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Abstract: Evolutionary dynamics in laboratory microbial evolution experiments can be surprisingly 9 
complex. In the last two decades, observations of these dynamics have challenged simple models of 10 
adaptation, and have shown that clonal interference, hitchhiking, ecological diversification, and 11 
contingency are widespread. In recent years, advances in high-throughput strain maintenance and 12 
phenotypic assays, the dramatically reduced cost of genome sequencing, and emerging methods for 13 
lineage barcoding have made it possible to observe evolutionary dynamics at unprecedented 14 
resolution. These new methods can now begin to provide detailed measurements of key aspects of 15 
fitness landscapes and of evolutionary outcomes across a range of systems. These measurements can 16 
highlight challenges to existing theoretical models, and guide new theoretical work towards the 17 
complications that are most widely important.  18 
 19 
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Glossary Box 22 
Clonal interference: Competition between multiple different (and typically beneficial) mutations that 23 
are segregating simultaneously within the population.  24 
DNA barcode: A DNA sequence that "barcodes" a strain. This often refers to a naturally occuring 25 
sequenced used for species identification in ecological applications. In laboratory evolution, barcodes 26 
are sometimes instead random sequences (often ~10-30 base pairs) that are integrated by the 27 
experimenter into a specific genomic location.   28 
Epistasis: The dependence of phenotypic effects of mutations on the genetic background. 29 
Flow cytometry: A technique to measure the fluorescence profiles of individual cells in high 30 
throughput. Often used to count differently labeled cells in a population for applications such as fitness 31 
measurements.  32 
Fitness landscape: A general mapping between genotype and fitness in a specific environmental 33 
condition. 34 
Hitchhiking: The process by which a neutral or deleterious allele increases in frequency due to linkage  35 
to a beneficial mutation. Can also refer to a weakly beneficial mutation increasing in frequency due to 36 
linkage to a more strongly beneficial one.  37 
Pleiotropy: The effect of a mutation on multiple different phenotypes. Here, the phenotypes discussed 38 
are often fitness effects in different environments. 39 
 40 
Box 1: Key Determinants of Evolutionary Dynamics 41 
Evolutionary dynamics are influenced by a number of different factors. One class of factors involves the 42 
physiology of specific organisms in particular environmental contexts. We refer to these as the 43 
biological environment; they determine how selection acts on different genotypes. Another class of 44 
factors determine how genetic variation arises and how it is inherited. We refer to these as the 45 
population genetic environment; they determine how genetic drift operates, constrain how mutations 46 
move between haplotypes, and determine which organisms compete and interact. Of course, the 47 
distinction between the biological and population genetic environment is somewhat arbitrary. 48 
 49 
 A: Examples of factors in the population genetic environment include:  50 
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- population size, N 51 
- mutation rate, U 52 
- recombination rate, R, and the physical structure of the genome 53 
- spatial structure 54 

 55 
 B: Examples of factors in the biological environment include: 56 

- the “local” distribution of mutational effects on fitness, !(!) 57 
- the ruggedness of the landscape (how !(!) changes as a result of epistasis) 58 
- pleiotropic effects of mutations 59 
- statistics of environmental change 60 
- ecological opportunities 61 

 62 
Main Text  63 
 64 
Surprising Complexity in Simple Experiments 65 
 66 
For many decades, evolutionary adaptation in microbial populations was thought to proceed by 67 
"periodic selection," where individual beneficial mutations arise sequentially and either go extinct or fix 68 
in independent selective sweeps [1]. In this picture, evolution is relatively simple: mutations arise 69 
randomly and then fix or go extinct at a rate that is commensurate with their individual selective effect. 70 
Our ability to predict how a population should evolve is then only limited by our knowledge of the 71 
biological details of that specific system (i.e. the potential mutations and their corresponding mutation 72 
rates and selective effects, the biological environment in Box 1).  73 
 74 
Beginning in the late 1990s, however, observations of surprising complexity in microbial evolution 75 
experiments provided convincing evidence rejecting this standard "periodic selection" picture. Instead, 76 
careful observations of rates of fitness increase [2-4] and changes in the frequencies of genetic 77 
markers over time [5-9] pointed to widespread signatures of clonal interference (see Glossary) and 78 
hitchhiking. These complications make it much harder to predict how evolution will act: we are limited 79 
not only by our knowledge of the biological details, but also by our lack of understanding of the 80 
evolutionary dynamics themselves. The basic difficulty is that many interacting loci across the genome 81 
