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s relevant technologies become smaller and less
expensive, micro air vehicles (MAVs) are transi-

tioning from predominantly military and hobby-

ist applications to mainstream use. Exciting new
applications include the delivery of medical

supplies to remote areas, infrastructure inspection, environ-
mental change detection, precision agriculture, survelliance
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tasks such as fire or traffic monitoring, and the film and
entertainment industry. However, before MAVs become
fully integrated into society and the airspace, higher levels
of safety and reliability must be assured.

One of the factors that most limits MAV robustness is the
heavy reliance on consistent and accurate measurements
from satellite navigation systems such as the Global Position-
ing System (GPS). These measurements provide regular
updates of global position, heading, and velocity, directly
influencing state estimation and control. However, GPS solu-
tions are susceptible to degradation and dropout, as illus-
trated conceptually in Figure 1. The weak signal can be easily
blocked by buildings and foliage, jammed, or spoofed. Fur-
thermore, the measurement quality can degrade due to mul-
tipath signals, atmospheric delays, or the number and position

of visible satellites. These issues are particularly prevalent
when flying near the ground, where safety and reliability are
especially important.

To circumvent these difficulties, many GPS-denied nav-
igation solutions have been developed that utilize relative
measurements from algorithms such as visual odometry or
laser scan matching [1]-[4]. Even with these measurements,
when GPS measurements are unavailable, the global posi-
tion and heading states are not observable [5], [6], as shown
in the observability analysis in [7]. This means that there is
no guarantee that these states can be accurately recon-
structed from the available inputs and measurements. Spe-
cifically, nonobservability induces three main difficulties.

1) Global drift: Integrating noisy inputs without correc-
tion will cause the global state to drift arbitrarily far
from truth.

2) Estimator inconsistency: An inconsistent estimator is
one where either the estimates are biased or the cova-
riance estimate does not well represent the underly-
ing uncertainty distribution.

3) Potential instability: Feedback control typically assumes
some level of state observability. There is no guarantee
that driving an unobservable estimated state to a
desired state will actually stabilize the system.

Current filter-based approaches to GPS-denied naviga-
tion directly estimate the global state of the vehicle. In this
article, we demonstrate for such systems that, because of
unobservability, estimation and control performance can
degrade significantly during periods of prolonged GPS
dropout and heading uncertainty. We present as an alter-
native the relative navigation (RN) framework, which
maintains full-state observability in spite of GPS dropout
by estimating with respect to a local reference frame. While
RN (as well as GPS-denied navigation approaches) is sub-
ject to global drift, it maintains a more accurate estimate of
global uncertainty and provides better inputs to techniques
such as map optimization using loop closures that help to

FIGURE 1 GPS solutions are particularly prone to degradation or
dropout when flying near the ground.
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We present as an alternative the relative navigation framework,
which maintains full-state ohservabhility in spite of GPS dropout hy
estimating with respect to a local reference frame.

reduce this drift. RN facilitates consistent state estimation
and stable control, thereby improving the overall safety
and reliability of MAVs.

This article promotes a paradigm shift within the GPS-
denied navigation literature. Many researchers are accus-
tomed to working with respect to a global reference frame
and, as a result, concede that state observability is inevita-
bly lost in the absence of global updates [5]. As discussed in
“Summary,” this article highlights the issues associated
with such a concession and provides a viable alternative. In
particular, we show that unobservability leads to a loss of
estimator consistency. Inconsistency implies a loss of esti-
mator optimality [8]. By subtly restructuring the problem,
RN avoids this and other pitfalls that are prevalent in GPS-
denied navigation systems. In terms of implementation,
the modifications that need to be made to an existing

Summary
State estimation for micro air vehicles (MAVs) often de-
pends heavily on reliable global measurements such as
the Global Positioning System (GPS). When global mea-
surements are unavailable, additional sensors, such as
cameras or laser scanners, are commonly used to provide
measurements of the MAV’s translation and rotation rela-
tive to a previously observed keyframe image or scan. With
the use of only relative sensors, however, the global posi-
tion and heading of the vehicle are unobservable and can-
not be reliably reconstructed. Many existing approaches
work with respect to a global reference frame, resulting in a
loss of state observability. This article highlights that unob-
servability leads to inconsistency and a loss of optimality,
which reduces estimation accuracy and robustness of the
navigation solution. Relative navigation is presented as an
alternative approach that maintains observability by always
working with respect to a local coordinate frame. While still
subject to global drift, relative navigation is shown through
rigorous simulation and hardware validation to produce
accurate and consistent state estimates when other ap-
proaches break down. By subtly restructuring the state
estimation problem to a relative framework, many of the pit-
falls prevalent in GPS-denied MAV navigation systems are
inherently mitigated.
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keyframe-based global filter implementation to convert it
to RN are relatively minor and straightforward.

