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Medical imaging performed in vivo captures geometries under Donnan osmotic loading, even when the articu-
lating joint is otherwise mechanically unloaded. Hence patient-specific finite element (FE) models constructed
from such medical images of cartilage represent osmotically induced prestretched/prestressed states. When
applying classical modeling approaches to patient-specific simulations of cartilage a theoretical inconsistency
arises: the in-vivo imaged geometry (used to construct the model) is not an unloaded, stress-free reference
configuration. Furthermore when fitting nonlinear constitutive models that include osmotic swelling (to obtain
material parameters), if one assumes that experimental data—generated from osmotically loaded cartilage-begin
from a stress-free reference configuration the fitted stress-stretch relationship (parameters) obtained will actu-
ally describe a different behavior. In this study we: (1) establish a practical computational method to include
osmotically induced prestretch/prestress in image-driven simulations of cartilage; and (2) investigate the in-
fluence of considering the prestretched/prestressed state both when fitting fiber-reinforced, biphasic constitutive
models of cartilage that include osmotic swelling and when simulating cartilage responses. Our results highlight
the importance of determining the prestretched/prestressed state within cartilage induced by osmotic loading in
the imaged configuration prior to solving boundary value problems of interest. With our new constitutive model
and modeling methods, we aim to improve the fidelity of FE-based, patient-specific biomechanical simulations of
joints and cartilage. Improved simulations can provide medical researchers with new information often un-
available in a clinical setting, information that may contribute to better insight into the pathophysiology of
cartilage diseases.

1. Introduction we refer to it as a prestretched/prestressed state. Yet, classical con-

tinuum mechanics and FE analyses generally assume that constitutive

Magnetic resonance imaging (MRI) is currently the most important
tool to assess pathologic changes in knee cartilage, in both clinical and
research environments, and its prevalence is increasing (Crema et al.,
2011). Such imaging is performed in vive, hence finite element (FE)
models constructed from medical images of cartilage represent geo-
metries under Donnan osmotic loading even when the articulating joint
is otherwise mechanically unloaded. Osmotic pressure develops as fluid
is chemically driven into cartilage because the total ion concentration
within the tissue is greater than that within the joint (or external
bathing solution), and this continues until it is balanced by a me-
chanical counter pressure. This osmotically induced stretch/stress exists
prior to constructing the image-driven geometry of the model, and thus

models and the corresponding simulations start from undeformed/un-
loaded, stress-free reference configurations. Thus, when applying clas-
sical modeling approaches to patient-specific simulations of cartilage a
theoretical inconsistency arises: the in-vivo imaged geometry (used to
construct the model) is not an unloaded, stress-free reference config-
uration.

Furthermore, most mechanical experiments on cartilage start from
this osmotically swollen condition such that the initial osmotic pressure
generates a prestressed solid matrix accompanied by a compatible vo-
lumetric deformation (Karajan, 2009). Cartilage specimens, when re-
moved from the joint and placed into a physiological bathing solution,
are commonly in this equilibrium state, and thus mechanical testing
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Fig. 1. Conceptual illustration of the effects of osmotic prestretch/prestress for a uniaxial tension test of a cartilage specimen in physiological solution. (a)
Experimentally determined stress-stretch (d.x, — Acxp ) response where we assume an initial stress-free reference configuration for the specimen, i.e. no prestretch. (b)
Experimentally determined stress-stretch response where we include an initial osmotically swollen prestretched-prestressed (Gimg — Aimg) configuration for the
specimen referenced to the (unknown) stress-free reference configuration. (¢) The (unknown) true stress-stretch diagram (the green curve) of the specimen, including
the osmotic prestretch/prestress. (d) A simulation naively fitted directly to experimentally determined stress-stretch data (red) in (a) fails to reproduce the correct

result (green).

commonly occurs on prestretched/prestressed specimens (often as-
sumed to have no initial deformation). If one assumes that the resulting
experimental data begin from a stress-free reference configuration
when fitting nonlinear constitutive models that include osmotic swel-
ling (to obtain material parameters) the fitted stress-stretch relationship
(parameters) obtained will actually describe a different behavior. Fig. 1,
using a uniaxial tension test as representative example, clarifies the
effects of osmotic prestretch/prestress in interpreting mechanical data,
cf. (Karajan, 2009).

1.1. Background

Articular cartilage comprises, by percentage wet weight, hetero-
geneously distributed fluid and electrolytes (68-85%), collagen fibers
(15-25%), proteoglycans (5-10%) and chondrocytes (<4%) (Mow et al.,
2005). The heterogeneous solid phase constitutes a negatively charged
proteoglycan (PG) mesh and a fiber network of predominantly type II
collagen, both of which contribute to mechanical stiffness and per-
meation of the fluid. Densely packed and negatively charged PGs in-
crease in concentration from the articulating surface to subchondral
bone (Mow et al., 2005; Mansour, 2008; Pierce et al., 2016). There are
generally three sub-tissue zones through the thickness (from the surface
to the subchondral bone): fibers are predominantly tangential to the
articular surface in the superficial zone; become isotropically dis-
tributed and oriented in the middle zone; and are predominantly per-
pendicular to the underlying bone in the deep zone (Mow et al., 2005).
The remarkable macro-mechanics of cartilage derive from the complex
micro-mechanics of proteoglycans, collagens, and electrolytic fluid in-
teracting (Broom and Marra, 1986; Zhu et al., 1993).

Negative charges associated with the PGs, known as the fixed charge
density (FCD) in articular cartilage, draw in surrounding synovial fluid
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to generate osmotic pressure, which results primarily from Donnan and
entropic effects (Chahine et al., 2005). However, Donnan osmotic
pressure contributes over 85% of the total measured swelling pressure
(Urban and Maroudas, 1981). The tissue imbibes fluid until the me-
chanical counter pressure resulting from greater fluid volume within
the tissue equals the chemically driven movement of the fluid (to dilute
the solution). Cartilage comes to equilibrium in vivo when the intra-
tissue solid stresses balance the osmotic pressure. Such swelling pre-
stretches the network of collagen fibers (Setton et al., 1998) and may
significantly affect the mechanics of cartilage.

Numerical analyses of joints and cartilage can provide medical re-
searchers with new information often unavailable in a clinical setting,
information that may contribute to better insight into the pathophy-
siology of cartilage diseases, e.g. osteoarthritis. Numerical analyses also
offer a flexible, cost-effective, and patient-friendly environment in
which both new and existing medical treatments can be tested and
optimized. FE models are already widely used to study the mechanical
responses of joints and cartilage, and the properties of cartilage (Klika
et al., 2016). With the continuous improvement of computational
methods and power, and medical imaging, numerical analyses, e.g. FE
models, will eventually be used in clinical practice, with a trend toward
more realistic patient-specific models. Image-driven, patient-specific
simulations, in conjunction with multiphase (poroelastic) constitutive
models calibrated and validated with experimental data can model and
predict realistic responses of cartilage.

