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Abstract—Dictionary learning is a popular approach for
inferring a hidden basis in which data has a sparse repre-
sentation. There is a hidden dictionary or basis A which is
an n X m matrix, with m > n typically (this is called the
over-complete setting). Data generated from the dictionary is
given by Y = AX where X is a matrix whose columns have
supports chosen from a distribution over k-sparse vectors,
and the non-zero values chosen from a symmetric distribution.
Given Y, the goal is to recover A and X in polynomial time (in
m, n). Existing algorithms give polynomial time guarantees for
recovering incoherent dictionaries, under strong distributional
assumptions both on the supports of the columns of X, and
on the values of the non-zero entries. In this work, we study
the following question: can we design efficient algorithms for
recovering dictionaries when the supports of the columns of X
are arbitrary?

To address this question while circumventing the issue of
non-identifiability, we study a natural semirandom model for
dictionary learning. In this model, there are a large number
of samples y Ax with arbitrary k-sparse supports for
z, along with a few samples where the sparse supports
are chosen uniformly at random. While the presence of a
few samples with random supports ensures identifiability, the
support distribution can look almost arbitrary in aggregate.
Hence, existing algorithmic techniques seem to break down as
they make strong assumptions on the supports.

Our main contribution is a new polynomial time algorithm
for learning incoherent over-complete dictionaries that pro-
vably works under the semirandom model. Additionally the
same algorithm provides polynomial time guarantees in new
parameter regimes when the supports are fully random. Finally,
as a by product of our techniques, we also identify a minimal
set of conditions on the supports under which the dictionary
can be (information theoretically) recovered from polynomially
many samples for almost linear sparsity, i.e., k = O(n).

Keywords-beyond worst-case analysis; semi-random models;
dictionary learning

I. INTRODUCTION

In many machine learning applications, the first step
towards understanding the structure of naturally occurring
data such as images and speech signals is to find an
appropriate basis in which the data is sparse. Such sparse
representations lead to statistical efficiency and can often
uncover semantic features associated with the data. For
example images are often represented using the SIFT basis [1].
Instead of designing an appropriate basis by hand, the goal
of dictionary learning is to algorithmically learn from data,
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the basis (also known as the dictionary) along with the
data’s sparse representation in the dictionary. This problem
of dictionary learning or sparse coding was first formalized
in the seminal work of Olshausen and Field [2], and has
now become an integral approach in unsupervised learning
for feature extraction and data modeling.

The dictionary learning problem is to learn the unknown
dictionary A € R™*™ and recover the sparse representation
X given data Y that is generated as follows. The typical
setting is the “over-complete” setting when m > n. Each
column A; of A is a vector in R™ and is part of the over-
complete basis. Data is then generated by taking random
sparse linear combinations of the columns of A. Hence
the data matrix ¥ € R™*N g generated as Y = AX,
where X € R™*N captures the representation of each of
the N data points'. Each column of X is a vector drawn
from a distribution D*) © D), Here D*) is a distribution
over k sparse vectors in {0, 1} and represents the support
distribution. Conditioning on support of the column z, each
non-zero value is drawn independently from D), which
represents the value distribution.

The goal of recovering (A4, X) from Y is particularly
challenging in the over-complete setting — notice that even if
A is given, finding the matrix X with sparse supports such
that Y = AX is the sparse recovery or compressed sensing
problem which is NP-hard in general [3]. A beautiful line of
work [4], [5], [6], [7] gives polynomial time recovery of X
(given A) under certain assumptions about A like Restricted
Isometry Property (RIP) and incoherence. See Section II for
formal definitions.

While there have been several heuristics and algorithms
proposed for dictionary learning, the first rigorous polynomial
time guarantees were given by Spielman et al. [8] who focu-
sed on the full rank case, i.e., m = n. They assumed that the
support distribution D(®) is uniformly random (each entry is
non-zero independently with probability p = k/m = 1//m)
and the value distribution D(*) is a symmetric sub-Gaussian
distribution, and this has subsequently been improved by [9]
to handle almost linear sparsity. The first algorithmic gua-

In general there can also be noise in the model where each column of
Y is given by y = Az + 1 where 1 is a noise vector of small norm. In
this paper we focus on the noiseless case, though our algorithms are also
robust to inverse polynomial error in each sample.
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rantees for learning over-complete dictionaries (m can be
larger than n) from polynomially many (in m,n) samples,
and in polynomial time were independently given by Arora
et al. [10] and Agarwal et al. [11].In particular, the work
of [12] and its follow up work [12] provide guarantees for
sparsity up to n'/2/logm, and also assumes slightly weaker
assumptions on the support distribution D(*), requiring it
to be approximately O(1)-wise independent. The works of
[13] and [14] gives Sum of Squares (SoS) based quasi-
polynomial time algorithms (and polynomial time guarantees
in some settings) to handle almost linear sparsity under
similar distributional assumptions. See Section I-C for a
more detailed discussion and comparison of these works.

While these algorithms give polynomial time guarantees
even in over-complete settings, they crucially rely on strong
distributional assumptions on both the support distribution
D) and the value distribution D). Curiously, it is not
known whether these strong assumptions are necessary to
recover A, X from polynomially many samples, even from
an information theoretic point of view. This motivates the
following question that we study in this work:

Can we design efficient algorithms for learning over-complete
dictionaries when the support distribution is essentially
arbitrary?

As one might guess, the above question as stated, is ill
posed since recovering the dictionary is impossible if there
is a column that is involved in very few samples?. In fact
we do not have a good understanding of when there is a
unique (A, X) pair that explains the data (this is related
to the question of identifiability of the model). However,
consider the following thought-experiment: suppose we have
an instance with a large number of samples, each of the
form y = Ax with x being an arbitrary sparse vector. In
addition, suppose we have a few samples (/Ny of them) that
are drawn from the standard dictionary learning model where
the supports are random. The mere presence of the samples
with random supports will ensure that there is a unique
dictionary A that is consistent with all the samples (as long
as No = (n?) for example). On the other hand, since most
of the samples have arbitrary sparse supports, the aggregate
distribution looks fairly arbitrary?. This motivates a natural
semirandom model towards understanding dictionary learning
when the sparse supports are arbitrary.

The semirandom model: In this model we have N sam-
ples of the form y = Ax with most of them having arbitrary
k-sparse supports for z, and a few samples (INy of them) that
are drawn from the random model for dictionary learning.
We will use D) to represent the arbitrary distribution over k-
sparse supports and DS) to represent the random distribution
over k-sparse supports (as considered in prior works) and

2See the full version for a more interesting example.
3since we do not know which of the samples are drawn with random
support.
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) ©D® (it will be instructive to think of /3 as very small
e.g., an inverse polynomial in n,m). N samples from the
semirandom model M B(Dg), 5(3),7)(”)) are generated as
follows.

1) The supports of Ny = SN samples (1), ... (No) are
generated from the random distribution Dg) over k-
sparse {0,1}"™ 4

a Parameter B to represent the fraction of samples from
,D S
R

vectors *.
The adversary chooses the k-sparse supports of N1 =
(1 — B)N samples arbitrarily (or equivalently from an
arbitrary distribution D(%)). Note that the adversary can
also see the supports of the Ny “random” samples.
The values of each of the non-zeros in X
{2® . ¢ € [N]} are picked independently from the
value distribution D) e.g., a Rademacher distribution
(£1 with equal probability).

The x(l),...,x(N ) are reordered randomly to form
matrix X € R™*Y and the data matrix ¥ = AX.
Y is the instance of the dictionary learning problem.

