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A new invariant of 4-manifolds
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We define an integer invariant LX of a smooth, compact, closed 4-
manifold X by minimizing a certain complexity of a trisection of X
over all trisections. The good feature of LX is that when LX = 0 and
X is a homology 4-sphere, then X is diffeomorphic to the 4-sphere.
Naturally, L is hard to compute.
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We define an integer invariant LX of a smooth, compact,
closed 4-manifold X by minimizing a certain complexity

of a trisection of X over all trisections.

Loops in the Cut Complex
Let X be a closed, orientable, smooth 4-manifold. In ref. 1, Gay
and Kirby show that X has a trisection into three 4-dimensional
handlebodies and prove that any two trisections of X are stably
equivalent under a suitable notion of stabilization. We exploit
these results to define a new 4-manifold invariant LX and prove
that LX =0 if and only if X is a connect sum of copies of
S

1 ⇥S

3, S2 ⇥S

2, CP2, and S

4 (the case of the empty con-
nect sum). If LX  1, we obtain the same 4-manifolds, so LX is
never one.
Definition 1: A(g ; k1, k2, k3)-trisection of a closed, oriented

4-manifold X (where 0 ki  g , i =1, 2, 3) is a decomposi-
tion X =X1 [X2 [X3, where (i) each Xi

⇠= \kiS1 ⇥B

3, (ii)
each Xi \Xj

⇠= \gS1 ⇥B

2 (for i 6= j ), and (iii) X1 \X2 \X3
⇠=

#g
S

1 ⇥S

1.
Definition 2: A (g ; k1, k2, k3)-trisection diagram is a 4-tuple

(⌃,↵,�, �) such that each of (⌃,↵,�), (⌃,�, �), and (⌃, �,↵)
are genus g Heegaard diagrams of #k

iS
1 ⇥S

2, i =1, 2, 3,
respectively. A trisection diagram for a given trisectionX =X1 \
X2 \X3 is a trisection diagram (⌃,↵,�, �), where ⌃ is diffeo-
morphic to X1 \X2 \X3, ↵ is a cut system for X1 \X2, � for
X2 \X3, and � for X3 \X1.
The stabilization operation for a balanced trisection increases

the genus of the central surface ⌃ by 3. It can be understood
in terms of the trisection diagram by taking the connect sum
of (⌃,↵,�, �) with the standard genus three trisection diagram
of S4.

An unbalanced trisection can be “balanced” by taking the
connect sum with genus one trisections of the 4-sphere.
The topology of each of the three pieces of X is completely

determined by a single integer ki , and the topology of each of
the overlaps between pieces is determined by another integer g .
If k = k1 = k2 = k3, the trisection is called balanced.
Given a trisection of X

4, we have a central surface ⌃=
X0 \X1 \X2 in X bounding three 3-dimensional handlebodies
Xi \Xj , which fit together in pairs to form Heegaard split-
tings of three 3-manifolds in X , and these 3-manifolds in
turn uniquely bound three 4-dimensional 1-handlebodies. We
can thus specify a trisection by considering systems of curves
on ⌃.
Definition 3: A cut system for a closed surface ⌃ of genus g is

an unordered collection of g simple closed curves on ⌃ that cut
⌃ open into a 2g-punctured sphere.
Definition 4: A genus g Heegaard diagram for a closed ori-

entable 3-manifold is a triple (⌃,↵,�), where ⌃ is a closed
orientable genus g surface and each of ↵ and � is a cut system
for ⌃.

