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Abstract—The complexity of the patterns associated with atrial
fibrillation (AF) and the high level of noise affecting these
patterns have significantly limited the application of current
signal processing and shallow machine learning approaches to
accurately detect this condition. Deep neural networks have
shown to be very powerful to learn the non-linear patterns in
various problems such as computer vision tasks. While deep
learning approaches have been utilized to learn complex patterns
related to the presence of AF in electrocardiogram (ECG) signals,
they can considerably benefit from knowing which parts of the
signal is more important to focus on during learning. In this
paper, we introduce a two-channel deep neural network to more
accurately detect the presence of AF in the ECG signals. The first
channel takes in an ECG signal and automatically learns where to
attend for detection of AF. The second channel simultaneously
takes in the same ECG signal to consider all features of the
entire signal. Besides improving detection accuracy, this model
can guide the physicians via visualization that what parts of
the given ECG signal are important to attend while trying to
detect atrial fibrillation. The experimental results confirm that
the proposed model significantly improves the performance of AF
detection on well-known MIT-BIH AF database with 5-s ECG
segments (achieved a sensitivity of 99.53%, specificity of 99.26%
and accuracy of 99.40%).

Index Terms—Atrial fibrillation, ECG analysis, deep learning,
attention mechanism.

I. INTRODUCTION

Atrial fibrillation (AF) is the most prevalent type of arrhyth-
mia leading to hospital admissions, and is currently affecting
the lives of more than 3 million people in the U.S. and over
33 million worldwide, while the number of AF patients in
the US is expected to double by 2050 [1]. AF’s incidence
is associated with an increase in the risk of stroke, congestive
heart failure and overall mortality. This condition is commonly
diagnosed by analyzing the patients’ ECG signals; however,
interpretation of these signals by the cardiologists and medical
practitioners is usually a time-consuming task and prone to
errors. Moreover, the complexity of the patterns associated
with AF and the high level of noise affecting these collected
signals have significantly limited the accuracy and reliability
of the monitoring systems designed for AF detection [2], [3].
Therefore, it is desirable to develop algorithms for automatic
detection of AF with high diagnostic accuracy and reliability.

Several algorithms have been introduced to automatically
detect the presence of AF based on ECG signal characteristics.
Most of these methods rely on accurate detection of P-waves
and R-peaks. Thus, their performance significantly degrades
when their underlying signal processing algorithm fails to
detect the relevant peaks or waves of the ECG signal due
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to the presence of noise in the signal. Although, there are
some research works that eliminate the need for detection of
P-wave and R-peak in their methodologies [4], [5], they still
need to extract hand-crafted features that might not be totally
representative features if the dataset changes in terms of size
and the presence of other arrhythmias.

Deep learning (DL) can model high-level abstractions in
data using deep neural networks in order to learn from multiple
levels of abstractions. Over past years, DL-based methods have
been used in ECG analysis and classification. However, the
performance of these methods have not been quite significant
compared to achieved performance with DL in other domains
such as image processing. The main reason is the developed
DL architectures were not suited enough for the addressed
problems. Thus, developing new DL architectures that match
specific medical problems and can capture the specific char-
acteristics of ECG signals is still a challenge.

Motivated by the aforementioned limitations, we propose
an end-to-end deep visual network for automatic detection of
AF called ECGNET. The model is a two-channel deep neural
network to more accurately detect AF presented in the ECG
signal. The first channel takes in a preprocessed ECG signal
and automatically learns where to attend for detection of AF.
The second channel simultaneously takes in the preprocessed
ECG signal to consider all features of the entire signal. This
method gives more weights to the related parts of ECG signal
with higher potential relevance to AF, and at the same time
considers the whole cycle (i.e., the beat) to extract other
consecutive dependencies between each wave (i.e., P-, QRS-
, T-waves, etc.). Moreover, the proposed approach visualizes
the parts of a given ECG signal that are more important to
attend while trying to detect atrial fibrillation. It is also worth
mentioning that, despite the majority of current AF detection
techniques, our proposed method is capable of detecting AF
in very short ECG recordings (e.g. duration around 5 s).

To the best of our knowledge, this paper is the first study
that uses the whole information provided by the input signal
and the visual attention at the same time for the purpose of
AF detection. Recently, reference [6] reported an attention
mechanism to detect AF, where they considered a deep re-
current neural network on 30-second ECG windowed inputs
and took advantage of some time series covariates. The key
contribution of our method is to develop an end-to-end two-
channel deep network that automatically 1) extracts features
from the focused parts of the signal with the capability of
focusing on each part of a cycle (i.e., P-, QRS-, T-waves, etc.)
instead of each windowed segment, and 2 ) at the same time,
considers the abstracted features of the whole segment, just
5-s ECG segments. It is worth mentioning that our method
does not rely on any hand-crafted features to the network as
considered in [6]. We also visualize which regions of the signal
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Figure 1: The network architecture for AF detection method. The top channel gets a sequence of split ECG signal (i.e., window = 128 and
stride = 30) and the bottom channel gets the wavelet power spectrum of the sequence. Then, the average of two sections is computed and
fed into a softmax layer. AVG: average.

are important while there is an underlying AF arrhythmia in
the signal. Therefore, the proposed method can potentially
assist the physicians in AF detection and can be also utilized
to recognize complex pattern in the signals related to other
arrhythmias that cannot be easily seen in the signals.