are hopelessly intertwined -- evolution cannot change the frequencies of alleles at one locus without 82 
simultaneously affecting alleles at many other linked loci (Figure 1, Key Figure). In these settings, we 83 
cannot rely on well-established models of evolution at individual loci to predict evolutionary dynamics.  84 
 85 
Inspired in large part by these experiments, there is now a thriving theoretical community bringing 86 
methods from statistical physics and applied mathematics to the study of evolutionary dynamics in 87 
these "rapidly evolving" populations. This has led to many advances in our analytical understanding of 88 
the effects of clonal interference and other forms of linked selection [10]. However, increasingly high-89 
resolution observations of evolutionary dynamics in laboratory evolution experiments have continued to 90 
reveal unexpected complexities that appear to be crucial to evolutionary dynamics in these systems, 91 
and call for still further theoretical work. In this article, we review these recent developments.  92 
 93 
Studying Evolution Without Phenotype 94 
 95 
Many studies of adaptation in both natural and laboratory populations are focused primarily on 96 
understanding phenotypes: the goal is to characterize adaptive changes and to identify the evolutionary 97 
processes by which they arose as well as their genetic and molecular basis. Experimental studies of 98 
evolutionary dynamics focus instead on understanding evolution as a stochastic algorithm. That is, 99 
given a particular set of biological details (i.e. the set of mutations that can arise and their 100 
corresponding fitness effects in all relevant environments and genetic backgrounds, often referred to as 101 
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the fitness landscape), what will evolution actually do? What mutations will fix with what probabilities? 102 
How repeatable is the process, and what patterns of genetic diversity will a population display? The 103 
focus is on the role of the dynamics in determining evolutionary outcomes, and not on the nature of the 104 
adaptive phenotypes or their genetic and molecular basis. That is, we aim to study evolution as a 105 
process, without reference to the specific phenotypes in question.  106 
 107 
In principle, given a specific landscape and set of population genetic parameters, we can address any 108 
questions about how evolution acts by implementing computational simulations of the dynamics. 109 
However, we cannot possibly measure the fitness landscape in every system we wish to understand. 110 
Instead, we hope to be able to identify key principles of evolutionary dynamics that help us understand 111 
what general features of landscapes are important and how these features influence evolution across a 112 
wide range of systems. With this goal in mind, many theoretical studies have focused on simple 113 
analytically tractable models.  114 
 115 
Since evolutionary dynamics are inherently random, testing these models involves quantifying the 116 
probabilities of different outcomes. This requires highly controlled and replicated experiments, which 117 
make it possible to identify deviations from existing theoretical predictions that point to important new 118 
processes that future theory must account for. For example, classic results from population genetics tell 119 
us that the fixation probability of a beneficial mutation that is at frequency x within a population of 120 
constant size N and provides a fitness advantage s should be pfix(x,s) = (1-e-2Nsx)/(1-e-2Ns) [11]. This has 121 
led to the widespread view of s=1/N as a drift barrier: newly arising beneficial mutations with fitness 122 
effect less than this fix with probability approximately equivalent to a neutral mutation, while beneficial 123 
mutations with larger effects fix with probability of about 2s. Yet numerous experimental studies have 124 
shown dramatic differences from this prediction in adapting microbial populations, with beneficial 125 
mutations fixing much less often than this formula would predict [12-17]. Analysis of the evolutionary 126 
dynamics in these experiments showed that this discrepancy arises because beneficial mutations are 127 
much more common than previously appreciated in these large populations (often with sizes ranging 128 
from 106-1010), leading to widespread clonal interference that reduces the efficiency of selection and 129 
hence the fixation probability of any individual beneficial mutation. This in turn led to further theoretical 130 
analysis of these effects of clonal interference.  131 
 132 
We now know that clonal interference tunes the characteristic effect size of evolutionarily relevant 133 
mutations, favoring larger-effect mutations and dramatically suppressing the importance of smaller-134 
effect mutations [18-20]. This characteristic effect size depends sensitively on the overall size of a 135 
population, the mutation rate, and the evolutionary conditions. Thus, these dynamical aspects of 136 
adaptation tune the spectrum of mutations that have a chance at fixing in populations, which in turn 137 
feed back to affect evolutionary dynamics. On long enough timescales, this feedback between the raw 138 