Following Wajnryb (2) and Johnson (3), we define the
following:
Definition 5: The cut complex C of ⌃g is a 1-complex with

vertices corresponding to (isotopy classes) of cut systems. Two
vertices ↵ and ↵0 in C are connected by an edge of type 0 if
their corresponding cut systems ↵= {↵1,↵2, . . . ,↵g} and ↵0 =
{↵0

1,↵
0
2, . . . ,↵

0
g} agree on g � 1 curves and their final curves

are disjoint. Two vertices ↵ and ↵0 are connected by an edge
of type 1 if their corresponding cut systems ↵ and ↵0 agree on
g � 1 curves and their final curves intersect in a single point. The
distance between two vertices ↵ and �, d(↵,�), is the length of
the shortest path (using the edge-metric) connecting them in the
cut complex.
Notice that if ↵ and ↵0 are connected by a type 0 edge,

then ↵ can be obtained from ↵0 by sliding ↵g over some of
↵1,↵2, . . . .,↵g�1. C is connected (4).
Suppose we are given a (g ; k1, k2, k3)-trisection diagram

(⌃,↵,�, �) for a trisection T of X .
Definition 6: Let �↵ be the set of all vertices in C that are

path connected to ↵ by type 0 edges (generalized handle slides).
Define �� and �� similarly (see Fig. 1).
Definition 7: We say two cut systems ↵ and � are in good

position with respect to each other if we can order each, ↵=
↵1,↵2, . . . .,↵g , �=�1,�2, . . . ,�g , so that for each i , either ↵i is
parallel to �i (and we write ↵iP�i) or ↵i intersects �i in exactly
one point (and we write ↵iD�i), and ↵i is disjoint from �j for all
i 6= j . We say ↵i and �j are a good pair if they are either parallel
or intersect in a single point and are disjoint from all other ↵s
and �s.
Note that it is possible for ↵,�, � to pairwise all be in a good

position but not with respect to the same ordering. For example,
in Fig. 2 all pairs are in a good position, but ↵1 is paired with �2
and ↵2 with �1.

Every vertex in �↵ represents a different cut system describing
the same handlebody X1 \X2.
We can calculate the length of the shortest path between �↵

and �� . We use a mild generalization of Waldhausen’s theorem
for Heegaard splittings of the 3-sphere (5):
Theorem 8: Let (⌃,↵,�) be a genus g Heegaard diagram for

#k
S

1 ⇥S

2. Then there exist cut systems ↵0 and �0 that are con-
nected to ↵ and �, respectively, through type 0 edges such that
↵0 and �0 are in good position with respect to each other.

Significance

All known 4-manifolds invariants cannot distinguish a pos-
sible counterexample to the smooth 4-dimensional Poincare
Conjecture from the standard 4-sphere. The L invariant,
defined in this paper, can do so, for if it vanishes on a
homotopy 4-sphere X, then X must be diffeomorphic to the
4-sphere. Unfortunately, it is very hard to calculate.
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Fig. 1. S2 ⇥ S2.

The details of this theorem appear in ref. 6, p. 313, together
with a discussion of its relation to the isotopy question. We
include an outline of the argument, which proceeds by induction,
for the convenience of the reader. Proof: Use Haken’s (7) lemma
to find an essential separating 2-sphere S that intersects ⌃ in a
single essential simple closed curve � bounding imbedded disks
E↵ and E� on both sides of ⌃. Use an outermost arc on, say, E↵

of intersections with the disks bounded by the ↵s to dictate han-
dle slides on the↵s to reduce the number of points of intersection
between � and the ↵s. This implies that any Heegaard splitting
of#k

S

1 ⇥S

2 is diffeomorphic to a good Heegaard splitting (but
not necessarily isotopic to one).
Hence there exists a cut system in �↵ that has distance pre-

cisely g � k1, through g � k1 type 1 edges, to the nearest cut
system in �� . Note that stabilizing the trisection increases the
length of such a path in a straightforward way; if the initial tri-
section is balanced and the stabilization is balanced, the length
of the path goes up by 2. For an unbalanced stabilization, the
length goes up by either 0 or 1.
Definition 9: Let lX ,T be the length of the shortest closed path

in C that intersects each of �↵, �� , and �� , which also satisfies
the following:

i) There are three pairs—(↵� ,�↵), (�� , ��), and (�↵,↵�)—in

(�↵,��), (�� ,��), (�� ,�↵),

respectively, which are all good, so it takes g � ki type 1 moves to
travel from the vertex corresponding to one element in the pair
to the other.

ii) The subpath of lX ,T connecting ↵� to ↵� (respectively, �↵ to
�� , �� to �↵) remains within �↵ (respectively, �� , ��).

