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ABSTRACT

By displacing gasoline and diesel fuels, electric cars and fleets offer significant public health benefits by reducing emissions
from the transportation sector. However, public confidence in the reliability of charging infrastructure remains a fundamental
barrier to adoption. Using large-scale social data and machine learning based on 12,720 U.S. electric vehicle charging stations,
we provide national evidence on how well the existing charging infrastructure is serving the needs of the expanding population
of EV drivers in 651 core-based statistical areas in the United States. Contrary to predictions, we find that stations at private
charging locations do not outperform public charging locations provided by government. We also find evidence of higher
negative sentiment in the dense urban centers, where issues of charge rage and congestion may be the most prominent.
Overall, 40% of drivers using mobility apps have faced negative experiences at EV charging stations, a problem that needs to
be fixed as the market expands.

Global investment in electric vehicle charging infrastructure
is estimated to reach $80 billion USD by 20251. In the United
States, this investment growth marks an expected transition in
policy support at the federal level to more aggressive actions
at the state and local level. The transportation sector is now
the dominant source of CO2 emissions in the United States2.
By displacing gasoline and diesel fuels, vehicle electrification
strategies have captured the attention of policy makers and
analysts due to the large expected public health benefits as-
sociated with reduced air pollution and tailpipe emissions3–5.
However, while current EV infrastructure policies have fo-
cused on increasing the quantity of charging stations to meet
future growth6, not much attention has been paid to the qual-
ity of charging services, particularly at the consumer level.
Service reliability is a key risk in the public provision of EV
charging services, and hence a critical barrier to large-scale
technology adoption.

Some scholars contend that the private sector, under the
right incentives, can more effectively deliver public fast charg-
ing services as needed. Other scholars argue that large public
investments in fast charging infrastructure could crowd out
private investments and lead to wasteful spending on charg-
ing locations that would have been built anyway, e.g. what
economists refer to as inframarginal participation. Still, other
scholars argue that public charging serves a public good, par-
ticularly if sufficient incentives do not exist for private en-

trepreneurs and organizations to invest locally. This debate on
public versus private provision of environmental public goods
and services has a long tradition in economics7, 8 and public
management9, 10, with mixed empirical evidence on whether
decentralized local provision is most effective.

Subjective perceptions about the quality and reliability of
public charging infrastructure are critical to building range
confidence among existing EV owners11, 12. More impor-
tantly, popular sentiment about EV charging station experi-
ences could be even more critical to potential buyers in the
electric vehicle purchase decision, particularly for consumers
in under-served communities.

A major challenge to evaluating whether the current EV
charging infrastructure is meeting the needs of the public is
in access to available monitoring data. This is because EV
mobility data is largely user-generated and is often owned
by private entities13, 14. For example, in the United States,
charging transaction records are typically managed by tens of
thousands of individual station hosts—each with the ability
to independently set prices and charging policies (subject to
State rules)—with no central repository or reporting require-
ments across network providers. As a result, given these high
monitoring costs, national evidence on the quality of service
provision in EV infrastructure has been scant.

In this article, we analyze evidence of electric vehicle charg-
ing station experiences in both public and private spaces, and



at major points of interest. We use machine intelligence to
automatically classify user reviews in 651 core-based statis-
tical areas in the United States. In doing so, we demonstrate
the potential to use machine learning (ML) to substantially
reduce data aggregation costs by automatically classifying
unstructured user reviews into positive and negative station
experiences as an indicator of performance. Based on market
data from 2011-2015, we show how a convolutional neural net-
work trained on large-scale social data learns domain-specific
terms and in effect, approaches the accuracy of human experts
for sentiment classification. We then use this data to evaluate
popular sentiment and test hypotheses about service provision
on a national scale.

We discuss performance in the context of prediction policy
problems15 related to EV infrastructure. We further discuss
directions for the use of machine learning tools in the analysis
of government service delivery in near-real time and with
dynamically growing datasets.

Mobility Data
Mobile applications are changing the scale and techniques
by which user data can be aggregated16, 17. Digital platforms
in mobile phones enable users to search, locate, and pay for
transportation services in real time. Given the rise in smart
phone use for transportation services, it is possible to analyze—
subject to the necessary privacy protections—mobility deci-
sions for large populations with digital infrastructure18, 19. In
the context of electric vehicles, charging station locator apps
help lower information and transaction costs. Users can search
for available EV charging stations, pay for charging sessions,
and interact with other users by uploading station photos and
writing station reviews for the EV community.

Here we analyze unstructured consumer reviews at 12,720
US charging station locations as provided by a popular EV
charge station locator app. The data consists of 127,257 re-
views from 29,532 EV drivers during the period from 2011
to 2015. This includes data aggregated from 10 major EV
charging networks in the US.

Given the dynamically growing data size, it would be too
costly for researchers or government analysts to hand classify
these reviews for performance assessment. For example, at
a rate of 100 reviews per hour, it would take a human ex-
pert about 32 work weeks to analyze reviews by hand. As
a solution to this problem, we deploy a machine learning
algorithm to automatically process unstructured reviews by
taking advantage of social data in a digital platform and natu-
ral language processing. This approach allows us to reduce
processing times for research evaluation to just minutes of
computation. In the next section, we give a brief overview of
innovations in natural language processing used to compare
human ratings versus automated machine ratings for perfor-
mance assessment.
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map shows the counts of electric vehicle charging station reviews
per state from 2011 to 2015.

Natural Language Processing

Sentiment Classification Tasks
Sentiment classification is a classic problem in natural
language processing, in which the overall polarity (posi-
tive/negative) of a body of text is predicted using a machine
learning model. There have been a variety of approaches to
this task over time. For example, in early work, Pang and
Lee (2002) use bag-of-N-grams models with various algo-
rithms (e.g. support vector machines (SVM), Naïve Bayes,
and maximum entropy models). Scholars have argued that
these simplified bag-of-N-grams models, which convert a
recurring sequence of N items from sample text into word vec-
tors, lose much of the information in the text that is useful for
classification tasks20. For example, word order is lost, espe-
cially when using only unigrams, and so unstructured text that
could have different meanings would receive the same vector
space representation as long as they use the same words. In
our domain with EV charging station reviews, this means that
the two reviews: “no this charger is good”, and “this charger is
no good” would have identical representations. This is clearly
a problem for sentiment classification. Most critically, the
bag-of-N-grams approach fails to capture word semantics, and
therefore cannot generalize across semantically-related, but
distinct sequences of words21 such as “it is working” or “it is
functional.” Another known issue with the bag-of-N-grams
approach is that it often leads to high-dimensional document
representations that tend to generalize poorly22. We therefore
seek to implement more recent approaches that can capture
word meanings and allow for lower dimensional document
representations that can be effective for consumer charging
reviews in EV transportation and mobility.

Convolutional Neural Networks
Recently, different types of neural networks have seen some
success in sentiment classification tasks21, 23–25. However,
these algorithms need to be adapted and optimized for specific
domains before they can be useful. For this study, we use a
convolutional neural network (CNN) and build on a model
architecture similar to that proposed by Kim (2014). We
choose this approach as CNN-based classifiers have been
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Figure 2. Model Architecture for the Convolutional Neural Network. The first stage shown depicts the matrix
representation of the review text. Each row is a vector representation of a word, which captures information about word
similarity. The second stage is the convolutional layer for feature extraction. These convolutional filters learn what words to
look for in the reviews. There can be several convolutional filters per filter size such as filter heights of 3, 4 or 5. Next, we
represent the output sequences after convolution. The next stage represents the feature map, which is the result of applying an
activation function to the outputs of convolution. Finally, we apply max-pooling to capture the most important feature from
each feature map, and concatenate these together. This feature vector is then input into a fully connected layer for classification.

shown to achieve state-of-the-art results for sentence level
classification of short user generated texts, so we evaluate
these advances for possible implementation in our domain.
We compare the performance of our CNN classifier to two
commonly used models, namely SVM and logistic regression,
for which we use the bag-of-N-grams approach as baseline.

