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SleepEEGNet: Automated Sleep Stage Scoring with
Sequence to Sequence Deep Learning Approach

Abstract—Electroencephalogram (EEG) is a common base
signal used to monitor brain activity and diagnose sleep dis-
orders. Manual sleep stage scoring is a time-consuming task
for sleep experts and is limited by inter-rater reliability. In this
paper, we propose an automatic sleep stage annotation method
called SleepEEGNet using a single-channel EEG signal. The
SleepEEGNet is composed of deep convolutional neural networks
(CNNs) to extract time-invariant features, frequency information,
and a sequence to sequence model to capture the complex and
long short-term context dependencies between the sleep epochs
and scores. In addition, to reduce the effect of class imbalance
problem presented in the available sleep datasets, we applied
novel loss functions to have an equal misclassified error for each
sleep stage while training the network. We evaluated the proposed
method on different single-EEG channels (i.e., Fpz-Cz and Pz-Oz
EEG channels) from the Physionet Sleep-EDF datasets published
in 2013 and 2018. The evaluation results demonstrate that the
proposed method achieved the best annotation performance
compared to current literature, with an overall accuracy of
84.26 %, a macro F1-score of 79.66% and x = 0.79. Our developed
model is ready to test with more sleep EEG signals and aid the
sleep specialists to arrive at accurate diagnosis. The source code
is available at https://github.com/SajadMo/SleepEEGNet'.

Index Terms—Sleep stage scoring, EEG analysis, deep learning,
sequence to sequence model.

I. INTRODUCTION

HE electroencephalogram (EEG), electrooculogram

(EOG), and electromyogram (EMGQG) signals are widely
used to diagnose the sleep disorders (e.g., sleep apnea,
parasomnias, and hypersomnia). These signals are typically
recorded by placing sensors on different parts of the patient’s
body. In an overnight polysomnography (PSG) (also called as
sleep study), usually EEG is mainly used to monitor the brain
activities to diagnose sleep disorders [1] and other common
disorders such as epilepsy [2].

The EEG signals are split into a number of predefined
fixed length segments which are termed as epochs. Then, a
sleep expert manually labels each epoch according to sleep
scoring standards provided by the American Academy of
Sleep Medicine (AASM) [3] or the Rechtschaffen and Kales
standard [4]. Each EEG recording is around 8-hour long on
average. Therefore, the manual scoring of such a long signal
for a sleep expert is a tedious and time-consuming task. The
human-based annotation methods also highly rely on an inter-
rater agreement in place. Therefore, such restrictions call for
automated sleep stage classification system that is able to score
each epoch automatically with high accuracy.

'This material is based upon work supported by the National Science
Foundation under Grant Number 1657260. Research reported in this pub-
lication was also supported by the National Institute On Minority Health And
Health Disparities of the National Institutes of Health under Award Number
U54MD012388.

Several studies have focused on developing automated sleep
stage scoring algorithms. Generally, they can be divided into
two different categories in terms of the feature extraction
approaches. First, the hand-engineered feature-based methods
that require a prior knowledge of EEG analysis to extract the
most relevant features. These approaches first extract the most
common features such as time, frequency and time-frequency
domain features of single channel-EEG waveforms [5]. Then,
they apply conventional machine learning algorithms such
as support vector machines (SVM) [6], random forests [7]
and neural networks [8] to train the model for sleep stage
classification based the extracted features. Although these
methods have achieved a reasonable performance, they carry
several limitations including the need for a prior knowl-
edge of sleep analysis and not able to generalize to larger
datasets from various patients with different sleep patterns.
Second, automated feature extraction-based methods such as
deep learning algorithms in which the machine extracts the
pertaining features automatically (e.g. CNNs to extract time-
invariant features from raw EEG signals).

In recent years, deep neural networks have shown impres-
sive results in various domains ranging from computer vision
and reinforcement learning to natural language processing [9],
[10], [11]. One key reason for the success of deep learning
based methods in these domains is the availability of large
amounts of data to learn the underlying complex pattern in
the data sets. Due to availability of large sleep EEG recordings
[12], deep learning algorithms have also been applied for sleep
stage classification [1], [13], [14], [15], [16]. However, in spite
of the remarkable achievements in using deep learning models
compared to the shallow machine learning methods for sleep
stage scoring task, they still suffer from the class imbalance
problem present in the sleep datasets. Thus, this problem limits
the use of machine learning techniques for the sleep stage
classification and to reach an expert-level performance for the
sleep stage classification.