We begin the article with a tutorial overview of the cur-
rent state-of-the-art, keyframe-based approaches for GPS-
denied MAV navigation. We first summarize the most
common global estimation approaches in a side-by-side
comparison, highlighting the differences in how they incor-
porate the relative odometry measurements. We then intro-
duce the RN framework, explaining how it incorporates
relative measurements to produce local state estimates and
how it uses these local estimates to produce an estimate of
the global pose of the MAV. With these preliminaries estab-
lished, we then present the main contribution of this article,
which is a rigorous analysis and comparison of the perfor-
mance of each estimation approach in simulation. We show
that the RN framework provides advantages in terms of
accuracy, consistency, and its ability handle global updates
after a prolonged GPS outage. To demonstrate that the find-
ings in the simulation apply to real-world environments, we
also present limited multirotor flight-test results for each of
the approaches. We then conclude with some final discus-
sion. It should be noted that the purpose of this article is to
compare the performance of different theoretical estimation
frameworks, rather than to present the specific details of a
new estimator. While a background in Kalman filtering and
statistical analysis will be useful to the reader, relevant con-
cepts are reviewed as needed.

STATE-OF-THE-ART MAV NAVIGATION

The majority of autonomous MAVs currently in operation
use GPS with an inertial navigation system (GPS/INS) for
state estimation and control. High-rate, body-fixed acceler-
ometers and gyroscope measurements are integrated to
estimate change in position and attitude. When properly
calibrated, these measurements are remarkably accurate
over small time steps and commonly used as inputs to the
estimator’s dynamics. Integrating noise, however, ulti-
mately causes these estimates to drift. GPS measurements
constrain this drift but are available at a slower rate. Com-
monly, a probabilistic filter [such as an extended Kalman
filter (EKF)] fuses measurements from these two sensors
using a model of the vehicle dynamics. When GPS measure-
ments are available and reliable, GPS/INS solutions work
well for global missions requiring position hold or way-
point following. GPS/INS systems have been thoroughly
researched and are widely used.



When no GPS solution is available, MAV navigation ap-
proaches typically utilize odometry computed from extero-
ceptive sensors such as cameras or laser scanners. Many
such odometry algorithms exist for a variety of sensors and
include methods such as visual odometry [9], [10] and laser
scan matching [4], [11].

Odometry can be computed either between consecutive
frames (images or scans) or between the current frame and
a keyframe. When a keyframe is used, a series of odometry
measurements is computed with respect to this common,
fixed reference frame. Typically, the keyframe is updated
only when there is insufficient overlap to provide a reliable
odometry measurement. As a result, keyframe-based
odometry reduces temporal drift in the computed odome-
try as compared to frame-to-frame matching [1], [3]. We fo-
cus on global keyframe filters, which build upon GPS/
INS solutions but incorporate the relative pose measure-
ments provided by these keyframe-based odometry ap-
proaches. Many of the concepts in this article find parallels
in the simultaneous localization and mapping (SLAM) lit-
erature. “Connection to Simultaneous Localization and
Mapping” briefly summarizes the development of SLAM,
including the recent emphasis on improving consistency
through relative formulations and efforts to reduce com-
putational complexity.

In the next section, we briefly review the EKF algorithm
in a general sense and establish the notation that is used
throughout this article. We then describe the three global
keyframe filters to be analyzed. While the formulation
presented in this article is for a discrete-time system, the
principles apply to continuous or continuous-discrete for-
mulations as well.

Extended Kalman Filter

The EKF applies to systems with nonlinear dynamics and/
or nonlinear measurement models. It recursively estimates
the system state X: as a function of the state estimate at the
previous time step Xi-1, inputs u;, and measurements z;. It
also maintains an estimate of its uncertainty, represented
by the covariance matrix P:.

Consider the discrete-time system

xt = f(xi—1, wr+v¢) + &

where vi~N(0, Qu) and &:~N(0, Q) are zero-mean Gauss-
ian random variables. In the prediction step, the filter propa-
gates the state estimates forward as

Xtlt-1 = f(Xe-1)i-1,ur). )

The covariance is propagated according to the linear
approximation

Pii-1=FEPi—1i-1F + G:QuG/ + Qy,

where F: and G; are the Jacobians of the system dynamics
with respect to the state and input, respectively.

