for the non-stationary process (see Eq. (F4)). In particular, the character-
istics for Eq. (F16) are the same as the characteristics for Eq. (F4), and they follow the form we calculated
previously and quoted in Eq. (F7). Along these characteristics, the generating function satisfies

dGy
dt’

=0zt —t)Gy, (F17)

or equivalently, after integrating,

Golz, 1) = Go(2(0), C(0),0) exp {—0 /O z(t—t’)dt’]. (F18)
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However, the boundary conditions for the two processes are different. The non-stationary process is subject
to the boundary condition that there is a single individual present in the lineage at ¢ = 0, G(z(0), ((0),0) =
e_%z(o)7 whereas the stationary process is subject to the boundary condition that the process is stationary

at the initial time point, ¢ = ¢. The stationary property of the frequency distribution is guaranteed by the
—2Nsb
boundary condition Gy(2(0),¢(0),0) = (1 + 221\(/2)1@) . This can be obtained either by inspection, or by

substituting an arbitrary boundary condition and finding the limiting form for the generating function for
the frequency as t — oo, and noting that z(0) becomes independent of z as ¢ — oo, so the initial condition
has no impact on the frequency distribution.

Plugging in the expression for z(t — t’) from Eq. (F7) into Eq. (F18), and performing the integral over ¢/,
we arrive at the solution to the joint generating function for f(0) and W (0),

—2N0
1— exp[—i(a”’;;‘)t]
GQ(Za Cv t) = Gg(Z(O), C(O)v O) exXp [700’-"-15] 1+ (Z - a+) a a . (Flg)
+ - —
To obtain the marginal generating function for f(6), we set { =0, giving ay = 0,a_ = —2N sk, and
5\ —2N6
— F20
Gos(2) = (1+ 52) (20)

Conversely, to get the generating function for W (t,0) we set z = 0, which after some rearranging yields

2¢

2(0) =
= - - (F21)
[t s coth (51 + ) +1]
and
: —2N6
1+ wremez kst 2¢ kst 2¢
a — Nskot | N(sk)? o (ESU 45 sh | =2, /1 . (F22
ew(C)=e = N(Qiy sin > + N(ks)2 + cos 5 + N(ks)? (F22)

We invert Eq. (F20) and Eq. (F22) below.

Inversion of the generating functions in Eq. (F20) and Eq. (F22)

Since only the non-extinct portion of the process contributes to the site-frequency spectrum, when inverting
the generating functions for the weight and frequency, we will use the following relationship between the
probability distribution p(g) and the moment generating function G,4(z) of a random variable g:

olg) = /i°° dz ., Gy(2) = Tim {eiwag(m) e”gGg(i:z:)] N /“’0 dz 9 {acg} . (F23)

2mi T—00 2mig 0o 27 g 0z

—100

From the definition of the moment generating function and the sine limit definition of the Dirac § function
(limg 00 sin(zg)/(mg) = d(g)), it follows that the boundary terms amount to the probability mass at g =0
and that the distribution of the nonzero portion of the process is

(F24)

i qy e%9 [_BGQ]

p(g,g>0):/ e

—100

2mi g

After plugging this expression and the generating function for the frequency Eq. (F20) into Eq. (F14) and
taking the § — 0 limit, we find that the time-integrated distribution of frequencies in the founding class is

[fmmmm:;fwwv (F25)
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The time-integrated distribution of weights in the feeding class can be obtained in an entirely analogous
fashion. In this case, it will be convenient to treat the cases k = 0 and k > 0 separately. When k = 0, a
lengthy but straightforward substitution of Eq. (F22) into Eq. (F24) gives

1 io0 1

0—0 N6 W J_is 2mi ¢ 2NT tanh < 2§Vt>

The simplest way to carry out this integral is by contour integration. To do this, we close the contour using
a large semi-circle in the left half-plane. The contribution from this circle vanishes as the radius of the

semicircle approaches infinity, and so the integral considered above is equal to the sum of the residues within
2_22NW

the left half-plane. The integrand has simple poles at 4/ % ’”” for n > 0 with residues 2" ™ "2,

which yields
> n2x22NW 1 2m2NW
242 T =—|1495(0 - F27
+;e ] W[+3<,exp( v ))] (F27)

where 93 is the elliptic theta function. Asymptotic expansions for small and large arguments give

lim p(W, W > 0,0) _ i
6—0 NGO N

NCREATEZER et (F28)

lim Y
W W 5.