In this study, we introduced a novel deep learning approach,
called SleepEEGNet, for automated sleep stage scoring using a
single-channel EEG. We believe the sleep stage classification
problem is sequential in nature. Therefore, we applied a
sequence to sequence deep learning model with the following
building blocks: (1) CNNs to perform the feature extraction,
(2) bidirectional recurrent neural network (BiRNN) to cap-
ture temporal information from sequences and consider the
previous and future input information simultaneously, and (3)
attention network to let the model learn the most relevant parts
of the input sequence while training. Also, we utilized new loss
functions to reduce the effect of imbalance class problem on
the model by treating the error of each misclassified sample
equally regardless of being a member of the majority class or
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minority class.

The rest of the paper is structured as follows: Section
IT describes the proposed method. Section III presents data
set and data preparation, the experimental design, and shows
the achieved results by the proposed method along with a
performance comparison to the state-of-the-art algorithms.
Finally, Section IV concludes the paper.

II. METHODOLOGY

In the following sections, we present a detailed description
of our proposed novel model developed to automatically score
each sleep stage from a given EEG signal.

A. Pre-processing

The input to this method is a sequence of 30-s EEG epochs.
In order to extract the EEG epochs from a given EEG signal,
we follow two simple steps:

1) Segmenting the continuous raw single-channel EEG to a
sequence of 30-s epochs and assigning a label to each
epoch (i.e., sleep stage) based on the annotation file.

2) Normalizing 30-s EEG epochs such that each one has a
zero mean and unit variance.

It is worth mentioning that, these pre-processing steps for the
sleep stage extraction are very simple and do not involve any
form of filtering or noise removal methods.

B. The architecture

The sequence to sequence models have shown very impas-
sive results in neural machine translation applications, nearly
similar to human-level performance [17]. The architecture of
sequence to sequence networks is usually composed of two
main parts: the encoder and decoder which are types of recur-
rent neural network (RNN). In this study, we used an RNN
sequence to sequence model along with a convolutional neural
network (CNN) to perform automatic sleep stage scoring task.

Fig. 1 illustrates the proposed network architecture for au-
tomatic sleep stage classification. We applied almost the same
CNN architecture provided by [14]. The CNN consists of two
sections, one with small filters to extract temporal information
and another with large filters to extract frequency information.
The idea behind these variable sizes of filters comes from
the signal processing community to have a trade-off between
extracting time domain and frequency domain features [18].
This helps get benefit from both time and frequency domain
features in the classification task. Each CNN part consists of
four consecutive one-dimensional convolutional layers. Each
convolutional layer is passed to a rectified linear unit (ReL.U)
nonlinearity. The first layer is followed by a max pooling layer
and a dropout block, and just a dropout block comes after the
last convolutional layer. At each time-step of training/testing
the model, a sequence (size of maztime) of 30-s EEG epochs
is fed into the CNN for feature extraction. In the end, the
outputs of CNN parts are concatenated and followed by a
dropout block in order for the encoder network. Figure 2
depicts the detailed CNN structure.

The sequence to sequence model is designed based on
the encoder-decoder abstract ideas. The encoder encodes the

input sequence, while the decoder computes the category of
each single channel 30-s EEG of the input sequence. The
encoder is composed of long short-term memory (LSTM)
units which captures the complex and long short-term context
dependencies between the inputs and the targets [19]. They
capture non-linear dependencies present in the entire time
series while predicting a target. The (time) sequence of input
feature vectors herein are fed to the LSTMs and then the
hidden states, (eg,eq,e2,...), calculated by the LSTM are
considered as the encoder representation, and are fed to the
attention network (or to initialize the first hidden state of the
decoder, if the basic decoder is used), as depicted in Figure 1.