Prior studies in 3-D include the effects of osmotic pressure, e.g.: van
Loon et al. (2003), Chen et al. (2006), Schroeder et al. (2006), Ehlers
et al. (2009), Ateshian et al. (2009), Ehlers et al. (2010), Ateshian et al.
(2011), however the influences of prestretch/stress in the solid matrix,
and specifically the network of collagen fibers, are rarely investigated.
In one such paper, Ehlers et al. (2009) formulated a general constitutive
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model applicable to almost any charged, hydrated tissue. Within the
theory of porous media (TPM) they combined large-strain, Ogden-type
material laws for the solid matrix with osmotic effects based on the
simplifying assumption of Lanir (1987). In this contribution the authors
described the osmotic properties without considering the ion con-
centrations (or electro-chemical potentials) as additional unknowns in
the process. Instead, they split the solid extra stress into osmotic and
mechanical contributions. While the authors applied their 3-D, large-
strain framework to human intervertebral disc, we apply their model
for osmotic pressure to articular cartilage.

Ateshian et al. (2009) modeled the solid matrix of cartilage with a
continuous angular distribution of fibers, where fibers can only sustain
tension, swelled by the osmotic pressure of a proteoglycan ground
matrix. They particularized their constitutive model to focus on the
tissue's equilibrium response to mechanical and osmotic loading, when
flow-dependent and flow-independent viscoelastic effects subsided. The
authors implemented this material model into a custom-written, 3-D FE
code including finite deformation and investigated both the stress-
stretch response and effective Poisson's ratio in simulations of com-
pression and tension. Applying this model, they successfully predicted a
number of observed phenomena in relation to the tissue's equilibrium
response to mechanical and osmotic loading and demonstrated that
anisotropy of the fibrillar matrix of articular cartilage is dependent on
the mechanism of strain-dependent fiber recruitment.

1.2. Objectives

The objectives of this study are two-fold: (1) to establish a practical
computational method to include osmotic pressure in image-driven si-
mulations of cartilage; and (2) to investigate (by application of the new
methods) the influence of considering the prestretched/prestressed
state both when fitting fiber-reinforced, biphasic constitutive models of
cartilage that include osmotic swelling and when simulating cartilage
responses. Towards objective (1) we extend our recent constitutive
model for cartilage (Pierce et al., 2016) to include the mechanical ef-
fects of osmotic pressure (following Karajan, 2009; Ehlers et al., 2009),
and determine the prestretched/prestressed state within the solid ma-
trix induced by osmotic loading in the (imaged) initial configuration of
the FE model using the backward displacement method (following Bols
et al., 2013) prior to solving boundary value problems of interest.
Further, we compare results from simulations with/without including
osmotic contributions. Towards objective (2) we fit our new con-
stitutive model for cartilage with/without considering osmotic con-
tributions and considering different initial configurations, and compare
the resulting stress-stretch responses and parameters. Finally, we
compare results from image-driven simulations based on measured
Diffusion Tensor Magnetic Resonance Images (DT-MRI) both with/
without including osmotic contributions and considering different in-
itial configurations.

2. Methods
2.1. Constitutive model for cartilage

We extend our image-driven constitutive model for cartilage (Pierce
et al., 2016, 2018), and corresponding 3-D nonlinear FE implementa-
tion, to include the mechanical effects of osmotic pressure. During
normal movement cartilage undergoes large deformations in vivo
(compressing greater than 20% under pressures up to 20 MPa Park
et al., 2003; Mow et al., 2005; Bingham et al., 2008; Liu et al., 2010;
Chan et al., 2016), hence we employ large-strain kinematics and non-
linear mechanics. To this end, we selected the biphasic swelling ap-
proach of Ehlers et al. (2009) wherein we do not solve for the con-
centration fields of the solutes, cf. Karajan (2009) for further details.
Therein the osmotic pressure, which is usually associated with the in-
terstitial pore fluid, is computed from the solid strain energy since the
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FCD is immobilized within the ECM (Wilson et al., 2005). Furthermore,
we assume(1) a priori chemical equilibrium due to the innate (long-
established) natural ion distribution, (2) large disturbances are unlikely
in vivo, and (3) negligible electrochemical potential (i.e. electro-neu-
trality) due to much faster diffusion of small ions relative to bulk fluid
permeation (Lanir, 1987; Karajan, 2009; Ehlers et al., 2009).

Briefly, we use the theory of porous media to describe articular
cartilage as a biphasic swelling continuum ¢ = ¢® + ¢ which consists
of a porous solid phase ¢® saturated with the interstitial fluid phase ¢*
(Bowen, 1980, 1982; Ehlers, 1989, 1993; de Boer, 2000; Pence, 2012).
The volume fractions n* refer the volume elements dv* of the individual
constituents ¢* to the bulk volume element dv with n*(x, t) = dv®/dv,
Ez=1 n*(x, t) = ELlp"‘/p“R =1, a € {S, F}, where x is the position
vector of the spatial point (reference position X), t is the time, and S and
F denote the solid and fluid, respectively. The partial density
p% = n* p°R of the constituent ¢® is related to the real density of the
materials p°® involved via the volume fractions n*. We formulate the
total Cauchy stress tensor as

, . S
a=—p1+a§=—p1+2prsaiF§.,

aCq m

where p is the fluid pore pressure, of is the effective Cauchy stress
tensor (Bishop, 1959; Skempton, 1960), I is the identity tensor,
Fg = dxg/0Xy is the deformation gradient of the solid, and Cg = FI Fs is
the right Cauchy-Green tensor. We use an additive decomposition of the
superimposed solid Helmholtz free-energy function ¥S into a Donnan
osmotic pressure part Wgp, an isotropic matrix part Wiy, and a fiber
network part W5y as

WS = wiL(K) + (1 — vy, L) + vPiy(Cy), 2

where v is the volume fraction of collagen to the total solid, Js = det F
is the Jacobian and I, = trCy is the first invariant of Cs.

Donnan osmotic pressure arises as negatively charged PG (specifi-
cally glycosaminoglycan or GAG chains), enmeshed within the collagen
network, interact with electrolytes in the interstitial fluid to swell the
tissue. We define the molar concentrations of dissolved ions and fixed
charges as ¢, :== dAN?/dvF, with y = {+,—.fc}, where ¢ = ¢;} = &, is the
ion concentration of the external solution (here treated as a material
parameter and not a boundary condition), ¢, = ¢ — ¢ corresponds to
the internal solution. Furthermore, the concentration of the fixed
charges depends on the deformation, i.e.

cg§nos(det Fs — ngg)™

= cg§(-ng(detFs — ng) ™",

(3)

where n are initial volume fractions and c(% is the initial concentration
of fixed charges within the tissue. Thus, we capture the osmotic strain
energy as (Karajan, 2009; Ehlers et al., 2009)

_ IPTRY L fcy2 fc
. . 2c 4@m)* + (c e
Wep = R © cgf ngg| — — mem + asinh| -2 | |,
m “m 2Cm

(4

where R = 8.314(MPa mm*)/(K mol) is the universal gas constant and @
is the absolute temperature (details in Appendix A).

