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SleepEEGNet: Automated Sleep Stage Scoring with

Sequence to Sequence Deep Learning Approach

Abstract—Electroencephalogram (EEG) is a common base
signal used to monitor brain activity and diagnose sleep dis-
orders. Manual sleep stage scoring is a time-consuming task
for sleep experts and is limited by inter-rater reliability. In this
paper, we propose an automatic sleep stage annotation method
called SleepEEGNet using a single-channel EEG signal. The
SleepEEGNet is composed of deep convolutional neural networks
(CNNs) to extract time-invariant features, frequency information,
and a sequence to sequence model to capture the complex and
long short-term context dependencies between the sleep epochs
and scores. In addition, to reduce the effect of class imbalance
problem presented in the available sleep datasets, we applied
novel loss functions to have an equal misclassified error for each
sleep stage while training the network. We evaluated the proposed
method on different single-EEG channels (i.e., Fpz-Cz and Pz-Oz
EEG channels) from the Physionet Sleep-EDF datasets published
in 2013 and 2018. The evaluation results demonstrate that the
proposed method achieved the best annotation performance
compared to current literature, with an overall accuracy of
84.26%, a macro F1-score of 79.66% and κ = 0.79. Our developed
model is ready to test with more sleep EEG signals and aid the
sleep specialists to arrive at accurate diagnosis. The source code
is available at https://github.com/SajadMo/SleepEEGNet1.

Index Terms—Sleep stage scoring, EEG analysis, deep learning,
sequence to sequence model.

I. INTRODUCTION

THE electroencephalogram (EEG), electrooculogram

(EOG), and electromyogram (EMG) signals are widely

used to diagnose the sleep disorders (e.g., sleep apnea,

parasomnias, and hypersomnia). These signals are typically

recorded by placing sensors on different parts of the patient’s

body. In an overnight polysomnography (PSG) (also called as

sleep study), usually EEG is mainly used to monitor the brain

activities to diagnose sleep disorders [1] and other common

disorders such as epilepsy [2].

The EEG signals are split into a number of predefined

fixed length segments which are termed as epochs. Then, a

sleep expert manually labels each epoch according to sleep

scoring standards provided by the American Academy of

Sleep Medicine (AASM) [3] or the Rechtschaffen and Kales

standard [4]. Each EEG recording is around 8-hour long on

average. Therefore, the manual scoring of such a long signal

for a sleep expert is a tedious and time-consuming task. The

human-based annotation methods also highly rely on an inter-

rater agreement in place. Therefore, such restrictions call for

automated sleep stage classification system that is able to score

each epoch automatically with high accuracy.

1This material is based upon work supported by the National Science
Foundation under Grant Number 1657260. Research reported in this pub-
lication was also supported by the National Institute On Minority Health And
Health Disparities of the National Institutes of Health under Award Number
U54MD012388.

Several studies have focused on developing automated sleep

stage scoring algorithms. Generally, they can be divided into

two different categories in terms of the feature extraction

approaches. First, the hand-engineered feature-based methods

that require a prior knowledge of EEG analysis to extract the

most relevant features. These approaches first extract the most

common features such as time, frequency and time-frequency

domain features of single channel-EEG waveforms [5]. Then,

they apply conventional machine learning algorithms such

as support vector machines (SVM) [6], random forests [7]

and neural networks [8] to train the model for sleep stage

classification based the extracted features. Although these

methods have achieved a reasonable performance, they carry

several limitations including the need for a prior knowl-

edge of sleep analysis and not able to generalize to larger

datasets from various patients with different sleep patterns.

Second, automated feature extraction-based methods such as

deep learning algorithms in which the machine extracts the

pertaining features automatically (e.g. CNNs to extract time-

invariant features from raw EEG signals).

In recent years, deep neural networks have shown impres-

sive results in various domains ranging from computer vision

and reinforcement learning to natural language processing [9],

[10], [11]. One key reason for the success of deep learning

based methods in these domains is the availability of large

amounts of data to learn the underlying complex pattern in

the data sets. Due to availability of large sleep EEG recordings

[12], deep learning algorithms have also been applied for sleep

stage classification [1], [13], [14], [15], [16]. However, in spite

of the remarkable achievements in using deep learning models

compared to the shallow machine learning methods for sleep

stage scoring task, they still suffer from the class imbalance

problem present in the sleep datasets. Thus, this problem limits

the use of machine learning techniques for the sleep stage

classification and to reach an expert-level performance for the

sleep stage classification.

In this study, we introduced a novel deep learning approach,

called SleepEEGNet, for automated sleep stage scoring using a

single-channel EEG. We believe the sleep stage classification

problem is sequential in nature. Therefore, we applied a

sequence to sequence deep learning model with the following

building blocks: (1) CNNs to perform the feature extraction,

(2) bidirectional recurrent neural network (BiRNN) to cap-

ture temporal information from sequences and consider the

previous and future input information simultaneously, and (3)

attention network to let the model learn the most relevant parts

of the input sequence while training. Also, we utilized new loss

functions to reduce the effect of imbalance class problem on

the model by treating the error of each misclassified sample

equally regardless of being a member of the majority class or
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minority class.