Convolutional neural networks first gained popularity in
computer vision and have recently been demonstrated to be
effective in several natural language processing tasks26–29.
Briefly, each review text is first converted into a sequence
of tokens, where each word is replaced with a number, such
as the index of the word in the total vocabulary set. These
tokenized sequences are padded with null tokens to all have
the same length, and are then converted into a matrix (see Fig-
ure 2). Each row in the matrix is a vector representation of a
word and is normally referred to as a word embedding. Similar
words are closer together in the vector space than dissimilar
words21. In our implementation, we use pre-trained word2vec
word embeddings, which have been trained on approximately
100 billion words and phrases from Google news20. To cap-
ture domain-specific semantics, word embeddings are updated
as the model is trained. A key innovation of the model archi-
tecture is that it flexibly allows for both unsupervised neural
language learning from pre-trained word vectors, while also
allowing for supervised learning of domain-specific terms
through back propagation23. A summary of the model archi-
tecture is provided in Figure 2.

Results

Machine Classification
Using a convolutional neural network, we classify electric
vehicle charging station experiences over a four year period
from 2011 to 2015. We ask: how well do the machine in-
telligence predictions agree with human predictions? We
know from our Cohen’s κ=.84 achieved when building our
training set that inter-rater agreement between human experts
is high, but it is not perfect. As such, we note that binary
sentiment classification in this domain is difficult, even for
human experts. With this in mind, it is encouraging that the
CNN classifier achieved a sentiment prediction accuracy of
84.1% when compared to human labels (Table 1). To further
demonstrate the efficiency of our classifier, we also report
precision and recall measures of 0.87 and 0.83, respectively.
These results indicate an improvement over other commonly
used baseline models for classification (e.g. SVM or logistic
regression, as shown in Table 1). The use of neural language
models to extract sentence level features have recently been
shown in the analysis of short user reviews and texts23, 25.
Here we demonstrate state-of-art performance for classifying
EV charging station reviews in the context of transportation
and mobility.

In our series of experiments, we find that the convolutional
neural network successfully identifies domain-specific pat-
terns of natural language. For instance, a commonly used
term that may be recognized by subject matter experts, but
not necessarily by the general population, is the notion of
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Table 1. Model Performance

Model Accuracy (Percent) Precision Recall
CNN 84.1 0.87 0.83
SVM 76.5 0.78 0.79
LR 78.5 0.79 0.82

Comparison of our convolutional neural network (CNN)
against baseline methods. For this comparison, we use

support vector machine (SVM) and logistic regression (LR).
For both of these baseline models, we use a bag-of-N-grams

document representation with identical features.

“ICE-ing.” To be “iced” or “ICE’d” is an informal term that
refers to cases in which an internal combustion engine vehicle
is parked in a space normally reserved for EV drivers. ICE-
ing is a common source of charge rage—the feeling drivers
get when they are unable to find a charger—and often re-
flects negative sentiment as its represents a violation of a
community norm. For example: “Came here on a Sunday
around 11:30am and every spot was ICEd,” or “I was iced
by a blue Dodge Journey.” For non-experts, these reviews
might lead to ambiguious classifications due to insufficient
domain knowledge otherwise common to EV drivers. That
artificial intelligence can detect ICE-ing in this context, and
reach the accuracy of human experts, albeit in a matter of min-
utes of computation, is notable. With this illustrative example,
we show how machine learning can be deployed to detect
natural language associated with complex behavioral norms
such as charging etiquette and other informal rules among a
community of users. Such capabilities could also substantially
reduce infrastructure evaluation costs and help equip utility
managers and station operators with rapid response capabili-
ties to improve service times. We suggest future research to
explore further uses of machine intelligence to identify behav-
ioral mechanisms related to charge rage, congestion and other
station failures.

In the next section, we use our best prediction model to test
common assumptions about charging behavior in public and
private spaces and at key points of interest.

Sentiment Analysis
We find evidence of significant EV charging station use in
all major US geographic areas (Figure 1). One could expect
reviews data to reflect mainly positive sentiment, if the sup-
porting EV infrastructure is working very well; or mainly
negative sentiment, if station reviews are primarily a reposi-
tory of complaints. Past research in marketing and psychol-
ogy studies have shown that people tend to weigh negative
information more than positive information during evalua-
tion, which could suggest a negativity bias in the incidence of
user reviews30, 31. We know that consumers are more likely
to share negative information across a platform when com-
munity ties are relatively weak, and both positive/negative
messages when community ties are strong32. Given the high

Table 2. Descriptive Statistics, Public and Private

Public Private Total
Positive 12,237 55,327 67,564
Negative 10,376 47,061 57,437

Total 22,613 102,388 125,001

Counts of machine classified reviews of binary sentiment by
public and private ownership. 2,256 reviews were submitted
in locations where it was impossible to discern whether it was

public or private.

level of engagement that we see among the community of
EV users, which has been described as a ‘community of en-
thusiasts’, it is not surprising that we find mixed valence in
the informational exchanges across the platform. From our
best performing model, we find that 68,876 reviews have a
positive sentiment and 58,381 have a negative sentiment for a
total of 127,257 classified reviews. In order to compare the
incidence of negative sentiment for econometric analyses, we
created a negativity index of conditional probabilities across
stations, where 0 means all reviews at a given station location
are positive, and 1 means all reviews at a given station location
are negative. A higher predicted sentiment probability (closer
to 1) would therefore not be desirable.

Table 3. Descriptive Statistics, Urban/Rural Type

Rural Urban Cluster Urban Center Total
Positive 4,932 4,990 58,954 68,876
Negative 2,322 2,320 53,739 58,381

Total 7,254 7,310 112,693 127,257

Counts of machine classified reviews of binary sentiment by
geographic area type as defined by U.S. Census designations.

The mean predicted sentiment across all station reviews in
both urban and non-urban areas is 0.39. This means that we
predict a negative experience in consumer charging reviews by
EV drivers who use charging station locator apps nearly 40%
of the time. While this number might not seem high at first,
it is analogous to predicting a negative experience four out
of ten times that a driver goes to a gas station to fill up a car
and writes about the experience. We argue that a greater focus
on the quality of the electric vehicle charging experience is
needed.

Discussion
Public versus Private Stations
Theory predicts that under the right incentives, private charg-
ing stations should outperform those run by government en-
tities8. However, in practice, it is unclear whether sufficient
incentives exist for private station hosts to maintain a high
level of service quality, especially in the reselling of electric
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Figure 3. Predicted Probability of Negative Sentiment in Public and Private Spaces. Stations for pay have a higher probability of
negative sentiment in both public and privately owned stations (p = 0.00). While we find differences in distribution (K-S test p-value p=.00),
we find no statistically significant difference in mean sentiment between public and privately owned stations
(µprivate = 0.42, µpublic = 0.44, p = 0.14).

power, where capital cost recovery is often challenging and
retail electricity prices are low. Here we test the hypothesis
that private charging stations more effectively deliver charging
services versus public stations provided by government. We
consider a broad definition of public stations such as those that
have been geolocated at points of interest (POI) that include
government and municipal buildings, public libraries, rest ar-
eas, transit centers, public parks and visitor centers. We define
private stations as those that have been geolocated at POIs that
include hotels, retail/food establishments, shopping centers,
healthcare facilities, workplaces and other non-residential lo-
cations. It is important to note that private charging locations
do not imply that charging access is restricted to the public.
This is because privately owned or managed EV stations are
a key part of the publicly accessible charging infrastructure.
Only about 1% of private charging locations that contain user
check-ins and reviews on the popular mobile platform are
considered restricted access.