We capture the strain energy of the (largely) proteoglycan solid
matrix using a neoHookean strain-energy function for W}y, (Simo and
Pister, 1984), which we extend to include compaction effects as
(Bluhm, 2002; Pierce et al., 2013a, 2013b, 2016)

. 1 1
Wiy, 1) = fS[U(Js) + 5 pl"’(Il—3)],
Pos

(5)

where

[ 1 : .
U = xjp [E(log J)? + g’b] — w8 log J, ©

and where we use the abbreviations
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e B %
In (5)-(7) p® is Lamé's second parameter (corresponding to the shear
modulus of the underlying matrix in the reference configuration), 1° is
Lamé's first parameter (which degenerates to a non-physical, penalty
parameter used to enforce incompressibility, cf. Pence, 2012), and
ngs < J5, < 1 defines the point of compaction for the tissue, where ng; is
the solid volume fraction in the reference configuration and it is gen-
erally not possible to ‘squeeze out' all of the fluid from the tissue.

To capture the anisotropic, nonlinear response of the dispersed
network of collagen, let p(M) be the angular density of fibers (the
Orientation Distribution Function or ODF) so that (Miehe et al., 2004;
Lei and Szeri, 2006)

1

EL,@(M)CLQ =1, ®)
where Q=M € R* |[M| = 1 is the unit sphere. For a single fiber of
reference orientation M the fourth pseudo-invariant I, is the square of
the stretch of this fiber in the direction m = FM, i.e.
I,(M) = 22(M) = M-CsM. We capture the strain energy of the dis-
persed collagen network as

(€. M) = — [ PV fexpla (L — 17] — 1# (1 - Dac
Ps 8 2k, ©
where k; > 0 is a material parameter, k; > 0 is a dimensionless para-
meter and # is a Heaviside step function evaluated at (I, — 1), i.e.
collagen fibers engage only under A > 1 (Holzapfel et al., 2000).

To model the corresponding permeation of interstitial fluid, we in-
troduce the seepage velocity wgy, which describes the difference in
velocity between the fluid phase x'r and the solid phase x’s as
Wps = X'p — X's. We determine the filtration velocity nf wps as
n¥ wpy = Kp(—grad p + o™ b), where Kg is the anisotropic intrinsic
permeability of the cartilage solid matrix and b is the body force per
unit mass (Pierce et al., 2016). Since permeation of interstitial fluid is
least restricted in the direction parallel to the fibers (Filidoro et al.,
2005; Meder et al., 2006; Abdullah et al., 2007; de Visser et al., 2008a,
2008b) we define Kg as (Ricken and Bluhm, 2010; Pierce et al., 2016)

(%)

where kgs [m*/Ns] is the initial Darcy permeability and m is a di-
mensionless parameter controlling the general isotropic deformation
dependence of the permeability (Eipper, 1998).

To facilitate image-based, patient-specific modeling, we may de-
termine the local microstructure of collagen fibers, i.e. the ODF re-
quired in (9) and (10), directly from, e.g. diffusion-tensor MRI, as

p (M)
I (m)

= Ko

= m@m dQ,
4w

F
(€10)]

sin 8

P(M, D) = |D|l/2(MTD—lM)3;’2 ’

(a1

where (M) = (cos 8 sin ¢, sin @ sin$, cos ¢)T and D is the experimen-
tally determined diffusion tensor.

2.2. Backward displacement method

It is generally not possible to measure a true stress-free reference
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configuration in vivo. Using the backward displacement method (fol-
lowing Bols et al., 2013) we define and solve an inverse problem to
determine the in vivo prestretch/prestress distribution in equilibrium
with the imaged configuration, without the need of an imaginary stress-
free reference configuration.

We begin by defining a general forward problem. We start our
analysis from a stress-free reference configuration 8,(X, 0), where X
are the material coordinates of the undeformed reference geometry and
the second argument refers to the unloaded stress state in this config-
uration. A forward analysis then determines a swelled in-vivo equili-
brium state (coincident with the imaged configuration) Bimy (Ximg, Gimg);
where Xy, are the coordinates of the swelled geometry and o, is the
corresponding stress state. This imaged configuration results from a
prescribed load, which here we take as the osmotic pressure Arx.
Specifically, we have (cf. (3) and Appendix A)

A = A (nds, e, det Fy). 12)

At the stress-free reference configuration B, det Fs = 1, and thus for the
initial osmotic pressure Am, we have

Ay = A (g, e 1) (13)

N.B. naturally Ax, = 0 when ¢ = 0, so that no osmotic pressure exists
if there is no FCD. We can now solve this forward problem, given the
initial reference geometry and parameters for the osmotic pressure, to
determine the osmotically swelled equilibrium configuration I' with
both geometry (stretch) and stress information. We the concisely define
the solution process as

Bimg(Kimg, Timg) = T(Bo(X, 0), Amo(nds, ¢l 1)) = T(Bo, Amy). (14)

In the backward problem, the stress-free reference configuration
and the stress state in equilibrium with the imaged (in-vivo) config-
uration are unknown (denoted with superscript U, i.e. []Y),

U
X =XV, Gimg = Oing, (15)

while the imaged configuration and the input parameters for the initial
osmotic pressure are known (denoted with superscript K, i.e. [J¥),

X = Xy AT = AT (16)

We can now rewrite the backward problem as a forward analysis,

Bimg(Xfng> Timg) = T(Bo(XY, 0), A7), (17)

resulting in the stress field cri%g defined as the desired, prestressed state.
For clarity, we formulate the inverse problem: given the configuration
xﬁng imaged in vivo and the prescribed osmotic pressure AzX, determine
the corresponding stress state a',%g creating mechanical equilibrium in
the configuration ﬂimg(xﬁng, o',»[,ilg).

To solve this problem, we extend the iterative fixed point algorithm
of Bols et al. (2013) and utilize a forward FE solver (detailed in
Algorithm 1). Each iteration i starts with a guess of the (imaginary)
stress-free configuration X@, and for the first iteration (i = 1) we use
the imaged geometry as the first guess (X1 = x}gjg). From our guess,
and the given osmotic load Awf, a forward solver determines
the corresponding equilibrium configuration Bﬁl),g(xffl)lg, aiﬁg) =
[(By(XD, 0), A7¥). We then calculate a residual characterizing the
difference between the current equilibrium and the desired (imaged)
configurations. We define the residual of the jth node in the ith iter-
ation's equilibrium configuration x{), ; as

(i)

rD = | xfg; — X0 11V € 1, Nooel.