The update step is performed after the prediction step
when a new measurement z is available. In practice, sev-
eral prediction steps may be performed between updates.
A measurement is modeled as

zi=h(x)+ &, ()

where {;~N(0, R) is zero-mean Gaussian noise. The Kalman
gain is computed as

K: =P, 1H! (HP),1H +R) ", ©)

where Hy is the Jacobian of the measurement model with
respect to the state. The state and covariance are updated as

xt|t = X¢|i—1 + Ki (z: — h(X¢]1-1)),
Ptlt:(I_K,‘Hf)P,‘I,‘—](I_KtHi)T"'KiRK;r, (4)

using Joseph'’s form to avoid numerical instability [8].

Several of the estimation approaches examined in this
article also utilize a third step that we refer to as marginal-
ization. When the odometry algorithm declares a new key-
frame, portions of the state vector are reset. We express this
operation as X" = m(x). The covariance is also updated
according to the linear approximation P* = MPM', where
M = 9m/9x is the Jacobian of the marginalization opera-
tion with respect to the state.

Global Estimation Approaches

The three types of global keyframe filters that we examine
in this article are pseudoglobal (PG), stochastic cloning
(SC), and robocentric (RC). These methods all utilize the
EKF paradigm but differ in the way they use the relative
odometry measurements to update the global state
estimate. In the following sections, we describe the inter-
nal states, propagation and measurement models, and
marginalization steps used by each filter. This information
is also presented graphically in Figure 2. The acronyms
used throughout the article to refer to each approach are
summarized in Table 1.

To simplify the presentation, it is assumed that the vehi-
cle’s dynamics with respect to some arbitrary, inertial refer-
ence frame can be described by the function fx, which is a
specific instantiation of (1). The Jacobians of these dynamics
with respect to the state and input noise are notated as Fx
and Gy, respectively.

An operation that we use with some frequency is com-
pounding the poses represented by two states. Using nota-
tion similar to [12], we denote this operation using the @
operator as

x=x"@®x" 5)

AUGUST 2018 « IEEE CONTROL SYSTEMS MAGAZINE 33



Connection to Simultaneous Localization and Mapping

When a vehicle enters an unknown, global positioning sys-
tem (GPS)-denied environment, it must estimate both its
state and the locally observed environment. The simultane-
ous localization and mapping (SLAM) problem solves for the
most probable vehicle trajectory and landmark locations, given
a time history of inputs and relative measurements to the lo-
cal environment [S1], [S2]. Often, simplifying assumptions are
made to reduce the computational burden on resource-con-
strained platforms. While full-SLAM solves for the most likely
vehicle trajectory, online-SLAM, such as extended Kalman fil-
ter (EKF)-SLAM [S3], solves only for the current state of the
vehicle and nearby features or landmarks [S4]. Keyframe fil-
ters further simplify the estimation problem by tracking a single
keyframe rather than many individual landmarks.

Micro air vehicle (MAV) state estimators are generally lim-
ited to solving some simplified form of the SLAM problem due
to size, weight, and power limitations specific to each platform.
Some MAV navigation solutions are derived from the EKF-
SLAM framework [35], [S5], while others avoid filtering tech-
niques altogether, electing to solve for the MAV’s pose using
nonlinear optimization techniques such as factor graphs [S6].
Yet many others choose to use keyframe-based approaches
for their reduced computational complexity [1], [3], [4], [16],
[22]. Each approach works toward solving similar problems but
with different assumptions and different formulations.

Another prominent research emphasis for SLAM is main-
taining consistency. While traditional SLAM approaches es-
timate the vehicle and landmark locations with respect to a
global coordinate frame, it has been shown that such param-
eterizations lose consistency as heading uncertainty increases
[17]. As such, an increasing number of relative SLAM imple-
mentations are being published. Robocentric approaches esti-
mate the pose of landmarks and the global origin with respect
to the vehicle’s current position and attitude [19]. Relative
submaps estimate the state of the vehicle and landmarks with
respect to a local inertial coordinate frame [24], [25]. These
submaps are subsequently fused and form a more consistent
global estimate.

In summary, keyframe-based filters are common for MAV
state estimation because of the reduced computational bur-
den, while relative formulations are common within the SLAM
literature to improve consistency. This article presents a rela-

for frames a and b. We also commonly take the Jacobian of
this operation for two poses x" and x'. For compactness,
we define the Jacobians

_ax"@xh)
J1® 0 kb — axa “,;(l, ’
J _ax"@xh)
20l =y
X x' g
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FIGURE S1 A relative keyframe filter, such as relative naviga-
tion (RN), builds upon ideas presented in the simultaneous
localization and mapping (SLAM) literature to ensure reduced
computational complexity and improved consistency. This arti-
cle compares the RN framework to popular global key-
frame filters.

