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Abstract—Dictionary learning is a popular approach for
inferring a hidden basis in which data has a sparse repre-
sentation. There is a hidden dictionary or basis A which is
an n × m matrix, with m > n typically (this is called the
over-complete setting). Data generated from the dictionary is
given by Y = AX where X is a matrix whose columns have
supports chosen from a distribution over k-sparse vectors,
and the non-zero values chosen from a symmetric distribution.
Given Y , the goal is to recover A and X in polynomial time (in
m,n). Existing algorithms give polynomial time guarantees for
recovering incoherent dictionaries, under strong distributional
assumptions both on the supports of the columns of X , and
on the values of the non-zero entries. In this work, we study
the following question: can we design efficient algorithms for
recovering dictionaries when the supports of the columns of X
are arbitrary?

To address this question while circumventing the issue of
non-identifiability, we study a natural semirandom model for
dictionary learning. In this model, there are a large number
of samples y = Ax with arbitrary k-sparse supports for
x, along with a few samples where the sparse supports
are chosen uniformly at random. While the presence of a
few samples with random supports ensures identifiability, the
support distribution can look almost arbitrary in aggregate.
Hence, existing algorithmic techniques seem to break down as
they make strong assumptions on the supports.

Our main contribution is a new polynomial time algorithm
for learning incoherent over-complete dictionaries that pro-
vably works under the semirandom model. Additionally the
same algorithm provides polynomial time guarantees in new
parameter regimes when the supports are fully random. Finally,
as a by product of our techniques, we also identify a minimal
set of conditions on the supports under which the dictionary
can be (information theoretically) recovered from polynomially
many samples for almost linear sparsity, i.e., k = ˜O(n).

Keywords-beyond worst-case analysis; semi-random models;
dictionary learning

I. INTRODUCTION

In many machine learning applications, the first step

towards understanding the structure of naturally occurring

data such as images and speech signals is to find an

appropriate basis in which the data is sparse. Such sparse

representations lead to statistical efficiency and can often

uncover semantic features associated with the data. For

example images are often represented using the SIFT basis [1].

Instead of designing an appropriate basis by hand, the goal

of dictionary learning is to algorithmically learn from data,

the basis (also known as the dictionary) along with the

data’s sparse representation in the dictionary. This problem

of dictionary learning or sparse coding was first formalized

in the seminal work of Olshausen and Field [2], and has

now become an integral approach in unsupervised learning

for feature extraction and data modeling.

The dictionary learning problem is to learn the unknown

dictionary A ∈ R
n×m and recover the sparse representation

X given data Y that is generated as follows. The typical

setting is the “over-complete” setting when m > n. Each

column Ai of A is a vector in R
n and is part of the over-

complete basis. Data is then generated by taking random

sparse linear combinations of the columns of A. Hence

the data matrix Y ∈ R
n×N is generated as Y = AX ,

where X ∈ R
m×N captures the representation of each of

the N data points1. Each column of X is a vector drawn

from a distribution D(s) �D(v). Here D(s) is a distribution

over k sparse vectors in {0, 1}m and represents the support
distribution. Conditioning on support of the column x, each

non-zero value is drawn independently from D(v), which

represents the value distribution.

The goal of recovering (A,X) from Y is particularly

challenging in the over-complete setting – notice that even if

A is given, finding the matrix X with sparse supports such

that Y = AX is the sparse recovery or compressed sensing

problem which is NP-hard in general [3]. A beautiful line of

work [4], [5], [6], [7] gives polynomial time recovery of X
(given A) under certain assumptions about A like Restricted

Isometry Property (RIP) and incoherence. See Section II for

formal definitions.

While there have been several heuristics and algorithms

proposed for dictionary learning, the first rigorous polynomial

time guarantees were given by Spielman et al. [8] who focu-

sed on the full rank case, i.e., m = n. They assumed that the

support distribution D(s) is uniformly random (each entry is

non-zero independently with probability p = k/m = 1/
√
m)

and the value distribution D(v) is a symmetric sub-Gaussian

distribution, and this has subsequently been improved by [9]

to handle almost linear sparsity. The first algorithmic gua-

1In general there can also be noise in the model where each column of
Y is given by y = Ax+ ψ where ψ is a noise vector of small norm. In
this paper we focus on the noiseless case, though our algorithms are also
robust to inverse polynomial error in each sample.
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rantees for learning over-complete dictionaries (m can be

larger than n) from polynomially many (in m,n) samples,

and in polynomial time were independently given by Arora

et al. [10] and Agarwal et al. [11].In particular, the work

of [12] and its follow up work [12] provide guarantees for

sparsity up to n1/2/ logm, and also assumes slightly weaker

assumptions on the support distribution D(s), requiring it

to be approximately O(1)-wise independent. The works of

[13] and [14] gives Sum of Squares (SoS) based quasi-

polynomial time algorithms (and polynomial time guarantees

in some settings) to handle almost linear sparsity under

similar distributional assumptions. See Section I-C for a

more detailed discussion and comparison of these works.

While these algorithms give polynomial time guarantees

even in over-complete settings, they crucially rely on strong

distributional assumptions on both the support distribution

D(s) and the value distribution D(v). Curiously, it is not

known whether these strong assumptions are necessary to

recover A,X from polynomially many samples, even from

an information theoretic point of view. This motivates the

following question that we study in this work:

Can we design efficient algorithms for learning over-complete
dictionaries when the support distribution is essentially
arbitrary?

As one might guess, the above question as stated, is ill

posed since recovering the dictionary is impossible if there

is a column that is involved in very few samples2. In fact

we do not have a good understanding of when there is a

unique (A,X) pair that explains the data (this is related

to the question of identifiability of the model). However,

consider the following thought-experiment: suppose we have

an instance with a large number of samples, each of the

form y = Ax with x being an arbitrary sparse vector. In

addition, suppose we have a few samples (N0 of them) that

are drawn from the standard dictionary learning model where

the supports are random. The mere presence of the samples

with random supports will ensure that there is a unique

dictionary A that is consistent with all the samples (as long

as N0 = Ω(n2) for example). On the other hand, since most

of the samples have arbitrary sparse supports, the aggregate

distribution looks fairly arbitrary3. This motivates a natural

semirandom model towards understanding dictionary learning

when the sparse supports are arbitrary.
The semirandom model: In this model we have N sam-

ples of the form y = Ax with most of them having arbitrary

k-sparse supports for x, and a few samples (N0 of them) that

are drawn from the random model for dictionary learning.

We will use D̃(s) to represent the arbitrary distribution over k-

sparse supports and D(s)
R to represent the random distribution

over k-sparse supports (as considered in prior works) and

2See the full version for a more interesting example.
3since we do not know which of the samples are drawn with random

support.

a parameter β to represent the fraction of samples from

D(s)
R �D(v) (it will be instructive to think of β as very small

e.g., an inverse polynomial in n,m). N samples from the

semirandom model Mβ(D(s)
R , D̃(s),D(v)) are generated as

follows.

1) The supports of N0 = βN samples x(1), . . . , x(N0) are

generated from the random distribution D(s)
R over k-

sparse { 0, 1 }m vectors 4.

2) The adversary chooses the k-sparse supports of N1 =
(1− β)N samples arbitrarily (or equivalently from an

arbitrary distribution D̃(s)). Note that the adversary can

also see the supports of the N0 “random” samples.

3) The values of each of the non-zeros in X =
{x(�) : � ∈ [N ] } are picked independently from the

value distribution D(v) e.g., a Rademacher distribution

(±1 with equal probability).

4) The x(1), . . . , x(N) are reordered randomly to form

matrix X ∈ R
m×N and the data matrix Y = AX .

Y is the instance of the dictionary learning problem.

The samples that are generated in step 1 will be referred to

as the random portion (or random samples), and the samples

generated in step 2 will be referred to adversarial samples.