In Table 2, we provide descriptive statistics for the raw
counts of machine classified reviews at both public and pri-
vate charging destinations. Contrary to expectation, we do
not find a statistically significant difference in the mean pre-
dicted sentiment between public and private charging station
locations (see Figure 3). We validated this finding by adjust-
ing for factors driving selection to review, and other observ-
able location characteristics. Observable location characteris-
tics include the type and number of networks available (e.g.
Chargepoint, Blink, SemaConnect, Aerovironment, EVgo,
Tesla Supercharger, GE Wattstation, etc.), the type and num-
ber of connector plug technologies (e.g. J-1772, CHAdeMO,
SAE Combo, Tesla supercharger, NEMA plug, etc.), and other

driver-identifiable location attributes by point of interest. To
mitigate possible unobserved heterogeneity, we also include
the station rating as a proxy variable for unobserved quality
attributes. Additionally, we considered a more narrow defi-
nition of public chargers with POI restricted to government-
only stations in order to verify the result of statistical parity in
consumer sentiment between public and private stations. Ad-
ditional information is available in the Materials and Methods
section.

We interpret this finding in two ways. First, our results
indicate that private charging station locations do not outper-
form those that may be publicly owned or managed. Second,
from a public choice perspective, our results provide some
evidence that the private provisioning of EV charging services
could be an alternative to large, publicly managed charging
infrastructure. For example, one anonymous reviewer writes
about the substitutability of a public charger for a private
charger: “Be careful if you plan on charging here, there are
two cars that tend to bogart these chargers try the city hall
chargers.” Evidence of statistical parity in consumer percep-
tions between public and private charging locations addresses
a concern raised by the National Research Council on barriers
to EV infrastructure growth33. We caution however, that our
performance indicator captures popular sentiment from the
standpoint of national consumer reviews, and not a power sys-
tems delivery perspective, which requires further investigation
and integration with consumer data.

As shown in Figure 3, we find that paid charging stations
consistently receive a higher proportion of negative reviews
as compared to free stations. Not surprisingly, this result
holds whether the station is in a public or private location.
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This finding suggests users may have higher expectations for
service reliability when paying for charging services. It is
plausible that EV station location, whether public or private,
may not be the dominant factor affecting service reliability.
For example, stations located on public properties could have
enjoyed the same (or perhaps even higher) level of operation
and maintenance subscription services. In the next section,
we use location microdata to investigate possible regional
differences.

Urban versus Rural Areas
We compare the performance of stations in urban versus non-
urban areas. For this analysis, we merge the geocoded station
location data with geographical designations using standard
U.S. Census definitions34. These include dense urban cen-
ters or urbanized areas (e.g. populations greater than 50,000),
smaller urban clusters (populations between 2,500 and 50,000)
and rural areas (populations less than 2,500). Based on the
2010 Census results, there are 486 urbanized areas and 3,087
urban clusters in the US. Here the differences in consumer sen-
timent are considerable. According to one view, EV drivers
in areas with the lowest density of charging stations are more
likely to experience issues of range anxiety, possibly leading
users in these areas to publish more negative reviews. There-
fore, from a supply side or resource availability hypothesis,
areas with greater access to charging stations should garner
the most positive reviews. Interestingly, we find the high-
est incidence of negative sentiment not in the rural areas or
smaller urban clusters, but rather in the dense urban centers
(see Figure 4). This is intriguing because approximately 89%
of all user reviews are in urban centers, which reflects the
state of the built infrastructure (Table 3).

After controlling for important station location and timing
factors, we find that urban charging stations exhibit a statisti-
cally significant 12-15 percent increase in the negativity score
as compared to non-urban charging locations (Table 6, Models
IV-VI).

Our finding that EV charging stations in dense urban cen-
ters significantly underperform those in smaller urban clusters
or rural areas where population and station densities are lower,
could be indicative of a broader range of service quality issues
in the largest EV markets. For example, many users report
a lack of functional stations upon arrival, as well as issues
related to congestion or lack of availability: “some person
is just pulling plugs without any note; i’ll review footage on
my security cam.” or “Both spots taken. One by a Volt that’s
finished charging... Seriously time for more EVSE stations.”
In Table 4 and Table 5, we summarize the predicted (negative)
sentiment probabilities for both free and paid charging sta-
tions in the 18 largest U.S. metro areas and top 20 U.S. states
by number of reviews. Although user reviews exist in all 50
states, the dominant source of activity is in California with
54,684 reviews or 43% of all consumer reviews in the dataset.
The Los Angeles metro area for example, is the largest CBSA
for charging station reviews through 2015 with 22,878 or 18%
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Figure 4. Predicted Probability of Negative Sentiment
by Geographical Area. EV chargers in urban centers have a
significantly higher probability of negative sentiment as
compared to urban clusters and rural areas (p = 0.00).

of all reviews in the dataset. The mean predicted negative
sentiment in Los Angeles ranges from 0.43 to 0.56, which
means a given user is nearly just as likely to report a negative
consumer charging experience as a positive one. This is higher
than the estimated U.S. national average sentiment score that
we report of 0.39. Beyond resource availability, our results
suggest that service reliability is already a key factor impact-
ing consumer sentiment in the largest EV markets. Next, we
evaluate the results by points of interest.

Points of Interest
We summarize the results of our sentiment analysis by point of
interest in Figure 5. The best performing private stations are
at points of interest such as hotels/lodging destinations, restau-
rants and food establishments, and other service related POIs.
This is to be expected as private station hosts in these loca-
tions often provide subsidized or complimentary EV charging
services as a way to attract and cater to specific clientele. This
suggests some incentive-based management practices. The
highest performing POIs include parks and recreation as well
as visitor centers, RV parks, and hotels/lodging. All of these
POIs are associated with travel destinations and based on our
reading of reviews at the locations, we believe that destination
range anxiety could factor into positive reviews since drivers
may be more willing to sacrifice some unsatisfactory condi-
tions for the needed charge. Some of the worst performing
POIs from the consumer reviews include car rental locations
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Figure 5. Predicted Probability of Negative Sentiment
by Point of Interest

and car dealerships. This is consistent with recent evidence
on car dealership practices at the point of sale, which have
been documented as promulgating barriers to EV adoption35.
Workplace and mixed use residential locations with ground
floor retail establishments are also relatively low performing
POIs. For example, many EV users at workplace and mixed
use residential locations complain that EV stations can be
difficult to access or that there is poor signage for public ac-
cessibility. We provide more detailed point estimates of POI
location performance in Table 6.

Policy Implications
Large-scale social data from digital platforms can offer a num-
ber of benefits for research evaluation efforts, particularly in
evaluating charging behavior in emerging EV infrastructure.
We show that using computational tools such as neural net-
work based language models, it is possible to develop more
sophisticated performance indicators from unstructured data
that offer the potential to update in near real-time. This is a
major step forward from current practice that relies on indirect
travel surveys or simulations, which can be costly and time-
intensive to administer36. We argue that consumer reviews are
an important input to learning about infrastructure challenges
faced by current EV owners and should be prioritized when
designing policies related to EV infrastructure access. This
is particularly important in the design of “EV ready” or “EV
capable” policies that require new buildings for example to
install and maintain a certain number of EV charging stations

using building codes and ordinances37. Such policies have
grown in popularity in many cities such as Atlanta, Denver
and Palo Alto, but largely without data or deliberation about
service quality from existing EV drivers or other consumer
groups.

Further, mobile apps can aggregate consumer data auto-
matically at a large-scale, but independent station hosts and
operators currently have little incentive to share data across
network providers. Centralized reporting and secure data shar-
ing across charging networks and utility jurisdictions would
allow for more efficient resource planning decisions, partic-
ularly in resilience considerations between power systems
delivery and emerging transportation infrastructure. One key
exception to platform data sharing is the listing of EV charg-
ing stations maintained on an annual basis by the Alternative
Fueling Station Locator tool hosted by the U.S. Department
of Energy under the Clean Cities Program. While an invalu-
able tool, this digital repository of EV charging stations does
not currently contain any real-time availability information,
network status, user information or options for community
engagement. We argue that policies to encourage greater in-
formation sharing as well as standardization in the quality of
charging service delivery are necessary.