The rest of the paper is structured as follows: Section

II describes the proposed method. Section III presents data

set and data preparation, the experimental design, and shows

the achieved results by the proposed method along with a

performance comparison to the state-of-the-art algorithms.

Finally, Section IV concludes the paper.

II. METHODOLOGY

In the following sections, we present a detailed description

of our proposed novel model developed to automatically score

each sleep stage from a given EEG signal.

A. Pre-processing

The input to this method is a sequence of 30-s EEG epochs.

In order to extract the EEG epochs from a given EEG signal,

we follow two simple steps:

1) Segmenting the continuous raw single-channel EEG to a

sequence of 30-s epochs and assigning a label to each

epoch (i.e., sleep stage) based on the annotation file.

2) Normalizing 30-s EEG epochs such that each one has a

zero mean and unit variance.

It is worth mentioning that, these pre-processing steps for the

sleep stage extraction are very simple and do not involve any

form of filtering or noise removal methods.

B. The architecture

The sequence to sequence models have shown very impas-

sive results in neural machine translation applications, nearly

similar to human-level performance [17]. The architecture of

sequence to sequence networks is usually composed of two

main parts: the encoder and decoder which are types of recur-

rent neural network (RNN). In this study, we used an RNN

sequence to sequence model along with a convolutional neural

network (CNN) to perform automatic sleep stage scoring task.

Fig. 1 illustrates the proposed network architecture for au-

tomatic sleep stage classification. We applied almost the same

CNN architecture provided by [14]. The CNN consists of two

sections, one with small filters to extract temporal information

and another with large filters to extract frequency information.

The idea behind these variable sizes of filters comes from

the signal processing community to have a trade-off between

extracting time domain and frequency domain features [18].

This helps get benefit from both time and frequency domain

features in the classification task. Each CNN part consists of

four consecutive one-dimensional convolutional layers. Each

convolutional layer is passed to a rectified linear unit (ReLU)

nonlinearity. The first layer is followed by a max pooling layer

and a dropout block, and just a dropout block comes after the

last convolutional layer. At each time-step of training/testing

the model, a sequence (size of maxtime) of 30-s EEG epochs

is fed into the CNN for feature extraction. In the end, the

outputs of CNN parts are concatenated and followed by a

dropout block in order for the encoder network. Figure 2

depicts the detailed CNN structure.

The sequence to sequence model is designed based on

the encoder-decoder abstract ideas. The encoder encodes the

input sequence, while the decoder computes the category of

each single channel 30-s EEG of the input sequence. The

encoder is composed of long short-term memory (LSTM)

units which captures the complex and long short-term context

dependencies between the inputs and the targets [19]. They

capture non-linear dependencies present in the entire time

series while predicting a target. The (time) sequence of input

feature vectors herein are fed to the LSTMs and then the

hidden states, (e0, e1, e2, . . .), calculated by the LSTM are

considered as the encoder representation, and are fed to the

attention network (or to initialize the first hidden state of the

decoder, if the basic decoder is used), as depicted in Figure 1.

C. Bidirectional recurrent neural network

We have utilized the bidirectional recurrent neural network

(BiRNN) units in the network architecture instead of the

standard LSTM (i.e., standard RNN). Standard RNNs are

unidirectional, hence they are restricted to use the previous

input state. To address this limitation, the BiRNN have been

proposed [20], which can process data in both forward and

backward directions. Thus, the current state has access to

previous and future input information simultaneously. The

BiRNN consists of forward and backward networks. The input

sequence is fed in normal time order, t = 1, ..., T for the

forward network, and in reverse time order, t = T, ..., 1 for the

backward network. Finally, the weighted sum of the outputs

of the two networks is computed as the output of the BiRNN.

This mechanism can be formulated as follow:

−→
ht = tanh(

−→
Wxt +

−→
V
−→
h t−1 +

−→
b ) (1)

←−
ht = tanh(

←−
Wxt +

←−
V
←−
h t+1 +

←−
b ) (2)

yt = (U [
−→
ht ;
←−
ht ] + by), (3)

where (
−→
ht ,
−→
b ) are the hidden state and the bias of the froward

network, and (
←−
ht ,
←−
b ) are the hidden state and the bias of

the backward network. Also, xt and yt are the input and

the output of the BiRNN, respectively. Figure 3 illustrates a

BiRNN architecture with T time steps.