W, W >0.0) | prmwim W< zN
0—0 N6 N
The case £ > 0 is slightly more straightforward to evaluate, since the length of the intervals we are

interested in is longer than the typical timescale of selection t = At(F+1) = kils 2 ké As a result, the

arguments in the hyperbolic functions in Eq. (F22) satisfy %1 /14 % 2 1 (for k > 1, with k = 1 being

the marginal case), which yields a simple form for the distribution of nonzero weights

i PV WV > 0,0) /“’" dg W i [_1 8G(§,t)}
0—0 NGO W 0—0 NGO BC
w 271 Nsk

—100

20
L+ NGy

Note that the expression in Eq. (F29) reduces to a standard Gaussian integral. By carrying out this integral,
we obtain for the time integral of the distribution of weights in the founding class

° W, W > 0,0) 2 t
W dt = fim PV >0.0) o nwprwz t
| _pweyar = jm : e (F30)

Appendix G: The distribution of weights in classes below the founding class

We have seen in Appendix E that when the allele frequency trajectory in the founding class fi(t) is small
enough, the effects of genetic drift cannot be ignored in multiple fitness classes. In this section, we consider
how the trajectories (and their weights) in these stochastic classes are coupled, and derive the distribution
of lifetime weights in class k + A, in which individuals carry A more mutations compared to individuals in
the founding class.

1. The relationship between the trajectory in the founding class k, and the weight in class k + 1

We begin by considering the total lifetime weight in the class right below the founding class (i = k + 1),
which we will denote Wy11. Wi clearly depends on the weight in the founding class, Wy, since the total
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number of mutational events from the k-class into the k 4 1-class is equal to NU;W). As we describe in
Appendix B.2, each one of these mutational events founds a ‘sub-lineage’ and the stochastic trajectory of
each sub-lineage is described by Eq. (F1). The total weight of the lineage in class k + 1 is simply the sum of
the weights of each of these sub-lineages. The generating function of the lifetime weight in the k£ 4 1 class,
W1, is related to the lifetime weight in the founding class Wy according to

NUgWy, .
GWk+1(<)_<eXp 76 Z ngi-)l >7 (Gl)

Jj=0

where W1g-)1 denotes the weight of the sub-lineage founded by the ;" mutational event. Since the W,gi_)l are
independent and identically distributed, the generating function of their sum is equal to the product of their
generating functions and

G = (GN T G2
W (O = (G, (@2)

where the final average is taken over the distribution of the weight, W}, in the k-class. The generating
functions of W}, and W]Ei)l are both given by Eq. (F11).

Using the same methods that we used to invert Eq. (F11), we obtain that the distribution of the total
weights in class k + 1, conditioned on the weight in class k being equal to Wy, is

NU Wy 1 7N[S(k+1)]zwk+17(Nwak)2
W Wi) = ————==¢€ 2 INWi 1 G3
P (Wri1|Wh) N W,ffl (@3)

We can see from this equation that the neutral decay of the distribution of weights in class k + 1, which
1 (NUaWi)?
Wa/2> 2N
Wieg1 > m The latter, high-weight cutoff is familiar from before, and results from selection within
the k + 1 class. The low-weight cutoff results from the pressure of incoming mutational events.

A simple heuristic can explain the dependence of the low-weight cutoff on the weight in the founding class,
Wi. The weight Wi41 is at least as large as the weight of the largest sub-lineage. Because each of the
NU;W;, mutational events generates a sub-lineage that survives for T generations with probability %, and

results from drift and is proportional to is exponentially cut off for Wi11 < and for

leaves a weight of order TWZ, at least one of these sub-lineages will survive for T generations with probability
NU, W
equal to 1 — (1 — %)NUdW’“ ~1—e ~ + . This probability is of order 1 for T ~ NUyWj, which means
2
that with probability order 1 at least one of the sub-lineages will have weight TWZ ~ % Note that
this also means that when Wj > N#Ug (consistent with the lineage exceeding frequency ﬁ in the founding
d

class), the weight in the next class is guaranteed to be larger than the weight in the founding class. This
means that lineages that exceed the frequency %Ud in the founding class are almost guaranteed to generate
an even larger number of individuals in the next class, which generates an even larger number of individuals
in the following class, and so on.