2)

3)

4)

The samples that are generated in step 1 will be referred to
as the random portion (or random samples), and the samples
generated in step 2 will be referred to adversarial samples.
As mentioned earlier, the presence of just the random
portion ensures that the model is identifiable (assuming
BN = nfM) from known results, and there is unique
solution A. The additional samples that are added in step
2 represent more k-sparse combinations of the columns
of A — hence, intuitively the adversary is only helpful by
presenting more information about A (such adversaries are
often called monotone adversaries). On the other hand, the
fraction of random samples [ can be very small (think of
B = O(1/poly(n))) — hence the adversarial portion of the
data can completely overwhelm the random portion. Further,
the support distribution D) chosen by the adversary (or
the supports of the adversarial samples) could have arbitrary
correlations and also depend on the the support patterns
in the random portion. Hence, the support distribution can
look very adversarial, and this is challenging for existing
algorithmic techniques, which seem to break down in this
setting (see Sections I-C and I-B).

Semirandom models starting with works of [15], [16]
have been a very fruitful paradigm for interpolating between
average-case analysis and worst-case analysis. Further, we be-
lieve that studying such semirandom models for unsupervised
learning problems will be very effective in identifying robust
algorithms that do not use strong distributional properties
of the instance. For instance, algorithms based on convex
relaxations for related problems like compressed sensing [6]
and matrix completion [17] are robust in the presence of
a similar monotone adversary where there are additional

4More generally, Dg) can be any distribution that is 7-negatively
correlated — here VS s.t. |S| = O(logm),i ¢ S, the probability
Pli € supp(z) | S C supp(z)] < 7k/m, and P[i € supp(z)] = k/m.



arbitrary observations in addition to the random observations.

A. Our Results

We present a new polynomial time algorithm for dictionary
learning that works in the semirandom model and obtain new
identifiability results under minimal assumptions about the
sparse supports of X. We give an overview of our results
for the simplest case, when the value distribution D) g
a Rademacher distribution i.e., each non-zero value x; is
either { +1, —1 } with equal probability. These results also
extend to a more general setting where the value distribution
D) can be a mean-zero symmetric distribution supported
in [-C,—1]U[1,C] for a constant C' > 1 — this is called
Spike-and-Slab model [18] and has been considered in past
works on sparse coding [10]. As with existing results
on recovering dictionaries in the over-complete setting, we
need to assume that the matrix satisfies some incoherence
or Restricted Isometry Property (RIP) conditions (these are
standard assumptions even in the sparse recovery problem
when A is given). A matrix A is (k, d)-RIP iff (1—0)||z||2 <
|Az|l2 < (14-6)||x||2 for all k-sparse vectors, and a matrix is
p-incoherent iff [(A;, A;)| < p/+/n for every two columns
i # j € [m]. Random n x m matrices satisfy the (k,d)-
RIP property as long as k = O(dn/log(5)) [19], and are
i = O(y/log m) incoherent. Please see Section II for the
formal model and assumptions.

Our main result is a polynomial time algorithm for learning
over-complete dictionaries when we are given samples from
the semirandom model proposed above.

Informal Theorem 1.1 (Polytime algorithm for semirandom
model). Consider a dictionary A € R"™ ™ that is p-
incoherent with spectral norm o. There is a polynomial time
algorithm that given poly(n, m,k,1/83) samples generated
from the semirandom model (with ( fraction random samples)
with sparsity k < /n/(u°D (am/n)°Wpolylogm), reco-
vers with high probability the dictionary A up to arbitrary
(inverse-polynomial) accuracy (up to relabeling the columns,
and scaling by +1)°.

Please see Theorem V.1 for a formal statement. The above
algorithm recovers the dictionary up to arbitrary accuracy in
the semirandom model for sparsity & = O(n'/?) — as we will
see soon, this is comparable to the state-of-the-art polynomial
time guarantees even when there are no adversarial samples.
By using standard results from sparse recovery [6], [7], one
can then use our knowledge of A to recover X. We emphasize
in the above bounds that the sparsity assumption and recovery
error do not have any dependence on 3 the fraction of samples
generated from the random portion. The dependence on 1/8

SWe will recover a dictionary A such that ||4; — b; A;]|2 < no for
some b € { —1,1}", where ng is the desired inverse-polynomial accuracy.
While we state our guarantees for the noiseless case of Y = AX, our
algorithms are robust to inverse polynomial additive noise.
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in the sample complexity simply ensures that there are a few
samples from the random portion in the generated data.

When there are no additional samples from the adversary
ie, 8 =1, our algorithm in fact handles a significantly
larger sparsity of k = O(m?/3)

Informal Theorem L2 (Beyond /n with no adversarial
supports (3 = 1)). Consider a dictionary A € R™ "™ that is
u-incoherent and (k, 1/polylogm)-RIP with spectral norm o.
There is a polynomial time algorithm that given poly(n,m, k)
samples generated from the “random” model with sparsity
k < n?3/(uCM (om/n)°Dpolylogm), recovers with high
probability the dictionary A up to arbitrary accuracy.

Please see Theorem VI.1 for a formal statement. For the
sake of comparison, congvider the case when the amount
of over-completeness is O(1) or even n® for some small
constant € > 0 i.e.,, m/n,o < nt.% The results of Azora et
al. [10], [12] recover the dictionaries for sparsity k& = O(y/n),
when there are no adversarial samples. On the other hand,
sophisticated algorithms based on Sum-of-Squares (SoS)
relaxations [13], [14] give quasi-polynomial time guarantees
in general (and polynomial time guarantees when o = O(1))
for sparsity going up to k& = O(m/polylogm) when there
are no adversarial samples. Hence, our algorithm gives
polynomial time guarantees in new settings when sparsity
k = w(y/n) even in the absence of any adversarial samples
(Theorem 1.2), and at the same time gives polynomial time
guarantees for k = O(y/n) in the semirandom model even
when the supports are almost arbitrary. Please see Section I-C
for a more detailed comparison.

A key component of our algorithm that is crucial in
handling the semirandom model is a new efficient procedure
that allows us to test whether a given unit vector is close to
a column of the dictionary A. In fact this procedure works
up to sparsity k = O(n/polylog(m)).

Informal Theorem L.3 (Test Candidate Column). Given any
unit vector z € R", there is a polynomial time algorithm
(Algorithm 1) that uses poly(m,n,k,1/ng) samples from
the semirandom model with the sparsity k < n/polylog(m)
and the dictionary A satisfying (k,0 = 1/polylog(m))-RIP
property, that with probability at least 1 — exp(—n?):
o (Completeness) Accepts z if 3i € [m], be {£1} s.t.
llz — bA;||2 < 1/polylog(m).
o (Soundness) Rejects z if ||z — bA;||2 > 1/poly log(m)
for everyie€m], be {£1}.
Moreover in the first case, the algorithm also returns a vector
z s.t. ||z — bA;ll2 < no, where 1o represents the desired
inverse polynomial accuracy.

6The parameter ¢ is an analytic measure of over-completeness; for any
dictionary A of size n X m, o > y/m/n. Conversely, one can also upper
bound o in terms of m/n under RIP-style assumptions. When the columns
of A are random, then o = O(y/m/n); otherwise, c = O(y/m/k) when
Ais (k,O(1))-RIP.



Please see Theorem III.1 for a formal statement’. Our test
is very simple and proceeds by computing inner products
of the candidate vector z with samples and looking at the
histogram of the values. Nonetheless, this provides a very
powerful subroutine to discard vectors that are not close to
any column. The full algorithm then proceeds by efficiently
finding a set of candidate vectors (by simply considering
appropriately weighted averages of all the samples), and
running the testing procedure on each of these candidates.
The analysis of the candidate-producing algorithm requires
several ideas such as proving new concentration bounds for
polynomials of rarely occurring random variables, which we
describe in Section I-B.