evolutionary material and evolutionary dynamics ultimately shapes entire genomes. In recent years, 139 
there has been significant theoretical interest in characterizing how evolutionary dynamics can alter 140 
mutation rates [21, 22], the spectrum of available mutations in a genome [23], as well as expected 141 
patterns of epistasis [24, 25]. However, often too little is known about the fitness landscape to model 142 
genomic evolution over long evolutionary timescales meaningfully. In these cases, experimental 143 
evolution can be used to measure the distribution of this raw evolutionary material, which can guide 144 
future theoretical work.  145 
 146 
As technological developments (particularly in sequencing) have recently made it possible to observe 147 
evolutionary dynamics in laboratory populations with ever increasing resolution and replication, many 148 
theoretical expectations have come under challenge. Over the coming few years, there are likely 149 
continue to be many insights derived from taking a purely observational approach, by simply watching 150 
evolutionary dynamics using these new tools in a variety of settings and asking whether we can explain 151 
what we see. The answer is often no, which can then spur new theoretical directions. Similarly, these 152 
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new techniques can now allow high-throughput measurements of quantities such as distributions of 153 
pleiotropic or epistatic effects in genomes, which were not possible to make at scale using previous 154 
methods. 155 
 156 
Technological Advances in Observing Evolutionary Dynamics 157 
 158 
There are three key challenges in observing evolutionary dynamics. First, the underlying events are 159 
mutations, and we ultimately want to track the frequencies of all the genotypes they produce. These are 160 
typically difficult to observe directly. Second, evolutionary dynamics are fundamentally stochastic, so 161 
we typically wish to quantify the probabilities of different events. This often requires extensive 162 
replication. Finally, new mutations arise in single individuals. Their dynamics while they remain at very 163 
low frequencies within the population are typically both critically important and very difficult to observe.  164 
 165 
Because it is difficult to observe the underlying mutations directly, early work attempted to measure 166 
phenotypic changes through time. For instance, many studies measured the competitive fitness of 167 
evolving lines through time (Figure 1B.i). This work provided many insights into how quickly 168 
populations adapt [26], how this depends on population size and other parameters [2, 3, 27, 28], and 169 
how repeatable these phenotypic changes are across replicate populations [29, 30]. However, these 170 
phenotypic changes are a coarse view of the underlying genetic changes, and hence can only provide 171 
limited insight into the evolutionary dynamics at the sequence level.  172 
 173 
An alternative approach has been to engineer strains in such a way that certain specific mutations lead 174 
to easily measurable phenotypic changes. For example, one can construct yeast strains in which loss-175 
of-function mutations in the gene CAN1 lead to resistance to the drug canavanine; the frequency of 176 
these mutations can then be precisely tracked by plating on media containing this drug [31]. Other 177 
studies built on this idea to introduce other drug or fluorescent markers that become active when 178 
certain classes of mutations arise [13, 32, 33]. However, while these approaches allow us to track the 179 
frequencies of specific mutations (often at high resolution), they typically only allow us to observe a very 180 
small fraction of the genetic changes that occur within the population. We must infer something about 181 
the larger majority of genetic changes that we cannot observe from the dynamics of the small fraction 182 
we can see. Closely related to this approach, other studies have introduced neutral (or sometimes non-183 
neutral) genetic markers to distinguish different lineages within evolving populations [1, 5, 6, 9, 12]. By 184 
tracking the frequencies of these markers through time, we can infer something about the underlying 185 
dynamics [34]. However, since these studies have typically only tracked the frequencies of two or three 186 
markers, they are only sensitive to major shifts in the composition of the population, and cannot provide 187 
any insight into dynamics at lower frequencies (Figure 1B.ii).   188 
 189 
These earlier methods for observing evolutionary dynamics were limited not only in resolution but also 190 
in scale. The experiments themselves were typically conducted in test tubes, flasks, or chemostats. 191 
This required substantial physical space as well as labor, which limited replication. In addition, 192 
measuring phenotypic changes such as fitness or the frequencies of drug markers was relatively 193 
laborious, so it was only practical to track evolution in at most a few dozen populations at once. More 194 
recently, it has become common to maintain populations in microplates and to maintain them using 195 
robotic liquid handling [35]. These methods make it possible for a single experimenter to maintain 196 