We have implicitly assumed that the trajectory of each of the sub-lineages is dominated by drift. This
will be true as long as T' < m (i.e. aslong as W, < N\/ﬁ) In contrast, when W > N\/ﬁ,
a large number the lineages will exceed the frequency m in the next class, and the trajectory in that
class will become dominated by selection. We have shown in Appendix E that once this happens, drift in
class k + 1 and all classes below it will become negligible. Note that this heuristic argument also explains
the self-consistency condition that emerged in Appendix E (see Eq. (E15)), and explains why genetic drift
becomes negligible in the (k. + 1)-class whenever the weight in the k.-class is larger than L

N+/Uas(ke+1)"

In the section below, we will use the insights above to evaluate the weight distribution in class k + A,
conditioned on the lineage arising in class k£ and selection being negligible in all classes beneath it, W; <
W for i < k4 A. Because the lifetime of the longest-lived sub-lineage in each of these classes is at most
% in this limit, and because the sub-lineages are seeded into the i-class over a time that is, by assumption,

shorter than \/ﬁ, the total lifetime of the lineage in all of these classes is strictly shorter than At(®) which
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is why we do not need to be concerned with the full, time-dependent properties of the distribution of weights
in this class. Instead, the calculation of the distribution of lifetime weights will suffice for calculating the
site frequency spectrum.

2. The distribution of the weight in class k + A

Having obtained the distribution of the weight in class k£ 4+ 1, conditioned on the weight in class k being
equal to Wy, (see Eq. (G3)), we can calculate the marginal distribution of weights Wi by averaging over

.. 1 1 1 . . .
Wy. In the limit that NUZ < Wi < NG and Wi < NGRZ that we are interested in here, this

distribution is

2/ (3)

p(Wis1) = / AW, p(Wi)p (W1 [W) = NV Pw (G4)
0

Note that the distribution in the (k + 1)-class decays less rapidly than in the k-class. In particular, the
probability that the weight in the (k+1)-class exceeds m (and leads to the deterministic propagation

of individuals in classes with k + 2 or more deleterious mutations) is

1 21/41‘\ (l) k+2 1/4
P > = 4 G5
(WkH = NUgs(k + 2)> T Ua < A > ’ (G5)

which is larger than the probability that the weight in the k-class exceeds the corresponding value by a
large factor ~ A4, consistent with our intuition that the weight in the class below the founding class is
guaranteed to exceed the weight in the founding class if NU3Wj > 1.

In general, we can calculate the distribution of the weight in class & + A by iterating this procedure.
Specifically, the distribution of the weight in class Wy o conditioned on the weight in class &+ 1 being equal
to Wi also follows Eq. (G3) (but with k changed to k + 1). By repeating the above procedure A times,
we find that the distribution of lifetime weights in class k + A is

p(Wisa) = —— S s SNCIULR) <NU>
A) = —x
AT VN wi e LT ey 2 o
A 1 —j 2 _o—(A+1) (
:Ude:1P(§ (1-277)) (NUde+A>
(2y/m) ! 2 Wita’

Appendix H: The site frequency spectrum in the presence of weak mutation (U; < s)

In the following two Appendices, we use the results obtained in previous sections to calculate the site
frequency spectrum of the labelled lineage in the limits that f < 1 and 1 — f < 1, by evaluating and
inverting the generating function Hy(z,t) for the total frequency of the labelled lineage.