As mentioned earlier, the presence of just the random

portion ensures that the model is identifiable (assuming

βN = nΩ(1)) from known results, and there is unique

solution A. The additional samples that are added in step

2 represent more k-sparse combinations of the columns

of A – hence, intuitively the adversary is only helpful by

presenting more information about A (such adversaries are

often called monotone adversaries). On the other hand, the

fraction of random samples β can be very small (think of

β = O(1/poly(n))) – hence the adversarial portion of the

data can completely overwhelm the random portion. Further,

the support distribution D̃(s) chosen by the adversary (or

the supports of the adversarial samples) could have arbitrary

correlations and also depend on the the support patterns

in the random portion. Hence, the support distribution can

look very adversarial, and this is challenging for existing

algorithmic techniques, which seem to break down in this

setting (see Sections I-C and I-B).

Semirandom models starting with works of [15], [16]

have been a very fruitful paradigm for interpolating between

average-case analysis and worst-case analysis. Further, we be-

lieve that studying such semirandom models for unsupervised

learning problems will be very effective in identifying robust

algorithms that do not use strong distributional properties

of the instance. For instance, algorithms based on convex

relaxations for related problems like compressed sensing [6]

and matrix completion [17] are robust in the presence of

a similar monotone adversary where there are additional

4More generally, D(s)
R can be any distribution that is τ -negatively

correlated – here ∀S s.t. |S| = O(logm), i /∈ S, the probability
P[i ∈ supp(x) | S ⊂ supp(x)] ≤ τk/m, and P[i ∈ supp(x)] ≈ k/m.

284



arbitrary observations in addition to the random observations.

A. Our Results

We present a new polynomial time algorithm for dictionary

learning that works in the semirandom model and obtain new

identifiability results under minimal assumptions about the

sparse supports of X . We give an overview of our results

for the simplest case, when the value distribution D(v) is

a Rademacher distribution i.e., each non-zero value xi is

either {+1,−1 } with equal probability. These results also

extend to a more general setting where the value distribution

D(v) can be a mean-zero symmetric distribution supported

in [−C,−1] ∪ [1, C] for a constant C > 1 – this is called

Spike-and-Slab model [18] and has been considered in past

works on sparse coding [10]. As with existing results

on recovering dictionaries in the over-complete setting, we

need to assume that the matrix satisfies some incoherence

or Restricted Isometry Property (RIP) conditions (these are

standard assumptions even in the sparse recovery problem

when A is given). A matrix A is (k, δ)-RIP iff (1−δ)‖x‖2 ≤
‖Ax‖2 ≤ (1+δ)‖x‖2 for all k-sparse vectors, and a matrix is

μ-incoherent iff |〈Ai, Aj〉| ≤ μ/
√
n for every two columns

i 
= j ∈ [m]. Random n × m matrices satisfy the (k, δ)-
RIP property as long as k = O(δn/ log( n

δk )) [19], and are

μ = O(
√
logm) incoherent. Please see Section II for the

formal model and assumptions.

Our main result is a polynomial time algorithm for learning

over-complete dictionaries when we are given samples from

the semirandom model proposed above.

Informal Theorem I.1 (Polytime algorithm for semirandom

model). Consider a dictionary A ∈ R
n×m that is μ-

incoherent with spectral norm σ. There is a polynomial time
algorithm that given poly(n,m, k, 1/β) samples generated
from the semirandom model (with β fraction random samples)
with sparsity k ≤ √

n/(μO(1)(σm/n)O(1)polylogm), reco-
vers with high probability the dictionary A up to arbitrary
(inverse-polynomial) accuracy (up to relabeling the columns,
and scaling by ±1)5.

Please see Theorem V.1 for a formal statement. The above

algorithm recovers the dictionary up to arbitrary accuracy in

the semirandom model for sparsity k = Õ(n1/2) – as we will

see soon, this is comparable to the state-of-the-art polynomial

time guarantees even when there are no adversarial samples.

By using standard results from sparse recovery [6], [7], one

can then use our knowledge of A to recover X . We emphasize

in the above bounds that the sparsity assumption and recovery

error do not have any dependence on β the fraction of samples

generated from the random portion. The dependence on 1/β

5We will recover a dictionary Â such that ‖Âi − biAi‖2 ≤ η0 for
some b ∈ {−1, 1 }m, where η0 is the desired inverse-polynomial accuracy.
While we state our guarantees for the noiseless case of Y = AX , our
algorithms are robust to inverse polynomial additive noise.

in the sample complexity simply ensures that there are a few

samples from the random portion in the generated data.

When there are no additional samples from the adversary

i.e., β = 1, our algorithm in fact handles a significantly

larger sparsity of k = Õ(m2/3)

Informal Theorem I.2 (Beyond
√
n with no adversarial

supports (β = 1)). Consider a dictionary A ∈ R
n×m that is

μ-incoherent and (k, 1/polylogm)-RIP with spectral norm σ.
There is a polynomial time algorithm that given poly(n,m, k)
samples generated from the “random” model with sparsity
k ≤ n2/3/(μO(1)(σm/n)O(1)polylogm), recovers with high
probability the dictionary A up to arbitrary accuracy.

Please see Theorem VI.1 for a formal statement. For the

sake of comparison, consider the case when the amount

of over-completeness is Õ(1) or even nε for some small

constant ε > 0 i.e., m/n, σ ≤ nε.6 The results of Arora et

al. [10], [12] recover the dictionaries for sparsity k = Õ(
√
n),

when there are no adversarial samples. On the other hand,

sophisticated algorithms based on Sum-of-Squares (SoS)

relaxations [13], [14] give quasi-polynomial time guarantees

in general (and polynomial time guarantees when σ = O(1))
for sparsity going up to k = O(m/polylogm) when there

are no adversarial samples. Hence, our algorithm gives

polynomial time guarantees in new settings when sparsity

k = ω(
√
n) even in the absence of any adversarial samples

(Theorem I.2), and at the same time gives polynomial time

guarantees for k = Õ(
√
n) in the semirandom model even

when the supports are almost arbitrary. Please see Section I-C

for a more detailed comparison.

A key component of our algorithm that is crucial in

handling the semirandom model is a new efficient procedure

that allows us to test whether a given unit vector is close to

a column of the dictionary A. In fact this procedure works

up to sparsity k = O(n/polylog(m)).

Informal Theorem I.3 (Test Candidate Column). Given any
unit vector z ∈ R

n, there is a polynomial time algorithm
(Algorithm 1) that uses poly(m,n, k, 1/η0) samples from
the semirandom model with the sparsity k ≤ n/polylog(m)
and the dictionary A satisfying (k, δ = 1/polylog(m))-RIP
property, that with probability at least 1− exp(−n2):

• (Completeness) Accepts z if ∃i ∈ [m], b ∈ {±1 } s.t.
‖z − bAi‖2 ≤ 1/polylog(m).

• (Soundness) Rejects z if ‖z − bAi‖2 > 1/poly log(m)
for every i ∈ [m], b ∈ {±1 }.

Moreover in the first case, the algorithm also returns a vector
ẑ s.t. ‖ẑ − bAi‖2 ≤ η0, where η0 represents the desired
inverse polynomial accuracy.

6The parameter σ is an analytic measure of over-completeness; for any
dictionary A of size n×m, σ ≥ √

m/n. Conversely, one can also upper
bound σ in terms of m/n under RIP-style assumptions. When the columns

of A are random, then σ = O(
√

m/n); otherwise, σ = O(
√

m/k) when
A is (k,O(1))-RIP.
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Please see Theorem III.1 for a formal statement7. Our test

is very simple and proceeds by computing inner products

of the candidate vector z with samples and looking at the

histogram of the values. Nonetheless, this provides a very

powerful subroutine to discard vectors that are not close to

any column. The full algorithm then proceeds by efficiently

finding a set of candidate vectors (by simply considering

appropriately weighted averages of all the samples), and

running the testing procedure on each of these candidates.

The analysis of the candidate-producing algorithm requires

several ideas such as proving new concentration bounds for

polynomials of rarely occurring random variables, which we

describe in Section I-B.

In fact, the above test procedure works under more general

conditions about the support distribution. This immediately

implies polynomial identifiability for near-linear sparsity k =
O(n/polylogm), by simply applying the procedure to every

unit vector in an appropriately chose ε-net of the unit sphere.