thousands of microbial populations in parallel. By using fluorescent proteins rather than drug or nutrient 197 
markers, it has similarly become possible to analyze some aspects of the dynamics in these 198 
populations at high throughput using flow cytometry.  199 
 200 
More recently, advances in sequencing technology have now made it possible to track evolution at the 201 
sequence level directly, using either whole-population “metagenomic” sequencing or by sampling and 202 
sequencing individual clones [14, 15, 17, 36-41]. While these approaches involve substantial 203 
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bioinformatics challenges, this makes it possible to identify individual mutations and track their 204 
frequencies through time (Figure 1B.iii). Though it was initially not possible to do this at scale, 205 
reductions in sequencing costs now make it possible to sequence hundreds of clones or whole 206 
microbial populations samples to a depth of 20-100x on a single sequencing lane. Sample preparation, 207 
which was once a limiting factor, has also become possible to do at scale for minimal cost [42]. Thus by 208 
combining extensive sequencing with the robotic liquid handling methods described above, it is now 209 
feasible to track evolutionary dynamics at the sequence level in hundreds of replicate populations in 210 
parallel.  211 
 212 
However, a fundamental limit of these sequencing approaches is frequency resolution. Sequencing 213 
errors and other bioinformatics challenges make it very difficult to identify and track mutations below a 214 
few percent frequency. Yet in microbial populations that often consist of millions or billions of cells, the 215 
fates of mutations are often determined by the competition of high-fitness clones at frequencies that are 216 
many orders of magnitude lower than this. While these challenges can be mitigated to some extent by 217 
increasing sequencing depth or by using approaches such as circle sequencing [43] or Duplex 218 
sequencing [44] to reduce error rates, this can dramatically increase costs. Thus this is likely to remain 219 
a major limitation of whole-genome sequencing approaches for the foreseeable future.  220 
 221 
To circumvent this resolution problem, a new approach is to label individual cells with unique DNA 222 
barcodes at the outset of an experiment [45].  This approach exploits the same principles as older 223 
marker tracking methods, but does so using millions of unique barcodes, rather than a few fluorescent 224 
or drug markers (Figure 1B.iv). By sequencing the barcode locus, one can track the number of 225 
descendants of all individuals in the population over time at extremely high resolution. Sequencing 226 
errors are no longer limiting because barcodes can be designed to differ at several sites. As with other 227 
marker-based methods, this approach does not directly identify individual mutations. However, since 228 
the barcodes measure frequencies at very high resolution, changes in their frequencies are much more 229 
sensitive to the effects of individual mutations. Thus it is possible to infer when adaptive mutations 230 
occur, their effects on fitness, and their frequency trajectories even at very low frequencies.  231 
 232 
These barcoding methods are promising, but do suffer from two key limitations. First, to realize the 233 
benefits of increased resolution, one must sequence the barcode locus at depths comparable to 234 
microbial population sizes (106-1010). This requires 106-1010 reads per timepoint and population 235 
sequenced, and the corresponding costs limit the extent of the replication that can be achieved. Thus 236 
far, this approach has only been used to track dynamics in a few populations in parallel [46, 47]. 237 
Second, as time progresses, barcode diversity declines as some lineages go extinct and others 238 
increase in size. Therefore this method has been limited to offering high-resolution views of only the 239 
earliest phases of clonal evolution. In principle, this second limitation could be circumvented either by 240 
“re-barcoding” the population at periodic intervals or by adapting methods to continually add diversity to 241 
existing barcodes [48], though either approach presents some technical challenges.  242 
 243 
Which complications are important? 244 
 245 
Theoretical studies of very simple models have provided a great deal of insight that underlies much 246 
intuition in evolutionary dynamics and population genetics. For example, many studies have analyzed 247 
how a population climbs a single fitness peak in the strong-selection-weak-mutation (SSWM) 248 
approximation where only one mutation is ever present in the population at a time. Similarly, models of 249 
neutral mutation accumulation and the balance between deleterious mutations and selection are often 250 
used to explain evolution in a “well-adapted” population that is at a local fitness peak. The implicit 251 
assumption that natural populations are typically in such a well-adapted state underlies many practical 252 
methods in population genetics.  253 
 254 
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Of course, no one believes that evolution is ever actually this simple. Nevertheless, these idealized 255 