II. DATASET AND DATA PREPARATION

The proposed method has been evaluated using the Phys-
ioNet MIT-BIH Atrial Fibrillation Database (AFDB) [7]. The
AF database is comprised of 25 long-term ECG recordings of
human subjects with mostly atrial fibrillation. It includes two
10-hours long ECG recordings for each individual. Here, each
ECG signal of AFBD is divided into 5-s segments and each
segment is labeled based on a threshold parameter, p. When
the percentage of annotated AF beats of the 5-s segment is
greater than or equal to p, we considered it as AF, otherwise
non-AF arrhythmia. Similar to previous reported studies in [4],
[8], we selected p = 50%. It is worth noticing that that we do
not apply any noise removal approaches to the ECG signals.

III. PROPOSED APPROACH

An overview of the proposed model is depicted in Fig. 1.
The model architecture is a two-channel deep neural network.
The top channel takes the row windowed signal as input
and includes an attention strategy to emphasis on important
visual task-relevant features of the given signal. This section
of the architecture is called Attention Network. We divided the
given ECG signal into several windows with fixed lengths of
128 and an overlap of 25%. The bottom channel considers a
deep recurrent convolutional network that takes wavelet power
spectrum of the windowed ECG signal. The output of the
network is a vector of decimal probabilities regarding the
classes. A more detailed explanation of each section of the
network is provided below.

A. Attention Network

In general, there are two types of attention models: i) soft
attention and ii) hard attention models. The soft attention mod-
els are end-to-end approaches and differentiable deterministic
mechanisms that can be learned by gradient based methods.
However, the hard attention models are stochastic processes
and not differentiable. Thus, they can be trained by using
the REINFORCE algorithm in the reinforcement learning
framework. In this paper, a soft attention mechanism is used

because the back propagation seems to be more effective [9].
The attention network includes three main parts as follow:
1) Convolutional neural network (CNN): The CNN con-
sists of two consecutive one-dimensional convolutional layers
followed by Rectified Linear Unit (ReLU) non-linear layers.
They have 32 and 64 filters of 2 × 1 with strides 1 for each
one. Figure 2 depicts the detailed architecture. Sequences of
windowed ECG signals are fed into the CNN for feature ex-
traction. At each time-step t, a windowed frame is fed into the
network and the last convolutional layer of the 1-Dimensional
CNN part outputs D feature maps of size K × 1 (e.g, we
concluded 64 feature maps 8× 1). Then, the feature maps are
converted to K vectors in which each vector has D dimensions
as follows: Ft = [Ft,1, Ft,2, . . . , Ft,K ], Ft,i ∈ R
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Figure 2: A diagram of convolutional layers used in the proposed
model. The CNN part of the model takes the windowed ECG signal
as input (i.e., a sequence of frames) and computes vertical feature
slices, Ft with dimension D.
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Figure 3: The structure of the attention mechanism used in the
proposed model. At each time step t, the attention module utilizes
Ft and the previous hidden state of the RNN part, ht−1 to calculate
an expected value, ft with respect to vertical feature slices, Ft,i and
the importance of each region of input window frame, αt,i.



2) Attention layer (i.e., a soft attention mechanism): The
extracted features of the CNN part are sequentially passed to
the attention layer to compute the probabilities corresponding
to the importance of each part of the windowed frame (e.g., P-,
QRS- and T-waves, etc.). In other words, the input window is
divided into K regions and the attention mechanism attempts
to attend to the most relevant regions which are related to
AF. Figure 3 shows the structure of the attention mechanism.
The attention layer gets two separate inputs: 1) K vectors,
Ft,1, Ft,2, . . . , Ft,K , where each Ft,i is a representation of
different regions of the input window frame, and 2) A hidden
state ht−1, which is the internal state of the LSTM at the
previous time step. Then, it computes a vector, ft which is a
linear weighted combination of the values of Ft,i. Therefore,
the attention mechanism can be formulated as follows:

catt(Ft,i, ht−1) = tanh(Whht−1 +WfFt,i), (1)