In fact, the above test procedure works under more general
conditions about the support distribution. This immediately
implies polynomial identifiability for near-linear sparsity k =
O(n/polylogm), by simply applying the procedure to every
unit vector in an appropriately chose e-net of the unit sphere.

Informal Theorem 1.4 (Polynomial Identifiability for Ra-
demacher Value Distribution). Consider a dictionary A €
R™ ™ that is (k,0 = 1/polylog(m))-RIP property for
sparsity 'k < n/polylog(m) and suppose we are given
N = poly(n,m,k,1/3) samples with arbitrary k-sparse
supports that satisfies the following condition:

Vi1, 12,13 € [m], there at least a few samples (at least
1/poly(n) fraction) y = Ax such that i1,1i2,13 € supp(z).

Then, there is a algorithm (potentially exponential runtime)
that recovers with high probability a dictionary A such that
| A; — b; As|2 < 1/poly(m) for some b e {—1,1}™ (up to
relabeling the columns).

Please see Corollary IV.2 for a formal statement, and
Corollary III.3 for related polynomial identifiability results
under more general value distributions.

The above theorem proves polynomial identifiability for
arbitrary set of supports as long as every triple of columns
11,19, 13 co-occur i.e., there are at least a few samples where
they jointly occur (this would certainly be true if the support
distribution has approximate three-wise independence). On
the other hand in the full version of the paper, we complement
this by proving a non-identifiability result using an instance
that does not satisfy the “triples” condition, but where
every pair of columns co-occur. Hence, Corollary IV.2
gives polynomial identifiability under arguably minimal
assumptions on the supports. To the best of our knowledge,
prior identifiability results were only known through the
algorithmic results mentioned above, or using n°*) many
samples. Hence, while designed with the semirandom model
in mind, our test procedure also allows us to shed new
light on the information-theoretic problem of polynomial
identifiability with adversarial supports.

"The above procedure is also noise tolerant — it is robust to adversarial
noise of 1/polylog(n) in each sample.
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Developing polynomial time algorithms that handle a
sparsity of k& = O(n) under the above conditions (e.g.,
Theorem 1.4) that guarantee polynomial identifiability, or
in the semirandom model, are interesting open questions.

B. Technical Overview

We now give an overview of the technical ideas involved
in proving our algorithmic and identifiability results. Some
of these ideas are also crucial in handling sparsity of k =
w(y/n) in the random model. Further, as we will see in
the discussion that follows, the algorithm will make use
of samples from both the random portion and the semi-
random portion for recovering the columns. For the sake of
exposition, let us restrict our attention to the value distribution
being Rademacher i.e., each non-zero z; is either +1 or —1
independently with equal probability.

Challenges with semirandom model for existing ap-
proaches: We first describe the challenges and issues that
come in the semirandom model, and more generally when
dealing with arbitrary support distributions. Many algorithms
for learning over-complete dictionaries typically proceed by
computing aggregate statistics of the samples e.g., appropriate
moments of the samples y = Ax (where x ~ D), and then
extracting individual columns of the dictionary — either using
spectral approaches [12] or using tensor decompositions [13],
[14]. However, in the semirandom model, the adversary
can generate many more samples with adversarial supports,
and dominate the number of random samples (it can be
poly(n) factor larger) — this can completely overwhelm the
contribution of the random samples to the aggregate statistic .
In fact, the supports of these adversarial samples can depend
on the random samples as well.

To further illustrate the above point, let us consider the
algorithm of Arora et al. [12]. They guess two fixed samples
u® = ACM 4@ = AC? and consider the statistic

= (1) (2)
B= y:]EAz {<y7u ><y’u >y ® y}
= E[Z] (E_ [#1]44:, ¢V)(4i,¢) - 4; @ At
i€lm
+ ; E [a?)((Ai, CONAs (D) A @ Aur + ..

6]

To recover the columns of A there are two main argu-
ments involved. For the correct guess of u("), u(®) with
supp(¢™M)), supp(¢(?)) containing exactly one co-ordinate
in common e.g., ¢ = 1, they show that one gets B =
@1 A1 AT + E where ||E|| = o(q1). In this way A; can be
recovered up to reasonable accuracy (akin to completeness).
To argue that ||E|| = o(q1), one can use the randomness in
the support distribution to get that E[zZ2%] = O(k?/m?)
is significantly smaller (by a factor of approximately k/m)
compared to E[z%] ~ k/m. On the other hand, one also
needs to argue that for the wrong guess of u(!),u(?), the



resulting matrix B is not close to rank 1 (soundness). The
argument here, again relies crucially on the randomness in
the support distribution.

In the semirandom model, both completeness and sound-
ness arguments are affected by the power of the adversary.
For instance, if the adversary generates samples such that
a subset of co-ordinates T C [m] co-occur most of the
time, then for every i,4i’ € T, E[z?2?%] = Q(E[2?]). Hence,
completeness becomes harder to argue since the cross-terms
in (1) can be much larger (particularly for k& = Q(m'/8)).
The more critical issue is with soundness, since it is very
hard to control and argue about the matrices B that are
produced by incorrect guesses of u("), u(?) (note that they
can also be from the portion with adversarial support). For
the above strategy in particular, there are adversarial supports
and choices of samples such that B is close to rank 1 but
whose principal component is not aligned along any of the
columns of A (e.g., it could be along }°. - A;). We now
discuss how we overcome these challenges in the semirandom
model.

Testing for a Single Column of the Dictionary: A key
component of our algorithm is a new efficient procedure,
which when given a candidate unit vector z tests whether 2
is indeed close to one of the columns of A (up to signs) or is
far from every column of the dictionary i.e., ||z —bA;|l2 > n
for every i € [m],b € {—1,1} ( can be chosen to be
1/polylog(n) and the accuracy can be amplified later). Such
a procedure can be used as a sub-routine with any algorithm
in the semirandom model since it addresses the challenge
of ensuring soundness. We can feed a candidate set of test
vectors generated by the algorithm and discard the spurious
ones.

The test procedure (Algorithm 1) is based on the following
observation: if z = bA; for some column i € [m] and
b € {£1}, then the distribution of |(z, Ax)| will be bimodal,
depending on whether x; is non-zero or not. This is because

[(bA;, Az)| = |ai| £ | Y (Ai, Aj)as| = |wi| £0(1)  whp.,
J#i

when A satisfies the RIP property (or incoherence). Hence
Algorithm TESTCOLUMN (Algorithm 1) just computes the
inner products |(z, Az)| with polynomially many samples
(it could be from the random or adversarial portion), and
checks if they are always close to 0 or 1, with a non-negligible
fraction of them (roughly k/m fraction, if each of the ¢ occur
equally often) taking a value close to 1.