models have widespread influence because there are countless complications that could in principle 256 
matter, and it is impossible to model all of them at once (Box 1). A key question is thus: which 257 
complications are widespread and of general importance, and what simplifications can we get away 258 
with? Experimental studies of evolutionary dynamics have played an important role in answering this 259 
question. Many of these experiments are explicitly designed to be as simple as we can make them. 260 
Thus complications that routinely arise even in these very artificially restricted settings may be to some 261 
extent genuinely widespread and unavoidable. Of course this does not rule out the possibility that other 262 
effects are important in other specific settings, but it does help point to key factors that any theoretical 263 
picture needs to grapple with.  264 
 265 
For example, over the past two decades it has become clear that clonal interference and hitchhiking are 266 
of widespread importance. Early tests of the SSWM picture focused on very large populations, often 267 
using strains engineered to have higher than normal mutation rates, in order to probe what was 268 
imagined to be an idiosyncratic regime where the widely-used SSWM approximations might begin to 269 
break down [2]. Instead, it soon became clear that clonal interference and hitchhiking were unavoidable 270 
even in modestly-sized microbial and viral populations with wild-type mutation rates. Qualitatively 271 
similar effects of linked selection have also been observed in recombining outbred populations adapting 272 
on standing variation, where selection acts simultaneously on many sites across the genome, and 273 
recombination can only slowly decouple the effects of linked beneficial and deleterious alleles (a 274 
version of the Hill-Robertson effect) [49-53].  275 
 276 
More recent work has also begun to challenge the assumption that populations that have evolved in a 277 
constant environment for a long period of time can be described using the standard picture of a “well-278 
adapted” population on a fitness peak. As far as we are aware, there are no examples that fit this 279 
picture, including the long-term experiment in E. coli through at least 60,000 generations [17, 41, 54, 280 
55]. Instead, even very large populations evolved for long periods in as constant an environment as is 281 
experimentally feasible continue to increase in fitness and to rapidly accumulate adaptive mutations. 282 
While experiments in smaller populations do sometimes reach fitness plateaus, this is not necessarily 283 
because they have reached an optimum [56]. Instead, these populations may have reached a balance 284 
between adaptation and the stochastic accumulation of deleterious mutations [57], with molecular 285 
evolution continuing at a rapid pace. These results suggest that we should question the standard 286 
picture of natural populations in a "well-adapted" state characterized by neutral evolution and 287 
deleterious mutation-selection balance. 288 
 289 
Another widespread assumption of many models of evolution and population genetics is that 290 
evolutionary and ecological dynamics can be separated. Instead, coexisting types often spontaneously 291 
arise in laboratory evolution experiments and are maintained for long periods due to negative 292 
frequency-dependent selection [16, 17, 37, 38, 58-61]. These ecological interactions arise via a variety 293 
of different mechanisms, despite the fact that many of these experiments were explicitly designed to 294 
minimize the opportunities for ecological diversification. These ecological interactions are then often 295 
further modified as evolution continues within each coexisting type, leading to shifts in the frequencies 296 
of the types [17, 37, 38, 59, 60]. Thus evolution and ecology are fundamentally intertwined.  297 
 298 
Other types of complex frequency-dependent interactions are also sometimes observed. For example, 299 
there are some reports of positive frequency-dependent and non-transitive (or “red queen”) fitness 300 
interactions [62-65]. However, within the limits of current resolution, these more complex effects appear 301 
to be relatively rare in microbial evolution experiments [66].  302 
 303 
On the other hand, the effects of individual mutations can strongly depend on the genetic background in 304 
which they occur [67]. These epistatic effects of course include specific interactions involving mutations 305 
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within an individual protein or pathway [68-70]. However, some experiments have shown more 306 
widespread effects, where individual mutations can often alter the future evolutionary potential of their 307 
descendants. This can occur both due to global fitness-mediated effects [30, 71-77] (e.g. higher-fitness 308 
genotypes can be generically less “adaptable” and less “robust”) and due to more idiosyncratic 309 
mechanisms [78-80]. This widespread epistasis and contingency may help explain why experimentally 310 
evolving populations do not ever appear to reach a fitness peak.  311 
 312 
Similarly, the structure of pleiotropic effects of mutations for fitness across varying environmental 313 
conditions can be complex. While we might expect simple tradeoffs between fitness in different 314 