Normalize l by defining:
Definition 10: LX ,T = lX ,T � 3g + k1 + k2 + k3. Note that this

number can only decrease when we stabilize. Note also that this
number is equal to the total number of type 0 moves in each of
�↵, �� , and �� .

Fig. 2. C.

Fig. 3. ↵1P�1P�1.

Definition 11: The length of X , denoted LX , is the minimum
value of LX ,T over all trisections T of X .
It follows immediately from the stable equivalence of balanced

trisections (1) that LX is well-defined.
We analyze the manifolds for which LX =0:
Theorem 12: LX =0 if and only if X is diffeomorphic to a

connect-sum of copies of S1 ⇥S

3, S2 ⇥S

2, CP2, and S

4 (in the
case of an empty connect sum).
As an immediate corollary, we have the following:
Corollary 13: If X is a homology 4-sphere, then LX =0 if X is

diffeomorphic S4.
Proof of theorem: Let (⌃,↵,�, �) be a (g , k1, k2, k3) trisection

of X that realizes LX ,T =0.
Then, g � k1 = d(↵,�), g � k2 = d(�,�), and g � k3 = d(↵, �).

Let (↵1,↵2, . . . .,↵n), (�1,�2, . . . ., ,�n), (�1, �2, . . . ., �n), and
n =1, . . . , g be the curves corresponding to the cut systems
↵,�, �.
Since (⌃,↵,�, �) realizes LX ,T =0, we may assume that

↵1,↵2, . . . .,↵g , �1,�2, . . . ,�g are in good position with respect
to each other and that ↵1,↵2, . . . .,↵g , �1, �2, . . . , �g are in good
position with respect to each other (any ordering of ↵ deter-
mines one for � and for �). Note that the �s and �s would
also be “good” if we allowed reordering of subindices. Consider
the example of S2 ⇥S

2 where �1 and �2 are good, as are �2

and �1.
We may also assume that ↵iP�i for i =1, . . . , k1.
After possible relabeling, we have the following cases:

Case 1 : ↵1,�1, �1 are all parallel (see Fig. 3).

No other curve from ↵[� [ � intersects ↵1,�1, �1. Let �
be a simple closed curve intersecting ↵1 (also �1, �1) trans-
versely in a single point, chosen to be disjoint from all other
↵s and �s. ↵1 and � together have a neighborhood that is a
punctured torus T . We say that T is defined by ↵1 and �.
Let �= @T . � is disjoint from all ↵s and �s but may inter-
sect �2 [ . . .[ �g . However, we can slide these �s over �1 to
remove these intersections, obtaining �0

2, . . . , �
0
g , which are dis-

joint from @T . Let �0 = �1, �
0
2, . . . , �

0
g . Since this operation

has no effect on the intersections of curves with subindices
2, . . . , g , (⌃,↵,�, �0) also realizes L=0. In (⌃,↵,�, �0), @T is
a splitting curve—that is, a separating simple closed curve—
disjoint from all curves in all three cut systems, which splits
the diagram into two subdiagrams, each with L=0. The subdi-
agram containing ↵1 yields an S

1 ⇥S

3 summand that we can

Fig. 4. ↵1P�1D�1.
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Fig. 5. ↵1D�1D�1D↵1.

split off and proceed to consider the smaller genus remaining
subdiagram.

Case 2 : ↵1P�1 and �1 intersects each in exactly one point (see
Fig. 4).

As before, we can find a punctured torus T containing
↵1,�1, �1, which in this case is automatically disjoint from all
curves in ↵[� [ �. Hence, there is an obvious S4 summand in
the trisection diagram, which we split off to reduce the genus and
again proceed on the remainder.

Case 3 : No pair of curves from ↵,�, � is parallel. In particular,
↵1D�1 and ↵1D�1. Let � be the boundary of the torus T
defined by ↵1 and �1.