We have seen in Appendix D that trajectories of mutations in the presence of weak background selection
(Ug < s) are to leading order in the small parameter \ same as those of isolated loci with fitness —ks. In
Appendix F we have shown that the time-integrated distribution of allele frequencies of a single, isolated
locus of fitness —ks is

p(f.f > 0) = %e‘m’“f, (1)

which agrees with classical results by Ewens (1963) and Sawyer and Hartl (1992). Thus, the contribution to
the site frequency spectrum of neutral mutations arising in class k is

PUFR) = NUplf,f > 0) = ZEhem 2V 1 O (), (112
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Summing the contributions of all the classes, we find that the full neutral site frequency spectrum is

p) = S0l = 2+ O, (13)
k

The site-frequency spectrum of deleterious mutations follows from the same argument, since the trajectory
of a deleterious mutation arising on the background of an individual with & deleterious mutations is the same
as the frequency trajectory of a neutral mutation arising in an individual with k + 1 deleterious mutations.
Thus, the site frequency spectrum of deleterious mutations is

2 , 2NUg _ops
paa(f) = ZNUdhk . ?6—2N5(k+1)f — Tde 2Nsf 4 O(N), (H4)
k

which once again agrees to leading order with the site frequency spectrum that we would have obtained
assuming that all selected sites at the locus were isolated.

Appendix I: The site frequency spectrum in the presence of strong mutation (Ug > s)

In this Appendix, we calculate the site frequency spectrum of the labelled lineage in the limits that f < 1
and 1 — f < 1 and that A > 1, by evaluating and inverting the generating function Hy(z,t) for the total
frequency of the labelled lineage.

In the presence of strong mutation, we have seen that trajectories of mutations are dominated by drift
at the lowest frequencies, where the generating function reduces to the generating function of a neutral
mutation, and is simply equal to the k = 0 limit of the single locus generating function in Eq. (D2). We have
already calculated the site frequency spectrum that results from these trajectories in the previous section.
Plugging in these results, we find that

2 2NU,
/ f

1
for f < o (11)

p(f) =Y NUnhy -
k
The site frequency spectrum at these frequencies is dominated by the contributions of lineages arising in
average backgrounds, with [k — \| < VA= Z. By the same argument, the frequency spectrum of deleterious
mutations at the same frequencies is also

paa(f) =D NUghy, - % ~ 2]\;Ud
K

1
for f < o (12)

At larger frequencies, the site frequency spectrum becomes dominated by lineages arising in unusually fit
backgrounds, with k — A < —v/A. Their trajectories are instead described by Eq. (E10). We have seen that

the integral in the exponent of Eq. (E10) has a different dependence on ¢ for ¢ < t&k), t ~ t&k) and t > t((ik),
which we have labelled the ‘spreading’, ‘peak’ and ‘extinction’ phases of the trajectory. In evaluating the
site frequency spectrum p(f), it will be convenient to calculate the contributions from each of these phases
separately. We denote these contributions as pspread(f), Ppeak(f) and pext(f), and the full site frequency
spectrum is obtained by summing,

p(f) = Dspread (f) + ppeak(f) + pext(f)~ (13)

We evaluate ppeax(f) and pext(f) in the next two subsections of this Appendix. Then we show in the last
subsection of this Appendix that the contribution from pspread(f) is sub-dominant to that of pexs(f).

1. Contribution from the peaks of trajectories
In Appendix E.2, we have shown that in the peak phase of the trajectory, the total allele frequency is

() = Uadr. 1 Wagtee+) (t - tizkcﬂ)) ; (I14)
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where k. is the class with the smallest number of mutations for which f > mgkﬁh or equivalently,

the class with the smallest number of mutations in which the weight exceeds m

We have seen above in Appendix G that to achieve such a large weight in class k., a mutation could
have arisen in class k = k. and traced an unusually large trajectory, or arisen in class k. — 1, and traced a
smaller trajectory in that class, which led to the creation of a large number of deleterious descendants in
class k., at least one of which had weight exceeding m Alternatively, it could have also arisen in
class k. — 2 and traced an even smaller trajectory in that class, that led to a larger weight in class k. — 1,
and a sufficiently large weight in class k. for genetic drift to be negligible in classes i > k. 4+ 1. In other
words, in the range of frequencies

1

mgkcﬂ f<

1
mgkcv (15)

we see the peaks of trajectories originating in classes k < k., as long their weight in class k. is large enough
that genetic drift in classes of lower fitness can be ignored. All of these peaks contribute to the site frequency
spectrum and by integrating Eq. (I4) in time, we find that

ke(f)
Ppeak(f) = Z NUph - p[f = UaGr.+1Wagke+ |arose in k]

k=0 (16)

/ . }
E NU h W Ap(ke+1) = ————|arose in k| ,
b Udgk +1 Atlkert) Uagk.+1

where the last term represents the time-integrated distribution of weights in a window of width A¢(k<*+1) in
class k. of a lineage that arose in class k. This distribution is given by Eq. (F28) for k. = 0. Otherwise, when
ke > 1, the time-integrated distribution in Eq. (I6) is equal to the product of the window width, Atlket1),
and the distribution of lifetime weights in the founding class, given in Eq. (G6).

