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ABSTRACT

Electrocardiogram (ECG) signal is a common and powerful
tool to study heart function and diagnose several abnormal ar-
rhythmias. While there have been remarkable improvements
in cardiac arrhythmia classification methods, they still cannot
offer acceptable performance in detecting different heart con-
ditions, especially when dealing with imbalanced datasets. In
this paper, we propose a solution to address this limitation of
current classification approaches by developing an automatic
heartbeat classification method using deep convolutional neu-
ral networks and sequence to sequence models. We evaluated
the proposed method on the MIT-BIH arrhythmia database,
considering the intra-patient and inter-patient paradigms, and
the AAMI EC57 standard. The evaluation results for both
paradigms show that our method achieves the best perfor-
mance in the literature (a positive predictive value of 96.46%
and sensitivity of 100% for the category S, and a positive
predictive value of 98.68% and sensitivity of 97.40% for the
category F for the intra-patient scheme; a positive predictive
value of 92.57% and sensitivity of 88.94% for the category
S, and a positive predictive value of 99.50% and sensitivity
of 99.94% for the category V for the inter-patient scheme.).
The source code is available at https://github.com/SajadMo/
ECG-Heartbeat-Classification-seq2seq-model.

Index Terms— ECG analysis, heartbeat classification,
deep learning, sequence to sequence model, RNNs.

1. INTRODUCTION

An electrocardiogram (ECG) is a common non-invasive
tool to record heart activities and detect different abnor-
malities in heart functionality. Classification of the arrhyth-
mic heartbeats in the ECG signal can be a challenging and
time-consuming task for a physician, therefore, such heart-
beat hand-annotating is often prone to error. This problem
calls for automatic heartbeat classification methods that are
able to diagnose arrhythmic heartbeats in real-time with
high accuracy. Several machine learning algorithms such
as support vector machines (SVM), multilayer perceptron
(MLP), reservoir computing with logistic regression (RC)
and decision trees have been utilized for arrhythmia detection
[1, 2, 3, 4, 5, 6]. These shallow machine learning methods for
ECG processing usually follow three main steps, including
1) signal pre-processing, which includes noise removal meth-
ods, heartbeat segmentation, etc; 2) feature extraction; and
3) learning/classification. Even though these methods with
hand-engineered features and applying noise removal tech-
niques have achieved acceptable performances, deep learning
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approaches (i.e., automated feature extractions) have shown
impressive results in various domains ranging from com-
puter vision and reinforcement learning to natural language
processing [7, 8, 9] as well as more applicable outcomes in
biomedical signal processing [10, 11, 12].

One of the main limitations of the current heartbeat clas-
sification methods including shallow and deep machine learn-
ing methods is their poor performance when dealing with im-
balanced datasets. In particular, they attain a low positive pre-
dictive value and sensitivity for the classes with lower sample
size in the dataset. For instance, the majority of existing ECG
analysis techniques achieve a low sensitivity in the MIT-BIH
arrhythmia database for ventricular escape beat (S) and fusion
of ventricular, and normal beat (F) classes. Furthermore, most
previously reported works in the literature have been eval-
uated based on intra-patient paradigm rather than the inter-
patient scheme, which is an obviously more realistic scenario
to prevent training and test the model using the samples from
the same patients. Therefore, although some of these meth-
ods achieved good accuracies using the intra-patient scheme,
their results are not reliable as their evaluation process was
biased [13].

As mentioned above, the conventional arrhythmia classi-
fication systems can be generally divided into two categories
of inter-patient and intra-patient paradigms in terms of their
evaluation mechanism. In intra-patient paradigm, the training
and evaluation datasets can include heartbeats from the same
patients, while in inter-patient paradigm, a more realistic eval-
uation mechanism is used where the heartbeat sets for test and
training come from different individuals. One of our aims in
this paper is to evaluate the proposed method with both the
paradigms.