conditions to routinely arise from physiological constraints, the reality is often more subtle [81-87]. 315 
There are often multiple distinct ways a population can adapt to a given environmental condition, which 316 
may have a variety of effects across other environments [88-90]. The details of the population genetic 317 
environment and the statistics of fluctuating conditions can therefore play a critical role in determining 318 
the extent to which adaptation tends to lead to specialization [91].  319 
 320 
Concluding Remarks and Future Perspectives  321 
 322 
It could be argued that studies of evolutionary dynamics in artificial and highly simplified laboratory 323 
conditions (which often lack spatial structure, temporal variability, interactions with other species, and 324 
other complexities) are unrepresentative of evolution in natural systems. However, we view this 325 
simplicity instead as a major strength of experimental evolution, which is a powerful tool precisely 326 
because complications can be introduced in a controlled, replicable way (see Outstanding Questions). 327 
Nevertheless, one could argue that conclusions from artificial laboratory environments are simply not 328 
representative of those relevant in more “natural” settings. Testing this will ultimately require more 329 
detailed direct observations of evolution in natural environments. Some recent work has moved in this 330 
direction by using laboratory evolution techniques in more complex and realistic environments, such as 331 
by studying E. coli that are experimentally passaged through mouse guts [39] or V. fischeri living in 332 
symbiosis with squid [92]. A complementary direction will be to begin to use these general techniques 333 
and analysis frameworks to study evolution directly in natural systems, such as evolving pathogens [93-334 
95], the immune system [96], and host-associated microbial and viral communities [97-99].  335 
 336 
It is also unclear how evolutionary dynamics in microbial populations relate to other systems. Numerous 337 
studies have analyzed evolution in other laboratory model organisms, including complex multicellular 338 
organisms such as Drosophila [51, 53] or C. elegans [100]. In these systems, standing genetic 339 
variation, differences in genome organization and ploidy, and other complications can all influence the 340 
dynamics. These factors may affect which parameter regimes are typically relevant, and what 341 
complications theoretical models must grapple with. However, many of the technical methods described 342 
here cannot be directly applied to these systems. Thus an important future direction will be to develop 343 
tools that make it possible to study evolution in these more complex organisms at higher throughput 344 
and resolution, and comparing the results to what we have learned by studying microbial systems.  345 
 346 
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 350 
FIGURE CAPTIONS	351 
 352 
Figure 1 (Key Figure): (A) Simulated evolutionary dynamics in an asexually evolving population, with 353 
parameter values typical in a laboratory evolution experiment. Mutations arise often enough that they 354 
cannot be selected on individually. Instead, between the appearance of a new mutation in a population 355 
and its eventual extinction or fixation, many other mutations arise in the population, either on the same 356 
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genetic background or in a competing lineage. As a result, the fate of each mutation is not determined 357 
only on its own merits, but is intertwined with all other mutations in the population. Most beneficial 358 
mutations are outcompeted by fitter clones before they are able to rise to substantial frequencies. We 359 
note that these evolutionary dynamics have never been directly observed at the resolution shown here. 360 
(B) These evolutionary dynamics can be studied in laboratory settings using a range of methods: (i) 361 
Fitness assays. The relative increase in fitness of the evolving population compared to the ancestor 362 
offers a coarse view of the underlying evolutionary dynamics. (ii) The frequencies of pre-introduced 363 
genetic markers through time. As with fitness assays, changes in marker frequencies reflect the 364 
aggregate effects of multiple evolutionary events. These methods cannot resolve the effects of 365 
individual mutations.  (iii) Population metagenomic sequencing offers a view of individual mutations that 366 
arise during evolution. However, only mutations that reach substantial frequencies (typically at least 367 
~5% or more) are observable. Thus only a tiny and biased subset of all the mutations occurring in the 368 
population is visible. (iv) Newer barcoding methods make it possible to observe lineage dynamics at 369 
much higher resolution. Up to the resolution limits imposed by the evolutionary process itself (i.e. 370 
genetic drift), these lineage dynamics can be used to infer when beneficial mutations occur and their 371 
effects on fitness. However, because barcode diversity is lost as the population evolves, these methods 372 
are currently limited to studying short timescales.  373 
 374 
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