(18)

where ||[(J|| is the L2-norm and N, is the total number of nodes in the
FE model. We achieve convergence when the maximum residual among



X. Wang et al.

F,o A

FlItlg‘ Oimg;: /\nug;

e ey

Journal of the Mechanical Behavior of Biomedical Materials 86 (2018) 409422

BVP in image-driven FEA

Fexp: Texp )\exp

P R

:Bimg (ximg: Uimg)

Bo(X,0)

= P(Bo, A’Ko)

B(x,0)

Fig. 2. Conceptual illustration of the relevant configurations for mechanical analyses. Configuration B, is an (imaginary) stress-free reference configuration. By
application of osmotic loading (and a regular forward analysis) we swell to the corresponding imaged configuration B, in equilibrium with the osmotic pressure. By
application of additional loads, e.g. a specific experimental condition, we further deform to the current configuration 8. In solving boundary value problems (BVP) in

image-driven FE of cartilage we are only concerned with analyses from the imaged

all nodes is below the convergence criterion ¢, i.e.

i) _ (D)
= max {ri"} <e.
M el Naogel a9
If convergence is not reached, we use the displacement
() _ @ i
Ui;ng = X[ll'ng - X0, (20)

to update our guess of the (imaginary) stress-free configuration as
=X - U(i;,)lg). We introduce a step size § > 0 to control the efficiency and
robustness by controlling the interpolation between the current (ap-

proximate) X® and the updated approximation (x¥ — Ui(ag). Thus, the
new guess X0+D is
X0+0 = E(xK-Ul) + (1-HXO. 21

When £=1 we recover the method of Bols et al. (2013), i.e.
XU+D = (xK — Ug'.,),g)‘ Once we reach convergence, (17) is satisfied with
XY = X® and g, = o,

Algorithm 1. Algorithm to recover the prestretched/prestressed state
corresponding to the in-vivo imaged configuration.

configuration By, to the current configuration 8 (red box).

Table 1

The required material and structural parameters, the values used to approx-
imate the response of cartilage from the middle zone, and the corresponding
units.

Parameter Value Unit

PR 9.9 x 10-10 ton/mm?
PSR 1.5 x 10~ ton/mm?
#5 023 MPa

K 3.0 MPa

ke 8.0 =

s 021 -

v 0.67 =

J{-Sp 0.41 -

ofe 2.0 x 1077 mol/mm3
Cm 1.5 % 1077 mol/mm?3
kos 6.2 % 1074 mm*/(N s)
m 5.1 —

D (isotropic, see text) -

14+ 0
2 X(l) ~— Xipl(ug
3. while i = 0 or 7\, > e do
4: 1 =14+ 1 ‘
5 Bimg(Xi Tinsg) = (Bo(X D, 0), AnK)
6: U](I?lg - Xl(l;zg - X(l)
7 XE = X - Ul )+ (1- X
8: end while
9: XU + X
10: ofy, 0@

initializing

> update

In simulations of cartilage (or other soft tissues) initiated from
geometries imaged in vivo, we do not require the ‘unloaded’ reference
configuration (8, in Fig. 2), but only that the intra-tissue stress dis-
tribution is in equilibrium with the known boundary conditions as
imaged, such that simulations can begin from this equilibrium state
(Bimg in Fig. 2).
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2.3. Uniaxial extension test

To demonstrate our method and its impact, we first model a uniaxial
tensile test of a cartilage specimen from the middle zone, consistent
with the experiments completed in 0.15M PBS bath by Elliott et al.
(2002). Our FE model consists of al mm X 1 mm X 1 mm cube meshed
with a single 20-node hexahedral, Taylor-Hood element with quadratic
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(a) Case 1

(b) Case 2
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(c) Case 3

Imaged Geometry
with Zero-Stress
State as Stress-Free
Configuration

Imaged Geometry
with Zero-Stress
State as Stress-Free
Configuration

Imaged Geometry
with Zero-Stress
State as Stress-Free
Configuration

! !

Uniaxial Tensile Test
without Osmotic
Pressure

Uniaxial Tensile Test
with Osmotic Pressure

D D

Free Swelling
Test

Update
Stress-Free
Configuration

Converge to
Imaged
Geometry?

Backward
Displacement
Method

Uniaxial Tensile Test
with Osmotic Pressure

Fig. 3. Three different computational methods to simulate an (image-driven) uniaxial tension test. (a) Case 1 ignores the mechanical effects of osmotic pressure by
setting the FCD to zero (ci§ = 0), thus recovering the model of Pierce et al. (2016). (b) Case 2 naively accounts for osmotic pressure by treating the imaged
configuration as a stress-free reference configuration. (c) Case 3 uses our new computational method to include osmotic pressure by first recovering the osmotically
loaded prestressed state (red box), then simulating the uniaxial tensile test thereafter.

shape functions for solid displacements and bilinear shape functions for
saturation pressure. We first fix nodes in dir-1, dir-2, and dir-3 at
minimums to zero displacement in their respective directions. We then
apply a linear displacement ramp to the nodes on one face of the cubic
specimen (dir-1 equals maximum) at a quasi-static rate of
5 x 107> mm/s until we reach an applied stretch of 1.2 at 4000 s. Faces
normal to the 2 and 3 directions (dir-2 and dir-3 equal maximum) are
left free to expand or contract. We complete all simulations in the FE
program FEAP (University of California at Berkeley, CA, USA) using a
total Lagrangian formulation and the included Newton-Raphson algo-
rithm.

Table 1 summarizes the material parameters we use to model
human patellar cartilage from the middle zone, where we set 8, =0,
7, = 0.1, o € {IM, FN}, to eliminate viscoelasticity in the solid con-
stituents, cf. Pierce et al. (2016), and ®= 310K as the in-vivo tempera-
ture. We set the FCD ¢ to that of healthy cartilage, cf. Risinen et al.
(2017). We set the DT-MRI tensor [D;;, Dy, Ds3, Dyy, Dy3, Da3] = [1.0,
1.0, 1.0, 5x 107, 5x 107%, 5 x 107*] to represent the isotropic dis-
tribution of the collagen fibers in the middle zone.

In light of the importance of this network of collagen fibers to the
mechanical properties of articular cartilage, we treat the fiber para-
meters k; and k; carefully. In Section 2.3.1 we set & = 3.0 MPa and
k; = 8.0, cf. Pierce et al. (2013a), and compare results from simulations
with/without including osmotic contributions and considering different
initial configurations. In Section 2.3.2 we use k; = 3.0 MPa and k; = 8.0
as an initial reference, then fit our new constitutive model (Section 2.1)
for cartilage to the experimental data from Elliott et al. (2002) with/
without considering osmotic contributions and considering different
initial configurations, and compare the resulting parameters.

To present our results and/or compare with the experimental results
of Elliott et al. (2002) we clarify our stretch and stress measures. In the
experimental data, both the experimentally determined stretches and
stresses treat the imaged configuration as the reference configuration.
Thus, the experimentally determined stretch A is
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Aexp =

limg lD limg (22)

where [, is the relaxed dimension in the imaginary stress-free config-
uration, limg is the corresponding dimension in the imaged configura-
tion, and [ is corresponding current length in deformed configuration.
Similarly, the experimentally determined stress oy is

Texp = T — Oimg, (23)

where o and o, are defined in Section 2.2.