C. Bidirectional recurrent neural network

We have utilized the bidirectional recurrent neural network
(BiRNN) units in the network architecture instead of the
standard LSTM (i.e., standard RNN). Standard RNNs are
unidirectional, hence they are restricted to use the previous
input state. To address this limitation, the BiRNN have been
proposed [20], which can process data in both forward and
backward directions. Thus, the current state has access to
previous and future input information simultaneously. The
BiRNN consists of forward and backward networks. The input
sequence is fed in normal time order, ¢t = 1,...,7T for the
forward network, and in reverse time order, t = T, ..., 1 for the
backward network. Finally, the weighted sum of the outputs
of the two networks is computed as the output of the BiRNN.
This mechanism can be formulated as follow:

Ez = tanh(Wxt + 7ﬁt_1 + Z)) (D
ﬁt = tanh(Wxt + v%prl + ?) (2)
v = (Ui he] +b,), 3)

where (Z, ?) are tl(E hidden state and the bias of the froward
network, and (ﬁ, b) are the hidden state and the bias of
the backward network. Also, x; and y; are the input and
the output of the BiRNN, respectively. Figure 3 illustrates a
BiRNN architecture with T time steps.

D. Attention Decoder

The decoder is used to generate the target sequence epoch
by epoch. Similar to the encoder, the building block of the
decoder is an LSTM. In a basic decoder, at every step of
decoding, the decoder gets a new representation of an input
element of the sequence generated by the encoder and an
element of the target input. The last element of the input
sequence is usually the last influence to update the encoder’s
hidden state. Therefore, the model can be biased to the last
element. To address such a problem, we have applied an
attention mechanism to the model to consider not only the
whole encoder representation of the input but also it can
learn to put more emphasis on different parts of the encoder
outputs in each step of decoding. In other words, the attention
mechanism makes the model to learn the most relevant parts
of the input sequence in the decoding phase. In a sequence to
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Figure 1: Illustration of sequence to sequence deep learning network architecture used for automated sleep stage scoring.

sequence model without attention approach, the decoder part
relies on the hidden vector of the decoder’s RNN (or BiRNN),
while the sequence to sequence model with the attention is
more purposeful. It considers the combination of encoder’s
representation and decoder hidden vector calling the context
vector or the attention vector, (c;).

To calculate the c; vector, we first computed a set of
attention weights with a function f(.). These are probabilities,
(), corresponding to the importance of each hidden state.
Then, these scores are multiplied by the hidden states (i.e, the
encoder output vectors) to calculate the weighted combination,

(ct)-

f(hi—1,€;) = tanh(Wphe—1 + Wee;) 4)
exp(f(htflﬂ 61))

;= softmax(f(htflaei)) ~ 2?21 eXp(f(htfl,ej)) (5)

ie1,2,...,n,
n

Ct = E Q; €4,
=0

where «; is the signification of the part ¢ of hidden state. In
other words, at every time step t, the attention layer computes
f(.), a combination of the values of e; (the encoder’s hidden
state) and h;_; (the decoder’s hidden state) followed by a
tanh layer. Then, it is fed into a softmax module to calculate
a; over n parts. Finally, the attention module computes c;, a
weighted sum of all vectors e; based on computed «;’s. Thus,
the model can learn to focus on the important regions of the
input sequence when decoding.

(6)

During the training phase, the decoder, in addition to the
augmented version of the encoder’s hidden states, captures the
given target sequence shifted by one starting with a special
feature vector < SOD > (i.e., the start of decoding) as input.
Then, the decoder starts to generate outputs until it confronts
the special label called < FOD > (i.e., the end of decoding).
We should note that the target sequence is just used during the
training phase and is not applied for the testing phase. During
the testing phase, the decoder uses whatever label it generates
at each step as the input for the next step. Finally, a softmax
is applied to the output of the decoder to convert it to a vector
of probabilities p € R®, where C' represents the number of
classes and each element of p indicates the probability of each
class of the sleep stage.

E. Loss calculation

Similar to other biomedical applications, the sleep stage
classification also deals with the problem of class imbalance.
To alleviate the effect of this problem on the model, we
calculated new loss functions based on [21] to treat the error
of each misclassified sample equally regardless of being a
member of the majority or minority class.