Since we have previously calculated all of these quantities, we can now turn to evaluating the sum in
Eq. (I6). When f > 53—gi, then k. = 0, and the sum in Eq. (I6) has only one term (k = 0). By substituting
in the expression for the time-integrated distribution of weights in Eq. (F28), we find that

N .
2NU}I,e , if f > Nsi*)\
Poeaklf) =4 vo i L (17)
372 |:7reNs:| ’ NUge * < f<< Nse—*

At lower frequencies, (N;\/Uids < fx ﬁ J1), lineages originating in multiple different fitness classes will
be able to contribute to the site frequency spectrum. At these frequencies,

ke(f)
At(ke+1) (
" NU,h W, ‘k:+A—k) (18)
Pp k Z k77 = Uadrr E+A = Udgk o

Plugging in the expression for p(Wia) from Eq. (G6), we find

_o—(ke—k+1)

(19)

k 7k:1—\ 1 1_2*3
ppeak(f): NUn}\ 1 Z & J 1 (Qk( )) (NUdf)

Vif VEk(f)+ 11 (2y/m)e =kt Gkt

Because A > 1, this sum is dominated by the k = k. term, since hy decays much more rapidly with
decreasing k than any of the other terms increase. To evaluate the f-dependence of this term for f <« ﬁ g1
and k.(f) > 1, we repeat the same procedure as in Appendix E.2 to obtain an explicit form for k.(f). Briefly,

. .. - - fol -
to solve the self-consistency condition for k.(f), mgkc_‘_l < fx ﬁgkc, we set [ = %gkﬁ_l
for some C(f) that satisfies 1 < C(f) < A, and find that to leading order

ke(f) +1 = log,, (NselAf) when k.(f) > 1. (110)
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Plugging in, we obtain that the leading order term in the distribution of peak sizes is

NU,C(f)"/? 1

1
~ , for lo — | > 1
22V AN s 2 ; S (Nse)‘ f) (111)
IOg)\ <Nse_)‘f>

The term C(f) depends on f weaker than logarithmically, and on frequency scales on which ppeak(f) changes
substantially it will be approximately constant, C(f) = C.

Because the crossover between the f~3/2 scaling of Ppeak (f), which occurs at high frequencies ﬁ <

—1/2

< ﬁ (where k.(f) +1 = 1), and the f~2log (ﬁ) / behavior, which is valid at substantially
lower frequencies (where k.(f) > 1), is in principle broad, this constant factor C is difficult to determine:
asymptotic matching does not typically work well in the presence of such broad transitions, and crude ‘patch-
ing’ methods do not, in general, offer satisfactory results (Hinch, 1991). Thus, Eq. (I11) is undetermined
up to the constant factor C'/2, which is between 1 and v/X. For our purposes here, this level of precision is
sufficient — (1) precision in the form of the spectrum was, after all, expected in the Laplace-like approxi-
mation that we used in Appendix E.2 to calculate the stochastic integral over the trajectory of the feeding
class. Thus, by absorbing 2v/27 term into this constant factor, and relabeling C*/2? as C, we find that the
peak contribution to the site frequency spectrum is

Ppeak ([ )

(f) ~ i ¢ for 1 < ! > > 1
ea, ~ ) or 1o NP ’
Pt NS ] ) B\ \ Nsery (112)
59 Nse=>f
with C in the range 1 < C < V.
2. Contribution from the extinction stage of trajectories
Once the trajectory is beyond its peak, the total allele frequency decays as
F@) = freae™ eI Ds(—tpear) (I13)

where fpeak denotes the maximal frequency that the trajectory reaches and Eq. I13 is valid for t —tpeax > t((ik).
Note that this stage only exists for frequencies f < ﬁ At higher frequencies, f > ﬁe,h the total allele
frequency simply mirrors smoothed fluctuations in the founding class. Eq. (I13) can be straightforwardly
integrated in time to obtain the contribution of this trajectory to the site frequency spectrum

1 .
P(f| foear) = § PelDTDsI i Jpea > f. (114)
, otherwise.