Informal Theorem I.4 (Polynomial Identifiability for Ra-

demacher Value Distribution). Consider a dictionary A ∈
R

n×m that is (k, δ = 1/polylog(m))-RIP property for
sparsity k ≤ n/polylog(m) and suppose we are given
N = poly(n,m, k, 1/β) samples with arbitrary k-sparse
supports that satisfies the following condition:
∀i1, i2, i3 ∈ [m], there at least a few samples (at least

1/poly(n) fraction) y = Ax such that i1, i2, i3 ∈ supp(x).
Then, there is a algorithm (potentially exponential runtime)

that recovers with high probability a dictionary Â such that
‖Âi − biAi‖2 ≤ 1/poly(m) for some b ∈ {−1, 1 }m (up to
relabeling the columns).

Please see Corollary IV.2 for a formal statement, and

Corollary III.3 for related polynomial identifiability results

under more general value distributions.

The above theorem proves polynomial identifiability for

arbitrary set of supports as long as every triple of columns

i1, i2, i3 co-occur i.e., there are at least a few samples where

they jointly occur (this would certainly be true if the support

distribution has approximate three-wise independence). On

the other hand in the full version of the paper, we complement

this by proving a non-identifiability result using an instance

that does not satisfy the “triples” condition, but where

every pair of columns co-occur. Hence, Corollary IV.2

gives polynomial identifiability under arguably minimal

assumptions on the supports. To the best of our knowledge,

prior identifiability results were only known through the

algorithmic results mentioned above, or using nO(k) many

samples. Hence, while designed with the semirandom model

in mind, our test procedure also allows us to shed new

light on the information-theoretic problem of polynomial

identifiability with adversarial supports.

7The above procedure is also noise tolerant – it is robust to adversarial
noise of 1/polylog(n) in each sample.

Developing polynomial time algorithms that handle a

sparsity of k = Õ(n) under the above conditions (e.g.,

Theorem I.4) that guarantee polynomial identifiability, or

in the semirandom model, are interesting open questions.

B. Technical Overview

We now give an overview of the technical ideas involved

in proving our algorithmic and identifiability results. Some

of these ideas are also crucial in handling sparsity of k =
ω(

√
n) in the random model. Further, as we will see in

the discussion that follows, the algorithm will make use

of samples from both the random portion and the semi-

random portion for recovering the columns. For the sake of

exposition, let us restrict our attention to the value distribution

being Rademacher i.e., each non-zero xi is either +1 or −1
independently with equal probability.

Challenges with semirandom model for existing ap-
proaches: We first describe the challenges and issues that

come in the semirandom model, and more generally when

dealing with arbitrary support distributions. Many algorithms

for learning over-complete dictionaries typically proceed by

computing aggregate statistics of the samples e.g., appropriate

moments of the samples y = Ax (where x ∼ D), and then

extracting individual columns of the dictionary – either using

spectral approaches [12] or using tensor decompositions [13],

[14]. However, in the semirandom model, the adversary

can generate many more samples with adversarial supports,

and dominate the number of random samples (it can be

poly(n) factor larger) — this can completely overwhelm the

contribution of the random samples to the aggregate statistic .

In fact, the supports of these adversarial samples can depend

on the random samples as well.

To further illustrate the above point, let us consider the

algorithm of Arora et al. [12]. They guess two fixed samples

u(1) = Aζ(1), u(2) = Aζ(2) and consider the statistic

B = E
y=Ax

[
〈y, u(1)〉〈y, u(2)〉y ⊗ y

]

=
∑
i∈[m]

(
E

x∼D
[
x4
i

]〈Ai, ζ
(1)〉〈Ai, ζ

(2)〉) ·Ai ⊗Ai+

+
∑
i�=i′

E
x∼D

[x2
ix

2
i′ ]
(〈Ai, ζ

(1)〉〈Ai′ , ζ
(2)〉Ai ⊗Ai′ + . . .

)
(1)

To recover the columns of A there are two main argu-

ments involved. For the correct guess of u(1), u(2) with

supp(ζ(1)), supp(ζ(2)) containing exactly one co-ordinate

in common e.g., i = 1, they show that one gets B =
q1A1A

T
1 + E where ‖E‖ = o(q1). In this way A1 can be

recovered up to reasonable accuracy (akin to completeness).

To argue that ‖E‖ = o(q1), one can use the randomness in

the support distribution to get that E[x2
ix

2
i′ ] = O(k2/m2)

is significantly smaller (by a factor of approximately k/m)

compared to E[x2
1] ≈ k/m. On the other hand, one also

needs to argue that for the wrong guess of u(1), u(2), the
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resulting matrix B is not close to rank 1 (soundness). The

argument here, again relies crucially on the randomness in

the support distribution.

In the semirandom model, both completeness and sound-

ness arguments are affected by the power of the adversary.

For instance, if the adversary generates samples such that

a subset of co-ordinates T ⊆ [m] co-occur most of the

time, then for every i, i′ ∈ T, E[x2
ix

2
i′ ] = Ω(E[x2

i ]). Hence,

completeness becomes harder to argue since the cross-terms

in (1) can be much larger (particularly for k = Ω(m1/8)).
The more critical issue is with soundness, since it is very

hard to control and argue about the matrices B that are

produced by incorrect guesses of u(1), u(2) (note that they

can also be from the portion with adversarial support). For

the above strategy in particular, there are adversarial supports

and choices of samples such that B is close to rank 1 but

whose principal component is not aligned along any of the

columns of A (e.g., it could be along
∑

i∈T Ai). We now

discuss how we overcome these challenges in the semirandom

model.

Testing for a Single Column of the Dictionary: A key

component of our algorithm is a new efficient procedure,

which when given a candidate unit vector z tests whether z
is indeed close to one of the columns of A (up to signs) or is

far from every column of the dictionary i.e., ‖z− bAi‖2 > η
for every i ∈ [m], b ∈ {−1, 1 } (η can be chosen to be

1/poly log(n) and the accuracy can be amplified later). Such

a procedure can be used as a sub-routine with any algorithm

in the semirandom model since it addresses the challenge

of ensuring soundness. We can feed a candidate set of test

vectors generated by the algorithm and discard the spurious

ones.

The test procedure (Algorithm 1) is based on the following

observation: if z = bAi for some column i ∈ [m] and

b ∈ {±1 }, then the distribution of |〈z,Ax〉| will be bimodal,

depending on whether xi is non-zero or not. This is because

|〈bAi, Ax〉| = |xi|±
∣∣∑
j �=i

〈Ai, Aj〉xj

∣∣ = |xi|±o(1) w.h.p.,

when A satisfies the RIP property (or incoherence). Hence

Algorithm TESTCOLUMN (Algorithm 1) just computes the

inner products |〈z,Ax〉| with polynomially many samples

(it could be from the random or adversarial portion), and

checks if they are always close to 0 or 1, with a non-negligible

fraction of them (roughly k/m fraction, if each of the i occur

equally often) taking a value close to 1.

The challenge in proving the correctness of this test is the

soundness analysis: if unit vector z is far from any column

of Ai, then we want to show that the test fails with high

probability. Consider a candidate z that passes the test, and

let αi := 〈z,Ai〉. Suppose |αi| = o(1) for each i ∈ [m] (so

it is far from every column). For a sample y = Ax with

supp(x) = S,

〈z,Ax〉 =
∑
i∈S

xi〈z,Ai〉 =
∑
i∈S

αixi. (2)

The quantity 〈z,Ax〉 is a weighted sum of symmetric,

independent random variables xi, and the variance of 〈z,Ax〉
equals ‖αS‖22 =

∑
i∈S α2

i . When ‖αS‖2 = Ω(1), Central

Limit Theorems like the Berry-Esséen theorem tells us that

the distribution of the values of 〈z,Ax〉 is close to a Normal

distribution with Ω(1) variance. In this case, we can use

anti-concentration of a Gaussian to prove that |〈z,Ax〉| takes

a value bounded away from 0 or 1 (e.g., in the interval

[ 14 ,
3
4 ]) with constant probability. However, the variance

‖αS‖22 =
∑

i∈S α2
i can be much smaller than 1 (for a random

unit vector z, we expect ‖αS‖22 = O(k/n)). In general, we

have very little control over the αS vector since the candidate

z is arbitrary. For an arbitrary spurious vector z, we need to

argue that either |〈z,Ax〉| (almost) never takes large values

close to 1, or takes values bounded away from 0 and 1 (e.g.,

in [0.1, 0.9]) for a non-negligible fraction of the samples.