In this article, we show how machine intelligence can ap-
proach the accuracy of human experts for sentiment classifica-
tion tasks, while showing promise for automatically learning
domain specific terms in emerging EV infrastructure. Big data
and machine learning techniques can automate the process of
discovering new mobility patterns and detecting behavioral
failures from consumer data, but they do not replace the need
to keep a human-in-the-loop. It should be noted that, due to
the classifier being trained by a human, the classifier is only as
unbiased as the human rater. Not all consumer reviews can be
relevant or actionable. Nevertheless, by expanding adminis-
trative records with real-time data from digital platforms, it is
now possible to track station performance in both accessible
and remote areas in ways that were not previously possible.
Further, the use of machine learning tools as a pre-processing
step for policy analyses can be helpful to determine qual-
ity requirements in both coverage and demand assessments
related to transportation infrastructure38. This focus on big
data and real-time mobility in digital platforms will become
increasingly important over time, as driver incentives and
other supply-driven policies designed to reduce externalities
from electric vehicles do not typically address or affect driver
behavior39, 40.

Finally, as EV infrastructure grows, we argue that it is not
just the quantity of available charging stations that matter to
consumers, but also the quality of the charging station experi-
ence. From our results, a key focus for quality improvement
should be in the dense urban centers, where reports of ICE-ing,
and a lack of available or functional stations are prominent
and appear to drive negative consumer reviews. While paid
stations consistently receive higher negative sentiment related
to consumer expectations about the charging experience, com-
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munity interactions also reveal emerging norms about charger
etiquette and prosocial behavior primarily designed to help
others in the community. However, further research is nec-
essary to determine the most important mechanisms of user
dissatisfaction in order to help resource allocation decisions or
predict failures before they occur. This line of inquiry could
pave the way towards the automatic detection of mobility de-
cisions in near real-time, using the voice of the consumer as
an input to gauging quality in charging service delivery. Over
the next several years, we expect new investment of about
$80 billion USD in electric vehicle supply equipment1. From
the perspective of consumer reviews, we argue that it is not
enough to just invest money into increasing the quantity of
available stations, it is also important to invest money into
reliable infrastructure that actually works.

Materials and Methods
Training Data
In any supervised ML classification task, it is necessary to
obtain ground truth labels. To generate these labels, two hu-
man raters served as experts for sentiment classification. Each
human rater independently coded a set of reviews. These
reviews are approximately balanced in polarity. In total, there
are 8,953 hand-classified reviews in our training set. We
achieved the best inter-rater reliability (κ = 0.84,SE = 0.7)41

by treating this task as a two-class problem, meaning reviews
reflect a binary sentiment (positive/negative). Neutral classifi-
cations are found to be very difficult for human rater tasks in
this domain.

Selection of Hyper-parameters
We used various strategies to select our hyper-parameters.
Building on prior literature, we selected 1-max pooling,
dropout regularization42 with a rate of .6, and a ReLU ac-
tivation function in our convolutional layer, as these hyper-
parameters have been shown to improve accuracy43. In par-
ticular, the dropout technique was implemented to prevent
over-fitting42. In our implementation, we confirm that an L2
constraint had no discernible performance improvement and
therefore we do not include it in our model43. Other hyper-
parameters include a batch size of 128; learning rate of .001;
filter heights of 3, 4, and 5; 100 filters for each filter height.
Filter widths are 300, which are set to the dimensionality of
the word embeddings. Our unit of analysis for each review is
at the station level.

Measuring Outcomes of Interest
For a given charging station i and review period year, we
define the Negativity Score as the count of negative reviews
as a fraction of the total count of reviews:

NegativityScorei,year=
Count of negative reviewsi,year

Total count of reviewsi,year
(1)

By construction, the share of negative reviews at a charging
station is normalized to lie in the unit interval [0,1]. Boundary

observations of the dependent variable at 0 indicates that
all reviews at a charging station are positive, and boundary
observations at 1 indicates that all reviews at a charging station
are negative. A higher negativity score is undesirable. We also
group the charging stations by location group, g (i.e. there
can be more than 1 station ID at a given location) and the
year of the review to provide a rate of users leaving a review
relative to the amount of use of the class of station. Users can
check-in to the platform and leave a review which enters into
the Count of reviews, or check-in without leaving a review,
which enters into the count of other Check-ins. We define the
review rate as

ReviewRatei,g,year =
Count of reviewsi,g,year

Count of reviewsi,g,year +Check-insi,g,year

(2)

Fractional response models
We used the outputs of the CNN classifier as a pre-processing
step for econometric analysis of consumer sentiment. Given
the limitations of linear estimation methods such as OLS for
bounded dependent variables, we implemented a fractional
response model (FRM) for the probability share data based on
the quasi-maximum likelihood (QMLE) estimator44, 45. We
present some elements of FRM models as developed by Papke
and Woolridge44, 45 and then apply it to machine learning
outputs in mobility data. In the standard FRM setup, we
are interested in the conditional expectation of the fractional
response variable yi,t on a group-specific vector of explanatory
variables xi,t such as,

E(yi,t |xi,t) = G(xi,tθ), i = 1, . . . , N (3)

where G(·) is a non-linear function such as the cdf that satisfies
0 ≤ G(·) ≤ 1, the fractional dependent variable is defined
only on 0 ≤ yi,t ≤ 1, and θ is a parameter vector of interest.
Observations at the extremes of the outcome distributions are
estimated directly using the Bernoulli log-likelihood function,
given by

li,t(θ)≡ yi,t log[G(xi,tθ)]+(1−yi,t) log[1−G(xi,tθ)] (4)

In our dataset, some charging station reviews may be classified
as all negative or all positive at a given location. Given the
presence of boundary observations at 0 and 1, the pooled
Bernoulli QMLE of θ does not require dichotimizations of
the dependent variable and is computed as

θ̂ = argmax
b

N

∑
i=1

li,t(θ) (5)

We note that this approach overcomes 3 important limita-
tions found in comparable methods. First, we account for
the bounded nature of the data and do not assume a linear
conditional mean or constant linear effects, which requires
stronger assumptions for estimation. Second, commonly used
log-odds methods are not well-defined for boundary values 0
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and 1 present in the data, and often require ad-hoc adjustments
such as arbitrarily chosen constants. Third, methods based on
two-limit Tobit models may be appropriate for censored data
with boundary observations at both limits, but its application
to fractional data that is not defined outside the boundary lim-
its is hard to justify. For a more detailed review of fractional
regression models, see Ramalho et al.46

Selection Effects of Providing A Review
The decision to provide a review is a voluntary one. It condi-
tions the interpretation of information developed by analyzing
a sample of reviews. Charging station activity outside the
digital platform is inherently unobservable. To address the
selection effects, we attempt to explain the likelihood of giv-
ing a review as a function of characteristics of the charging
location and timing. In Eq. (2), we normalize the empirical
review counts by total platform engagements including user
check-ins without reviews. In this way, we are able to adjust
our estimates of the importance of explanatory variables on
the empirical review rate by a measure of total charging sta-
tion usage beyond review activity. For example, during the
period of study, there are 276,744 total user check-ins on the
platform, of which 127,257 contain reviews.

Our main estimating equation relates the review rate and
negativity score as a function of one or more of the explanatory
variables. This includes point of interest (POI) information,
geographical area such as urban, suburban or rural, the type
and count of networks available, the type and count of station
connectors available, and our designation as public stations
based on station geolocation. Due to data limitations, we
could not adjust for car type of the driver as that information
is voluntary, so we had a biased subsample. Additionally, we
also tested specifications that included the proprietary station
quality rating [numeric score 1-10] as a proxy for possible
unobserved heterogeneity. We estimate the following general
equation,

Outcomesi,g,year = αi,year +Publici,g +POIi,g

+Networksi,g,year +Connectorsi,g +Ratingi
(6)

In Table 6, we report the main results. The main drivers of
the review rate include geographical area (whether urban or
non-urban) and point of interest location information. We also
find a statistically significant effect of the type and number of
station connectors available, and the type of charging network
such as the service provider, but not the number of networks
available at a station location, which can range from 1 to 3
networks at a location ID. This suggests choice in charging
network service provider is not yet a significant factor. Given
our main interest in the public provision of charging services,
we confirmed our finding of no significant effect of public
locations (or more narrowly defined government only loca-
tions) on the review rate. This result is robust to our proxy
for unobserved quality attributes as measured by the station
quality rating provided to us by the platform provider (Table
6, Models II-III). Overall, for factors driving the selection to

review, location matters; as does the network type, connector
technology and other quality related factors. In Table 6, we
do not show the point estimates for individual networks or
plug types, but these results are available upon request from
the authors.