Inspired by the aforementioned issues with the previous
works, this paper proposes a novel and effective approach for
automatic ECG-based heartbeat classification by leveraging
a sequence to sequence deep learning method and an over-
sampling method named Synthetic Minority Over-sampling
Technique (SMOTE) to address the aforementioned challenge
with minority classes. The proposed model is evaluated using
inter-patient and intra-patient paradigms where it achieves the
best results compared to the existing works in the literature.

The rest of this paper is organized as follows. Section 2
introduces the database utilized in this study. Section 3 de-
scribes the proposed method. Section 4 presents the experi-
mental setup and shows the achieved results by the proposed
method along with a performance comparison to the state-of-
the-art algorithms. Finally, Section 5 concludes the paper.

2. DATASET

In this study, we used the PhysioNet MIT-BIH Arrhythmia
database to evaluate the performance of our proposed method
[14, 15]. The MIT-BIH dataset includes the ECG signals for
48 different subjects recorded at the sampling rate of 360Hz.



Each record contains two ECG leads; ECG lead II and lead
V1. Usually, the lead II signal is used to detect heartbeats
in the literature. Similarly, here in all experiments, we have
applied ECG lead II. This database is recommended by the
American association of medical instrumentation (AAMI)
[16], since it includes the five essential arrhythmia groups as
described in Table 1.

We considered two main paradigms of inter-patient and
intra-patient to evaluate the proposed model. In the intra-
patient paradigm, two sets of data samples (beats) are chosen
randomly as training and test samples in which there may be
the heartbeat samples of the same patient in the training and
test sets. While, in the inter-patient paradigm, the training and
test set are constructed from different patients, following the
protocol proposed by de Chazal et al. [13]. In this method,
the heartbeats from the MIT-BIH database (44 records based
on AAMI) are divided into two sets of records: DS1 = {101,
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209, 215, 220, 223,230} and DS2
= { 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234}. DS1
is used to build the classification model and DS2 is utilized
to test the model. Using this division approach, there is no
concern about including the heartbeats from the same patient
in both training and test sets.

3. METHODOLOGY

In the following sections, we present a detailed description
of our proposed novel model to automatically classify each
heartbeat of a given ECG signal.

3.1. Pre-processing

The input of this method is a sequence of ECG beats. In order
to extract the ECG beats from a given ECG signal, we follow
a few simple steps:

1. Normalizing the given ECG signal to the range of be-
tween zero and one.

2. Finding the set of t waves regarding the ECG R-peaks
of its corresponding annotation file in the MIT-BIH Ar-
rhythmia database.

3. Splitting the continuous ECG signal to a sequence of
heartbeats based on the extracted t waves and assigning
a label to each heartbeat based on the annotation file.

4. Resizing each heartbeat to a predefined fixed length
(280 samples).

We would like to note that these pre-processing steps for beat
extraction are very simple and do not involve any form of
filtering or noise removal methods.

3.2. The architecture

The sequence to sequence models have shown very impas-
sive results in neural machine translation applications, nearly
similar to human-level performance [17]. The architecture of
sequence to sequence networks is usually composed of two
main parts of the recurrent neural network (RNN) encoder
and decoder. In this study, we leverage a RNN sequence to
sequence model along with a convolutional neural network
(CNN) to perform a heartbeat detection task.

Fig. 1 illustrates the proposed network architecture for
automatic beat classification. The CNN consists of three con-
secutive one-dimensional convolutional layers. The first layer
is composed of 32 1-D convolution filters with a kernel size
of 2 × 1 and a stride 1, followed by a Rectified Linear Unit

Table 1: Categories of heartbeats existed in the MIT-BIH database
based on AAMI.