The challenge in proving the correctness of this test is the
soundness analysis: if unit vector z is far from any column
of A;, then we want to show that the test fails with high
probability. Consider a candidate z that passes the test, and
let av; := (z, A;). Suppose |o;| = o(1) for each i € [m] (so
it is far from every column). For a sample y = Az with
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supp(z) = S,

(2, Azx) = Zm&z, A;) = Zaixi.

i€S i€S

2)

The quantity (z, Az) is a weighted sum of symmetric,
independent random variables x;, and the variance of (z, Az)
equals [lag|3 = > ;cq@f. When |lag|2 = Q(1), Central
Limit Theorems like the Berry-Esséen theorem tells us that
the distribution of the values of (z, Az) is close to a Normal
distribution with (1) variance. In this case, we can use
anti-concentration of a Gaussian to prove that |(z, Ax)| takes
a value bounded away from 0 or 1 (e.g., in the interval
[i, %]) with constant probability. However, the variance
as]l3 = >;cq @? can be much smaller than 1 (for a random
unit vector z, we expect |las||3 = O(k/n)). In general, we
have very little control over the avg vector since the candidate
z is arbitrary. For an arbitrary spurious vector z, we need to
argue that either |(z, Az)| (almost) never takes large values
close to 1, or takes values bounded away from 0 and 1 (e.g.,
in [0.1,0.9]) for a non-negligible fraction of the samples.

The correctness of our test relies crucially on such an anti-
concentration statement (see the full version of the paper),
which may be of independent interest. Roughly speaking, we
prove using a careful coupling argument that when random
variable Z is a weighted sum of independent random variables
as in (2), if | Z| takes values close to ¢ with non-negligible
probability x, then |Z| also takes values in [t/6,¢/2] with
probability at least 2(x) (the constants e.g., 1/6 can be
picked more generally).

The above test works for k = O(n/poly log(m)), only
uses the randomness in the non-zero values, and works
as long as the co-efficients || are all small compared to
t =1i.e., |Jas|e < ct.® The full proof of the test uses a
case analysis depending on whether there are some large
co-efficients, and uses such a large coefficient in certain
“nice” samples that exist under mild assumptions (e.g., in a
semirandom model), along with the aforementioned lemma to
prove that a unit vector z that is far from every column fails
the test with high probability (the failure probability can be
made to be exp(—n?)). Given the test procedure, to recover
the columns of the dictionary, it now suffices (because of
Algorithm 1) to design an algorithm that produces a set of
candidate unit vectors that includes the columns of A.

Identifiability: The test procedure immediately implies
polynomial identifiability (i.e., with polynomially many
samples) for settings where the test procedure works, by
simply running the test procedure on every unit vector in an
e-net of the unit sphere. When the value distribution D) is a

8There are certain configurations where | ;| are large, for which the above
anti-concentration statement is not true. For example when oy = aig = 1/2
and O for rest of ¢ € .S, then any 1 combination of vy, g isin { —1,0,1 }.
In fact, the non-identifiable instances have bad candidates z which precisely
result in such combinations. However, we prove that this is essentially the
only bad situation for this test.



Rademacher distribution, we prove that just a condition on the
co-occurrence of every triple suffices to construct such a test
procedure. This implies the polynomial identifiability results
of Theorem 1.4 for sparsity up to k = O(n/polylogn). For
more general value distributions defined in Section II, it just
needs to hold that that there are a few samples where a given
column ¢ appears, but a few other O(logn) given columns do
not appear (e.g., for example when a subset of samples satisfy
very weak pairwise independence). This condition suffices
for Algorithm 1 to work for sparsity k¥ = O(n/polylogn)—
and implies the identifiability results in Corollary IIL.3.

Efficiently Producing Candidate Vectors: Our algo-
rithm for producing candidate vectors is inspired by the
initialization algorithm of [12]. We guess 2L — 1 samples
M = ACW u® = Ac® LD = AR
for some appropriate constant L, and simply consider the
weighted average of all samples given by

=E [{y, ACD)(y, AC@) .. (y, ACEL=D) y}

and consider the unit vector along v. Let us consider a
“correct” guess of (), ... ¢2L=1) where all of them are
from the random portion, and their supports all contain a fixed
co-ordinate (say coordinate 1); note that values of the non-
zero entries of (V... ¢(2L=1 are still random. We show
that with at least a constant probability (over the choice of the
non-zero entries of ((1), ... ¢(2L=1) the vector v = ¢1 A1 +
0 where ||0]|2 = 0(gmax/logm). Here ¢; is the fraction of
samples = with ¢ in its support and ¢,.x = max; ¢;. Hence,
by running over all possible (" ) tuples we can hope to
produce candidate vectors that are good approximations to
frequently appearing columns of A. Notice that any spurious
vectors that we produce will be automatically discarded by
our test procedure. While the above algorithm is simple,
its analysis requires several new technical ideas including
improved concentration bounds for polynomials of rarely
occurring random variables. To see this, we note that vector
v can be written as v = Zie[m] ~v;A; where for each i €

[m]v% =
Z Z e ]2;[ 1)

JE[m]2L=1 I€[m]2L—1

(f)

xi2L—1:| g, ]1’

T

Here M denote the matrix AT A.

We will prove that a constant probability over the random-
ness in ¢V, ... ¢GL-1), i1 YiAill2 = 0(qmax/ log m).
Notice that since the value distribution is symmetric with
mean zero, E, [xixil ...l’,’ZLfl:L'i] is zero unless each of
the indices in [m] appears an even number of times in
i1,%2,...12r—1. Hence each v; can be further written as
the sum of LX) many polynomials over (1), ... (=1,
where each polynomial corresponds to a valid partition of the
indices 71,12, ...1427,_1. We will prove that ”27;;61 iAo is
small by showing concentration bounds for the polynomials
corresponding to these terms in ~y;, along with a union bound
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over the mLO(") terms. Furthermore these terms are multili-
near polynomials of random variables ¢(V), ..., (L1 that
are rarely occurring mean-zero random variables i.e., they
are non-zero with probability roughly p = k/m.

Concentration bounds for multilinear degree-d polynomials
of O(1) hypercontractive random variables are known, giving
bounds of the form P[g(x) > t||g||2] < exp(—ct?/4) [20].
More recently, sharper bounds (analogous to the Hanson-
Wright inequality for quadratic forms [21]) that do not
necessarily incur a d factor in the exponent and get bounds
of the form exp(—$2(#?)) have also been obtained by
Latala, Adamczak and Wolff [22], [23] for sub-gaussian
random variables and more generally, random variables of
bounded Orlicz 12 norm. However, these seem to give sub-
optimal bounds for rarely occurring random variables, as we
demonstrate below. On the other hand, bounds that apply
in the rarely occurring regime [24], [25] typically apply
to polynomials of non-negative random variables with non-
negative coefficients, and do not seem directly applicable in
our settings.

There are several different terms that arise in these
calculations; we give an example of one such term to motivate
the need for better concentration bounds in this setting with
rarely occurring random variables. One of the terms that
arises in the expansion of ~; is

1 2
= Y By

Ji,J2€[m]

=2 2

i€[m] j1,j2€[m]\ {7}

Ml]lMZh C

Using the fact that the columns of A are incoherent, for
this quadratic form we get that | B||r = Q(y/m). We can
then apply Hanson-Wright inequality to this quadratic form,
and conclude that the |Z| < /mpolylog(n) with high
probability®. On the other hand, the ¢ random variables
are non-zero with probability at most p = k/m and are
7 = O(1)-negatively correlated, and hence we get that
Var[Z] < mo*(k/m)? O(k?/m) (and E[Z] 0).
Here o is the spectral norm of A. Hence, in the ideal
case, we can hope to show a much better upper bound
of |Z| < kpolylog(n)/+/m (smaller by a factor of k/m).
Obtaining bounds that take advantage of the small probability
of occurrence seems crucial in handling & = Q(y/m) for the
semirandom case, and k = w(y/m) for the random case.
To tackle this, we derive general concentration inequalities
for multilinear degree-d polynomials of rarely occurring
random variables. Let f be a degree d multilinear polynomial