In Table 6, we condition on all observable characteristics
from our aggregate selection analysis to then compute the
average partial effects for factors driving the negativity score.
The analysis reveals that urban chargers accoubnt for a sta-
tistically significant 12-15 percent increase in the negativity
score, as compared to non-urban charging stations (Table 6,
Models IV-VI). Similarly, we also confirmed our finding of no
statistically significant effect of private versus public stations,
which is robust to both a broad and narrow definition of public
stations, and unobserved quality factors.

In Table 7, we provide supplementary regression results
comparing the performance of the FRM approach versus a
standard OLS estimator. While we find the estimates to be
qualitatively similar, we see that FRM generates more conser-
vative estimates compared with OLS, which over-estimates
the magnitude of the effects as expected.

Comments on Defining Public and Private Stations
In order to determine whether or not the chargers on public
properties were also publicly owned and managed, we con-
tacted a random sample of 170 public EV charging locations,
stratified by network (Blink, ChargePoint, etc.). We then at-
tempted to contact each location through a combination of
email and phone calls to ask the following questions, “Are the
charging stations at this property owned by the organization?”
and “Are the charging stations at this property managed by the
organization?”. We also contacted several major EV charging
networks directly (e.g. SemaConnect, ChargePoint, Green-
Lots, and Blink network) to determine whether or not they op-
erate/maintain charging units on behalf of their customers. For
example, we found that while GreenLots network manages
all of their stations on behalf of stations hosts, station owners
from the other three major networks we contacted can decide
whether or not they want to enter into a contract/warranty
for servicing. Overall, we found four possibilities regarding
station ownership and maintenance on public properties:

1. Stations are both owned and managed by public entities
(such as those in Colton, California).

2. Stations are owned by public entities, but managed by
private EV charging networks (such as the one at the
Anaheim Intermodal Transit Center in Anaheim, Califor-
nia).

3. Stations are owned by public entities, but managed by a
local contractor (such as the station at Roswell City Hall
in Roswell, GA).

4. Stations are neither owned nor managed by public enti-
ties (such as the station at the Minnesota Department of
Natural Resources in St. Paul, Minnesota).
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After contacting 170 stations, we were able obtain answers
to our management question at 32 locations. Of these 32
locations, 10 were managed by the public entity and 22 were
either managed by an EV charging network or managed by
a private company. We were also able to get answers to our
ownership question at 23 locations. Of these 23 locations,
the stations at 14 locations were owned by the public entity,
and the stations at 9 locations were not. We believe that
the management structure can potentially be an important
driver of proper functioning of EV chargers and hence, the
consumer experience. However, the managerial aspects of
public versus private operation, while it is out of the scope of
the current paper, we highlight as important differences for
future research.

Study limitations
While we demonstrate gains using machine learning in this
domain, there remain key areas for technical improvement.
First, it may be necessary to increase the size of the train-
ing data to achieve higher convergence between human and
machine classifications, especially in dynamically growing
social datasets where topic categories may be broad. For ref-
erence, we calculated an alternative agreement score between
the human predictions and machine predictions by treating the
machine as a separate rater. The resulting κ = .68 suggests
additional optimization could be necessary to increase reliabil-
ity scores. However, due to computational complexity, it may
be difficult to fully optimize all hyper-parameters to reach a
global optimum. Future work can explore optimal filter sizes.
For example, one approach proposed by Zhang and Wallace
is to conduct “a line search over the single filter region size to
find the ‘best’ single region size”43. This could be a promising
approach to further improve accuracy in subpopulations or in
training sets with different types of human raters. We leave
this as future work for topic modeling.

Another limitation of our analysis is that while we are able
to quantitatively evaluate sentiment from consumer reviews,
additional information is needed to identify the psychological
basis for negative charging experiences. It would be useful to
develop topic classifications and accompanying training data
with ground truth labels that describe the various sources of
negative consumer experience. This might allow for deeper
identification of mechanisms and algorithmic classification
for policy analysis.

Code Availability
Computer code and algorithm replication materials have been
deposited on Github under a general public license GPL-3.0-
or-later at DOI: 10.5281/zenodo.1419830.

Data Availability
All data generated or analysed during this study are not pub-
licly available due to privacy restrictions from the platform
provider. These data are however available from the corre-
sponding author upon reasonable request and with the permis-
sion of the platform provider.

References
1. Navigant. Market Data: EV Market Forecasts: Global

Forecasts for Light Duty Plug-In Hybrid and Battery EV
Sales and Populations: 2017-2016 (2017).

2. EPA. Inventory of U.S. Greenhouse Gas Emissions and
Sinks: 1990-2016 (2018). EPA Document No. 430-R-18-
003.

3. Michalek, J. J. et al. Valuation of plug-in vehicle life-
cycle air emissions and oil displacement benefits. Proc.
Natl. Acad. Sci. 108, 16554–16558, DOI: 10.1073/pnas.
1104473108 (2011).

4. Tessum, C. W., Hill, J. D. & Marshall, J. D. Life cycle
air quality impacts of conventional and alternative light-
duty transportation in the united states. Proc. Natl. Acad.
Sci. 111, 18490–18495, DOI: 10.1073/pnas.1406853111
(2014).

5. Holland, S. P., Mansur, E. T., Muller, N. Z. & Yates, A. J.
Are there environmental benefits from driving electric
vehicles? the importance of local factors. Am. Econ. Rev.
106, 3700–3729, DOI: 10.1257/aer.20150897 (2016).

6. Li, S., Tong, L., Xing, J. & Zhou, Y. The market for
electric vehicles: Indirect network effects and policy de-
sign. J. Assoc. Environ. Resour. Econ. 4, 89–133, DOI:
10.1086/689702 (2017). https://doi.org/10.1086/689702.

7. Andreoni, J. Impure altruism and donations to public
goods: A theory of warm-glow giving. The Econ. J. 100,
464–477 (1990).

8. Kotchen, M. Green markets and private provision of
public goods. J. Polit. Econ. 114, 816–834 (2006).

9. Warner, M. & Amir, H. Managing markets for public
service: The role of mixed public–private delivery of city
services. Public Adm. Rev. 68, 155–166, DOI: 10.1111/
j.1540-6210.2007.00845.x (2008). https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1540-6210.2007.00845.x.

10. Warner, M. & Hebdon, R. Local government restructur-
ing: Privatization and its alternatives. J. Policy Analysis
Manag. 20, 315–336, DOI: 10.1002/pam.2027 (2001).

11. Carley, S., Krause, R. M., Lane, B. W. & Graham, J. D.
Intent to purchase a plug-in electric vehicle: A survey of
early impressions in large us cites. Transp. Res. Part D:
Transp. Environ. 18, 39–45 (2013).

12. Sovacool, B. K. & Hirsh, R. F. Beyond batteries: An
examination of the benefits and barriers to plug-in hy-
brid electric vehicles (phevs) and a vehicle-to-grid (v2g)
transition. Energy Policy 37, 1095 – 1103, DOI: https:
//doi.org/10.1016/j.enpol.2008.10.005 (2009).

13. Asensio, O. I. & Walsh, S. E. Mobile apps for workplace
charging: A big data field experiment in electric vehicles.
Acad. Manag. Glob. Proc. 2018 Surrey, 208, DOI: 10.
5465/amgblproc.surrey.2018.0208.abs (2018).