The correctness of our test relies crucially on such an anti-

concentration statement (see the full version of the paper),

which may be of independent interest. Roughly speaking, we

prove using a careful coupling argument that when random

variable Z is a weighted sum of independent random variables

as in (2), if |Z| takes values close to t with non-negligible

probability κ, then |Z| also takes values in [t/6, t/2] with

probability at least Ω(κ) (the constants e.g., 1/6 can be

picked more generally).

The above test works for k = O(n/poly log(m)), only

uses the randomness in the non-zero values, and works

as long as the co-efficients |αi| are all small compared to

t = 1 i.e., ‖αS‖∞ < ct.8 The full proof of the test uses a

case analysis depending on whether there are some large

co-efficients, and uses such a large coefficient in certain

“nice” samples that exist under mild assumptions (e.g., in a

semirandom model), along with the aforementioned lemma to

prove that a unit vector z that is far from every column fails

the test with high probability (the failure probability can be

made to be exp(−n2)). Given the test procedure, to recover

the columns of the dictionary, it now suffices (because of

Algorithm 1) to design an algorithm that produces a set of

candidate unit vectors that includes the columns of A.

Identifiability: The test procedure immediately implies

polynomial identifiability (i.e., with polynomially many

samples) for settings where the test procedure works, by

simply running the test procedure on every unit vector in an

ε-net of the unit sphere. When the value distribution D(v) is a

8There are certain configurations where |αi| are large, for which the above
anti-concentration statement is not true. For example when α1 = α2 = 1/2
and 0 for rest of i ∈ S, then any ±1 combination of α1, α2 is in {−1, 0, 1 }.
In fact, the non-identifiable instances have bad candidates z which precisely
result in such combinations. However, we prove that this is essentially the
only bad situation for this test.
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Rademacher distribution, we prove that just a condition on the

co-occurrence of every triple suffices to construct such a test

procedure. This implies the polynomial identifiability results

of Theorem I.4 for sparsity up to k = O(n/polylogn). For

more general value distributions defined in Section II, it just

needs to hold that that there are a few samples where a given

column i appears, but a few other O(log n) given columns do

not appear (e.g., for example when a subset of samples satisfy

very weak pairwise independence). This condition suffices

for Algorithm 1 to work for sparsity k = O(n/polylogn)–
and implies the identifiability results in Corollary III.3.

Efficiently Producing Candidate Vectors: Our algo-

rithm for producing candidate vectors is inspired by the

initialization algorithm of [12]. We guess 2L − 1 samples

u(1) = Aζ(1), u(2) = Aζ(2), . . . , u(2L−1) = Aζ(2L−1)

for some appropriate constant L, and simply consider the

weighted average of all samples given by

v = E
y

[
〈y,Aζ(1)〉〈y,Aζ(2)〉 . . . 〈y,Aζ(2L−1)〉 y

]

and consider the unit vector along v. Let us consider a

“correct” guess of ζ(1), . . . , ζ(2L−1) where all of them are

from the random portion, and their supports all contain a fixed

co-ordinate (say coordinate 1); note that values of the non-

zero entries of ζ(1), . . . , ζ(2L−1) are still random. We show

that with at least a constant probability (over the choice of the

non-zero entries of ζ(1), . . . , ζ(2L−1)), the vector v = q1A1+
ṽ where ‖ṽ‖2 = o(qmax/ logm). Here qi is the fraction of

samples x with i in its support and qmax = maxi qi. Hence,

by running over all possible
(

N
2L−1

)
tuples we can hope to

produce candidate vectors that are good approximations to

frequently appearing columns of A. Notice that any spurious

vectors that we produce will be automatically discarded by

our test procedure. While the above algorithm is simple,

its analysis requires several new technical ideas including

improved concentration bounds for polynomials of rarely
occurring random variables. To see this, we note that vector

v can be written as v =
∑

i∈[m] γiAi where for each i ∈
[m], γi =∑
J∈[m]2L−1

∑
I∈[m]2L−1

E
x

[
xixi1 . . . xi2L−1

] ∏
�∈[2L−1]

Mi�,j�ζ
(�)
j�

.

Here M denote the matrix ATA.

We will prove that a constant probability over the random-

ness in ζ(1), . . . , ζ(2L−1), ‖∑i�=1 γiAi‖2 = o(qmax/ logm).
Notice that since the value distribution is symmetric with

mean zero, Ex

[
xixi1 . . . xi2L−1

xi

]
is zero unless each of

the indices in [m] appears an even number of times in

i1, i2, . . . i2L−1. Hence each γi can be further written as

the sum of LO(L) many polynomials over ζ(1), . . . , ζ(2L−1),

where each polynomial corresponds to a valid partition of the

indices i1, i2, . . . i2L−1. We will prove that ‖∑i�=1 γiAi‖2 is

small by showing concentration bounds for the polynomials

corresponding to these terms in γi, along with a union bound

over the mLO(L) terms. Furthermore these terms are multili-

near polynomials of random variables ζ(1), . . . , ζ(2L−1) that

are rarely occurring mean-zero random variables i.e., they

are non-zero with probability roughly p = k/m.

Concentration bounds for multilinear degree-d polynomials

of O(1) hypercontractive random variables are known, giving

bounds of the form P[g(x) > t‖g‖2] ≤ exp(−ct2/d) [20].

More recently, sharper bounds (analogous to the Hanson-

Wright inequality for quadratic forms [21]) that do not

necessarily incur a d factor in the exponent and get bounds

of the form exp(−Ω(t2)) have also been obtained by

Latala, Adamczak and Wolff [22], [23] for sub-gaussian

random variables and more generally, random variables of

bounded Orlicz ψ2 norm. However, these seem to give sub-

optimal bounds for rarely occurring random variables, as we

demonstrate below. On the other hand, bounds that apply

in the rarely occurring regime [24], [25] typically apply

to polynomials of non-negative random variables with non-

negative coefficients, and do not seem directly applicable in

our settings.

There are several different terms that arise in these

calculations; we give an example of one such term to motivate

the need for better concentration bounds in this setting with

rarely occurring random variables. One of the terms that

arises in the expansion of γi is

Z =
∑

j1,j2∈[m]

Bj1,j2ζ
(1)
j1

ζ
(2)
j2

:=
∑
i∈[m]

∑
j1,j2∈[m]\{ i }

Mij1Mij2ζ
(1)
j1

ζ
(2)
j2

.

Using the fact that the columns of A are incoherent, for

this quadratic form we get that ‖B‖F = Ω̃(
√
m). We can

then apply Hanson-Wright inequality to this quadratic form,

and conclude that the |Z| ≤ √
mpoly log(n) with high

probability9. On the other hand, the ζ random variables

are non-zero with probability at most p = k/m and are

τ = O(1)-negatively correlated, and hence we get that

Var[Z] ≤ mσ4(k/m)2 = Õ(k2/m) (and E[Z] = 0).

Here σ is the spectral norm of A. Hence, in the ideal

case, we can hope to show a much better upper bound

of |Z| ≤ kpoly log(n)/
√
m (smaller by a factor of k/m).

Obtaining bounds that take advantage of the small probability

of occurrence seems crucial in handling k = Ω(
√
m) for the

semirandom case, and k = ω(
√
m) for the random case.