Subcase a: �1D�1 (see Fig. 5).
Claim: Then we can split off a ±CP

2 summand.
Proof: If �1 does not lie in T , then we can move it there by a

type 0 move. Then, @T will be a splitting curve.
Subcase b: �1 is disjoint from �1 (see Fig. 6). Then, we can

assume (by relabeling as needed) that �1D�2 and �1 are disjoint
from all other curves in ↵ and �.
Claim: Then, we can split off a S2 ⇥S

2 summand.
Proof: We analyze the remainder of the �i s and show there

must exist a �2 such that

• �2D�1,
• �2 \↵1 is empty,
• �2D↵2, and
• �2 \�2 is empty.

This follows because exactly one �, which we label �2, is dual
to �1, and it links �1 in � when both intersect �. That forces
�2 to intersect ↵2 in one point. By type 0 moves on �1 and �2,
we can arrange that all curves with indices 1 or 2 are outside
the punctured S

2 ⇥S

2, whose boundary is a splitting curve. This
concludes the proof.
We now prove the stronger theorem:
Theorem 14: If there exists a trisection T such that LX ,T =1,

then LX =0, and X is again diffeomorphic to a connect sum of
copies of S1 ⇥S

3, S2 ⇥S

2, and CP

2.
Assume (⌃,↵,�, �) realizes LX ,T =1. We may also assume

that ↵1,↵2, . . . .,↵g , �1,�2, . . . ,�g are in good position with
respect to each other and that ↵1,↵2, . . . .,↵g , �1, �2, . . . , �g
are in good position with respect to each other. Note that the
�s and �s would also be good if we allowed reordering of

Fig. 6. ↵1D�1, �1D↵1.

Fig. 7. P.

subindices, with the exception of a single �j . Hence there exists
a cut system �0 = �1, �2, .., �

0
j , .., �g that is distance one from

�1, �2, . . . , �g and that is good with respect to �1,�2, . . . ,�g after
reordering.
The arguments in cases 1 and 2 of theorem 1 work as before if

↵iP�i or ↵iP�i for any i , or �iP�k for any k 6= j , or �iP�0
j ; that

is, we can assume that the trisection is balanced and that g = k so
that each Xi is a 4-ball.
If g =2, the theorem follows from ref. 8. Assume g > 2. We

relabel so �= �1, �2, .., �g and �0 = �1, �2, .., �
0
g .

Hence, we have the following string of relations:

�1D↵1D�1D�jD↵j .

If j =1, we are back in case 3, subcase a of the previous argu-
ment. Assume j 6=1. Then, we can continue our string to the
left,

�aD�1,

and to the right,
↵jD�b .

If a = b, then a 6= g . If a 6= b, then either a or b (or both) is
not equal to g . In any case, we obtain a slightly longer string by
adding on to the left or to the right, say to the left,

�aD�1D↵1D�1D�jD↵j ,

where a 6= g and �g is not in the string.

Fig. 8. Q.
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Claim: a = j .
Proof of claim: Cut ⌃ open along all ↵s and �s to obtain a

planar surface P with g boundary components, @1, . . . , @g , with
the labelling inherited from the ↵s. The remnants of �1 in P are
two properly imbedded arcs connecting @1 to @j . The remnants
of �a in P are also two properly imbedded arcs, whose end-
points are linked on @1 with the endpoints of �1. We know �a is
dual to exactly one ↵ and disjoint from all others; the only avail-
able ↵ that yields a single connected curve is ↵j . Hence, a = j

(see Fig. 7).
We now relabel so j =2 and summarize our findings thus far:

�2D�1D↵1D�1D�2D↵2D�2.