2.3.1. Comparing simulation methods

We use three different computational methods to simulate a uniaxial
tension test, as detailed in Fig. 3. In Case 1 we turn off the mechanical
effects of osmotic pressure by setting the FCD to zero (cj§ = 0), thus
recovering the model of Pierce et al. (2016). In Case 2 we naively ac-
count for osmotic pressure by treating the imaged configuration as a
stress-free reference configuration. In Case 3 we apply our new com-
putational method to include osmotic pressure by first recovering the
(osmotically loaded) prestressed state using the backward displacement
method, then simulating the uniaxial tensile test thereafter.

To illustrate the different predictions we plot Cauchy stress vs. ex-
perimentally determined stretch and quantify the percent differences in
the predictions at Agy = 1.04, 1.08, 1.12, i.e. following the experimental
data of Elliott et al. (2002).

2.3.2. Fitting Model Parameters

To fit the material parameters k; and k; to the experimental data of
Elliott et al. (2002) (while leaving all other parameters constant), we
use a global design space (parameter range for fitting) in conjunction
with parameter fitting using the three different computational methods
to simulate the uniaxial tension test (Cases 1, 2, and 3; Fig. 3). Thus we
have three combinations of fitted parameters that we then compare in
light of the experimental data.

Our global design space encompasses virtually all reasonable pos-
sibilities with k; € [0, 10] (MPa), k; € (0, 15] (—). Within this range, we
perform a nonlinear least-squares fitting to results generated from a
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Design Space
of Fitting
Parameters k. k

o

Step 1:

Surrogate Model
Optimization Fitting

Determine Sample Points
by DeE, and Run

Use the Previous Result as
Initial Guess

v

Find Best-Fit Design with
Gradian-Based
Optimization

Build Surrogate Model and
Find Best-Fit Design on
Surrogate Model

Result Added to
Sampled Data Set

y

Simulation of the
Surrogate Best-Fit
Design

Intermediate No

Fitting Quality
Sufficient?

Table 2

Through-thickness material, compositional, and structural parameters for car-
tilage and corresponding units (Pierce et al., 2016, Risdnen et al., 2017). The
parameter z* € [0, 1] is the normalized tissue thickness, where zero refers to the
articular surface and one refers to the interface with subchondral bone.

Parameter Value Unit
nis(z*) 0.15 + 0.15(z*) =
v(z*) 0.43(z*)? — 0.60(z*) + 0.85 -
I5@) 0.36 + 0.11(z*) -
ez [1.0 + 2.6(z%)] x 1077, z* €0, 0.5] mol/mm?
23 % 1077, z* € (0.5, 0.75]
[4.4 — 2.8(z%)] x 1077, z* € (0.75, 1]
kos(z*) 1.0 X 1073 — 0.9 X 1073(z*) mm?/Ns
m(z*) 3.0 + 5.0(z%) _
D (DT-MRI from Pierce et al., 2016) -

two-step, optimization scheme (treating the simulations from Cases 1,
2, or 3 as a ‘black box’) used to determine the fitted parameters (k; and
k;) that best reproduce the experimentally determined stress-stretch
response, see Fig. 4.

In the first step, we obtain a preliminary fitting from a surrogate
model (Appendix B), and thereafter we apply a gradient-based method
to determine the final fitting results. For the first step we use Latin
Hypercube Sampling (LHS) (McKay et al., 1979) as our design of ex-
periment (DoE) method to determine the locations of sample points
within our design space and Kriging to interpolate between sample
points (Oliver and Webster, 1990; Cressie, 1990).

In our two optimization schemes we calculate the root-mean-
squared error (RMSE) at each experimental stretch, i.e. when
Aexp = Agn, as
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Fig. 4. We perform a nonlinear least-squares fitting to
results generated from a two-step, optimization scheme.
To reduce the computational cost we first employ a sur-
rogate model (that can mimic the original response of the
FE analysis) to determine a rough initial fitting (red box).
Second, we use a gradient-based method to determine our
final refined result (blue box) (For interpretation of the
references to color in this figure legend, the reader is re-
ferred to the web version of this article).

Step 2:
Gradian-Based
Optimization Refine

i=1

I\‘ NEit
& = \‘J Z [Cexp,i — Omnil* |/Nexp,

(24)

where the subscript Ell refers to the experimental data of Elliott et al.
(2002) and Ngj is the total number of experimental data points therein.

To illustrate the different fitting results we plot Cauchy stress vs.
experimentally determined stretch, and quantify the percent differences
in the resulting material parameters using Case 1 as a benchmark.

2.4. Stress-relaxation test in unconfined compression

Next we model a stress-relaxation test of a full-thickness cuboid of
cartilage (2 mm x 2 mm X 2.6 mm) in unconfined compression based
on Diffusion Tensor MRI data detailed in Pierce et al. (2010). Our
image-driven FE model consists of a 50 um x 1 mm x 2.6 mm slice of
the specimen meshed with 510 20-node hexahedral elements, see
Fig. 7(a) Section 2.3. We fix nodes in dir-3 at minimum to zero dis-
placement in all degrees-of-freedom (and wgg = 0). Next we fix nodes
internal to the cartilage specimen in dir-1 and dir-2 with symmetry
boundary conditions in their respective directions, i.e. plane-strain
conditions. We then apply a linear displacement ramp to the articu-
lating surface of the cuboid specimen (dir-3 equals maximum) at a rate
of 2.6 x 1073 mm/s until we reach an applied stretch of 0.9 (i.e. 10%
compression) in 100s, and then hold this displacement for another
700 s (relaxation). Nodes external to the cartilage specimen are free to
expand or contract (and p = 0).

Table 2 summarizes the material parameters we use to model
human patellar cartilage through the full thickness (Pierce et al., 2016),
where the fixed charge density ck is given as a piece-wise linear
function (Rdsédnen et al., 2017). The remaining parameters come from
Table 1. We apply the DT-MRI data from Pierce et al. (2010) to create
an image-driven FE mesh and set D element-wise by application of the
corresponding diffusion tensors. In this way the FE model reflects both
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Elliot et al., 2002

Case 1 (no OP, no BDM)
Case 2 (OP, no BDM)
Case 3 (OP, BDM)
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=
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1.06 1.08 1.12 1.14

Experimental Stretch A (-)

1 1‘62 1})4
Fig. 5. Experimental Cauchy stress-stretch responses of Cases 1, 2, and 3 using
g = 3.0 MPa, k, = 8.0 (Pierce et al., 2013a). We include the experimental data
(mean + standard deviation) of Elliott et al. (2002) for context. Since we
compare our results with experimental data, we present our results consistent
with the experimentally determined values, cf. (22) and (23).

Table 3
Quantitative comparison of the Cauchy stress responses of Cases 1, 2, and 3 at
the stretch values from the experiment (Aeg) using k; = 3.0 MPa, k, = 8.0 (cf.
Fig. 5).