To tackle this, we derive general concentration inequalities

for multilinear degree-d polynomials of rarely occurring

random variables. Let f be a degree d multilinear polynomial

9The random variables ζ
(�)
j has its ψ2 Orlicz-norm bounded by K ≤

log(1/p) = O(logm); Hanson-Wright inequality shows that P[|Z| > t] ≤
exp

(− cmin
{

t2

K4‖B‖2
F

, t
K2‖B‖

})
. Using Hypercontractivity for these

distributions also gives similar bounds up to poly logn factors.
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of the form

f(ζ(1), . . . , ζ(d)) =
∑

(j1,...,jd)∈[m]d

Tj1,...,jdζ
(1)
j1

. . . ζ
(d)
jd

,

where each of the random variables ζj are independent,

bounded and non-zero with probability at most p, and for

any Γ ⊂ [d]. Then we prove that for any η > 0,

P

[
|f(ζ(1), . . . , ζ(d))| ≥ log(2/η)d

√
ρ · pd/2‖T‖F

]
≤ η,

(3)

where ρ is a measure of how well-spread out the cor-

responding tensor T is: it depends in particular, on the

maximum row norm (‖·‖2→∞ operator norm) of different

“flattenings” of the tensor T into matrices. This is reminiscent

of how the bounds of Latala [22], [23] depends on the

spectral norm of different “flattenings” of the tensor into

matrices, but they arise for different reasons. We defer to the

full version of the paper for a formal statement and more

background. To the best of our knowledge, we are not aware

of similar concentration bounds for arbitrary multilinear (with

potentially non-negative co-efficients) for rarely occurring

random variables, and we believe these bounds may be of

independent interest in other sparse settings.

The candidate generation algorithm works for sparsity of

k = Õ(
√
n) in the semirandom case, and a better sparsity

of k = Õ(n2/3) in the random case. The analysis for

both the semirandom case and random case proceeds by

carefully analyzing various terms that arise in evaluating

{ γi : i ∈ [m] }, and using the new concentration bounds in

the context of each of these terms along with good bounds on

the norms of various tensors and their flattenings that arise

(this uses sparsity of the samples, the incoherence assumption

and the spectral norm bound among other things). We now

describe one of the simpler terms that arise in the random

case, to demonstrate the advantage of considering larger L
i.e., more fixed samples. Consider the expression

Z =
∑

J∈[m]2L−1

Mi,j2L−1
ζ
(2L−1)
j2L−1

∑
i1,...,iL−1

E
[
x2
ix

2
i1 . . . x

2
iL−1

]

×
∏

�∈[L−1]

Mi�,j2�−1
Mi�,j2�ζ

(2�−1)
j2�−1

ζ
(2�)
j2�

. (4)

In the random case, E[x2
ix

2
i1
. . . x2

iL−1
] ≈

E[x2
i ]E[x

2
i1
] . . .E[x2

iL−1
] ≤ (k/m)L, since the support

distribution is essentially random (this also assumes

the value distribution is Rademacher). Further, for the

corresponding tensor T of co-efficients, one can show a

bound of ‖T‖F = O
(
m(L−1)/2

)
. Hence, applying the

new concentration bound we would get an ideal bound

(assuming the imbalance factor ρ = O(1) ) of roughly

c ·(k/m)L
√
m

L−1 ·(k/m)L−1/2 = c
(

k2

m
√
m

)L−1 ·(k/m)3/2,

which becomes o(k/(m
√
m)) as required for L being a

sufficiently large constant when k = o(m3/4−ε) 10. On

the other hand, with higher values of L there are some

lower-order terms that start becoming larger comparatively,

for which the new concentration bounds for polynomials

of rarely occurring random variables becomes critical.

Balancing out these terms allows us to handle a sparsity of

k = Õ(n2/3) for the random case.

The semirandom model presents several additional dif-

ficulties as compared to the random model. Firstly, as

most of the data is generated with arbitrary supports, we

cannot assume that the x variables are τ = O(1)-negatively

correlated. As a result, the term E[x2
ix

2
i1
. . . x2

iL−1
] does not

factorize as the adversary can make the joint probability

distribution of the non-zeros very correlated. Hence, to

bound various expressions that appear in the expansion of

γi, we need to use inductive arguments to upper bound

the magnitude of each inner sum and eliminating the

corresponding running index (this needs to be done carefully

since these quantities can be negative). We bound each inner

sum using the new concentration bounds for polynomials of

rarely occurring random variables repeatedly along with the

inequality
∑

id∈[m] E[x
2
ix

2
i1
. . . x2

id
] ≤ kE[x2

ix
2
i1
. . . x2

id−1
],

and some elegant linear algebraic facts.

Finally, the above procedure can be used to recover all

the columns Ai of the dictionary whose corresponding

occurrence probabilities qi = E[x2
i ] are close to the largest

i.e., qi = Ω̃(maxj∈[m] qj). To recover all the other columns,

we use a linear program and subsample the data (just based

on columns recovered so far), so that one of the undiscovered

columns has largest occurrence probability. We defer to the

details in the full version of the paper.

C. Related Work

Polynomial Time Algorithms: Spielman et al. [8] were

the first to provide a polynomial time algorithm with rigorous

guarantees for dictionary learning. They handled the full rank

case, i.e, m = n, and assumed the following distributional

assumptions about X: each entry is chosen to be non-

zero independently with probability k/m = O(1)/
√
n (the

support distribution D(s) is essentially uniformly random)

and conditioned on the support, each non-zero value is set

independently at random from a sub-Gaussian distribution

e.g., Rademacher distribution (the value distribution D(v)).

Their algorithm uses the insight that w.h.p. in this model,

the sparsest vectors in the row space of Y correspond to the

rows of X , and solve a sequence of LPs to recover X and A.

Subsequent works [26], [27], [9] have focused on improving

the sample complexity and sparsity assumptions in the full-

rank setting. However in the presence of the semirandom

adversary, the sparsest vectors in the row space of Y may

10The bound that we actually get in this case is off by a c =√
mpoly logn factor since ρ = ω(1), but this also becomes small for

large L.
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not contain rows of X and hence the algorithmic technique

of [8] breaks down.

For the case of over-complete dictionaries the works

of Arora et al. [10] and Agarwal et al. [11] provided

polynomial time algorithms when the dictionary A is μ-

incoherent. In particular, the result of [10] also holds

under a weaker assumption that the support distribution

D(s) is approximately � = O(1)-wise independent i.e.,

Px∼D(s) [i1, i2, . . . , i� ∈ supp(x)] ≤ τ �(k/m)� for some

constant τ > 0. Under this assumption they can handle

sparsity up to Õ(min(
√
n,m1/2−ε)) for any constant ε > 0

with � = O(1/ε). Their algorithm computes a graph G over

the samples in Y by connecting any two samples that have a

high dot product – these correspond to pairs of samples whose

supports have at least one column in common. Recovering

columns of A then boils down to identifying communities in

this graph with each community identifying a column of A.

Subsequent works have focused on extending this approach

to handle mildly weaker or incomparable assumptions on the

dictionary A or the distribution of X [28], [12]. For example,

the algorithm of [12] only assumes O(1)-wise independence

on the non-zero values of a column x. The state of the art

results along these lines can handle k = Õ(
√
n) sparsity for

μ = Õ(1)-incoherent dictionaries. Again, we observe that in

the presence of the semirandom adversary, the community

structure present in the graph G could become very noisy

and one might not be able to extract good approximations

to the columns of A, or worse still, find spurious columns.

The work of Barak at al. [13] reduce the problem of

recovering the columns of A to a (noisy) tensor decomposi-

tion problem, which they solve using Sum-of-Squares (SoS)

relaxations. Under assumptions that are similar to that

of [10] (assuming approximate Õ(1)-wise independence),

these algorithms based on SoS relaxations [13], [14] handle

almost linear sparsity k = Õ(n) and recover incoherent

dictionaries with quasi-polynomial time guarantees in general,

and polynomial time guarantees when σ = O(1) (this is

obtained by combining Theorem 1.5 in [14] with [13]).

The recent work of Kothari et al. [29] also extended

these algorithms based on tensor decompositions using SoS,

to a setting when a small fraction of the data can be

adversarially corrupted or arbitrary. This is comparable to

the setting in the semirandom model when β = 1− ε (for

a sufficiently small constant ε), but the non-zero values

for these samples can also be arbitrary. However in the

semirandom model, the reduction from dictionary learning to

tensor decompositions breaks down because the supports can

have arbitrary correlations in aggregate, particularly when β is

small. Hence these algorithms do not work in the semirandom

model.