D. Attention Decoder

The decoder is used to generate the target sequence epoch

by epoch. Similar to the encoder, the building block of the

decoder is an LSTM. In a basic decoder, at every step of

decoding, the decoder gets a new representation of an input

element of the sequence generated by the encoder and an

element of the target input. The last element of the input

sequence is usually the last influence to update the encoder’s

hidden state. Therefore, the model can be biased to the last

element. To address such a problem, we have applied an

attention mechanism to the model to consider not only the

whole encoder representation of the input but also it can

learn to put more emphasis on different parts of the encoder

outputs in each step of decoding. In other words, the attention

mechanism makes the model to learn the most relevant parts

of the input sequence in the decoding phase. In a sequence to
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Figure 1: Illustration of sequence to sequence deep learning network architecture used for automated sleep stage scoring.

sequence model without attention approach, the decoder part

relies on the hidden vector of the decoder’s RNN (or BiRNN),

while the sequence to sequence model with the attention is

more purposeful. It considers the combination of encoder’s

representation and decoder hidden vector calling the context

vector or the attention vector, (ct).

To calculate the ct vector, we first computed a set of

attention weights with a function f(.). These are probabilities,

(αi), corresponding to the importance of each hidden state.

Then, these scores are multiplied by the hidden states (i.e, the

encoder output vectors) to calculate the weighted combination,

(ct).

f(ht−1, ei) = tanh(Whht−1 +Weei) (4)

αi = softmax(f(ht−1, ei)) ≈
exp(f(ht−1, ei))∑n

j=1
exp(f(ht−1, ej))

i ∈ 1, 2, . . . , n,

(5)

ct =

n∑

i=0

αiei, (6)

where αi is the signification of the part i of hidden state. In

other words, at every time step t, the attention layer computes

f(.), a combination of the values of ei (the encoder’s hidden

state) and ht−1 (the decoder’s hidden state) followed by a

tanh layer. Then, it is fed into a softmax module to calculate

αi over n parts. Finally, the attention module computes ct, a

weighted sum of all vectors ei based on computed αi’s. Thus,

the model can learn to focus on the important regions of the

input sequence when decoding.

During the training phase, the decoder, in addition to the

augmented version of the encoder’s hidden states, captures the

given target sequence shifted by one starting with a special

feature vector < SOD > (i.e., the start of decoding) as input.

Then, the decoder starts to generate outputs until it confronts

the special label called < EOD > (i.e., the end of decoding).

We should note that the target sequence is just used during the

training phase and is not applied for the testing phase. During

the testing phase, the decoder uses whatever label it generates

at each step as the input for the next step. Finally, a softmax

is applied to the output of the decoder to convert it to a vector

of probabilities p ∈ R
C , where C represents the number of

classes and each element of p indicates the probability of each

class of the sleep stage.

E. Loss calculation

Similar to other biomedical applications, the sleep stage

classification also deals with the problem of class imbalance.

To alleviate the effect of this problem on the model, we

calculated new loss functions based on [21] to treat the error

of each misclassified sample equally regardless of being a

member of the majority or minority class.

We extended the proposed loss functions, mean false error

(MFE) and mean squared false error (MSFE), in [21] for the

multi-class classification task. MFE and MSFE can be defined
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greater than other stages. The machine learning approaches do

not perform well with the class imbalance problem. To address

this problem, in addition to using the novel loss functions

described in Section II-E, the dataset is oversampled to nearly

reaching a balanced number of sleep stages in each class.

We have used the synthetic minority over-sampling technique

(SMOTE) to generates the synthetic data points by considering

the similarities between existing minority samples [23].

Our proposed model was evaluated using k-fold cross-

validation. We set k to 20 and 10 for version 1 and version 2 of

the Sleep-EDF dataset, respectively. In other words, we split

the dataset into k folds. Then, for each unique fold, (1) fold is

taken as test set and the remaining folds as a training set and

(2) trained the model using the training set and evaluated the

model using the test set. Finally, all evaluation results were

combined.

The network was trained (for each dataset) with a maximum

of 400 epochs. RMSProp optimizer was used to minimize the

lMFE loss with mini batches of size 20 and a learning rate of

α = 0.0001. We also applied an additional L2 regularization

element with β = 0.001 to the loss function to mitigate

the overfitting. Python programming language and Google

Tensorflow deep learning library were utilized to implement

our proposed approach.

C. Evaluation Metrics

We have used different metrics to evaluate the performance

of the proposed approach including, overall accuracy, preci-

sion, recall (sensitivity), specificity, Cohen’s Kappa coefficient

(κ) and F1-score. We also computed macro-averaging of F1-

score (MF1) which is the sum of per-class F1-scores over the

number of classes (i.e., sleep stages).

Table II: Confusion matrix and per-class performance achieved

by the proposed method using Fpz-Cz EEG channel of the

EDF-Sleep-2013 database.