tive keyframe filter, which we call relative navigation (RN), as
the logical method to improve the consistency of global key-
frame approaches. The purpose of this article is not to com-
pare the performance of keyframe-based MAV navigation ap-
proaches to other SLAM techniques but, rather, to rigorously
compare RN to state-of-the-art global keyframe filters. These
ideas are illustrated in Figure S1.
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We also commonly reverse the direction of the first pose in
the compounding operation. This reversal is denoted by
the © operator, so that in the expression

x=0x"®@x’, ©)

the reversal of x" is compounded with x". The Jacobian of
the reversal operation for some pose x is defined as



(a) PG

(c) kRC

(d) RN

FIGURE 2 A comparison of estimator architectures. Pseudoglobal (PG) compounds the keyframe state and measurement to apply a
global-like update. Stochastic cloning (SC) estimates both the global and keyframe states and applies the update as the relative
difference. Keyframe robocentric (kRC) reverses the state direction and uses a delta state for applying the prediction and update steps.
Relative navigation (RN) estimates only the relative state. The coordinate frames labeled g, k, and b correspond to the global, keyframe,
and body frame of the robot, respectively. (a) PG, (b) SC, (c) kRC, and (d) RN.
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Pseudoglobal

The PG approach, illustrated in Figure 2(a), is perhaps the
simplest and most intuitive of the methods, but it is techni-
cally incorrect and has significant theoretical shortcom-
ings. While it produces surprisingly accurate estimates, the

f TABLE 1 The estimation framework legend. b
A y

BL Baseline (propagation only, no vision update)

PG Pseudoglobal

SC Stochastic cloning

kRC Keyframe robocentric

kRCi Keyframe robocentric (inertial error)

RN Relative navigation

bRN Relative navigation (body-fixed dynamics)

approach becomes grossly overconfident because it ignores
important cross-correlation terms. We include it here because
several prominent research groups have used this approach
for MAV navigation [4], [13].

In one embodiment of this approach, the vision sensor is
fed into a monocular-SLAM framework, whose output is
treated as a black-box global pose update fused directly in
the filter [13], [14]. In other implementations [4], [15], the
relative measurement is applied by appending it to a saved
estimate of the keyframe’s global position X and then treat-
ing it as a global measurement. In this case, the estimated
state is simply the global state of the vehicle

xrG = x5, Prc = P8,
and the propagation equations are the vehicle dynamics
fPG()A(PG/u) = fx(f(g, u), FPG = Fx |;(g/ GPG = GxL}g-
The PG measurement is obtained by compounding the saved
estimate of the keyframe state with the relative measure-
ment obtained from the odometry as

Zrg = XD z. )
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We show that the RN framework provides advantages in terms
of accuracy, consistency, and its ahility handle global updates
after a prolonged GPS outage.

An estimate of the measurement covariance is also needed.
The most naive approach is to simply use the covariance for
the relative odometry measurement. However, this method
ignores uncertainty in the saved keyframe state X* used to
construct the measurement. A slightly better approach is to
use the covariance of (7), which is

Rec = (Jioly,)P*(Jio k)" + (J20l . ) R(J20 . ,)-

When the measurement is constructed in this fashion, the
predicted measurement is then simply the global state of
the vehicle hpc(xec) = X8 and Hpeg = 1.

While the modified measurement covariance described
above incorporates uncertainty in the saved estimate of the
keyframe state, it ignores cross-correlation terms between
the keyframe state and the current global pose. In addition,
treating a relative measurement as a direct update to the
global state in this fashion causes the estimator to become
grossly overconfident, as will be demonstrated in the “Sim-
ulation Results” section of this article.

Stochastic Cloning

The SC approach [16] improves on the PG approach by
accounting for the uncertainty in the global pose of the
keyframe as well as the cross-correlations with the vehicle’s
global pose. In this approach, illustrated by Figure 2(b), the
state and covariance are augmented with the global pose of
the keyframe x* as

. _[xg] o | B ngk]
Xsc = ) 5 =|pks pk |

where P?® is the uncertainty in the global state, P is the
uncertainty in the keyframe state, and P5* is the cross-
correlation. During the prediction step, the keyframe
state is not expected to change since there is no new
information about it. The propagation equations there-
fore become

. 8 Fx)*( 0 fo(
fsc (Xsc,u) = fX()fk’u)]’ Fse = 0Ig I]’ GSCZ[ 0‘8'

X

The predicted measurement is obtained by compounding
the inverse keyframe state with the global vehicle state to
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estimate the relative measurement from the keyframe to the
body. The measurement model is then

hsc (Xsc) =ox*® X8,

Hsc (Xsc) = [J26 |og s J1e logezsJo ]

Each time the odometry algorithm declares a new key-
frame, the estimator’s keyframe state must be updated. The
old keyframe state is marginalized out, and the new key-
frame state is initialized as the current estimate of the vehi-
cle’s global state

%8

1)