Moreover, even in the absence of any adversarial samples,

Theorem I.2 and the current state-of-the-art guarantees [14],

[12] are incomparable, and are each optimal in their own

setting. For instance, consider the setting when the over-

completeness m/n, σ = O(nε) for some small constant

ε > 0. In this case, Arora et al. [12] can handle a sparsity

of Õ(
√
n) in polynomial time and Ma et al. [14] handle

Õ(n) sparsity in quasi-polynomial time, while Theorem I.2

handles a sparsity of Õ(n2/3) in polynomial time. On the

other hand, [12] has a better dependence on σ, while [14]

can handle Õ(n) sparsity when σ = O(1). Further, both

of these prior works do not need full independence of the

value distribution D(v) and the SoS-based approaches work

even under mild incoherence assumptions to give some weak

recovery guarantees11 However, we recall that in addition our

algorithm works in the semirandom model (almost arbitrary

support patterns) up to sparsity Õ(
√
n), and this seems

challenging for existing algorithms.

Heuristics and Associated Guarantees: Many iterative

heuristics like k-SVD, method of optimal direction (MOD),

and alternate minimization have been designed for dictionary

learning, and recently there has also been interest in giving

provable guarantees for these heuristics. Arora et al. [10] and

Agarwal et al. [30] gave provable guarantees for k-SVD and

alternate minimization assuming initialization with a close

enough dictionary. Arora et al. [12] provided guarantees for

a heuristic that at each step computes the current guess of X
by solving sparse recovery, and then takes a gradient step of

the objective ‖Y −AX‖2 to update the current guess of A.

They initialize the algorithm using a procedure that finds the

principal component of the matrix E[〈u(1), y〉〈u(2), y〉 yyT ]
for appropriately chosen samples u(1), u(2) from the data set.

A crucial component of our algorithm in the semirandom

model is a procedure to generate candidate vectors for the

columns of A and is inspired by the initialization procedure

of [12].

Identifiability Results: As with many statistical models,

most identifiability results for dictionary learning follow

from efficient algorithms. As a result identifiability results

that follow from the results discussed above rely on strong

distributional assumptions. On the other hand results esta-

blishing identifiability under deterministic conditions [31],

[32] require exponential sample complexity as they require

that every possible support pattern be seen at least once

in the sample, and hence require O(mk) samples. To the

best of our knowledge, our results (Theorem I.4) lead to the

first identifiability results with polynomial sample complexity

without strong distributional assumptions on the supports.

Other Related Work: A problem which has a similar

flavor to dictionary learning is Independent Component

Analysis (ICA), which has been a rich history in signal

processing and computer science [33], [34], [35]. Here, we

are given Y = AX where each entry of the matrix X is

independent, and there are polynomial time algorithms both

in the under-complete [34] and over-complete case [36], [35]

11However, to recover A and X to high accuracy, incoherence and RIP
assumptions of the kind assumed in our work and [12] seem necessary.
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that recover A provided each entry of X is non-Gaussian.

However, these algorithms do not apply in our setting, since

the entries in each column of X are not independent (the

supports can be almost arbitrarily correlated because of the

adversarial samples).

Finally, starting with the works of Blum and Spencer [15],

semirandom models have been widely studied for various

optimization and learning problems. Feige and Kilian [16]

considered semi-random models involving monotone adver-

saries for various problems including graph partitioning,

independent set and clique. Semirandom models have also

been studied in the context of unique games [37], graph par-

titioning problems [38], [39] and learning communities [40],

[41], [42], correlation clustering [43], [44], noisy sorting [45],

coloring [46] and clustering [47].

II. PRELIMINARIES

We will use A to denote an n×m over-complete (m > n)

dictionary with columns A1, A2, . . . Am. Given a matrix or

a higher order tensor T , we will uses ‖T‖F to denote the

Frobenius norm of the tensor. For matrices A we will use

‖A‖2 to denote the spectral norm of A. We first define the

standard random model for generating data from an over-

complete dictionary.

Informally, a vector y = Ax is generated as a random

linear combination of a few columns of A. We first pick

the support of x according to a support distribution denoted

by D(s), and then draw the values of each of the non-zero

entries in x independently according to the value distribution
denoted by D(v). D(s) is a distribution that is over the set

of vectors in {0, 1}m with at most k ones.

Value Distribution:: As is standard in past works on

sparse coding [10], [12], we will assume that the value

distribution D(v) is any mean zero symmetric distribution

supported in [−C,−1] ∪ [1, C] for a constant C > 1. This

is known as the Spike-and-Slab model [18]. For technical

reasons we also assume that D(v) has non-negligible density

in [1, 1 + η] for η = 1/(poly log n). Formally we assume

that

∃γ0 ∈ (0, 1) s.t. ∀η ≥ 1

logc n
,PD(v)([1, 1 + η]) ≥ γ0. (5)

In the above definition, we will think of γ0 as just being

non-negligible (e.g., 1/poly(n)). This assumption is only

used in Section III, and the sample complexity will only

involve inverse polynomial dependence on γ0. The above

condition captures the fact that the value distribution has

some non-negligible mass close to 1 12. Further, this is a

benign assumption that is satisfied by many distributions

including the Rademacher distribution that is supported on

12If the value distribution has negligible mass in [1, 1+η]∪ [−1−η,−1],
one can arguably rescale the value distribution by (1 + η) so that all of the
value distribution is essentially supported on [1, C/(1 + η)] ∪ [−C/(1 +
η),−1].

{+1,−1} (with γ0 = 1/2), and the uniform distribution over

[−C,−1] ∪ [1, C] (with γ0 = 1/(2C)).

Random Support Distribution D(s)
R .: Let ξ ∈ R

m be

drawn from D(s)
R . To ensure that each column appears

reasonably often in the data so that recovery is possible

information theoretically we assume that each coordinate

i in ξ is non-zero with probability k
m . We do not require

the non-zero coordinates to be picked independently and

there could be correlations provided that they are negatively

correlated up to a slack factor of τ .

Definition II.1. For any τ ≥ 1, a set of non-negative random

variables Z1, Z2, . . . , Zm where P (Zi 
= 0) ≤ p is called

τ -negatively correlated if for any i ∈ [m] and any S ⊆ [m]
such that i /∈ S and |S| = O(logm) we have that for a

constant τ > 0,

P
(
Zi 
= 0

∣∣ ⋂
j∈S

Zj 
= 0
) ≤ τp. (6)

In the random model the variables ξ1, ξ2, . . . , ξm are τ -

negatively correlated with p = k
m . We remark that for our

algorithms we only require the above condition (for the

random portion of the data) to hold for sets S of size up to

O(logm). Of course in the semi-random model described

later, the adversary can add additional data from supports

distributions with arbitrary correlations; hence they are not

τ -negatively correlated, and each co-ordinate of x need not

be non-zero with probability at most p = k/m.

Random model for Dictionary Learning.: Let D(s)
R �

D(v) denote the distribution over Rm obtained by first picking

a support vector from D(s)
R and then independently picking

a value for each non zero coordinate from D(v). Then we

have that a sample y from the over complete dictionary is

generated as

y =
∑
i∈[m]

xiAi,

where (x1, x2, . . . , xm) is generated from D(s)
R �D(v). Given

S = {y(1), y(2), . . . , y(N)} drawn from the model above, the

goal in standard dictionary learning is to recover the unknown

dictionary A∗, up to signs and permutations of columns.

A. Semi-random model

We next describe the semi-random extension of the above

model for sparse coding. In the semi-random model an initial

set of samplesis generated from the standard model described

above. A semi-random adversary can then an arbitrarily

number of additional samples with each sample y = Ax
generated by first picking the support of x arbitrarily and

then independently picking values of the non-zeros according

to D(v). Formally we have the following definition

Definition II.2 (Semi-Random Model:

Mβ(D(s)
R , D̃(s),D(v))). A semi-random model for
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sparse coding, denoted as Mβ(D(s)
R , D̃(s),D(v)), is defined

via the following process of producing N samples

1) Given a τ -negatively correlated support distribu-

tion D(s)
R , N0 = βN “random” support vectors

ξ(1), ξ(2), . . . , ξ(N0) are generated from D(s)
R .

2) Given the knowledge of the supports of ξ(1), . . . , ξ(N0),

the semi-random adversary generates (1 − β)N addi-

tional support vectors ξ(N0+1), ξ(N0+2), . . . , ξ(N) from

an arbitrary distribution D̃(s). The choice of D̃(s) can

depend on ξ(1), ξ(2), . . . , ξ(N0).