Category Class

N

• Normal beat (N)
• Left and right bundle branch block beats (L,R)
• Atrial escape beat (e)
• Nodal (junctional) escape beat (j)

S

• Atrial premature beat (A)
• Aberrated atrial premature beat (a)
• Nodal (junctional) premature beat (J)
• Supraventricular premature beat (S)

V
• Premature ventricular contraction (V)
• Ventricular escape beat (E)

F
• Fusion of ventricular and normal beat (F)

Q
• Paced beat (/)
• Fusion of paced and normal beat (f)
• Unclassifiable beat (U)

(ReLU) non-linearity. The second layer consists of 64 1-D
convolution filters with a kernel size of 2 × 1 and a stride
1, again followed by an ReLU. Finally, the third layer is com-
prised of 128 1-D convolution filters with a kernel size of 2×1
and a stride 1, followed by a rectifier non-linearity. Each con-
volutional layer except the last layer is also followed by a max
pooling layer of pooling region of size 2 × 1 with a stride 1.
At each time-step of training/testing the model, a sequence
(size of maxtime) of ECG beats is fed into the CNN in order
for feature extraction. The last convolutional layer outputs
the maxtime of F feature maps of size k × 1 (e.g, here, we
reached 128 feature maps 3× 1). In the end, each beat of the

input sequence is associated with a vector c ∈ R
d.

The sequence to sequence model is designed based on
the encoder-decoder abstract ideas. The encoder encodes the
input sequence, while the decoder computes the category of
each beat of the input sequence. The encoder is actually com-
posed of long short-term memory (LSTM) units, which is also
called the many to one LSTM. The LSTMs can capture the
complex and long short-term context dependencies between
the inputs and the targets [18]. This is due to the fact that they
capture non-linear dependencies on entire observation when
predicting a target. The (time) sequence of input feature vec-
tors herein are fed to the LSTMs and then the last hidden state
calculated by the LSTM is considered as the encoder repre-
sentation and is used to initialize the fist hidden state of the
decoder, as depicted in Fig. 1.

We have utilized the bidirectional recurrent neural net-
work (BiRNN) units in the network architecture instead of
the standard LSTM (i.e., RNN). Standard RNNs are unidi-
rectional, hence they are restricted to the use of the previous
input state. To address this limitation, the BiRNN have been
proposed [19], which can process data in both forward and
backward directions. Thus, the current state has access to
previous and future input information simultaneously. The
BiRNN consists of a forward network and a backward net-
work. The input sequence is fed in normal time order, t =
1, ..., T for the forward network, and in reverse time order,
t = T, ..., 1 for the backward network. Finally, the weighted
sum of the outputs of the two networks is computed as the
output of the BiRNN. This mechanism can be formulated as
follow:
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Table 2: Intra-patient paradigm: Comparison of performance of the proposed heartbeat classifier against the state-of-the-art algorithms,
considering randomly chosen sets for the training and testing based on the MIT-BIH arrhythmia database.

Method ACC N S V F Q

% SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC

Proposed method 99.92 1.00 99.86 98.87 96.48 1.00 1.00 99.50 99.79 99.98 98.68 97.40 99.98 - - -
Kachuee et al. (2018)[10] 93.4 - - - - - - - - - - - - - - -
Acharya et al. (2017) [11] 97.37 91.64 85.17 96.01 89.04 94.76 98.77 94.07 95.08 98.74 95.21 94.69 98.67 97.39 98.40 99.61

Ye et al. (2010) [1] 96.50 98.7 96.3 - 72.4 94.5 - 82.6 97.8 - 65.6 88.6 - 95.8 99.3 -
Yu and Chou (2008) [4] 95.4 96.9 97.3 - 73.8 88.4 - 92.3 94.3 - 51.0 73.4 - 94.1 80.8 -
Song et al. (2005) [20] 98.7 99.5 98.9 - 86.4 94.3 - 95.8 97.4 - 73.6 90.2 - - - -

Table 3: Inter-patient paradigm: Comparison of performance of the proposed heartbeat classifier against the state-of-the-art algorithms,
considering DS1 as training dataset and DS2 as test dataset based on the MIT-BIH arrhythmia database.