9The random variables C( ) has its 12 Orlicz-norm bounded by K <
log(1/p) = O(log mg Hanson -Wright inequality shows that P[|Z| > t] <
exp (— cmin {W’ KQHB” }). Using Hypercontractivity for these

distributions also gives slmlld.r bounds up to poly logn factors.



of the form

(d)

FEW, @y = ¢V,

2

(J15e--1da) €E[m]¢

Tj,....ja

where each of the random variables (; are independent,
bounded and non-zero with probability at most p, and for
any I' C [d]. Then we prove that for any n > 0,

B{I£(CM,- .. ¢ = log(2/n)" 5 - p2|T x| <,
3)
where p is a measure of how well-spread out the cor-
responding tensor 1" is: it depends in particular, on the
maximum row norm (||-||2—, operator norm) of different
“flattenings” of the tensor 7" into matrices. This is reminiscent
of how the bounds of Latala [22], [23] depends on the
spectral norm of different “flattenings” of the tensor into
matrices, but they arise for different reasons. We defer to the
full version of the paper for a formal statement and more
background. To the best of our knowledge, we are not aware
of similar concentration bounds for arbitrary multilinear (with
potentially non-negative co-efficients) for rarely occurring
random variables, and we believe these bounds may be of
independent interest in other sparse settings.
The candidate generation algorithm works for sparsity of
k = O(y/n) in the semirandom case, and a better sparsity
of k& = O(n?*/3) in the random case. The analysis for
both the semirandom case and random case proceeds by
carefully analyzing various terms that arise in evaluating
{7 4 € [m]}, and using the new concentration bounds in
the context of each of these terms along with good bounds on
the norms of various tensors and their flattenings that arise
(this uses sparsity of the samples, the incoherence assumption
and the spectral norm bound among other things). We now
describe one of the simpler terms that arise in the random
case, to demonstrate the advantage of considering larger L
i.e., more fixed samples. Consider the expression

2L—1
7 = Z M; jor o j(.u_l) Z E [mfx?l ...achil]
Je[m)?L—1 B0 yeensiL—1
20-1) (20
x H My ooy Miy o J(‘zg,l)cj(‘u)- 4)
Le[L—-1]
In the random case, E[mfxfl .,,foil] ~
]E[xf}E[xfl]IE[ach_l] < (k/m)F, since the support

distribution is essentially random (this also assumes
the value distribution is Rademacher). Further, for the
corresponding tensor 1 of co-efficients, one can show a
bound of |T||p = O(m'E=Y/2). Hence, applying the
new concentration bound we would get an ideal bound
(assuming the imbalance factor p = O(1) ) of roughly
e (k/m)Ey/m" ™ (k/m)E12 = ()T (kfm) 2,
which becomes o(k/(m+/m)) as required for L being a
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sufficiently large constant when k = o(m?3/4=¢) 10, On
the other hand, with higher values of L there are some
lower-order terms that start becoming larger comparatively,
for which the new concentration bounds for polynomials
of rarely occurring random variables becomes critical.
Balancing out these terms allows us to handle a sparsity of
k = O(n?/3) for the random case.

The semirandom model presents several additional dif-
ficulties as compared to the random model. Firstly, as
most of the data is generated with arbitrary supports, we
cannot assume that the z variables are 7 = O(1)-negatively
correlated. As a result, the term E[z727 ...x7 | does not
factorize as the adversary can make the joint probability
distribution of the non-zeros very correlated. Hence, to
bound various expressions that appear in the expansion of
~:» we need to use inductive arguments to upper bound
the magnitude of each inner sum and eliminating the
corresponding running index (this needs to be done carefully
since these quantities can be negative). We bound each inner
sum using the new concentration bounds for polynomials of
rarely occurring random variables repeatedly along with the
inequality 3, cp, Elza?, .. 27| < kE[zfaf .. a3, ],
and some elegant linear algebraic facts.

Finally, the above procedure can be used to recover all
the columns A; of the dictionary whose corresponding
occurrence probabilities ¢; = E[x?] are close to the largest
ie., ¢; = Q(max;¢py,) ¢j). To recover all the other columns,
we use a linear program and subsample the data (just based
on columns recovered so far), so that one of the undiscovered
columns has largest occurrence probability. We defer to the
details in the full version of the paper.

C. Related Work

Polynomial Time Algorithms: Spielman et al. [8] were
the first to provide a polynomial time algorithm with rigorous
guarantees for dictionary learning. They handled the full rank
case, i.e, m = n, and assumed the following distributional
assumptions about X: each entry is chosen to be non-
zero independently with probability k/m = O(1)/+/n (the
support distribution D) is essentially uniformly random)
and conditioned on the support, each non-zero value is set
independently at random from a sub-Gaussian distribution
e.g., Rademacher distribution (the value distribution D(”)).
Their algorithm uses the insight that w.h.p. in this model,
the sparsest vectors in the row space of Y correspond to the
rows of X, and solve a sequence of LPs to recover X and A.
Subsequent works [26], [27], [9] have focused on improving
the sample complexity and sparsity assumptions in the full-
rank setting. However in the presence of the semirandom
adversary, the sparsest vectors in the row space of Y may

10The bound that we actually get in this case is off by a ¢ =
vmpoly logn factor since p = w(1), but this also becomes small for
large L.



not contain rows of X and hence the algorithmic technique
of [8] breaks down.

For the case of over-complete dictionaries the works
of Arora et al. [10] and Agarwal et al. [11] provided
polynomial time algorithms when the dictionary A is pu-
incoherent. In particular, the result of [10] also holds
under a weaker assumption that the support distribution
D) is approximately ¢/ = O(1)-wise independent i.e.,
P, pe[i1,d2,...,3¢ € supp(x)] < 7¢(k/m)’ for some
constant 7 > 0. Under this assumption they can handle
sparsity up to O(min(y/n, m*/2=¢)) for any constant & > 0
with £ = O(1/¢). Their algorithm computes a graph G over
the samples in Y by connecting any two samples that have a
high dot product — these correspond to pairs of samples whose
supports have at least one column in common. Recovering
columns of A then boils down to identifying communities in
this graph with each community identifying a column of A.
Subsequent works have focused on extending this approach
to handle mildly weaker or incomparable assumptions on the
dictionary A or the distribution of X [28], [12]. For example,
the algorithm of [12] only assumes O(1)-wise independence
on the non-zero values of a column z. The state of the art
results along these lines can handle & = O(+/n) sparsity for
= O(1)-incoherent dictionaries. Again, we observe that in
the presence of the semirandom adversary, the community
structure present in the graph G could become very noisy
and one might not be able to extract good approximations
to the columns of A, or worse still, find spurious columns.

The work of Barak at al. [13] reduce the problem of
recovering the columns of A to a (noisy) tensor decomposi-
tion problem, which they solve using Sum-of-Squares (SoS)
relaxations. Under assumptions that are similar to that
of [10] (assuming approximate O(1)-wise independence),
these algorithms based on SoS relaxations [13], [14] handle
almost linear sparsity & = O(n) and recover incoherent
dictionaries with quasi-polynomial time guarantees in general,
and polynomial time guarantees when o = O(1) (this is
obtained by combining Theorem 1.5 in [14] with [13]).
The recent work of Kothari et al. [29] also extended
these algorithms based on tensor decompositions using SoS,
to a setting when a small fraction of the data can be
adversarially corrupted or arbitrary. This is comparable to
the setting in the semirandom model when g = 1 — ¢ (for
a sufficiently small constant ¢), but the non-zero values
for these samples can also be arbitrary. However in the
semirandom model, the reduction from dictionary learning to
tensor decompositions breaks down because the supports can
have arbitrary correlations in aggregate, particularly when [ is
small. Hence these algorithms do not work in the semirandom
model.