3) Given a value distribution D(v) that satisfies

the Spike-and-Slab model, the vectors

x(1), x(2), . . . , x(N0), x(N0+1), . . . , x(N) are form

by picking each non-zero value (as specified by

ξ(1), . . . , ξ(N) respectively) independently from the

distribution D(v).

4) x(1), x(2), . . . , x(N) are randomly reordered as columns

of an m×N matrix X . Then the output of the model

is Y = AX .

We would like to stress that the amount of semi-random

data can overwhelm the initial random set. In other words, β
need not be a constant and can be a small inverse polynomial

factor. The number of samples needed for our algorithmic

results will have an inverse polynomial dependence on

β. While the above description of the model describes a

distribution from which samples can be drawn, one can

also consider a setting where there a fixed number of

samples N , of which βN = N0 samples were drawn with

random supports i.e., from D(s)
R . These two descriptions are

essentially equivalent in our context since the distribution

D̃(s) is arbitrary. However, since there are multiple steps

in the algorithm, it will be convenient to think of this as a

generative distribution that we can draw samples from (in

the alternate view, we can randomly partition the samples

initially with one portion for each step of the algorithm).

In the next few sections we give the formal statements of

our main results. We defer to the full version of the paper [48]

for proofs and all the details.

III. TESTING PROCEDURE AND IDENTIFIABILITY

In this section we describe and prove the correctness of our

testing procedure that checks if a given unit vector z is close

to any column of the dictionary A. The procedure works as

follows: it takes a value η as input and checks if the inner

product |〈z,Ax〉| only takes values in [0, η]∪[1−η, C(1+η)]
for most samples x, and if |〈z,Ax〉| ∈ [1 − η, C(1 + η)]
for a non-negligible fraction of samples. In other words,

a vector z is rejected only if |〈z,Ax〉| ∈ (2η, 1 − 2η) for

a non-negligible fraction of the samples, or if |〈z,Ax〉| ∈
[1−η, C(1+η)] for a negligible fraction of samples. For any

η ∈ (0, 1), we will often use the notation Iη to denote the

set { t ∈ R : |t| ∈ [1− η, C(1 + η)] ∪ [0, η] }, i.e. the range

of values close to 0 or 1.

Algorithm TESTCOLUMN(z, Y =
{ y(1), . . . , y(N) } , κ0, κ1, η)

1) Let κ̃1 be the fraction of samples such that |〈z, y(r)〉| ∈
[1− η, C(1 + η)] and κ̃0 be the fraction of samples such

that |〈z, y(r)〉| /∈ [1− η, C(1 + η)] ∪ [0, Cη].
2) If κ̃0 < κ0 and κ̃1 ≥ κ1, return (YES, ẑ), where

z′ = mean
( { y(r) : r ∈ [N ] s.t. 〈y(r), z〉 ≥ 1

2 }
)

and ẑ =
z′/‖z′‖2.

3) Else return (NO, ∅).

Figure 1.

We show the following guarantees for Algorithm TEST-

COLUMN. We will prove the guarantees in a slightly broader

setup so that it can be used both for the identifiability results

and for the algorithmic results. We assume that we are

given N samples { y(r) = Ax(r) : r ∈ [N ] }, when the value

distribution (distribution of each non-zero co-ordinate of a

given sample x(r)) is given by D(v).We make the following

mild assumption about the sparsity pattern (support); for

any i and any T ⊂ [m] \ { i }, we assume that there are at

least qminN samples which contain i but do not contain T
in the support. Note that for the semi-random model, if β
fraction of the samples come from the random portion, then

qmin ≥ 1
2βk/m with high probability.

In what follows, it will be useful to think of η =
O(1/poly log(n)), γ0 = n−Ω(1), the desired accuracy η0 =
1/poly(n), sparsity k = O(n/poly log(n)), and the desired

failure probability to be γ = exp(−n). Hence, in this setting

κ0 = n−Ω(1) and δ = O(1/poly log(n)) as well.

Theorem III.1 (Guarantees for TESTCOLUMN). There exists
constants c0, c1, c2, c3, c4, c5 > 0 (potentially depending on
C) such that the following holds for any γ ∈ (0, 1), η0 <

η ∈ (0, 1) satisfying
√

c3k
m < η < c1

log2
(

mn
qminη0

) . Set κ0 :=

c4γ0ηqmin/(km). Suppose we are given N ≥ c2knm log(1/γ)
η3
0γ0κ0

samples y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ <
(

η
16C log(1/κ0)

)2
,

• ∀i ∈ [m], T ⊂ [m] \ { i } with |T | ≤ c3/η
2, there at

least qminN samples whose supports all contain i, but
disjoint from T .

Suppose we are given a unit vector z ∈ R
n,

then TESTCOLUMN(z, { y(1), . . . , y(N) } , 2κ0, κ1 =
c5qminγ0η, η) runs in times O(N) time, and we have with
probability at least 1− γ that

• (Completeness) if ‖z−bAi‖2 ≤ η′ = η/(8C log(1/κ0))
for some i ∈ [m], b ∈ {−1, 1 }, then Algorithm
TESTVECTOR outputs (YES, ẑ).

• (Soundness) if unit vector z ∈ R
n passes TESTCOLUMN,

then there exists i ∈ [m], b ∈ {−1, 1 } such that ‖z −
bAi‖2 ≤ √

8η. Further, in this case ‖ẑ − bAi‖2 ≤ η0.
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Remark III.2. We note that the above algorithm is also robust

to adversarial noise. In particular, if we are given samples

of the form y(r) = Ax(r) + ψ(r), where ‖ψ(r)‖2 ≤ O(η),
then it is easy to see that the completeness and soundness

guarantees go through since the contribution to 〈y(r), z〉 is

at most |〈ψ(r), z〉| ≤ ‖ψ(r)‖ = O(η).

The above theorem immediately implies an identifiability

result for the same model (and hence the semi-random model).

By applying Algorithm TESTCOLUMN to each z in an Ω̃(η)-
net over R

n dimensional unit vectors and choosing γ =
exp

( − Ω(n log(1/η))
)

in Theorem III.1 and performing

a union bound over every candidate vector z in the net,

we get the following identifiability result as long as k <
n/poly log(n).

Corollary III.3 (Identifiability for Semi-random Model).
There exists constants c0, c1, c2, c3, c4, c5, c6 > 0 (potentially
depending on C) such that the following holds for any
k < n/ log2c1 m, η0 ∈ (0, 1). Set κ0 := c0γ0 log

−c1 mqmin.
Suppose we are given N ≥ c2knm logc1 m log(1/κ0)

η3
0γ0qmin

samples
y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ < c5
log(1/κ0) logc6 m ,

• ∀i ∈ [m], T ⊂ [m] \ { i } with |T | ≤ c4 log
2c1 m, there

at least qminN samples whose supports all contain i,
but disjoint from T .

Then there is an algorithm that with probability at least
1−exp(−n) finds the columns Â such that ‖Âi−biAi‖2 ≤ η0
for some b ∈ {−1, 1 }m.

IV. STRONGER IDENTIFIABILITY FOR RADEMACHER

VALUE DISTRIBUTION

In the special case when the value distribution is a Rade-

macher distribution (each xi is +1 or −1 with probability

1/2 each), we can obtain even stronger guarantees for the

testing procedure. We do not need to assume that there are

non-negligible fraction of samples y = Ax where the support

distribution is “random” 13. Here, we just need that for every

triple i1, i2, i3 ∈ [m] of columns, they jointly occur in at

least a non-negligible number of samples.

On the other hand, we remark that the triple co-occurrence

condition is arguably the weakest condition under which

identifiability is possible. In the full version we show a non-

identifiability statement even when the value distribution is

a Rademacher distribution. In this example, for every pair of

columns there are many samples where these two columns

co-occur.