The SC approach is much more theoretically sound than
the PG approach. However, as will be demonstrated in the
“Simulation Results” section of this article, it still suffers
from estimator inconsistency. One reason for this is that the
linearization about unobservable, drifted global states in
the measurement update artificially introduces extra infor-
mation to the filter [17]. While some methods for addressing
this shortcoming have been proposed [18], we demonstrate
that the fundamental, underlying issue of unobservability
can be avoided entirely with the RN approach.

mgc (Xsc) =

R 10
Msc (Xsc) = [I ol

Keyframe Robocentric

RC mapping [19] is a more recent approach that addresses
many of the consistency issues observed in EKF-SLAM
approaches that express the vehicle and feature locations
with respect to a fixed frame. RC mapping improves con-
sistency by expressing feature locations with respect to a
body-fixed—or RC—frame, thus reducing the linearization
errors that lead to inconsistency.

To our knowledge, RC mapping has, to date, been
applied exclusively to the EKF-SLAM problem, where the
locations of many features are tracked as states in the filter.
To facilitate comparisons with the other approaches, we
adapt it to a keyframe-based approach by treating the key-
frame as the only feature being tracked in the filter. We
refer to this adaptation as keyframe-RC (kRC) to differenti-
ate from the existing literature.

The state vector for the kRC filter, illustrated in Fig-
ure 2(c), consists of the location of the global origin expressed
in the body-fixed frame X8, the location of the keyframe



The three types of global keyframe filters that we examine in this
article are pseudoglobal, stochastic cloning, and robocentric.

expressed in the body-fixed frame x*, and the displace-
ment state x*

X8 ps pel pst
o ok kg k' k',A
Xkre = | X[, Pwrc=|P“% P< P4

)A(A PA/g PA/k PA

The displacement state represents how the vehicle has
moved since the last relative measurement. It is computed by
aggregating the changes produced by the prediction equa-
tions. Only x* is updated during the prediction step, so that

x5 I0 0 0
fire (Xkre, 1) = X |, Fre=[0 1 0 |, Gwze=| 0
£(x%, 1) 0 0 Ffp Gyl

The measurement model consists of the inverse of the
keyframe state composed with the current displace-
ment state

hire (Xre) = O X< @ X2,

Hire =[0 Il®‘eik',iAJ@ e Joe |e;<k',;<d]-

After the update has been applied, the displacement state is
compounded onto the global and keyframe states and then
reset to zero. This is accomplished with a state marginal-
ization of the form

ox*®x8
mizc,. (Xire) = |OX2 @ XX,
0
J2e |9;<A,ig' 0 Jie |e;<¢,ig' Je |>zA
Mirc,z = 0 J2e |e§ﬁ/§(k' Jie |9;<A,ik'16 |;(A .
0 0 0

The purpose of this delayed composition is to ensure that
the Jacobians associated with the composition, Mxrc,z, are
evaluated only after correction by a measurement update
to reduce linearization errors.

Another state augmentation and marginalization also
must be performed when a new keyframe is declared. Because
the location of the keyframe is expressed in the body frame
and the body frame was exactly at the location of the keyframe
at the time it was declared, this procedure consists of setting
the keyframe state to zero with no uncertainty

X 100
myrck (Xkre) =1 0 |, Mirck =10 0 0
x4 001

As a postprocessing operation, it is also common to
transform the kRC global state into an inertial frame, de-
noted kRCi, for purposes such as plotting and path plan-
ning. This is accomplished as

28 s
Xirci = © Xires

Pirci = Jo | sPirc J& | %-
Note that Pirci is simply a rotation of Pirc.

RELATIVE NAVIGATION

The RN approach addresses the unobservability of the
global state by not estimating it in the filter. Instead, only
the relative state of the vehicle with respect to the last key-
frame is estimated, as illustrated in Figure 2(d). The result
is that the odometry provides a direct measurement of the
state, making the state observable by construction. The
global state can be subsequently reconstructed in a back-
end map by composing the series of relative pose esti-
mates produced by the filter together. This effectively
removes the uncertainty in the global pose from the filter
and hands it off to the back end, and, as a result, the uncer-
tainty of the relative state in the filter remains bounded
and consistent. In addition, the pose-graph representation
of the global state in the back end creates a more accurate
representation of the global uncertainty than can be
obtained when representing the global state directly (see
“The Banana Distribution”).