Method ACC N S V F Q

% SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC

Proposed method 99.53 99.68 99.55 96.05 88.94 92.57 99.72 99.94 99.50 99.97 - - - - - -
Garcia et al. (2017)[21] 92.4 94.0 98.0 82.6 62.0 53.0 97.9 87.3 59.4 95.9 - - - - - -

Lin and Yang (2014) [22] 93.0 91.0 99.0 - 81.0 31.0 - 86.0 73.0 - - - - - - -
Ye et al. (2010) [1] 75.2 80.2 78.2 - 3.2 10.3 - 50.2 48.5 - - - - - - -

Yu and Chou (2008) [4] 75.2 78.3 79.2 - 1.8 5.9 - 83.9 66.4 - 0.3 0.1 - - - -
Song et al. (2005) [20] 76.3 78.0 83.9 - 27.0 48.3 - 80.8 38.7 - - - - - - -

itive) and FN (False Negative) indicate the number of heart-
beats correctly labeled, number of heartbeats correctly identi-
fied as not correspond to the heartbeats, number of heartbeats
that incorrectly labeled, and number of heartbeats which were
not identified as the heartbeats that they should have been, re-
spectively.

The network was trained for a maximum of 300 epochs
and the initial LSTM hidden and cell states were set to zero.
All network weights were updated by the RMSProp algorithm
with mini batches of size 20 and a learning rate of α = 0.001.

4.2. Results and Discussion

The results are presented for two evaluation scenarios of
intar-patient paradigm, in which the training and test sets
were randomly chosen from all available patients’ heartbeats,
and the inter-patient paradigm, in which the training and test
have been performed on the heartbeats of extracted from DS1
and DS2, respectively (i.e., no common individual in test
and training sets). Table 2 presents a comparison of heart-
beat classification results for the proposed method and the
existing algorithms, considering intra-patient scheme. As
it is clear, our sequence to sequence model outperforms all
state-of-the-art algorithms significantly in terms of all evalu-
ation metrics including overall accuracy, sensitivity, positive
predictive value and specificity for the considered groups, N,
S, V, F. In addition, it is worth noticing that the work done
by Acharya et al. [11] used artificially augmented dataset to
build the model, and their model evaluation was performed
using augmented data, while we evaluated our model on real
data samples without including any augmentations in the test
set.

As confirmed by the results, our proposed method can
provide a robust solution for class imbalance problem as one
of the key challenges in dealing with medical data, which is
due to the limited availability of abnormal classes compared
to the normal classes in biomedical datasets. It is shown in
Table 2 that our model achieves remarkable outcomes for the
category F with only 802 heartbeats and the category S with
2,777 heartbeats.

We also validated our method using the more realistic
evaluation method of inter-patient for heartbeat classifiers
based on using DS1 set for training and DS2 set for test-
ing [13, 24]. Table 3 presents the performance comparison
between our proposed method and several state-of-the-art

methods using MIT-BIH arrhythmia database where the inter-
patient paradigm is considered. As it can be seen from the
table, overall the proposed method has better performance
for classifying all heartbeat categories compared to works
listed in Table 3. In spite of the low number of S heartbeats
in the training set, our proposed method obtained significant
evaluation results.

The proposed method is generic in nature and it is ex-
pected to achieve a promising performance in several biomed-
ical applications dealing with class imbalance problem. In the
proposed classification structure, first, the CNN extracts a set
of meaningful features of the given ECG heartbeats (Note,
the model was trained by added synthetic data generated by
SMOTE algorithm to the available samples to compensate the
number of small categories such as F). Then, the encoder
maps the features to new feature representations, capturing
temporal patterns, and finally, the decoder takes the feature
representations and produces the outputs (i.e., the labels for
each heartbeat of the input sequence), considering complex
context dependencies between the inputs and the targets.

5. CONCLUSION

In this study, we presented a novel and effective automatic
heartbeat classification/annotation, considering intar- and
inter-patient schemes and validated its performance using
the MIT-BIH arrhythmia database. The proposed method
leverages the ability of deep convolutional neural network
and encoder-decoder network in which we have used a bidi-
rectional recurrent neural network as its building blocks.
According to the results, the suggested method significantly
outperforms the existing algorithms in the literature for both
intar-patient paradigm and inter-patient paradigm. Further-
more, the proposed method can be applied to several biomed-
ical applications such as sleep staging where there are strong
dependencies between each stage and sufficient data are not
available. Also, the proposed network with a low number of
parameters (i.e., with a maximum size of 5.5MB) can be used
with wearable devices.
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