Predicted Per-class Performance (%)

W1 N1 N2 N3 REM Pre Rec Spe F1

A
ct

u
al

W1 7161 432 67 27 219 87.84 90.58 96.97 89.19

N1 442 1486 364 25 409 50.05 54.51 96.08 52.19

N2 359 735 14187 1035 837 91.26 82.71 94.20 86.77

N3 37 9 560 4857 2 81.69 88.87 96.90 85.13

REM 153 307 368 2 6520 81.63 88.71 95.59 85.02

Table III: Confusion matrix and per-class performance

achieved by the proposed method using Pz-Oz EEG channel

of the EDF-Sleep-2013 database.

Predicted Per-class Performance (%)

W1 N1 N2 N3 REM Pre Rec Spe F1

A
ct

u
al

W1 7094 398 82 41 238 90.20 90.33 97.65 90.27

N1 539 1167 455 29 492 45.84 43.51 96.36 44.64

N2 114 655 14220 1157 971 88.58 83.07 92.19 85.74

N3 17 12 791 4658 10 78.48 84.88 96.36 81.55

REM 100 314 506 50 6489 79.13 87.00 94.84 82.88

D. Results and Discussion

Tables II and III present the confusion matrices and the

performances of each class achieved by the proposed method

using Fpz-Cz and Pz-Oz channels of the EDF-Sleep-2013 data

set, respectively. The main diagonals in each confusion matrix

denote the true positive (TP) values which indicate the number

of stages scored correctly. It can be seen from the tables

(the confusion matrices’ parts) that TP values are higher than

other values in the same rows and columns. These tables also

show the prediction performance (i.e., the precision, recall,

specificity and F1 score) of our model for each class (i.e.,

the stage). Among all stages, the model performance is better

for W1, N2, N3, and REM stages than the N1 stage. This

may be because the number of N1 stages in the dataset is

smaller compared to the other stages. However, our results for

stage N1 is better than other state-of-the-art algorithms listed

in Table IV.

Typically, there are two approaches to evaluate the proposed

methods in the literature: (i) intra-patient paradigm in which

the training and evaluation sets can include epochs from

the same subjects, and (ii) inter-patient paradigm in which

the epochs sets for test and training come from different

individuals. As the inter-patient scheme seems to be a more

realistic evaluation mechanism, the results and comparisons

presented in this study are based on the inter-patient paradigm.

Table IV presents the comparison of stage sleep scoring

results for the proposed method with the existing algorithms.

It can be noted from Table IV that the proposed model

outperformed the state-of-the-art algorithms presented in the

table. Our model has performed better in all listed channels

(i.e., the Fpz-Cz and the Pz-Oz EEG channels) in terms of all

evaluation metrics compared to others. It may be noted that

in spite of the imbalance-class problem, our model yielded

desirable performance, especially for stage N1. In addition

to the Sleep-EDF 2013 dataset, we also evaluated our model

with the Sleep-EDF 2018 dataset. Since the dataset has been

published recently, we could not find any work to compare

the performance of our model. Therefore, we just reported

our findings without any comparison.

Figure 5 also illustrates the hypnogram produced manually

by a sleep expert and its corresponding hypnogram generated

by our method for a subject for approximately 8 hours of

sleep at night. It can be noted from the figure that around

85% the manually scored hypnogram and automatically scored

correctly.

Furthermore, by employing the attention mechanism into

the network, we are able to illustrate (in the form of attention

maps) which input epochs are important to score the sleep

stages. As shown in Figure 4, we can see the network used

almost the exact input epoch to predict its corresponding sleep

stage.

Our model has performed better than the rest of the works

due to the following two reasons: First, the nature of the sleep

stage scoring task is sequential in which each sleep stage

has a relationship with the previous and next stage. Hence,

applying a sequence to sequence deep learning model for

such a problem would be a desirable choice. Also, using the
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Figure 5: A example of hypnograms generated by the machine (i.e., the proposed method) and a sleep expert of a subject from

the Sleep-EDF-13 dataset; approximately 85% coverage.

to boost the performance of the sleep stage classification.

IV. CONCLUSION

We have presented a novel and state-of-the-art algorithm

for automated sleep stage annotation problem. The proposed

method leverages the ability of deep convolutional neural

network and encoder-decoder network in which we have

used bidirectional recurrent neural networks and attention

mechanisms as its building blocks. The proposed new loss

calculation approaches helped to reduce the effect of the class-

imbalance problem and boost the performance, especially the

performance of our method on the stage N1, that is more

difficult than other sleep stages to score. Table IV presents that,

our proposed model significantly outperformed the existing

algorithms by yielding the highest performance for the sleep

stage scoring task. While developing the automated systems,

generally there will be imbalance data problem (normal class

more data than diseased class). Our developed model can

be applied to such biomedical applications like arrhythmia

detection using ECG signals, epilepsy detection using EEG

signals and EMG signals to study the postures.
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