10/17

https://choosealicense.com/licenses/gpl-3.0/
https://choosealicense.com/licenses/gpl-3.0/
10.1073/pnas.1104473108
10.1073/pnas.1104473108
10.1073/pnas.1406853111
10.1257/aer.20150897
10.1086/689702
https://doi.org/10.1086/689702
10.1111/j.1540-6210.2007.00845.x
10.1111/j.1540-6210.2007.00845.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6210.2007.00845.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6210.2007.00845.x
10.1002/pam.2027
https://doi.org/10.1016/j.enpol.2008.10.005
https://doi.org/10.1016/j.enpol.2008.10.005
10.5465/amgblproc.surrey.2018.0208.abs
10.5465/amgblproc.surrey.2018.0208.abs


14. Williams, B. & DeShazo, J. Pricing workplace charging:
financial viability and fueling costs. Transp. Res. Rec. J.
Transp. Res. Board 68–75 (2014).

15. Kleinberg, J., Ludwig, J., Mullainathan, S. & Obermeyer,
Z. Prediction policy problems. Am. Econ. Rev. 105,
491–95, DOI: 10.1257/aer.p20151023 (2015).

16. Asensio, O. I. & Delmas, M. A. Nonprice incentives and
energy conservation. Proc. Natl. Acad. Sci. 112, E510–
E515, DOI: 10.1073/pnas.1401880112 (2015).

17. Asensio, O. I. & Delmas, M. A. The dynamics of behavior
change: Evidence from energy conservation. J. Econ.
Behav. Organ. 126, 196 – 212, DOI: https://doi.org/10.
1016/j.jebo.2016.03.012 (2016).

18. Alexander, L., Jiang, S., Murga, M. & González, M. C.
Origin–destination trips by purpose and time of day in-
ferred from mobile phone data. Transp. Res. Part C:
Emerg. Technol. 58, 240–250, DOI: 10.1016/j.trc.2015.
02.018 (2015).

19. Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Un-
derstanding individual human mobility patterns. Nature
453 (2008).

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. &
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems, 3111–3119 (2013).

21. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Na-
ture 521, 436–444, DOI: 10.1038/nature14539 (2015).

22. Le, Q. & Mikolov, T. Distributed representations of
sentences and documents. In International Conference
on Machine Learning, 1188–1196 (2014).

23. Kim, Y. Convolutional Neural Networks for Sentence
Classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 1746–1751 (Association for Computational
Linguistics, Doha, Qatar, 2014).

24. Socher, R. et al. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings
of the 2013 conference on empirical methods in natural
language processing, 1631–1642 (2013).

25. dos Santos, C. & Gatti, M. Deep convolutional neural
networks for sentiment analysis of short texts. In Proceed-
ings of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers, 69–78
(2014).

26. Yih, W.-t., Toutanova, K., Platt, J. C. & Meek, C. Learn-
ing discriminative projections for text similarity measures.
In Proceedings of the Fifteenth Conference on Computa-
tional Natural Language Learning, 247–256 (Association
for Computational Linguistics, 2011).

27. Shen, Y., He, X., Gao, J., Deng, L. & Mesnil, G. Learn-
ing semantic representations using convolutional neural

networks for web search. In Proceedings of the 23rd
International Conference on World Wide Web, 373–374
(ACM, 2014).

28. Kalchbrenner, N., Grefenstette, E. & Blunsom, P. A
convolutional neural network for modelling sentences.
arXiv preprint arXiv:1404.2188 (2014).

29. Collobert, R. et al. Natural language processing (almost)
from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011).

30. Sen, S. & Lerman, D. Why are you telling me this?
an examination into negative consumer reviews on the
web. J. Interact. Mark. 21, 76–94, DOI: 10.1002/dir.
20090. https://onlinelibrary.wiley.com/doi/pdf/10.1002/
dir.20090.

31. Mizerski, R. W. An attribution explanation of the dis-
proportionate influence of unfavorable information. J.
Consumer Res. 9, 301–310 (1982).

32. Chu, S.-C. & Kim, Y. Determinants of consumer en-
gagement in electronic word-of-mouth (ewom) in so-
cial networking sites. Int. J. Advert. 30, 47–75, DOI:
10.2501/IJA-30-1-047-075 (2011). https://doi.org/10.
2501/IJA-30-1-047-075.

33. Board, T. R. & Council, N. R. Overcoming Barriers to
Deployment of Plug-in Electric Vehicles (The National
Academies Press, Washington, DC, 2015).

34. US Census. 2010 Census Urban and Rural Classification
and Urban Area Criteria (2010).

35. Gerardo Zarazua de Rubens, L. N. & Sovacool, B. K.
Dismissive and deceptive car dealerships create barriers
to electric vehicle adoption at the point of sale. Nat.
Energy 3, 501–507, DOI: 10.1038/s41560-018-0152-x
(2018).

36. Rezvani, Z., Jansson, J. & Bodin, J. Advances in con-
sumer electric vehicle adoption research: A review and re-
search agenda. Transp. Res. Part D: Transp. Environ. 34,
122 – 136, DOI: https://doi.org/10.1016/j.trd.2014.10.010
(2015).

37. DOE. Plug-In Electric Vehicle Deployment Policy Tools:
Zoning, Codes, and Parking Ordinances (2015). Alter-
native Fuels Data Center, Technology Bulletin August
2015.

38. DOE. National Plug-In Electric Vehicle Infrastructure
Analysis (2017). Office of Energy Efficiency and Renew-
able Energy, DOE/GO-102017-5040.

39. DeShazo, J. R. Improving incentives for clean vehicle
purchases in the united states: Challenges and opportu-
nities. Rev. Environ. Econ. Policy 10, 149–165, DOI:
10.1093/reep/rev022 (2016).

40. DeShazo, J., Sheldon, T. L. & Carson, R. T. Designing
policy incentives for cleaner technologies: Lessons from
california’s plug-in electric vehicle rebate program. J.
Environ. Econ. Manag. 84, 18 – 43, DOI: https://doi.org/
10.1016/j.jeem.2017.01.002 (2017).

11/17

10.1257/aer.p20151023
10.1073/pnas.1401880112
https://doi.org/10.1016/j.jebo.2016.03.012
https://doi.org/10.1016/j.jebo.2016.03.012
10.1016/j.trc.2015.02.018
10.1016/j.trc.2015.02.018
10.1038/nature14539
10.1002/dir.20090
10.1002/dir.20090
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dir.20090
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dir.20090
10.2501/IJA-30-1-047-075
https://doi.org/10.2501/IJA-30-1-047-075
https://doi.org/10.2501/IJA-30-1-047-075
10.1038/s41560-018-0152-x
https://doi.org/10.1016/j.trd.2014.10.010
10.1093/reep/rev022
https://doi.org/10.1016/j.jeem.2017.01.002
https://doi.org/10.1016/j.jeem.2017.01.002


41. Cohen, J. A Coefficient of Agreement for Nomi-
nal Scales , A Coefficient of Agreement for Nomi-
nal Scales. Educ. Psychol. Meas. 20, 37–46, DOI:
10.1177/001316446002000104 (1960).

42. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.
& Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The J. Mach. Learn.
Res. 15, 1929–1958 (2014).

43. Zhang, Y. & Wallace, B. A Sensitivity Analysis of
(and Practitioners’ Guide to) Convolutional Neural Net-
works for Sentence Classification. arXiv:1510.03820 [cs]
(2015). ArXiv: 1510.03820.

44. Papke, L. E. & Wooldridge, J. M. Econometric methods
for fractional response variables with an application to
401(k) plan participation rates. J. Appl. Econom. 11, 619–
632, DOI: 10.1002/(SICI)1099-1255(199611)11:6<619::
AID-JAE418>3.0.CO;2-1.

45. Papke, L. E. & Wooldridge, J. M. Panel data methods
for fractional response variables with an application to
test pass rates. J. Econom. 145, 121 – 133, DOI: https:
//doi.org/10.1016/j.jeconom.2008.05.009 (2008). The use
of econometrics in informing public policy makers.