Moreover, even in the absence of any adversarial samples,
Theorem 1.2 and the current state-of-the-art guarantees [14],
[12] are incomparable, and are each optimal in their own
setting. For instance, consider the setting when the over-
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completeness m/n,oc = O(n) for some small constant
€ > 0. In this case, Arora et al. [12] can handle a sparsity
of O(y/n) in polynomial time and Ma et al. [14] handle
O(n) sparsity in quasi-polynomial time, while Theorem 1.2
handles a sparsity of O(n?/3) in polynomial time. On the
other hand, [12] has a better dependence on o, while [14]
can handle O(n) sparsity when ¢ = O(1). Further, both
of these prior works do not need full independence of the
value distribution D(*) and the SoS-based approaches work
even under mild incoherence assumptions to give some weak
recovery guarantees'' However, we recall that in addition our
algorithm works in the semirandom model (almost arbitrary
support patterns) up to sparsity O(y/n), and this seems
challenging for existing algorithms.

Heuristics and Associated Guarantees: Many iterative
heuristics like £-SVD, method of optimal direction (MOD),
and alternate minimization have been designed for dictionary
learning, and recently there has also been interest in giving
provable guarantees for these heuristics. Arora et al. [10] and
Agarwal et al. [30] gave provable guarantees for £-SVD and
alternate minimization assuming initialization with a close
enough dictionary. Arora et al. [12] provided guarantees for
a heuristic that at each step computes the current guess of X
by solving sparse recovery, and then takes a gradient step of
the objective ||Y — AX||? to update the current guess of A.
They initialize the algorithm using a procedure that finds the
principal component of the matrix E[(u™,y)(u® ) yyT)
for appropriately chosen samples u(!), 4(?) from the data set.
A crucial component of our algorithm in the semirandom
model is a procedure to generate candidate vectors for the
columns of A and is inspired by the initialization procedure
of [12].

Identifiability Results: As with many statistical models,
most identifiability results for dictionary learning follow
from efficient algorithms. As a result identifiability results
that follow from the results discussed above rely on strong
distributional assumptions. On the other hand results esta-
blishing identifiability under deterministic conditions [31],
[32] require exponential sample complexity as they require
that every possible support pattern be seen at least once
in the sample, and hence require O(m*) samples. To the
best of our knowledge, our results (Theorem 1.4) lead to the
first identifiability results with polynomial sample complexity
without strong distributional assumptions on the supports.

Other Related Work: A problem which has a similar
flavor to dictionary learning is Independent Component
Analysis (ICA), which has been a rich history in signal
processing and computer science [33], [34], [35]. Here, we
are given ¥ = AX where each entry of the matrix X is
independent, and there are polynomial time algorithms both
in the under-complete [34] and over-complete case [36], [35]

However, to recover A and X to high accuracy, incoherence and RIP
assumptions of the kind assumed in our work and [12] seem necessary.



that recover A provided each entry of X is non-Gaussian.
However, these algorithms do not apply in our setting, since
the entries in each column of X are not independent (the
supports can be almost arbitrarily correlated because of the
adversarial samples).

Finally, starting with the works of Blum and Spencer [15],
semirandom models have been widely studied for various
optimization and learning problems. Feige and Kilian [16]
considered semi-random models involving monotone adver-
saries for various problems including graph partitioning,
independent set and clique. Semirandom models have also
been studied in the context of unique games [37], graph par-
titioning problems [38], [39] and learning communities [40],
[41], [42], correlation clustering [43], [44], noisy sorting [45],
coloring [46] and clustering [47].

II. PRELIMINARIES

We will use A to denote an n x m over-complete (m > n)
dictionary with columns A;, A, ... A,,. Given a matrix or
a higher order tensor 7', we will uses || T||r to denote the
Frobenius norm of the tensor. For matrices A we will use
||Al|2 to denote the spectral norm of A. We first define the
standard random model for generating data from an over-
complete dictionary.

Informally, a vector y = Ax is generated as a random
linear combination of a few columns of A. We first pick
the support of x according to a support distribution denoted
by D), and then draw the values of each of the non-zero
entries in = independently according to the value distribution
denoted by D). D(*) is a distribution that is over the set
of vectors in {0,1}"™ with at most k ones.

Value Distribution:: As is standard in past works on
sparse coding [10], [12], we will assume that the value
distribution D) is any mean zero symmetric distribution
supported in [—C, —1] U [1,C] for a constant C' > 1. This
is known as the Spike-and-Slab model [18]. For technical
reasons we also assume that D(*) has non-negligible density
in [1,1 + n] for n = 1/(poly logn). Formally we assume
that

Iy € (0,1) s.t. Vnp > loglcn,]P’Dm([l, 14+n]) > 7. )
In the above definition, we will think of vy as just being
non-negligible (e.g., 1/poly(n)). This assumption is only
used in Section III, and the sample complexity will only
involve inverse polynomial dependence on <q. The above
condition captures the fact that the value distribution has
some non-negligible mass close to 1 '2. Further, this is a
benign assumption that is satisfied by many distributions
including the Rademacher distribution that is supported on

12f the value distribution has negligible mass in [1, 1+n]U[—1—n, —1],
one can arguably rescale the value distribution by (1 4 7)) so that all of the
value distribution is essentially supported on [1,C/(1+n)]U [-C/(1 +

ﬁ)a—l]-
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{+1, —1} (with 79 = 1/2), and the uniform distribution over
[-C,—1]U[1,C] (with 9 = 1/(2C)).

Random Support Distribution DS).: Let £ € R™ be
drawn from DS). To ensure that each column appears
reasonably often in the data so that recovery is possible
information theoretically we assume that each coordinate
¢ in £ is non-zero with probability % We do not require
the non-zero coordinates to be picked independently and
there could be correlations provided that they are negatively
correlated up to a slack factor of 7.

Definition II.1. For any 7 > 1, a set of non-negative random
variables Z1, Zs, ..., Z,, where P(Z; # 0) < p is called
T-negatively correlated if for any i € [m] and any S C [m)]
such that 7 ¢ S and |S| = O(logm) we have that for a
constant 7 > 0,

P(Zi #0| () 2; #0) < 7p. (6)
jes
In the random model the variables &1,&o,...,&,, are 7-

negatively correlated with p = % We remark that for our
algorithms we only require the above condition (for the
random portion of the data) to hold for sets S of size up to
O(logm). Of course in the semi-random model described
later, the adversary can add additional data from supports
distributions with arbitrary correlations; hence they are not
T-negatively correlated, and each co-ordinate of = need not
be non-zero with probability at most p = k/m.

Random model for Dictionary Learning.: Let DS) ®
D) denote the distribution over R™ obtained by first picking
a support vector from DS) and then independently picking
a value for each non zero coordinate from D(*). Then we
have that a sample y from the over complete dictionary is
generated as

Y= Z xiAiv

i1€[m]

where (21,2, ..., %) is generated from DS) ©DW), Given
S = {yM 4@ ..y} drawn from the model above, the
goal in standard dictionary learning is to recover the unknown
dictionary A*, up to signs and permutations of columns.