Another key advantage of the RN approach is the loose
coupling between the relative front end and the global
back end, illustrated by the architecture shown in Figure 3.
The intuition for this can be developed by imagining a
human driver navigating through a city with respect to his
local environment—traffic lanes and other vehicles—while
opportunistically incorporating local guidance such as
“take the next right turn” from a navigator in the passenger
seat. Similarly, with the RN approach, a vehicle is able to
maintain stable flight and avoid collisions indefinitely,
even when no global information is available, by using the
front-end relative state estimates for local guidance and
control. When back-end estimates of the global state change
dramatically due to new information, this merely results in
a new relative goal being passed to the front end, avoiding
the large spikes in control effort seen by systems that con-
trol using the global state directly. The system is similarly
insulated from delayed or degraded global information.

It is important to note that the general framework in
Figure 3 is agnostic to a particular platform, sensor suite,
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The Banana Distribution
The “banana distribution,” first described in [S7], is the sickle-
shaped distribution of position uncertainty that arises due
to heading uncertainty in robot localization problems. Intuition
about why the banana distribution occurs can be developed by
considering the arc-like distribution that arises for a robot that
travels in a straight line for a known distance but with an uncer-
tain initial heading or growing heading uncertainty.

A similar distribution arises in the pose-graph representa-
tion of the relative navigation (RN) approach, where several
short transforms are concatenated as in the example in Fig-
ure S2. Because the length of each transform is small and the
heading uncertainty is low, the uncertainties on the transforms
are well approximated by Gaussian normal distributions. How-
ever, when several transforms are concatenated, the resulting
global uncertainty becomes distinctly banana shaped. This is
illustrated in the distribution shown in Figure S2, created by
sampling from the individual transform uncertainties in a Monte
Carlo fashion.

The most common parameterization of uncertainty, inherent
to the Kalman filter and its variants, is a Gaussian normal distri-
bution. For filters that estimate the global state directly, the co-
variance is computed directly in a Cartesian coordinate system.
However, this parameterization, illustrated with red ellipses in
Figure S2, results in a poor fit for the true underlying distribution.

The distribution captured by the pose-graph representation
can be better parameterized using a Gaussian normal distribu-
tion in exponential coordinates [S8]. While methods exist for
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FIGURE 3 The vehicle-mounted sensors feed a probabilistic filter
estimating the vehicle’s state relative to its local environment.
Here “view-based odometry” refers to algorithms such as visual
odometry and laser scan matching. Local path planning and con-
trol stabilize the vehicle in this local frame. Meanwhile, on a dis-
tinct thread, a time history of local information can be fused with
any available global information to form a global map. The back
end only influences the flight-critical front end in the form of global
goals represented in the current relative coordinate frame.
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FIGURE $2 The banana-shaped distribution arising from the
concatenation of small, uncertain transforms. The black line
shows the nominal path created by concatenating several
small transforms with Gaussian uncertainties shown by the
purple ellipses. The gray lines and dots show a Monte Carlo
sampling from the transform distributions. The level contours
of a Gaussian distribution are shown parameterized with Car-
tesian coordinates in red and parameterized with exponential
coordinates in blue.

approximating the final distribution directly from the covariance
matrices of the concatenated transforms [23], we discuss com-
puting an approximate distribution from the sample covariance

or class of estimation filter. As such, the RN approach can
be readily applied to existing systems. The following sec-
tions give high-level descriptions of the relative front end
and global back end. For further details on the RN approach
and its implementation, see [20]-[22].

Relative Front End
The central component of the front end is a filter that esti-
mates the local state of the vehicle. The filter state is the
relative pose of the vehicle with respect to the last key-
frame, as illustrated in Figure 2(d)

)A(RN = ir, PRN =P
During the prediction step, the relative state evolves accord-
ing to the vehicle dynamics

Frn = Fx

fRN(f(RN, u) = fx()A(r, u), 7 GRN = Gx

R

The measurement model is simply the current relative state

hrn (ﬁRN) =x".



of the Monte Carlo points used in [S8] and as the baseline
method in [23]. To accomplish this, we need to lay some theo-
retical groundwork.

Rigid body rotations are represented by members of the
special orthogonal group

SO(2) = {C e R?*%|CCT =1,detC =1}

for planar motion, or similarly SO(3) for six-degree-of-freedom
(6DOF) motion. The special Euclidean group

Cr

3x3
0 1)€8

SE(2) = {T -|

{C,r} € SO(2)x RZ}

[or SE(3) for 6DOF] represents transformations parameter-
ized by a translation r and rotation C. The pose compound-
ing operations of (5) and (6) are equivalent to representing the
poses as transforms in SE(2) and multiplying them (or their
inverses) as appropriate.

SE(2) is an example of a Lie group, and associated with that
group is the Lie algebra se(2). The Lie algebra is the tangent
space to the Lie group around the identity element and, unlike
the group, is a vector space. Members of the Lie algebra can be
mapped to elements of the group via the exponential mapping,
while the matrix logarithm provides the inverse mapping.