Texp (kPa)
Aexp () Case 1 Case 2 (8) Case 3 (8)
1.04 56.0 74.0 (+32.3%) 75.3 (+34.6%)
1.08 135.4 156.2 (+15.3%) 167.4 (+23.6%)
112 263.3 283.6 (+7.7%) 319.7 (+21.4%)
1.20 992.1 1009.1 (+1.7%) 1263.1 (+27.3%)
@  Elliot et al., 2002
07k Case 1 (no OP, no BDM)
Case 2 (OP, no BDM)
Case 3 (OP, BDM)
06
9
]
&
gosf
A 5
g g
% o4t 72
S
z
]
=2 03F
E
H
go2t
<]
0.1}
0 ) L \ \ L )
1 1.04 1.06 1.08 1.1 1.12 114

Experimental Stretch Aey (-)

Fig. 6. Experimental Cauchy stress-experimental stretch responses of Cases 1,
2, and 3 for a global fitting (design space k € [0, 10] (MPa), k; € (0, 15]) to
Elliott et al. (2002). We provide a zoomed-in illustration of the area highlighted
by the dashed line, with inflection point at Ay, = 1.03, in Appendix C.

the measured geometry and microstructure of the specimen.

We simulate the same stress-relaxation test using three methods
(Cases 1, 2, and 3; Section 2.3.1). We compare the different bulk re-
sponses by plotting the global force-displacement response, and we
quantify the percent differences in the results at 100s (initial peak
displacement) and 800s (nearly fully relaxed) using Case 1 as a
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Table 4

Quantitative comparison of the Cauchy stress responses of Cases 1, 2, and 3 at
the stretch values from the experiment (1) using best fit with k € [0, 10]
(MPa) and k, € (0, 15] as a global design space (cf. Fig. 6).

Oexp (kPa)
dep O Case 1 Case 2 (8) Case 3 (8)
1.04 95.1 111.5 (+ 17.3%) 1104 (+ 16.2%)
1.08 216.8 2234 (+ 3.1%) 224.1 (+ 3.4%)
1.12 3729 364.9 (— 2.1%) 364.8 (— 2.2%)
1.20 838.4 820.1 (- 2.2%) 770.1 (— 8.2%)
Table 5

Fitted material (fiber) parameters k;, k;, RMSE error &, and in parentheses the
percent difference & relative to Case 1 (no OP, no BDM) with k; € [0, 10] (MPa)
and k; € (0, 15] as a global design space.

Results Case 1 Case 2 (8) Case 3 (8)

ki [MPa] 5.7 4.9 (— 13%) 4.9 (— 13%)

k [-1 1.2 2.1 (+ 65%) 0.90 (— 27%)
& [MPa] 0.010 0.0033 (— 68%) 0.0025 (— 76%)

benchmark. To illustrate the different intra-tissue responses we plot
distributions of axial cauchy stress and interstitial fluid pressure also at
100 and 800s.

3. Results

We successfully implemented the mechanical effects of osmotic
pressure (Karajan, 2009; Ehlers et al., 2009) into an existing con-
stitutive model for cartilage (Pierce et al., 2016), and implemented the
backward displacement method (extended from Bols et al., 2013) to
determine the prestretched/prestressed states induced by osmotic
loading in (imaged) initial configurations of the FE models.

3.1. Uniaxial extension test

3.1.1. Comparing simulation methods

Fig. 5 illustrates the experimental Cauchy stress-stretch responses of
Cases 1, 2, and 3 using k; = 3.0 MPa, k; = 8.0 (Pierce et al., 2013a). In
Fig. 5 we present the stretch results as those from the experiment (Aexp ),
and the corresponding Cauchy stresses (Gexp), cf. (22) and (23). Fol-
lowing the definition, the experimentally determined stretches and
stresses always start from [Geyp, dexp] = [0, 1] in the imaged configura-
tion. Finally, we compare the three cases quantitatively in Table 3.

3.1.2. Fitting model parameters

Using a global design space in conjunction with parameter fitting to
the three different computational methods to simulate the uniaxial
tension test (Cases 1, 2, and 3; Fig. 3), we obtain three distinct me-
chanical responses and three distinct parameter sets. Fig. 6 illustrates
the experimental Cauchy stress-experimental stretch responses of Cases
1, 2, and 3 using k; = 3.0 MPa, k; = 8.0 (Pierce et al., 2013a) as an initial
guess. In Fig. 6 we choose k; € [0, 10] (MPa) and k;, € (0, 15] as a global
design space. Somewhat unexpectedly, there is an inflection point at
Aexp = 1.03 and we provide a zoomed-in illustration of this in Appendix
C. We compare the three cases quantitatively in Table 4. Table 5 pro-
vides the corresponding fitted material (fiber) parameters k), k, and
RMSE error & relative to Case 1.

3.2. Stress-relaxation test in unconfined compression

Fig. 7(a) schematically illustrates the specimen used for the stress-
relaxation test in unconfined compression. Fig. 7(b) illustrates the
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Fig. 7. (a) Schematic illustration of the specimen used for the stress-relaxation test in unconfined compression. (b) The displacement vs. time applied to the
articulating surface of the specimen (top) and the resulting reaction force vs. time (bottom) for Cases 1, 2, and 3.

Table 6
Quantitative comparison of the reaction force responses of Cases 1, 2, and 3 at
times 100 s (peak response) and 800 s (relaxed response).

Reaction Force (N)

Time (s) Case 1 Case 2 (3) Case 3 (9)
100 0.0328 0.0343 (+4.45%) 0.0339 (+3.17%)
800 0.0298 0.0318 (+6.74%) 0.0307 (+3.05%)

displacement vs. time applied to the articulating surface of the spe-
cimen (top) and the resulting reaction force vs. time (bottom) for Cases
1, 2, and 3. We compare the three cases quantitatively in Table 6.

Fig. 8 illustrates the distributions of axial cauchy stress and inter-
stitial fluid pressure for Cases 1, 2, and 3 at times 100 s (peak response)
and 800 s (relaxed response) (Table D1).

4. Discussion

We establish a new approach to image-driven FE simulations of
cartilage. We first established a new constitutive model for articular
cartilage by extending our recent model (Pierce et al., 2016) to include
the mechanical effects of osmotic pressure following the approach de-
tailed by Karajan (2009), Ehlers et al. (2009). We then overcame a
theoretical inconsistency arising in image-driven FE simulations (the in-
vivo imaged geometry used to construct the model is not an unloaded,
stress-free reference configuration) by determining the osmotically
loadedprestretched/prestressedstate within the solid matrix of the FE
model using the backward displacement method following Bols et al.
(2013). Starting from this state we may solve boundary value problems
of interest.

To demonstrate the efficacy of our new approach we compare re-
sults from FE simulations assuming three cases: Case 1 (no OP, no
BDM), Case 2 (OP, no BDM), and Case 3 (OP, BDM). To further de-
monstrate efficacy we fit material parameters related to the collagen
fibers to experimental data, using the same three cases, and again
compare results. Our new constitutive model, combined with our fitting
and simulation workflow, can capture the mechanical effects of osmotic
pressure within a theoretically consistent image-driven configuration.