We extended the proposed loss functions, mean false error
(MFE) and mean squared false error (MSFE), in [21] for the
multi-class classification task. MFE and MSFE can be defined
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Figure 2: Detailed sketch of the used CNN model used in the
proposed work.

as follows:
1 &
l(ci) = o (v — 4% (7
. —
lMrE = Z l(ci), ®)
i=1
N
sre = Y l(c), ©)
i=1

where ¢; is the class label (e.g., W or N1), C; is the number of
the samples in class c;, IV is the number available classes (here
sleep stage classes). and I(c;) is the calculated error for the
class class ¢;. In the most common used loss function, mean
squared error (MSE), the loss is calculated by averaging the
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Figure 3: A schematic diagram of the bidirectional recurrent
neural network.

squared difference between predictions and targets. This way
of computing the loss makes the contribution of the majority
classes be much more in comparison with the minorities
classes in the imbalanced dataset. However, the MFE and
MSEE try to consider the errors of all classes equally.

III. EXPERIMENTAL RESULTS
A. Dataset and Data Preparation

In this study, we used the Physionet Sleep-EDF dataset [22],
[12]: version 1 contributed in 2013 with 61 polysomnograms
(PSGs) and version 2 contributed in 2018 with 197 PSGs
to evaluate the performance of the proposed method for the
sleep stage scoring task. The Sleep-EDF dataset contains two
different studies including (1) study of age effects on sleep
in healthy individuals (SC = Sleep Cassette) and (2) study
of temazepam effects on sleep (ST = Sleep Telemetry). The
dataset includes whole-night polysomnograms (PSGs) sleep
recordings at the sampling rate of 100 Hz. Each record
contains EEG (from Fpz-Cz and Pz-Oz electrode locations),
EOQG, chin electromyography (EMG), and event markers. Few
records often also contain oro-nasal respiration and rectal
body temperature. The hypnograms (sleep stages; 30-s epochs)
were manually labeled by well-trained technicians according
to the Rechtschaffen and Kales standard [4]. Each stage was
considered to belong to a different class (stage). The classes
include W, REM, N1, N2, N3, N4, M (movement time) and
7 (not scored). According to American Academy of Sleep
Medicine (AASM) standard, we integrated the stages of N3
and N4 in one class named N3 and excluded M (movement
time) and ? (not scored) stages to have five sleep stages [3].
In addition, we considered Fpz-Cz/Pz-Oz EEG channels from
SCs of both versions in our evaluations. Table I presents the
number of sleep stages in two different versions.

Table I: Details of number of sleep stages in each version of
Sleep-EDF dataset.

Dataset w N1 N2 N3-N4 REM Total
Sleep-EDF-13 8,285 2,804 17,799 5,703 7,717 42,308
Sleep-EDF-18 | 65,951 | 21,522 | 96,132 | 13,039 | 25,835 | 222,479

B. Experimental Design

The distribution of sleep stages in the Sleep-EDF database is
not uniform. Hence, the number of W and N2 stages are much
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greater than other stages. The machine learning approaches do
not perform well with the class imbalance problem. To address
this problem, in addition to using the novel loss functions
described in Section II-E, the dataset is oversampled to nearly
reaching a balanced number of sleep stages in each class.
We have used the synthetic minority over-sampling technique
(SMOTE) to generates the synthetic data points by considering
the similarities between existing minority samples [23].

Our proposed model was evaluated using k-fold cross-
validation. We set k to 20 and 10 for version 1 and version 2 of
the Sleep-EDF dataset, respectively. In other words, we split
the dataset into k folds. Then, for each unique fold, (1) fold is
taken as test set and the remaining folds as a training set and
(2) trained the model using the training set and evaluated the
model using the test set. Finally, all evaluation results were
combined.

The network was trained (for each dataset) with a maximum
of 400 epochs. RMSProp optimizer was used to minimize the
IrrrE loss with mini batches of size 20 and a learning rate of
a = 0.0001. We also applied an additional L, regularization
element with 8 = 0.001 to the loss function to mitigate
the overfitting. Python programming language and Google
Tensorflow deep learning library were utilized to implement
our proposed approach.

C. Evaluation Metrics

We have used different metrics to evaluate the performance
of the proposed approach including, overall accuracy, preci-
sion, recall (sensitivity), specificity, Cohen’s Kappa coefficient
(k) and Fl-score. We also computed macro-averaging of F1-
score (MF1) which is the sum of per-class Fl-scores over the
number of classes (i.e., sleep stages).