Averaging Eq. (I14) over all possible trajectories, we find that

pet(f) = NU, 21 Prob(fyea > D). (115)

fke() +1)

where D > 1 is a constant that we have introduced to correctly account for the fact that the peak phase
occurs at frequencies that are at least O(1) higher than the frequencies in the extinction stage.

For peak frequencies fpeax < ﬁ, we have already calculated the overall time-integrated distribution
of peak sizes of lineages arising in classes of all fitness, and we can use this result to calculate the total
probability that a trajectory passes through f in its extinction stage,

I poesk (P C

— , 116
NU, At(ke+1) VANfD (116)

Prob(fpeak > Df) =
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This means that the contribution to the site frequency spectrum from the extinction phase of trajectories is
equal to

NU, C NU, C

Pext (f) = D\/>N8f log,, (7) \/>N8f log, (

1 Af) ' (117)

1/2
Therefore, pex(f) is strictly smaller than ppeax(f) by a factor <log)\ (ﬁ)) , which is large when

< ﬁ Thus, this phase of the trajectory has a small effect on the low-frequency end of the spectrum.

However, in the high frequency end of the spectrum, when 1 — f < ==, the only contribution comes
from this ‘extinction’ phase of the wild-type, which starts once the mutant approaches the frequency f >
1- ﬁ in the O-class. These events happen at rate equal to NU,e ™ - Nel,A = U, and each contributes
~ W to the site frequency spectrum. Multiplying these two terms, we find that the site

frequency spectrum is proportional to

Un 1 o1 1
pdec(f):? 1f7<<1—f<<W- (118)

(1—f)log, (WY No

3. Contribution from the spreading stage of trajectories

At frequencies f < m, the site frequency spectrum also receives contributions from the spreading
stage of trajectories, in which the allele frequency rapidly increases as the allele spreads through the fitness
distribution. In this stage, the rate at which the frequency increases is strictly larger than what it would
be if we ignored any contributions from the founding class after the mutation exceeds frequency ﬁ, (i.e.

assuming f(t) — ﬁe—kst+k(l—e*st))’

=2 > fs(he S — k). (119)

Far below the peak of the trajectory, where Ae™*! >> k, the contribution from this stage of a single trajectory
to the frequency spectrum that passes through f is thus simply bounded by

P (f):<1>< SN - = : < 1 120
single |dt| = fs)\e—st Sf log (Nse )\f) sflog(A) log)\ (ﬁ) Sf(lfc(f) + 1)' ( )

Since the number of trajectories that pass through frequency f in the spreading phase is the same number
that pass through f in the extinction phase, the contribution from the spreading phase to the site frequency
is strictly smaller than that of the extinction phase throughout the region where both contributions exist,

1
f < g
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4. Constructing a single curve from piecewise asymptotic functions

In the previous sections of this Appendix, we have shown that the site frequency spectrum is given by

N for f < &,
e ek
S for & < f<1- &, (121)
Ns(1—f) 12\5?#{”)7 for ﬁ <l-f< ]%7
%’ for 1 — f < 2.

As we have explained, line 2 of Eq. (I21) is valid up to a constant factor Cy(\) that is bounded by 1 <«
C1(X\) < VA These piecewise functions represent the leading order behaviors far away from the transitions
between the different regimes, which occur at f = =, v, 1 — 7-.—x and 1— . For practical purposes,
it is often convenient to construct a single theoretical curve that joins these curves at these transition points,
while maintaining the correct form far away from the transition points. This procedure is not intended extend
the validity of the results outside of the regimes where asymptotic forms are available and is certainly not
guaranteed to produce the correct functional forms at the transitions. However, it often yields satisfactory
results, especially when the transitions are narrow in practice, and when the two asymptotic forms are
expected to lie on opposite sides of the behavior at the transition (i.e. one is expected to overestimate, and

the other to underestimate). In the present case, the latter condition is true at the transitions at ﬁ and
1
1- Nse=>"*
Here, we have used a sigmoid function,
1
9(f) = W (122)
to join the functional forms at the transitions, which has the convenient property
1, for f < w2t=x
o(f) ~ F<me= (123)
0, for f> fo=