A. Semi-random model

We next describe the semi-random extension of the above
model for sparse coding. In the semi-random model an initial
set of samplesis generated from the standard model described
above. A semi-random adversary can then an arbitrarily
number of additional samples with each sample y = Az
generated by first picking the support of x arbitrarily and
then independently picking values of the non-zeros according
to D). Formally we have the following definition

Definition _ 11.2 (Semi-Random Model:
Mﬁ(DS),D(S),D(”))). A semi-random model for



sparse coding, denoted as Mﬁ(DS)7 5(5), D(”>), is defined
via the following process of producing N samples

1) Given a 7-negatively correlated support distribu-
tion DS), Ny BN “random” support vectors
€W @ o) are generated from D).

2) Given the knowledge of the supports of £(1) ... ¢No),
the semi-random adversary generates (1 — §)N addi-
tional support vectors £(Not+1) ¢(No+2) [ ¢(N) from
an arbitrary distribution D). The choice of D*) can
depend on £, ) ¢(No),

3) Given a value distribution D) that satisfies
the Spike-and-Slab model, the vectors
M @ W) g (NotD) o (N) are form

by picking each non-zero value (as specified by
€W ¢WN) respectively) independently from the
distribution D).

W 2@ (V) are randomly reordered as columns
of an m x N matrix X. Then the output of the model
isY = AX.

4)

We would like to stress that the amount of semi-random
data can overwhelm the initial random set. In other words, (3
need not be a constant and can be a small inverse polynomial
factor. The number of samples needed for our algorithmic
results will have an inverse polynomial dependence on
B. While the above description of the model describes a
distribution from which samples can be drawn, one can
also consider a setting where there a fixed number of
samples N, of which SN = N, samples were drawn with
random supports i.e., from DS). These two descriptions are
essentially equivalent in our context since the distribution
D) is arbitrary. However, since there are multiple steps
in the algorithm, it will be convenient to think of this as a
generative distribution that we can draw samples from (in
the alternate view, we can randomly partition the samples
initially with one portion for each step of the algorithm).

In the next few sections we give the formal statements of
our main results. We defer to the full version of the paper [48]
for proofs and all the details.

III. TESTING PROCEDURE AND IDENTIFIABILITY

In this section we describe and prove the correctness of our
testing procedure that checks if a given unit vector z is close
to any column of the dictionary A. The procedure works as
follows: it takes a value 7 as input and checks if the inner
product |(z, Az)| only takes values in [0, n]U[1—n, C(1+n)]
for most samples =, and if |(z, Az)| € [1 —n,C(1 + )]
for a non-negligible fraction of samples. In other words,
a vector z is rejected only if |(z, Az)| € (21,1 — 27) for
a non-negligible fraction of the samples, or if |(z, Ax)| €
[1—n,C(14n)] for a negligible fraction of samples. For any
n € (0,1), we will often use the notation I,, to denote the
set {teR:|t|e[l—n,C(1+n)]Ul0,n]},ie. the range
of values close to 0 or 1.
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Algorithm TESTCOLUMN(z,Y
N A NN )

1) Let %, be the fraction of samples such that |(z, y(")| €
[1 —n,C(1+n)] and Ko be the fraction of samples such
that |(z,y")]| & [1 - n, C(1+1)] U [0, Cr.

2) If Ky < ko and K1 > ki, return (YES,Z), where
Z =mean({y™ :re[N]st (y,2) >1})andz=
2 /112 |l2-

3) Else return (NO, ).

Figure 1.

We show the following guarantees for Algorithm TEST-
CoLUMN. We will prove the guarantees in a slightly broader
setup so that it can be used both for the identifiability results
and for the algorithmic results. We assume that we are
given N samples { y(") = Az(") . € [N]}, when the value
distribution (distribution of each non-zero co-ordinate of a
given sample (")) is given by D(*) We make the following
mild assumption about the sparsity pattern (support); for
any ¢ and any T C [m]\ {4}, we assume that there are at
least gmin N samples which contain ¢ but do not contain 7'
in the support. Note that for the semi-random model, if 3
fraction of the samples come from the random portion, then
Gmin > %ﬂl{:/m with high probability.

In what follows, it will be useful to think of 7
O(1/polylog(n)),vo = n~*(1), the desired accuracy 7y =
1/poly(n), sparsity k = O(n/polylog(n)), and the desired
failure probability to be v = exp(—n). Hence, in this setting
ko =n~¥D and § = O(1/poly log(n)) as well.

Theorem III.1 (Guarantees for TESTCOLUMN). There exists
constants cgy, c1,Ca, C3, Cq, C5 > 0 (potentially depending on
C') such that the following holds for any v € (0,1),n9 <

n € (0,1) satisfying % <n< — (clﬂm . Set g =
og EE—
GminT0

. oknm log(1/v)

C4Y0Mqmin/ (km). Suppose we are given N > %

samples y V... .y satisfying
o the dictionary A is (k,9)-RIP for § < (W)Q’
o Vi€ [m], T C [m]\{i} with |T| < c3/n? there at
least qmin N samples whose supports all contain 1, but
disjoint from T
R™,

Suppose we are given a unit vector z €
then  TESTCOLUMN(z, {y™ ... 4™} 2k, k1
C5qminYo7, 1) runs in times O(N) time, and we have with
probability at least 1 — y that
« (Completeness) if ||z—bA;|l2 < n' =n/(8Clog(1/ko))
for some i € [m],b € {—1,1}, then Algorithm
TESTVECTOR outputs (YES, 2).
o (Soundness) if unit vector z € R" passes TESTCOLUMN,
then there exists i € [m],b € {—1,1} such that ||z —
bA;|l2 < /8n. Further, in this case ||z — bA;||2 < no.



Remark 11.2. We note that the above algorithm is also robust
to adversarial noise. In particular, if we are given samples
of the form y(™ = Az + (™) where |||y < O(n),
then it is easy to see that the completeness and soundness
guarantees go through since the contribution to (y("), 2) is
at most |(¥("), 2)| <[] = O().

The above theorem immediately implies an identifiability
result for the same model (and hence the semi-random model).
By applying Algorithm TESTCOLUMN to each z in an Q(7)-
net over R” dimensional unit vectors and choosing v =
exp ( — Q(nlog(1/n))) in Theorem IIL1 and performing
a union bound over every candidate vector z in the net,
we get the following identifiability result as long as k <
n/poly log(n).

Corollary IIL.3 (Identifiability for Semi-random Model).
There exists constants cy, c1, Ca, C3, C4, C5,Cs > 0 (potentially
depending on C) such that the following holds for any
k < n/log**m, no € (0,1). Set Ko := coYolog™“ MGmin.

coknmlog®l mlog(1l/ko)

Suppose we are given N > P S samples
50 gmin
y Dy W) satisfying
o the dictionary A is (k,d)-RIP for § < Toa (T /me ) Tog e

o Vi€ [m], T C[m]\{i} with |T| < cqlog®* m, there
at least qumin N samples whose supports all contain 1,
but disjoint from T.

Then there is an algorithm that with probability at least
1—exp(—n) finds the columns A such that ||A;—b; A;||2 < no
for some b e {—1,1}™.

IV. STRONGER IDENTIFIABILITY FOR RADEMACHER
VALUE DISTRIBUTION

In the special case when the value distribution is a Rade-
macher distribution (each x; is +1 or —1 with probability
1/2 each), we can obtain even stronger guarantees for the
testing procedure. We do not need to assume that there are
non-negligible fraction of samples y = Ax where the support
distribution is “random” '3. Here, we just need that for every
triple 41,i2,43 € [m] of columns, they jointly occur in at
least a non-negligible number of samples.

On the other hand, we remark that the triple co-occurrence
condition is arguably the weakest condition under which
identifiability is possible. In the full version we show a non-
identifiability statement even when the value distribution is
a Rademacher distribution. In this example, for every pair of
columns there are many samples where these two columns
co-occur.