46. Ramalho, E. A., Ramalho, J. J. & Murteira, J. M. Al-
ternative estimating and testing empirical strategies for
fractional regression models. J. Econ. Surv. 25, 19–68.

Acknowledgements
We thank the generous support of the Anthony and Jeanne
Pritzker Family Foundation, the Sustainable LA Grand Chal-
lenge, and the Civic Data Science REU program at Georgia
Tech (NSF Award No. IIS-1659757). We are grateful to Ellen
Zegura and Chris Le Dantec for feedback and discussions.
For valuable research assistance, we thank Mary Elizabeth
Burke and Soobin Oh. Special thanks to Norman Hajjar.

Author contributions statement
O.I.A. directed the research and wrote the paper; A.D., E.W.,
and K.A. developed code, analyzed data and wrote the pa-
per; K.A. and C.H. implemented algorithms and performed
experiments. All authors reviewed the manuscript.

Additional information

Competing Interests
The authors declare no competing interests.

12/17

10.1177/001316446002000104
10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1
10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1
https://doi.org/10.1016/j.jeconom.2008.05.009
https://doi.org/10.1016/j.jeconom.2008.05.009


T a
bl

e
4.

Pr
ob

ab
ili

ty
of

N
eg

at
iv

e
Se

nt
im

en
tf

or
To

p
20

St
at

es
in

th
e

U
ni

te
d

St
at

es

Pu
bl

ic
Pr

i v
at

e

St
at

e
Fr

ee
Pa

id
p-

va
lu

e
Fr

ee
Pa

id
p-

va
lu

e
N

o.
of

R
ev

ie
w

s
C

al
if

or
ni

a
0.

44
0.

47
0.

10
0.

48
0.

50
0.

11
54

,6
84

W
as

hi
ng

to
n

0.
46

0.
44

0.
70

0.
38

0.
43

0.
06

7,
83

0
O

re
go

n
0.

42
0.

46
0.

72
0.

34
0.

41
0.

02
7,

02
7

G
eo

r g
ia

0.
46

0.
44

0.
83

0.
38

0.
48

0.
00

6,
62

3
Fl

or
id

a
0.

36
0.

41
0.

39
0.

46
0.

44
0.

54
4,

42
0

M
ar

yl
an

d
0.

39
0.

39
0.

96
0.

42
0.

39
0.

50
3,

54
1

A
ri

zo
na

0.
44

0.
47

0.
90

0.
36

0.
50

0.
00

3,
36

5
N

e w
Y

or
k

0.
43

0.
40

0.
66

0.
38

0.
44

0.
12

2,
89

4
T e

xa
s

0.
53

0.
45

0.
34

0.
42

0.
50

0.
02

2,
61

5
V

irg
in

ia
0.

48
0.

40
0.

46
0.

38
0.

46
0.

05
2,

58
8

Pe
nn

sy
lv

an
ia

0.
42

0.
55

0.
30

0.
40

0.
45

0.
24

2,
53

6
N

or
th

C
ar

ol
in

a
0.

40
0.

45
0.

64
0.

39
0.

50
0.

06
2,

18
1

C
ol

or
ad

o
0.

40
0.

51
0.

28
0.

34
0.

36
0.

78
2,

16
1

Il
lin

oi
s

0.
53

0.
56

0.
76

0.
48

0.
44

0.
33

2,
10

5
M

as
sa

ch
us

et
ts

0.
38

0.
52

0.
12

0.
40

0.
42

0.
58

2,
07

4
T e

nn
es

se
e

0.
52

0.
52

0.
97

0.
42

0.
49

0.
19

1,
98

3
M

ic
hi

g a
n

0.
34

0.
35

0.
94

0.
39

0.
28

0.
03

1,
48

8
O

hi
o

0.
31

0.
49

0.
19

0.
40

0.
48

0.
21

1,
44

3
N

e w
Je

rs
ey

0.
45

0.
47

0.
82

0.
41

0.
44

0.
72

1,
39

0
H

a w
ai

i
0.

59
0.

69
0.

69
0.

56
0.

58
0.

72
1,

25
9

R
es

ul
ts

of
t-

te
st

s
fo

rf
re

e
an

d
pa

id
st

at
io

ns
by

pu
bl

ic
an

d
pr

iv
at

e
ow

ne
rs

hi
p

in
th

e
to

p
20

st
at

es
by

nu
m

be
rs

of
re

vi
ew

s
in

th
e

U
ni

te
d

St
at

es
.

13/17



T a
bl

e
5.

Pr
ob

ab
ili

ty
of

N
eg

at
iv

e
Se

nt
im

en
tf

or
18

C
or

e
B

as
ed

St
at

is
tic

al
A

re
as

in
th

e
U

ni
te

d
St

at
es

Pu
bl

ic
Pr

i v
at

e

St
at

e
Fr

ee
Pa

id
p-

va
lu

e
Fr

ee
Pa

id
p-

va
lu

e
N

o. of
R

e v
ie

w
s

L
os

A
ng

el
es

-L
on

g
B

ea
ch

-A
na

he
im

,C
A

0.
49

0.
52

0.
43

0.
56

0.
53

0.
14

22
,8

78
Sa

n
Fr

an
ci

sc
o-

O
ak

la
nd

-H
ay

w
ar

d,
C

A
0.

44
0.

45
0.

83
0.

55
0.

51
0.

23
8,

95
1

A
tla

nt
a-

Sa
nd

y
Sp

ri
ng

s-
R

os
w

el
l,

G
A

0.
46

0.
55

0.
31

0.
46

0.
49

0.
44

5,
44

2
W

as
hi

ng
to

n-
A

rl
in

gt
on

-A
le

xa
nd

ri
a,

D
C

-V
A

-M
D

-W
V

0.
50

0.
42

0.
39

0.
45

0.
44

0.
85

3,
45

2
Ph

oe
ni

x-
M

es
a-

Sc
ot

ts
da

le
, A

Z
0.

12
0.

45
0.

19
0.

42
0.

53
0.

01
2,

86
3

N
e w

Y
or

k-
N

ew
ar

k-
Je

rs
ey

C
ity

,N
Y

-N
J-

PA
0.

53
0.

38
0.

10
0.

46
0.

42
0.

32
2,

06
0

C
hi

ca
go

-N
ap

er
vi

lle
-E

lg
in

, I
L

-I
N

-W
I

0.
46

0.
62

0.
15

0.
49

0.
44

0.
28

1,
78

1
Ph

ila
de

lp
hi

a-
C

am
de

n-
W

ilm
in

gt
on

,P
A

-N
J-

D
E

-M
D

0.
42

0.
43

0.
95

0.
47

0.
54

0.
24

1,
58

6
B

os
to

n-
C

am
br

id
ge

-N
e w

to
n,

M
A

-N
H

0.
43

0.
58

0.
11

0.
42

0.
46

0.
36

1,
43

8
D

al
la

s-
F o

rt
W

or
th

-A
rl

in
gt

on
,T

X
0.

47
0.

57
0.

52
0.

45
0.

59
0.

01
1,

13
9

N
as

hv
ill

e-
D

a v
id

so
n-

M
ur

fr
ee

sb
or

o-
Fr

an
kl

in
,T

N
0.

60
0.

55
0.

75
0.

41
0.

42
0.

86
1,

08
2

D
en

ve
r-

A
ur

or
a-

L
ak

ew
oo

d,
C

O
0.

64
0.

60
0.

87
0.

40
0.

37
0.

65
1,

04
2

D
et

ro
it-

W
ar

re
n-

D
ea

rb
or

n,
M

I
0.

49
0.

38
0.

29
0.

45
0.

43
0.

75
79

2
M

in
ne

ap
ol

is
-S

t.
Pa

ul
-B

lo
om

in
gt

on
,M

N
-W

I
0.

33
0.

60
0.

02
0.

39
0.

33
0.