In addition to this, because the forms valid when ﬁ < fx ﬁ and ﬁ <1l-f<x ﬁ have
logarithmic divergences near the transitions (i.e. for f,1 — f = ﬁ), we also add small additive factors
to these logarithms to avoid nonsensical results. Specifically, to compare our theoretical predictions with

simulations, we plot

pjoined(f) = 2NUn Cl g(f) + [1 — g(f)][]' _fg(]- — f)]e_/\
Nsf? \//\ . (log (ﬁ,xf) + CQ) 20
C39(1—f)

1 1
, for — < fxl——.

* No No

Ns(1 = 1) (10g (wstiy) + 1)

C1, Cy, C3 and C4 were chosen to ensure visual smoothness of the curve. Note that the constant C3 is only
necessary to ensure visual smoothness of the curve at limited A (adding C4 to the denominator to control
the logarithmic divergence causes the curve to be shifted downward, and Cs helps to correct for this). We
tabulate the values used in this paper below:
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A C1 Co Cs Cy
>3 1.5 0.5 1.4 1
<2 1.0 0.5 1.4 1

TABLE S1 Values of small constants defined in Eq. (I24) that were used in this paper.

In principle, we could also use a similar procedure to join the asymptotic forms at the transitions at ﬁ
and 1 — ﬁ However, since both asymptotic forms overestimate the site frequency spectrum near these
transitions, this works no better than simply setting

WU for f< L
p(f) = pjoined(f>7 for ﬁ < f <1- ﬁ (125)
2 for 1 — 3= < f.

This is the choice we have made when calculating theoretical predictions for site frequency spectra of smaller
samples, which were necessary for comparisons with the structured coalescent.

Appendix J: Distributions of effect sizes

When the effects of deleterious mutations are not all identical, but instead have a distribution with finite
width, p(s), the deterministic dynamics that arise through the combined action of mutation and selection
will be modified. In this Appendix, we consider these deterministic dynamics. For concreteness, we assume
that the fitness effects of new mutations come from a gamma distribution with mean s and shape parameter
«,

p(s) = /3, (J1)

and that these deleterious mutations occur at an overall rate Uy.

Under the assumption that all mutations have strong enough effects on fitness that the fitness of the
population at the locus does not experience Muller’s ratchet on timescales of coalescence, the mean fitness
of an allele at the locus will be equal to —Uy, with the most-fit individuals being those with no deleterious
mutations and an absolute fitness equal to 0. Consider now the deterministic dynamics of a lineage founded
in an individual at absolute fitness —x. The fitness of the lineage founded by this lineage will change as it
accumulates new deleterious mutations according to

.’E(t) =—x+ Uy /OOO dSp(s)e*St. (JQ)

Evaluating this integral, we find
st\ ¢
z(t) = —x + Uy (1+ a) : (J3)

When « is sufficiently large, corresponding to a sufficiently narrow fitness distribution, the resulting
trajectory is well approximated by assuming that all fitness effects are the same and equal to the average
fitness 5 (or, more precisely, the harmonic mean of p(s), O‘T_lg ~ 5). To calculate how large « needs to be
for this approximation to be valid, we can calculate the deterministic expectation for the average number of

individuals in the lineage at time ¢ after founding. This quantity is equal to

g(z,t) = exp [/Otx(t')dt’] = exp {—xt + g(g%

We see that this differs from the single-s expression only in the last term, proportional to (1 + 5t/ a)_(
At sufficiently short times, ¢ < «/5, this is well-approximated by e~**(®=1)/@  On sufficiently long timescales,

(1 —(1+ Et/a)(al))} . (J4)

oz—l).
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this will not be the case. However, because the overall magnitude of this term becomes negligible at times
long after the peak of g(x,t), t > tgq, we only need it to remain well-approximated by an exponential on
timescales t < t4, which requires that o > log(Uy/§) > 1. When this is the case, g(z, t) is, up to perturbative
corrections, given by

g(z,t) =~ exp {xt + (aU_dO{)S (1 —e aasltﬂ ) (J5)

and the effects of selection are well-described by a single-s model on all timescales.