Definition 15: Call such a set �2,�1,↵1, �1,�2,↵2, �2 a good
sextet.
The remnants of �1 and �2 in P cut P into four regions, one

of which, R1, contains @g .
Suppose the other three regions, R2,R3,R4, are disks—that

is, contain no other boundary components of P .
Claim: Either �g or �0

g is disjoint from R2 [R3 [R4.
Proof of claim: Suppose �g intersects R2. �g is disjoint from

all ↵s except ↵g and disjoint from all other �s, so �g can only
intersect the pieces of @R2 corresponding to remnants of the �s.
Hence, (possibly after removing trivial intersections) �g inter-
sects R2 in a collection of parallel arcs connecting the two �
remnants on @R2. This means that �g must also intersect R3

and R4 in a similar fashion. Recall that �0
g is disjoint from �g ,

and �0
g is disjoint from all �s except �g . Then, by the same

argument, if �0
g intersects R2 at all, it must do so in a collec-

tion of parallel arcs connecting the two ↵ remnants on @R2.
But any such arc would intersect an arc of �g , and �0

g is disjoint
from �g . So if �g intersects Ri , i =2, 3, 4, then �0

g cannot and
vice versa.
Assume �g is disjoint from R2 [R3 [R4.
Then, @R1 is a splitting curve for ↵,�, �, and we proceed by

examining the smaller diagram inside R1.
Suppose one of R2,R3,R4 is not a disk, say R2.
Using previous arguments, we can find another good sextet

inside R2.
This sextet also divides P into four components, one of which

contains @g .
If all other components are disks, we are done by the previous

argument. Otherwise, select one that is not a disk, and repeat.
Eventually, we find a sextet such that one component of P

defined by the sextet contains @g , and all others are disks.

An Example with L 6
Currently, the smallest nonzero LX ,T we know, namely 6, is
achieved by a smooth orientable 4-manifold Q that is the quo-
tient (S2 ⇥S

2)/Z/2, where the group Z/2 acts by sending (x , y)
to (�x ,�y). This allows the possibility that our theorem holds

for L 5, but we only conjecture the theorem can be strength-
ened to show that L 2 implies L=0. There is a notable lack of
low-genus simply-connected, closed, smooth 4-manifolds (other
than those with L=0). In the nonspin case, there are connected
sums of ±CP

2, and in the spin case, there is the K3 complex
surface. Many of these manifolds have exotic smooth struc-
tures (e.g., CP2 with at least two points blown up; this means
connected summing with �CP

2s), but these have complicated
handlebody structures suggesting L is large. For ⇡1 nonzero, our
Q is a fairly simple example and is a natural candidate for the
smallest nonzero L.
There is a handlebody description of Q obtained by taking a

simple description of the nonorientable disk bundle over RP

2

and doubling it to get Q (see ref. 9, p. 27). There are algorithms
to turn this handlebody description into a trisection with genus
three, but the diagram in Fig. 8 will most easily show that L 6.
This diagram was discovered independently by David Gay and
by Jeff Meier, in the latter case as part of studying trisections of
twist spun 3-manifolds.
By symmetry, it suffices to calculate how many type 0 moves

are required to make the ↵s and �s standard. Ignore the �
curves, and observe that ↵2 and �1 are a pair that intersect each
other once and are disjoint from all other ↵s and �s. Notice
next that ↵1 and �2 would be a good pair if not for the fact
that �3 intersects ↵1 twice. These intersections can be removed
by two handle slides of �3 over �2. First, push the closer point
of intersection clockwise along ↵1 and then slide over �2 to
remove the point of intersection. Then, do the same with the
further point of intersection, again moving clockwise and sliding
over �2.
We now have two pairs intersecting once each, and then one

can check that ↵3 and �3 are in fact parallel on ⌃, and thus, the
↵�� curves form a standard Heegaard spitting of S1 ⇥S

2, as
desired.
A sharp reader might observe that if the second handle slide

had been done counterclockwise, then the two handle slides
would combine into one type 0 move, suggesting that l =3, but
a sharper reader will realize that in this case ↵3 and �3 are
no longer parallel, for the other pairs are stuck between the
otherwise parallel curves.

Remarks
It seems likely that a complicated handlebody diagram for X

would lead to a large value of L. But it is sobering to realize that
the complex hypersurfaces such as the K3 surface are not con-
nected sums of smaller 4-manifolds, yet if one connect sums with
one copy of CP2, the resulting complicated handlebody slides
away to a connected sum of±CP

2s (refs. 10 or 11), showing that
there must also be a way to do handle slides on the ↵s, �s, and �s
to get L=0.
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