38
65

8
A

us
tin

-R
ou

nd
R

oc
k,

T
X

0.
54

0.
25

0.
03

0.
32

0.
37

0.
47

50
8

H
ar

tf
or

d-
W

es
tH

ar
tf

or
d-

E
as

tH
ar

tf
or

d,
C

T
0.

36
0.

45
0.

69
0.

45
0.

48
0.

85
47

1
K

an
sa

s
C

ity
,M

O
-K

S
0.

29
0.

54
0.

43
0.

36
0.

29
0.

54
48

8
C

ha
tta

no
og

a,
T

N
-G

A
0.

22
0.

42
0.

37
0.

51
0.

65
0.

41
29

2

R
es

ul
ts

of
t-

te
st

s
fo

rf
re

e
an

d
pa

id
st

at
io

ns
by

pu
bl

ic
an

d
pr

iv
at

e
ow

ne
rs

hi
p

in
18

C
B

SA
in

th
e

U
ni

te
d

St
at

es
.

14/17



Table 6. Main Results

Review Rate Negativity Score

FRM FRM FRM FRM FRM FRM

(I) (II) (III) (IV) (V) (VI)

Geographical Area
Urban -0.021∗∗ -0.038∗∗∗ -0.039∗∗∗ 0.149∗∗∗ 0.123∗∗∗ 0.122∗∗∗

(0.008) (0.007) (0.007) (0.013) (0.012) (0.012)
Non-Urban 0.025∗∗ 0.016∗ 0.016 0.016 0.004 0.004

(0.012) (0.010) (0.010) (0.016) (0.014) (0.014)
Type of Location

Public -0.010 -0.012 0.010 0.008
(0.013) (0.015) (0.015) (0.012)

Government -0.023 0.004
(0.015) (0.013)

Station Characteristics
Number of Connectors -0.082∗∗∗ -0.074∗∗∗ -0.074∗∗∗ -0.011∗∗∗ -0.005 -0.005

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Number of Networks -0.011 -0.012 -0.012 0.030∗ 0.020 0.020

(0.014) (0.017) (0.017) (0.016) (0.016) (0.016)
Quality Rating -0.042∗∗∗ -0.042∗∗∗ -0.058∗∗∗ -0.058∗∗∗

(0.002) (0.002) (0.002) (0.002)
Points of Interest

Residential 0.063∗ 0.019 0.014 0.076∗∗∗ 0.020 0.019
(0.035) (0.041) (0.041) (0.025) (0.019) (0.019)

Shopping -0.107∗∗∗ -0.101∗∗∗ -0.105∗∗∗ 0.043∗∗∗ 0.048∗∗∗ 0.046∗∗∗

(0.011) (0.011) (0.011) (0.014) (0.012) (0.012)
Restaurants -0.017 -0.014 -0.018 -0.003 0.000 -0.002

(0.014) (0.013) (0.012) (0.017) (0.014) (0.015)
Healthcare 0.040∗∗ 0.026 0.022 0.022 0.008 0.006

(0.017) (0.016) (0.016) (0.018) (0.016) (0.016)
Hotel and Lodging 0.058∗∗∗ 0.047∗∗∗ 0.043∗∗∗ -0.070∗∗∗ -0.082∗∗∗ -0.084∗∗∗

(0.012) (0.012) (0.012) (0.015) (0.013) (0.013)
Workplace 0.027∗ 0.017 0.012 0.005 -0.007 -0.009

(0.015) (0.013) (0.013) (0.015) (0.014) (0.014)
Supermarket -0.076∗∗∗ -0.079∗∗∗ -0.083∗∗∗ 0.083∗∗∗ 0.082∗∗∗ 0.081∗∗∗

(0.012) (0.013) (0.013) (0.017) (0.015) (0.015)
Car Dealership 0.031∗∗∗ 0.019∗ 0.015 0.042∗∗∗ 0.032∗∗∗ 0.031∗∗

(0.010) (0.010) (0.010) (0.013) (0.012) (0.012)
Education 0.055∗∗∗ 0.038∗∗ 0.025 0.032∗ 0.010 0.015

(0.015) (0.019) (0.017) (0.019) (0.013) (0.014)
Entertainment 0.007 0.011 0.007 0.025 0.028 0.026

(0.017) (0.016) (0.016) (0.020) (0.019) (0.019)
Convenience and Gas Station -0.001 -0.005 -0.009 0.015 0.012 0.010

(0.011) (0.011) (0.011) (0.016) (0.014) (0.014)
Transit Station -0.041∗∗∗ -0.026 -0.043∗∗∗ 0.018 0.034∗∗ 0.040∗∗

(0.016) (0.016) (0.014) (0.018) (0.015) (0.016)
RV Park 0.186∗∗∗ 0.143∗∗∗ 0.139∗∗∗ -0.085∗∗∗ -0.154∗∗∗ -0.156∗∗∗

(0.021) (0.017) (0.017) (0.029) (0.035) (0.035)
Outdoor 0.007 0.009 -0.007 -0.032∗ -0.027 -0.021

(0.027) (0.027) (0.026) (0.019) (0.018) (0.019)
Airport 0.017 0.022 0.006 -0.006 0.003 0.010

(0.018) (0.018) (0.016) (0.040) (0.036) (0.036)
Services 0.005 0.013 0.008 -0.035 -0.023 -0.025
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Table 6. Main Results

Review Rate Negative Score

FRM FRM FRM FRM FRM FRM

(I) (II) (III) (IV) (V) (VI)

(0.022) (0.019) (0.019) (0.025) (0.024) (0.024)
Place of Worship -0.051 -0.025 -0.029 0.018 0.055 0.053

(0.081) (0.063) (0.063) (0.026) (0.038) (0.038)
Shopping Center 0.012 0.024 0.020 -0.055∗∗∗ -0.017 -0.018

(0.085) 0.065) 0.065) 0.021) 0.022) 0.022)
Library 0.021 0.018 0.002 0.034 0.029 0.036

(0.019) (0.024) (0.022) (0.026) (0.024) (0.024)
Street Parking -0.008 -0.016 -0.032 0.075∗∗∗ 0.061∗∗ 0.067∗∗

(0.025) (0.024) (0.022) (0.029) (0.029) (0.030)
Visitor Center -0.044 -0.029 -0.033 -0.013 0.002 0.000

(0.028) (0.026) (0.026) (0.028) (0.026) (0.026)
Car Rental 0.235∗∗∗ 0.175∗∗∗ 0.171∗∗∗ 0.303∗∗∗ 0.221∗∗ 0.219∗∗

(0.042) (0.036) (0.036) (0.084) (0.089) (0.089)

Clustered SE Yes Yes Yes Yes Yes Yes
Number of Observations 127,257 127,257 127,257 127,257 127,257 127,257
R2 0.117 0.235 0.235 0.049 0.120 0.120

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7. Comparison of FRM and OLS Estimators

Review Rate Negative Score

FRM OLS FRM OLS

(I) (II) (III) (IV)

Geographical Area
Urban Area -0.039∗∗∗ 0.078∗∗∗ 0.122∗∗∗ 0.254∗∗∗

(0.007) (0.015) (0.012) (0.018)

Non-Urban Area 0.015 0.131∗∗∗ 0.004 0.129∗∗∗

(0.010) (0.017) (0.014) (0.019)
Type of Location

Public 0.031 0.032 0.028 0.014
(0.042) (0.058) (0.031) (0.036)

Location Attributes
Number of Connectors -0.074∗∗∗ -0.050∗∗∗ -0.005 0.002

(0.004) (0.004) (0.004) (0.005)

Number of Networks -0.012 0.211∗∗∗ 0.020 0.276∗∗∗

(0.017) (0.029) (0.016) (0.030)

Quality Rating -0.042∗∗∗ -0.033∗∗∗ -0.058∗∗∗ -0.039∗∗∗

(0.002) (0.003) (0.002) (0.004)

POI controls Yes Yes Yes Yes
Clustered SE Yes Yes Yes Yes
Number of Observations 127,257 127,257 127,257 127,257
R2 0.236 0.372 0.120 0.750

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

17/17