Theorem IV.1 (Rademacher Value Distribution). There exists
constants c0, c1, c2, c3, c4 > 0 such that the following holds
for any γ ∈ (0, 1), η0 < η ∈ (0, 1) satisfying

√
c3k
m < η <

13In particular, we don’t need to assume for any i, T ⊆ [m] \ { i } of
small size, that we have many samples that contain i but not T .

c1

log2
(

mn
q0η0

) . Set κ0 := c4ηq0/(km). Suppose we are given

N ≥ c2knm log(1/γ)
η3
0κ0

samples y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ <
(

η
16 log(1/κ0)

)2
,

• ∀i1, i2, i3 ∈ [m], there at least q0N samples whose
supports all contain i1, i2, i3.

Then there is an algorithm TESTCOL RAD such that given a
unit vector z ∈ R

n, TESTCOL RAD called with parameters
(z, { y(1), . . . , y(N) } , 2κ0, κ1 = c5ηq0, η) runs in times
O(N) time, and we have with probability at least 1 − γ
that

• (Completeness) if ‖z − bAi‖2 ≤ η′ = η/(8 log(1/κ0))
for some i ∈ [m], b ∈ {−1, 1 }, then the algorithm
outputs (YES, z′).

• (Soundness) if unit vector z ∈ R
n passes the algorithm

then there exists i ∈ [m], b ∈ {−1, 1 } such that ‖z −
bAi‖2 ≤ √

8η. Further, in this case ‖z′ − bAi‖2 ≤ η0.

As before, we note that the above algorithm is also robust

to adversarial noise of the order of magnitude O(η) in

every sample. Further, the above theorem again implies

an identifiability result by applying it to each candidate

unit vector z in an Ω̃(η)-net over R
n dimensional unit

vectors and choosing γ = exp
( − Ω(n log(1/η))

)
for

k < n/poly log(n).

Corollary IV.2 (Identifiability for Rademacher Value Distri-

bution). There exists constants c0, c1, c2, c3, c4, c5, c6 > 0
such that the following holds for any k < n/ log2c1 m,
η0 ∈ (0, 1). Set κ0 := c0 log

−c1 mq0. Suppose we
are given N ≥ c2knmη−3

0 q−1
0 logc1 m log(1/κ0) samples

y(1), . . . , y(N) satisfying
• the dictionary A is (k, δ)-RIP for δ < c5

log(1/κ0) logc6 m ,
• ∀i1, i2, i3 ∈ [m], there at least q0N samples whose

supports all contain i1, i2, i3.
Then there is an algorithm that with probability at least
1− exp(−n) finds the columns Â (up to renaming columns)
such that ‖Âi − biAi‖2 ≤ η0 for some b ∈ {−1, 1 }m.

The test procedure for checking whether unit vector z
is close to a column is slightly different. In addition to

Algorithm TESTCOLUMN, there is an additional procedure

that is less stringent: it checks if the inner product |〈z,Ax〉|
only takes values in [0, η]∪[1−η, C(1+η)] for most samples

x ∼ D, and if |〈z,Ax〉| ∈ [1 − η, C(1 + η)] for a non-

negligible fraction of samples. In other words, a vector z is

rejected only if |〈z,Ax〉| ∈ (2η, 1− 2η) for a non-negligible

fraction of the samples, or if |〈z,Ax〉| ∈ [1− η, C(1 + η)]
for a negligible fraction of samples.

V. EFFICIENT ALGORITHMS FOR PRODUCING CANDIDATE

COLUMNS

The main theorem of this section is a polynomial time

algorithm for recovering incoherent dictionaries when the

samples come from the semirandom model.
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Theorem V.1. Let A be a μ-incoherent n ×m dictionary
with spectral norm σ. There is an algorithm RECOVERDICT

such that for any ε > 0, given N = poly(k,m, n, 1/ε, 1/β)

samples from the semi-random model Mβ(D(s)
R , D̃(s),D(v)),

Algorithm RECOVERDICT with probability at least 1− 1
m ,

outputs a set W ∗ such that
• For each column Ai of A, there exists Âi ∈ W ∗, b ∈
{±1 } such that ‖Ai − bÂi‖ ≤ ε.

• For each Âi ∈ W ∗, there exists a column Ai of A,
b ∈ {±1 } such that ‖Âi − bAi‖ ≤ ε,

provided k ≤ √
n/ν1(

1
m , 16). Here ν1(η, d) :=

c1τμ
2
(
C(σ2 + μ

√
m
n ) log2(n/η)

)d
, c1 > 0 is a constant

(potentially depending on C), and the polynomial bound for
N also hides a dependence on C.

The bound above is the strongest when m = Õ(n) and

σ = Õ(1), in which case we get guarantees for k = Õ(
√
n),

where Õ also hides dependencies on τ, μ. However, notice

that we can also handle m = O(n1+ε0), σ = O(nε0), for a

sufficiently small constant ε0 at the expense of smaller spar-

sity requirement – in this case we handle k = Õ(n1/2−O(ε0))
(we do not optimize the polynomial dependence on σ in the

above guarantees). The above theorem gives a polynomial

time algorithm that recovers the dictionary (up to any inverse

polynomial accuracy) as long as β, the fraction of random

samples is inverse polynomial. In particular, the sparsity

assumptions and the recovery error do not depend on β. In

other words, the algorithm succeeds as long we are given a

few “random” samples (say N0 of them), even where there

is a potentially a much larger polynomial number N � N0

of samples with arbitrary supports. We remark that the above

algorithm is also robust to inverse polynomial error in each

sample; however we omit the details for sake of exposition.

VI. EFFICIENT ALGORITHMS FOR THE RANDOM MODEL:

BEYOND
√
n SPARSITY

In this section we show that when the data is generated

from the standard random model D(s)
R �D(v) our approach

from the previous section leads to an algorithm that can

handle sparsity up to Õ(n2/3) which improves upon the

state-of-art results in certain regimes, as described in the full

version. As in the semi-random case, we will look at the

statistic E[〈u(1), y〉〈u(2), y〉〈u(3), y〉 . . . 〈u(2L−1), y〉 y] for a

constant L ≥ 8. Here u(1), u(2), . . . , u(2L−1) are samples

that all have a particular column, say Ai, in their support

such that Ai appears with the same sign in each sample.

Unlike in the semi-random case where one was only able

to recover high frequency columns, here we will show that

then one can good approximation to any columns Ai via this

approach. Hence, in this case we do not need to iteratively

re-weigh the data to recover more columns. This is due to

the fact that in the random case, given a sample y = Ax,

we have that P (xi 
= 0) = k
m . Hence, all columns are large

frequency columns. Furthermore, when analyzing various

sums of polynomials over the ζ random variables we will be

able to use better concentration bounds. The main theorem

of this section stated below claims that there is an algorithm

RECOVERCOLUMNS that will output good approximations

to all columns of A when fed with data from the random

model D(s)
R �D(v).

Theorem VI.1. There exists constants c1 > 0 (potentially
depending on C) and c2 > 0 such that the following holds
for any ε > 0, any constants c > 0, L ≥ 8. Let An×m be a μ-
incoherent matrix with spectral norm at most σ that satisfies
(k, δ)-RIP for δ < 1/(C2 logc2 n). Given poly(k,m, n, 1/ε)

samples from the random model D(s)
R � D(v), Algorithm

RECOVERCOLUMNS, with probability at least 1− 1
mc , outputs

a set W such that
• For each i ∈ [m], W contains a vector Âi, and there

exists b ∈ {±1 } such that ‖Ai − bÂi‖ ≤ ε.
• For each vector ẑ ∈ W , there exists Ai and b ∈ {±1 }

such that ‖ẑ − bAi‖ ≤ ε,
provided k ≤ n2/3/(ν( 1

m , 2L)τμ2). Here ν(η, d) :=

c1
(
C(σ2 + μ

√
m
n ) log2(n/η)

)d
, and the polynomial bound

also hides a dependence on C and L.

Here, we use D(s)
R � D(v) as the first argument to the

RECOVERCOLUMNS procedure and it should be viewed as a

model Mβ(D(s)
R ,D(s)

R ,D(v)) with β = 1. Again the bound

above is strongest when m = O(n), σ = O(1) in which case

we get k ≤ Õ(n2/3), However, as in the semirandom case,

we can handle m = n1+ε0 for a sufficiently small constant

ε0 > 0 with a weaker dependence on the sparsity.
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