Expressing a difference in pose in exponential coordinates
is equivalent to mapping the error transform into the Lie alge-

The Jacobian of this measurement model is constant, elimi-
nating linearization errors during the update step

Hrn =L

When a new keyframe is declared, the filter first passes its
current relative pose estimate and estimated covariance to
the back end and then resets its relative state. Because we
know that the vehicle was, by definition, at the location at
which the keyframe is declared, the relative state can be
reset identically to zero with zero uncertainty as
mgn (Xrn) =0, Mkin = 0.

Therefore, at each new keyframe, the filter starts with zero
pose uncertainty, helping to maintain filter consistency
[23]. This concept parallels ideas found in the relative SLAM
literature [24], [25].

In addition to the estimator, the front end is also respon-
sible for the real-time control of the vehicle. All path plan-
ning and control are carried out in the current local frame
of the estimator, using goals represented in that coordi-
nate system that come from the back-end global planner.

bra. For each Monte Carlo point x; in Figure S2, we express
the distance from the true pose x in exponential coordinates as

8&i=log(©x @ X)),

where for SE(2)

cot% 1

Lot Ll
log(x) =2 -1 cot% vl

Level curves of the resulting distribution are shown by the blue
lines in Figure S2 and are a much better fit for the distribution
represented by the pose graph. This is numerically verified us-
ing a log-likelihood ratio test in [S8]. Unlike the native pose-graph
representation, however, the distribution is parameterized en-
tirely by the mean and covariance, and so additional statistics
can easily be computed. This idea is used throughout the ar-
ticle to define the global uncertainty estimate, determine bias,
and compute normalized estimation error squared estimates
for the RN approach.
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This separation of path planning and control from the
global states insulates the system from the large shifts
in global state that can occur when loop closure or
GPS measurements are obtained and avoids spikes in
control effort.

Global Back End

Each time the front-end estimator resets its state at a new
keyframe, it first passes its current estimate of that state and
the associated covariance to the back end. These relative
pose estimates and covariances from the front-end filter
comprise the edges of a pose-graph map. By compounding
these edges, the global pose of the vehicle can be computed
at any time [26].

Each edge in the graph has a Gaussian uncertainty asso-
ciated with it, parameterized by the covariance matrix.
Compounding these Gaussian uncertainties results in a
banana-shaped distribution for the uncertainty in the vehi-
cle’s global pose. “The Banana Distribution” explains that
representing the vehicle’s global pose as a series of small
transforms with Gaussian uncertainty results in a better
representation of the global uncertainty than can be obtain-
ed by directly representing the global pose.
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The PG approach is perhaps the simplest and most intuitive of the methods,
but it is technically incorrect and has significant theoretical shortcomings.

The pose-graph map can also be used to incorporate
additional information as it becomes available, such as loop
closures or intermittent GPS measurements. These mea-
surements are represented as additional edges in the
pose graph, which overconstrains the graph. Optimization
methods then adjust the edges in the graph to reduce drift
[27], [28]. Global mission planning is carried out using this
optimized map.

In this article, these additional sources of global infor-
mation will not be incorporated to facilitate comparison
with the other estimation approaches. The global results
for RN presented here are produced using a limited back
end that simply compounds the relative poses and uncer-
tainties provided by the front-end estimator.

SIMULATION
A comparison of each of the estimation approaches (PG,
SC, kRC, and RN) was performed in simulation. Since each
of these approaches has previously been demonstrated to
work on real MAV platforms, the purpose of the simula-
tion is to compare the theoretical performance of the
approaches rather than to evaluate the suitability of any
one approach for MAV navigation in isolation. To accom-
plish this comparison, a simple simulation environment
was chosen so as not to obscure the underlying trends.
Specifically, simple dynamics and measurement models
were used, and process and measurement noise were
drawn from known normal distributions. The authors
postulate that if an approach breaks down theoretically in
an idealized simulation environment, it will perform no
better under the complications that arise on an actual MAV
platform. The extension to MAV hardware is explored later
in the article.

The simulated vehicle is an idealized ground robot fol-
lowing the standard unicycle model. The state of the vehi-
cle is position and heading

x
vl
¢

X =

A random reference trajectory of duration ¢y is defined by
generating forward velocities and angular rates at a rate of
fu and applying them to the dynamics

x Vicos¢
xt=|y|=|Vising|,
¢ wi
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where
V;{"’N(Vnominal,ﬂ%/)/ a);l"’N(a);fl/ 7721)

Identical noisy inputs u are provided to each estimator to
simulate wheel odometry, where

e [Z] = [Z;] +v, v~N(0,Qu),

with Q. = diag (0%, 03). The estimated vehicle dynamics
over a time step At are defined as

%+ VAtcos
fo (X, u) =+ VAtsing |,
(ﬁ—l-a)At
with Jacobians
1 0 —VAtsing Atcosd 0
Fc=|0 1 VAtcos¢ |, Gx=|Atsing 0 |
00 1 0 At

Only input noise is added to the dynamic propagation in
the simulation, thatis Qx =0

Keyframes are established at a rate of fi as the vehicle
moves through the environment. Relative measurements
are then simulated at a rate of f, by differencing the
keyframe’s true pose from the vehicle’s current true pose
and then applying Gaussian white noise with covariance
R = diag (o3, 07, 67).