Table II: Confusion matrix and per-class performance achieved
by the proposed method using Fpz-Cz EEG channel of the
EDF-Sleep-2013 database.

Predicted Per-class Performance (%)

Wi N1 N2 N3 REM Pre Rec Spe F1

Wi | 7161 432 67 27 219 8784 9058 9697 89.19

= | N 442 1486 364 25 409 5005 5451 9608 52.19
i,‘ N2 350 735 14187 1035 837 9126 8271 9420 86.77
N3 37 9 560 4857 2 81.69 88.87 9690 85.13

REM | 153 307 368 2 6520 81.63 8871 9559 85.02

Table III: Confusion matrix and per-class performance

achieved by the proposed method using Pz-Oz EEG channel
of the EDF-Sleep-2013 database.

Predicted Per-class Performance (%)

Wi N1 N2 N3 REM Pre Rec Spe Fl1

Wi 7094 398 82 41 238 90.20 90.33  97.65 90.27
= | N1 539 1167 455 29 492 4584 4351 9636 44.64
g N2 114 655 14220 1157 971 88.58 83.07 92.19 8574
< N3 17 12 791 4658 10 78.48 84.88 9636 8155
REM 100 314 506 50 6489  79.13  87.00 94.84 82.88

D. Results and Discussion

Tables II and III present the confusion matrices and the
performances of each class achieved by the proposed method
using Fpz-Cz and Pz-Oz channels of the EDF-Sleep-2013 data
set, respectively. The main diagonals in each confusion matrix
denote the true positive (TP) values which indicate the number
of stages scored correctly. It can be seen from the tables
(the confusion matrices’ parts) that TP values are higher than
other values in the same rows and columns. These tables also
show the prediction performance (i.e., the precision, recall,
specificity and F1 score) of our model for each class (i.e.,
the stage). Among all stages, the model performance is better
for W1, N2, N3, and REM stages than the N1 stage. This
may be because the number of NI stages in the dataset is
smaller compared to the other stages. However, our results for
stage N1 is better than other state-of-the-art algorithms listed
in Table IV.

Typically, there are two approaches to evaluate the proposed
methods in the literature: (i) intra-patient paradigm in which
the training and evaluation sets can include epochs from
the same subjects, and (ii) inter-patient paradigm in which
the epochs sets for test and training come from different
individuals. As the inter-patient scheme seems to be a more
realistic evaluation mechanism, the results and comparisons
presented in this study are based on the inter-patient paradigm.
Table IV presents the comparison of stage sleep scoring
results for the proposed method with the existing algorithms.
It can be noted from Table IV that the proposed model
outperformed the state-of-the-art algorithms presented in the
table. Our model has performed better in all listed channels
(i.e., the Fpz-Cz and the Pz-Oz EEG channels) in terms of all
evaluation metrics compared to others. It may be noted that
in spite of the imbalance-class problem, our model yielded
desirable performance, especially for stage N1. In addition
to the Sleep-EDF 2013 dataset, we also evaluated our model
with the Sleep-EDF 2018 dataset. Since the dataset has been
published recently, we could not find any work to compare
the performance of our model. Therefore, we just reported
our findings without any comparison.

Figure 5 also illustrates the hypnogram produced manually
by a sleep expert and its corresponding hypnogram generated
by our method for a subject for approximately 8 hours of
sleep at night. It can be noted from the figure that around
85% the manually scored hypnogram and automatically scored
correctly.

Furthermore, by employing the attention mechanism into
the network, we are able to illustrate (in the form of attention
maps) which input epochs are important to score the sleep
stages. As shown in Figure 4, we can see the network used
almost the exact input epoch to predict its corresponding sleep
stage.

Our model has performed better than the rest of the works
due to the following two reasons: First, the nature of the sleep
stage scoring task is sequential in which each sleep stage
has a relationship with the previous and next stage. Hence,
applying a sequence to sequence deep learning model for
such a problem would be a desirable choice. Also, using the
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Table IV: Comparison of performance obtained by our approach with other state-of-the-art algorithms.