In our representative test cases in Section 2.3 we assume that the
parameters ny = 0.21 and ¢ = 2.0 x 1077 mol/mm? were determined
in a stress-free reference configuration. During the Case 3 simulations
(OP, BDM) the values of both njy and ¢k change by » 3 — 4% in the
osmotically loaded, imaged configuration, see Appendix D.
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Additionally, we assume that kos = 6.2 x 107> mm*/(N's) was also de-
termined in a stress-free reference configuration. The physical meaning
of this parameter also changes if referenced to the osmotically loaded,
imaged configuration via functional dependence on n%, cf. (10). In
practice, it's more likely to determine these parameters experimentally
from the osmotically swollen state, i.e. #{y, s, Cing s, and Kimg s versus ngy,
cos, and kgs. In this case, for consistency, both ny and cf should be
determined via fitting within the inverse problem, and king s should be
checked for correct implementation in the imaged configuration.

4.1. Uniaxial extension test

4.1.1. Comparing simulation methods

Importantly, in Case 3 (OP, BDM) we recover the imaged config-
uration with a prestressed state in equilibrium with the (assumed)
known osmotic load. Cases 1, 2, and 3 (Fig. 3) lead to distinctly dif-
ferent predictions for stresses at the same stretches, cf. Fig. 5, clearly
demonstrating the importance of considering the osmotically loading,
prestressed configuration in order to better interpret the experimental
results. Given fixed parameters k, and k;, Case 3 shows the stiffest be-
havior. This is largely because the collagen fibers are pre-tensioned
(prestressed), starting from the imaged configuration and thus their
contribution to the total stress is greater.

4.1.2. Fitting model parameters

Case 3, which includes the effects of prestress/prestretch due to
osmotic loading in the imaged configuration, is theoretically consistent
with most laboratory experiments and thus we consider it the most
realistic. With both the osmotic pressure and the correct prestressed
configuration included, our Case 3 simulations determined lower k; and
sy, as well as smaller RMSE errors, under the same global fitting and
with respect to cases 1 and 2. This agrees with our expectations based
on the discussion in Section 4.1.1. Note that the original experimental
data from cartilage in the middle zone does behave nearly linearly
within the applied range of stretches (Elliott et al., 2002). With less
nonlinear behaviors, the different cases have smaller differences in
predicted stresses (to better illustrate the effects we provided quanti-
tative data to Ay = 1.20). However, cartilage can show highly non-
linear behavior, especially in the superficial zone where collagen fibers
often align to create a strongly anisotropic tissue (Kempson et al., 1973;
Elliott et al., 2002; Huang et al., 2005). Our model, proposed here, can
fit such nonlinear and anisotropic responses.

Modeling the prestretched/prestressed condition not only influences
the values of the fitted material parameters, but also creates a slight
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(a) Peak response at ¢t — 100 s
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(b) Relaxed response at ¢t — 800 s

Axial Cauchy Stress (MPa)
-0.90 -0.60 -0.40 -0.20 0.00

Interstitial Fluid Pressure (MPa)
0.00 0.02 0.04 0.06 0.08 0.1l

—

Fig. 8. (a) Peak and (b) relaxed responses, at times 100 s and 800 s respectively (columns), shown as distributions of axial Cauchy stress and interstitial fluid pressure

for Cases 1, 2, and 3 (rows).

inflection point in the overall stress-stretch behavior predicted in the
uniaxial tensile test. Overall, as the loaded direction is stretched in the
uniaxial tensile test, the remaining two (unconstrained) directions tend
to shrink due to incompressibility. During the uniaxial tension test,
these two unconstrained directions first contract to the at-rest-length
(of the fibers) and then go into compression (Bursa¢ et al., 2000). While
passing the at-rest-length, fibers aligned in these directions switch from
tension (load-bearing) to compression (non-load-bearing) and no longer
contribute to the total stress state, cf. (9). This change from tension to
compression creates a slight inflection point in the overall stress-stretch
behavior seen at Aexp = 1.03 in Fig. C1 (zoomed in from Fig. 6(b)).
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4.2. Stress-relaxation test in unconfined compression

Cases 1, 2, and 3 show virtually identical bulk force-displacement
responses during initial loading, and these are nonlinear (Fig. 7(b) and
Table 6). However, Case 2 reaches the highest peak force since the
displacement loading and osmotic loading occur simultaneously from a
stress-free reference configuration. Case 1, which neglects osmotic
swelling, shows the lowest peak force of the three cases. In comparison,
Case 3 starts from the same reference geometry, but in an equilibrium
state where the fibers are pre-tensioned due to the osmotic swelling.
This prestressed/prestrained state results in an intermediate peak force
and a slightly faster relaxation. Finally, the total bulk relaxation of the
specimen is less than might be expected. This is likely due to the re-
latively slow loading, the large free-draining surface area relative to the
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total volume, and fact that viscoelasticity of the solid constituents is
neglected in the example, i.e. §, = 0, 7, = 0.1, @ € {IM, FN}.

Cases 1, 2, and 3 show distinctly different distributions of axial
Cauchy stress, particulary at peak response (100s), cf. Fig. 8. Case 1
starts from a stress-free distribution but at 100 s shows a largely ne-
gative Cauchy stress through the thickness due to the compression. Case
2 starts similarly but the Cauchy stress remains near zero through the
thickness due to osmotic pressure countering the compression. Con-
versely, Case 3 starts from an overall positive axial stress distribution
prior to compression. At 100s the applied compression generates a
near-zero axial stress in the superficial zone while stresses in the middle
and deep zones remain positive. After relaxation (at 800 s), Case 1 re-
mains in compression through the thickness while cases 2 and 3 are
very similar and nearly zero demonstrating a balance between com-
pression and osmotic swelling.

Cases 1 and 3 show very similar distributions in interstitial fluid
pressure at peak response while this is generally lower in Case 2. Note
that both Case 1 and Case 3 start in equilibrium, i.e. zero interstitial
fluid pressure, and with the same geometry. After relaxation the dis-
tributions in interstitial fluid pressure for all three cases are nearly zero,
and only a small pressure remains in the deep zone of the specimen (i.e.
not fully relaxed).

4.3. Limitations and opportunities

It is important to note that our new constitutive model and mod-
eling methods capture only the mechanical effects of Donnan osmotic
pressure based on the simplifying assumption of Lanir (1987). Other
contributions to the swelling pressure include charge-charge repulsion.
Triphasic or quadri-phasic constitutive models seek to capture other
mechanical-electrochemical coupling effects generated from the ex-
istence of ions and fixed charges, such as streaming potential and
electroosmosis, e.g. van Loon et al. (2003), Ateshian et al. (2011). These
cartilage models capture more physics, but such fidelity is more com-
putationally expensive and is not always relevant.

Appendix A

Journal of the Mechanical Behavior of Biomedical Materials 86 (2018) 409422

In our new method, we determine the osmotically prestretched/
prestressed state within the cartilage in equilibrium with the (imaged)
initial configuration of the FE model using the backward displacement
method (Bols et al., 2013) prior to solving boundary value problems of
interest. This equilibrium condition could be similarly determined by
application of other computational approaches, e.g. Grytz and Downs
(2013), Weisbecker et al. (2014), Maas et al. (2016), and where the
latter is implemented as a plugin in FEBio.