αt,i =
exp(catt(Ft,i, ht−1))∑k

j=1
exp(catt(Ft,j , ht−1))

i ∈ 1, 2, . . . , k (2)

ft =

k∑

i=1

αt,iFt,i, (3)

where αt,i is the importance of the region i of input window
frame. At each time step t, the attention module calculates
catt, a composition of the values of Ft,i and ht−1 followed
by a tanh layer. Then, it is passed to a softmax layer to
compute αt,i over k regions. Indeed, each αt,i is considered
as the amount of importance of the corresponding vector Ft,i

amongst K vectors in the input window. Finally, the attention
layer computes ft, a weighted sum of all the vectors Ft,i based
on calculated αt,i’s. Thus, the network can learn to put more
emphasize on the important parts (e.g., P-, QRS- and T-waves,
etc.) of the input window frame with higher probabilities of
presence of AF in the input ECG.
3) Recurrent neural network (i.e., Long Short-Term Mem-
ory (LSTM) units): The attention layer is followed by LSTM
units (which are a stack of two LSTM layers with the
LSTM sizes of 64) for long-term learning to capture temporal
dependencies between windows of each input signal. The RNN
part of the network utilizes the previous hidden state ht−1 and
the output of the attention module ft, to calculate the next
hidden state ht. The parameter ht is used as the input of the
attention module in order to calculate the value of ft+1 at
the next time-step. In addition, it is utilized as the input of a
fully-connected linear layer with 256 neurons.

B. Deep Recurrent Convolutioal Neural Network (RCNN):

The first layer consists of 8 1-D convolution filters of size
2 × 1 with a stride 1 followed by a Rectified Linear Unit
(ReLU) non-linearity. The second layer is comprised of 16 1-
D convolution filters of size 2×1 with stride 1, again followed
by a rectifier non-linearity. The third layer is a RNN layer with
the LSTM units of size 256 followed by a fully connected
layer with 256 hidden units. Here, the spectrogram size is
90 × 300 × 3. It can be considered as a sequence of column
vectors (300 vectors) that each consists of 270 values. For the
purpose of feature extraction, we feed these sequences to the
first 1-D convolutional layers of the deep RCNN.

Similar to other deep learning-based AF detectors [8], the
deep neural network part of our model takes a 2-D represen-
tation with wavelet power spectrum of the ECG segment. In
[8], a 2-D convolution that operators on the entire input is
utilized, while our method applies 1-D convolution operators

to the each frequency vector (i.e., at each time step) of
the given the spectrograms obtained from each segment, and
feeds the output of the 1-D convolutional layers to long
short-term memory units to capture dependencies between
each frequency vector. Therefore, our proposed architecture
can capture the temporal potential patterns that may present
in an AF arrhythmia. In other words, a CNN with two-
dimensional filters shares weights of the x and y dimensions
and considers the extracted features have the same meaning
apart from their locations. However, in spectrograms, the two
dimensions shows the strength of frequency and the time,
and are completely diffident. In a 2-D convolution operator,
frequency shifts of a signal (in a spectrogram representation)
can change its spatial extent. Hence, the ability of 2-D CNNs
to learn the spatial invariant features might not be well for
the spectrograms [10]. This is the main reason, we included
1-D CNNs followed by LSTM units instead of 2-D CNNs.
Moreover, using 1-D CNNs in the network would bring lower
number of parameters and as a result further complexity
reduction.

Finally, the outputs of the attention and RCNN sections
are averaged and fed into a softmax layer. Then, the softmax
assigns decimal probabilities to each class of interest (i.e., AF
and non-AF).

IV. EXPERIMENTAL RESULTS

We evaluated the performance of our proposed method
using the MIT-BIH AFIB database. There are a total of
162, 536 5-s segments, where the number of AF segments is
61, 924, and the number of non-AF segments is 100, 612. We
randomly selected the same number of segments for each class
(i.e., AF and non-AF), as 20, 000; totally 40, 000 samples, to
remove the effect of imbalanced data samples on training the
model. Then, 70% of data were used to train the network, 10%
were used to validate the model, and the remaining 20% were
used to test the model.

Table I presents a performance comparison between the
proposed method and several state-of-the-art works using the
MIT-BIH AFIB database, where the 5-s data segments were
considered. As it is clear in Table I, overall, our proposed
AF detector shows better results in terms of the sensitivity,
specificity and accuracy evaluation metrics compared to all
methods presented in the table.

A visualization example of attended parts of an ECG signal
with an AF is illustrated in Figure 4. The white regions,
showed with circles, indicate where the model learned to look
while the patient had the AF. We should note that the two main
indicators of AF in ECG signals as considered in the majority
of the previous works are: 1) the absence of P-waves that can
be replaced by a series of low-amplitude oscillations called
fibrillatory waves, and 2) the irregularly irregular rhythm (i.e.,
irregularity of R-R intervals) [12]–[14]. It is worth noting that

Table I: Comparison of performance of the proposed model against
other algorithms on the MIT-BIH AFIB database with the ECG
segment of size 5-s (≤ 7 Beats).

Best Performance (%)

Method Sensitivity Specificity Accuracy

ECGNET 99.53 99.26 99.40
Xia, et al. (2018) [8] 98.79 97.87 98.63

Asgari, et al. (2015) [4] 97.00 97.10 −

Lee, et al. (2013) [11] 98.20 97.70 −

Jiang, et al. (2012) [12] 98.20 97.50 −

Huang, et al. (2011) [13] 96.10 98.10 −

Babaeizadeh, et al. (2009) [14] 92.00 95.50 −

Dash, et al. (2009) [15] 94.40 95.10 −

Tateno, et al. (2001) [16] 94.40 97.20 −