Method Dataset (&\% EEG Channel Overall Performance Per-class Performance (F1)
ACC  MFI K w N1 N2 N3 REM
SleepEEGNet Sleep-EDF-13  20-fold CV Fpz-Cz 8426 79.66 0.79 89.19 5219 86.77 85.13  85.02
Supratak et al. [14]  Sleep-EDF-13  20-fold CV Fpz-Cz 82.0 76.9 0.76 84.7 46.6 85.9 84.8 824
Tsinalis et al. [15]  Sleep-EDF-13  20-fold CV Fpz-Cz 78.9 73.7 - 71.6 47.0 84.6 84.0 81.4
g | Tsinalis et al. [24]  Sleep-EDF-13  20-fold CV Fpz-Cz 74.8 69.8 - 65.4 43.7 80.6 84.9 74.5
= SleepEEGNet Sleep-EDF-13  20-fold CV Pz-Oz 8283 77.02 0.77 90.27 44.64 85.74 81.55 82.88
Supratak et al. [14]  Sleep-EDF-13  20-fold CV Pz-Oz 79.8 73.1 0.72 88.1 37 82.7 71.3 80.3
SleepEEGNet Sleep-EDF-18  10-fold CV Fpz-Cz 80.03 73,55 073 91.72 44.05 8249 7345  76.06
SleepEEGNet Sleep-EDF-18  10-fold CV Pz-Oz 77.56 70.00 68.94 90.26 42.21 79.71 94.83  72.19

Sleep-EDF-13: Sleep-EDF 2013; Sleep-EDF-18: Sleep-EDF 2018; CV: Cross Validation
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Figure 4: Attention maps of two sequence inputs (EEG epochs) and their corresponding sleep stage scores provided by our

proposed method.

attention model and BiRNNs as building blocks of the se-
quence to sequence model increased the performance. Second,
the sleep stage classification suffers from the imbalance-class
problem. To reduce the effect of this problem, we applied new
loss functions (i.e., the MFE and MSFE) to have an equal
misclassified error effect for each sleep stage while training
the network.

One of the remarkable aspects of our proposed method is
that, the model is generic in nature so it generalizes for other
problems in the biomedical signal processing area that are
inherently sequential and have the imbalance-class problem
such as the heartbeat classification for arrhythmia detection
[25], [26].

Even though our proposed model achieved significant re-
sults compared to the existing methods for the sleep stage

classification, the model still carries several limitations. First,
similar to other deep learning methods, our method needs a
sufficient amount of sleep stage samples in training phase to
learn discriminative features of each stage. Second, as our
model is a sequence to sequence approach, at each time step,
it requires to have a certain amount of 30-s EEG epochs (as
input sequence) to be able to score the input epochs. Finally,
our proposed method is evaluated with two available EEG
channels (i.e., Fpz-Cz and Pz-Oz EEG channels) extracted
from the Physionet Sleep-EDF datasets. Therefore, to evaluate
its performance on other EEG channels, the network has to be
trained with new EEG epochs.

Furthermore, in future, we intend to extend this work
using multimodal polysomnography (PSG) signals including
EEG, EOG (electrooculography) and EMG (electromyogram)
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Figure 5: A example of hypnograms generated by the machine (i.e., the proposed method) and a sleep expert of a subject from

the Sleep-EDF-13 dataset; approximately 85% coverage.

to boost the performance of the sleep stage classification.

IV. CONCLUSION

We have presented a novel and state-of-the-art algorithm
for automated sleep stage annotation problem. The proposed
method leverages the ability of deep convolutional neural
network and encoder-decoder network in which we have
used bidirectional recurrent neural networks and attention
mechanisms as its building blocks. The proposed new loss
calculation approaches helped to reduce the effect of the class-
imbalance problem and boost the performance, especially the
performance of our method on the stage N1, that is more
difficult than other sleep stages to score. Table IV presents that,
our proposed model significantly outperformed the existing
algorithms by yielding the highest performance for the sleep
stage scoring task. While developing the automated systems,
generally there will be imbalance data problem (normal class
more data than diseased class). Our developed model can
be applied to such biomedical applications like arrhythmia
detection using ECG signals, epilepsy detection using EEG
signals and EMG signals to study the postures.
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