Our results highlight the importance of determining the pre-
stretched/prestressed state within the solid matrix induced by osmotic
loading in the (imaged) initial configuration prior to solving boundary
value problems of interest. With our new constitutive model and
modeling methods, we hope to improve the fidelity of FE-based, pa-
tient-specific biomechanical simulations of joints and cartilage. “Open
Knee(s): Virtual Biomechanical Representations of the Knee Joint”
(Erdemir, 2016) offers free access to hexahedral meshes of specific
patients. Similarly, we offer free access to hexahedral meshes of eight
patients from the OAI database (Rodriguez-Vila et al., 2017) and a
MATLAB implementation of our meshing software, both free for
download at im.engr.uconn.edu/downloads.php. Improved simulations
can provide medical researchers with new information often unavail-
able in a clinical setting, information that may contribute to better in-
sight into the pathophysiology of cartilage diseases. With our new fit-
ting methods, we also hope to better fit available experimental data.
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In articular cartilage, we determine the osmotic pressure from Donnan equilibrium as (Karajan, 2009)

Am = R@[V'4(Em)2 + (& - 20|,

(25)

where &y, is the ion concentration of the external solution, and ¢ is the concentration of the fixed charges. Starting from the osmotic contribution to
the solid stress of the model (Section 2.1), we compute the second Piola-Kirchhoff stress as

3Wor
aCcy
o, Bc  AdetFs ddetCy
dck ddetFyddetCs dC
dlp%p 36,{1‘: C_l

= det R Z2OF 4
S 0ck ddetFy °

S%p=2

.
= — detFRO| /4(n)? + (¢ —28m | C5'

= — detFsA7C5l.
We then compute the Cauchy stress as

odp = det F5'FsSSpF) = —Anl.

Appendix B

(26)

27

By running the FE simulation S, we observe y at n sites (determined by DoE)

S = [x,..,.xMT € R™" x = {x;, ....xpn} € R™,

(28)



X. Wang et al. Journal of the Mechanical Behavior of Biomedical Materials 86 (2018) 409-422

with the corresponding responses
% = 0, y®1" = [px®), .y ] € R (29)

The pair (S, y,) is thus the sampled data in vector space. Kriging, an interpolating method, includes the observed data at all sample points and
provides a statistic prediction of an unknown function by minimizing its mean-squared-error (MSE). With Kriging, we the treat outputs of our
(deterministic) FE simulations as realizations of a random function (or stochastic process), defined as the sum of a global trend function fT(x)B and a
Gaussian random function Z (x) as

y®) =T + Z(x), (30)

where we define f(x) = [f, (), .., fp_l x)]" € RP with a set of the regression basis functions, g = [ﬁn,...,ﬁp_l]T € RP denotes the vector of the corre-
sponding coefficients, and we take f"(x)g as a constant By In (30), Z(x) denotes a stationary random process with zero mean, variance ¢?, and
nonzero covariance

Cov[Z (x), Z(x)] = a?R(x, X'), (31)

where R(x, X) is the correlation function only dependent on the Euclidean distance between any two sites X and X’ in the design space (McKay et al.,
1979). We adopt a Gaussian exponential correlation function

m
R, x') = exp[— z B Ix —x’kIPk], 1<p, <2,

k=1 (32)
where [6), 6,,...,0m]" and p = [p,, p,....p,,]" denote the vectors of unknown model parameters (hyper parameters) to be determined.
We write the Kriging predictor § (x) for any untried X as

§x) = By + TR (y,—B, D), (33)
where 1 € R" is a vector of ones and the generalized least-square estimation of 3, is
B, = A'R)1'R Yy, (34)
We define R and r, the correlation matrix and correlation vector respectively, as

R(xM, xM) R(xW, x@) ... R(x®, xm)
R = | REO D) RE®, x) - RGO, x™) | R,

R(X(”;, x(1) R(X(";, x@) ... R(X(")., x(m) (35)

R(xW, x)
oo | KOO0 |

R(x(;‘), X) (36)

where R(x®, x() denotes the correlation between any two observed points x¥ and x0’, R(x, x) denotes the correlation between the ith observed
point x) and the untried point Xx.

The Kriging model provides an uncertainty estimation (or MSE) for each prediction
§2 = g?[1-r'"R'r + ("R 11 — 1)?)/(1"R711), (37)
which is very useful for refinement of sample points. Assuming that the sampled data are distributed according to a Gaussian process, we consider the
responses at sampling sites as correlated random functions with the corresponding likelihood function
£ exp(_l (y;_ﬁul)TRgl(}g_ﬁul) ).
J2m (@RI 2 g

L(By, 0% 8, p) = 38)

We obtain the optimal estimation of 3,
Bo(6. p) = (ITR1)1'TR Yy, (39)

and the process variance o2

TG . ) = — 3By DRy, “0)

analytically, but they still depend on the remaining hyper-parameters & = [, 6;,...0,]" and p = [p,, p,.....p,,|". Substituting these into the asso-
ciated likelihood function (38) and taking the logarithm, we maximize

MLE(8, p) = —n Ing?(6, p) — In IR(8, p)I, 41)

using a numerical optimization algorithm, e.g. gradient-based optimization (Han and Zhang, 2012).
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Appendix C

See Fig. C1.

Journal of the Mechanical Behavior of Biomedical Materials 86 (2018) 409422

015
—&— Case 1 (no OF, no BDM)
—a— Case 2 (OP, no BDM)
—g— Case 3 (OP, BDM)
=
&
=)
g 01
)
]
&
B
@
-y
g
£
]
Lo
S
E 0.05
g
-3
i -
A~
L I L L
1 1.005 1.01 1.015 1.02

1.025

1.03 1.035 1.04 1.045 1.05

Experimental Stretch Aeg, (-)

Fig. C1. Experimental Cauchy stress-stretch responses of Cases 1, 2, and 3 for global fitting k; € [0, 10] (MPa), k; € [0, 15] zoomed-in to highlight the inflection point

at Aep = 1.03. This is the area highlighted by the dashed line in Fig. 6(b).

Appendix D

See Table D1.

Table D1

Change in the material parameters (solid volume fraction and fixed charge density) for Case 3 (OP, BDM) simulations, from the stress-free reference configuration
(ng and c&) to the osmotically loaded, imaged configuration (n}»?ngs and cg,f,g ), and in parentheses the percent difference § relative to the stress-free reference.

Case 3 (k, k) ngg [-1 F!-Engs [-1 ) ¢&& [mol/mm 3] Cfhe s (mol/mm’] (8)
Pierce et al. 0.2138 0.2070 2.000 x 107 1.920 x 10~7 (- 4.01%)
(2013a) (— 3.18%)
Parameter 0.2138 0.2077 2.000 x 10~7 1.928 x 1077 (— 3.58%)
Fitting (— 2.84%)
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