Theorem IV.1 (Rademacher Value Distribution). There exists
constants cg, c1, Ca, s, cq > 0 such that the following holds

for any v € (0,1),m0 < n € (0,1) satisfying \/ <=* < n <

B31n particular, we don’t need to assume for any i, 7 C [m] \ {4} of
small size, that we have many samples that contain 4 but not 7'

293

samples y(l), .. ,y(N) satisfying

10g2(671mn). Set ko 1= cango/(km). Suppose we are given
N > Caknmlos(1/7)
- Mo Ko
o the dictionary A is (k,0)-RIP for § < (m)%
o Viy,i9,i3 € [m], there at least qoN samples whose
supports all contain iy,19, i3.
Then there is an algorithm TESTCOL_RAD such that given a
unit vector z € R, TESTCOL_RAD called with parameters
(2, {yW, ..., y™)} 2k0, Ky c5Nqo, 1) runs in times
O(N) time, and we have with probability at least 1 — ~
that
« (Completeness) if |1z — bAill> < 1/ = n/(8log(1/x0))
for some i € [m],b € {—1,1}, then the algorithm
outputs (YES, z').
o (Soundness) if unit vector z € R™ passes the algorithm
then there exists i € [m],b € { —1,1} such that ||z —
bA;|l2 < /8. Further, in this case ||z’ — bA;|l2 < no.

As before, we note that the above algorithm is also robust
to adversarial noise of the order of magnitude O(7) in
every sample. Further, the above theorem again implies
an identifiability result by applying it to each candidate
unit vector z in an €(n)-net over R"™ dimensional unit
vectors and choosing 7y exp ( — Q(nlog(1/n))) for

k < n/polylog(n).

Corollary IV.2 (Identifiability for Rademacher Value Distri-
bution). There exists constants cg,cy,Ca,C3,Cq,C5,C6 > 0
such that the following holds for any k < n/ logZ¢* m,
no € (0,1). Ser ko colog™“* mqo. Suppose we
are given N > coknmng 2qy* log™ mlog(1/ko) samples
y Dy W) satisfying
e the dictionary A is (k,d)-RIP for § < m,
o Viy,ig,is € [m], there at least qoN samples whose
supports all contain i1,12, 3.
Then there is an algorithm that with probability at least
1 — exp(—n) finds the columns A (up to renaming columns)

such that || A; — b A;ll2 < o for some b e {—1,1}™.

The test procedure for checking whether unit vector z
is close to a column is slightly different. In addition to
Algorithm TESTCOLUMN, there is an additional procedure
that is less stringent: it checks if the inner product |(z, Ax)]
only takes values in [0, n]U[1—n, C(1+n)] for most samples
x ~ D, and if |{(z, Az)| € [1 — n,C(1 + n)] for a non-
negligible fraction of samples. In other words, a vector z is
rejected only if |(z, Az)| € (21,1 — 2n) for a non-negligible
fraction of the samples, or if |(z, Az)| € [1 —n, C(1 + n)]
for a negligible fraction of samples.

V. EFFICIENT ALGORITHMS FOR PRODUCING CANDIDATE
COLUMNS

The main theorem of this section is a polynomial time
algorithm for recovering incoherent dictionaries when the
samples come from the semirandom model.



Theorem V.1. Let A be a u-incoherent n x m dictionary
with spectral norm o. There is an algorithm RECOVERDICT
such that for any € > 0, given N = poly(k,m,n,1/e,1/3)
samples from the semi-random model Mﬁ(DE—;), 5(5), D)),
Algorithm RECOVERDICT with probability at least 1 — %
outputs a set W* such that
o For each column A; of A, there exists AZ eW* be
{£1} such that |A; — bA|| <e.
o For each /L— € W*, there exists a column A; of A,
be {+1} such that |A; — bA;|| <e,
provided k < \/n/vi(L,16). Here v1(n,d)
arp?(C(o® + py/™@) logQ(n/n))d, ¢1 > 0 is a constant
(potentially depending on C), and the polynomial bound for
N also hides a dependence on C.

The bound above is the strongest when m = 5(@) and
o = O(1), in which case we get guarantees for k = O(y/n),
where O also hides dependencies on 7, . However, notice
that we can also handle m = O(n'*%0), o = O(n®°), for a
sufficiently small constant €¢ at the expense of smaller spar-
sity requirement — in this case we handle k = O(n!/2-0(=0))
(we do not optimize the polynomial dependence on o in the
above guarantees). The above theorem gives a polynomial
time algorithm that recovers the dictionary (up to any inverse
polynomial accuracy) as long as 3, the fraction of random
samples is inverse polynomial. In particular, the sparsity
assumptions and the recovery error do not depend on 5. In
other words, the algorithm succeeds as long we are given a
few “random” samples (say Ny of them), even where there
is a potentially a much larger polynomial number N > N
of samples with arbitrary supports. We remark that the above
algorithm is also robust to inverse polynomial error in each
sample; however we omit the details for sake of exposition.

VI. EFFICIENT ALGORITHMS FOR THE RANDOM MODEL:
BEYOND \/ﬁ SPARSITY

In this section we show that when the data is generated
from the standard random model DS) ©® D) our approach
from the previous section leads to an algorithm that can
handle sparsity up to O(n*/3) which improves upon the
state-of-art results in certain regimes, as described in the full
version. As in the semi-random case, we will look at the
statistic E[(u™, y)(u®, ) (u® y) .. (uPL= ) 4] for a
constant L > 8. Here v u® .. . «2L=D are samples
that all have a particular column, say A;, in their support
such that A; appears with the same sign in each sample.
Unlike in the semi-random case where one was only able
to recover high frequency columns, here we will show that
then one can good approximation to any columns A; via this
approach. Hence, in this case we do not need to iteratively
re-weigh the data to recover more columns. This is due to
the fact that in the random case, given a sample y = Az,
we have that P(z; # 0) = % Hence, all columns are large
frequency columns. Furthermore, when analyzing various
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sums of polynomials over the { random variables we will be
able to use better concentration bounds. The main theorem
of this section stated below claims that there is an algorithm
RECOVERCOLUMNS that will output good approximations
to all columns of A when fed with data from the random
model D;—f) ®DW,

Theorem VI.1. There exists constants ¢, > 0 (potentially
depending on C) and co > 0 such that the following holds
for any € > 0, any constants ¢ > 0, L > 8. Let A, xm be a -
incoherent matrix with spectral norm at most o that satisfies
(k,0)-RIP for 6 < 1/(C?log® n). Given poly(k,m,n,1/e)
samples from the random model Dg) ® DW), Algorithm
RECOVERCOLUMNS, with probability at least 1— W{ outputs
a set W such that

e For each i € [m], W contains a vector A;, and there
exists b € { +1} such that |A; — bA;|| <e.
o For each vector 2 € W, there exists A; and b € {£1}
such that ||Z — bA;|| <e,
provided k < n?/3/(v(L,2L)Tp?). Here v(n,d)
a1 (Clo? 4 py/™) log2(n/n))d, and the polynomial bound
also hides a dependence on C and L.

Here, we use DS) ® D) as the first argument to the
RECOVERCOLUMNS procedure and it should be viewed as a
model MB(DS)7D§5 , D)) with 3 = 1. Again the bound
above is strongest when m = O(n),o = O(1) in which case
we get k < O(nQ/ 3), However, as in the semirandom case,
we can handle m = n'*%° for a sufficiently small constant
€o > 0 with a weaker dependence on the sparsity.
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