The estimators use the true values of Qu, Qx, and R.
While the performance of any one estimator could be tuned
by artificially inflating these noise terms, this analysis
compares the theoretical performance using the true
values. In all, N1 trajectories were generated, and for each
trajectory N> realizations of u and z were simulated and
provided to each of the estimators; these realizations are
subsequently referred to as trials. The values used for this
simulation are N1 =32, N2 =1000, tf = 600s, fu = 100 Hz,
fe=1Hz, f, =10 Hz, Viomina =1 m/s, nv =03 m/s, o=
0.5rad/s, ov =03 m/s, 6o, = 0.35rad/s, 0.=0,=0.03m,
and oy = 0.052 rad.

A baseline (BL) estimator is also established by propa-
gating the input u while ignoring the relative measure-
ments z. While a propagation-only approach is typically
not practical, it is useful for observing how the various
measurement models influence accuracy and consistency.

SIMULATION RESULTS
Figure 4 shows an example result from a single simulation
trial for the PG, SC, keyframe-RC (kRC/kRCi), and RN



approaches. In addition to the maximume-likelihood trajec-
tory, the level curve corresponding to the 90% confidence
bound for each estimation approach, derived from the esti-
mator’s covariance estimate, is shown. For a given trial, any
of the estimation approaches could be the most accurate, but
the shape and size of the level curves in this figure are repre-
sentative of the trends observed across all trials.

The following sections present an analysis of the perfor-
mance of each estimator based on the Monte Carlo simula-
tion results. The accuracy and consistency of each estimator
are examined. In addition, the way in which each estima-
tor handles a global measurement update, if one were to
become available, is examined. These results are summa-
rized in Table 2.

Many of the performance metrics deal with estimation
error. Global error for each of the estimation approaches
listed in Table 1 is defined as

epL = X — )A(BLg,

erG = X — XrGg,

esc = X — XsCg,
ekrc =OX — XkrCy,
ekrci = X —OXkreig,

ern = log(©x @ Xrny),

where X.g is the global component of the estimated state.
Error for an RC estimator can be computed either in the
body frame (exrc) or inertial frame (ewrci). The former is
relevant when control is computed directly from the
body-fixed state estimates. The latter introduces heading
error into the inertial position states, but it is relevant
whenever the estimated states are ultimately utilized in
an inertial frame. Error for RN uses the matrix logarithm
defined in “The Banana Distribution.”

It is important to note that when better input odo-
metry is available, the differences in estimator perfor-
mance are not as prevalent. The following simulation
results should be interpreted in the context of identifying
underlying issues and trends and not a universal judgment
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FIGURE 4 An example simulation for a single trial showing the tra-
jectory estimated by each approach. Using the global uncertainty
covariance, 90% confidence bounds are drawn for each. Only the
banana-like distribution available with relative navigation (RN)
contained the true position. The uncertainty bounds for pseudo-
global (PG) are too small to see. The inset image shows the jag-
gedness of the stochastic cloning (SC) estimates.

on the quality or effectiveness of each estimation approach
for a given scenario.

Accuracy

The accuracy of each estimator is evaluated by averaging
the position and absolute heading errors over each trial of
each trajectory. Figure 5 shows that, for each estimator, as
expected, the average error grows unbounded when global
measurements are unavailable. However, each estimator
loses accuracy at a different rate. By 600 s, each estimator has
a statistically significant difference in average position and
heading error given a 99% confidence interval, except the
kRC and kRCi positions and the kRC, kRCi, and RN head-
ings. The final error is listed in Table 2. Whether these dif-
ferences are practically important is application specific.

Average absolute heading update after zy (degrees)
.

( )
Table 2 A summary comparison of the estimation approaches. Relative navigation (RN) exhibits improved performance in terms
of average position error, average absolute heading error, estimation bias, and average normalized estimation error squared
(NEES). When a global measurement z, is eventually applied at t;, the global estimation approaches either experience a
large state jump or the measurement is rejected.

N v

BL PG SC kRC kRCi RN
Average position error at t; (m) 104.9 67.4 89.3 70.1 69.9 66.6
Average absolute heading error at t; (degrees) 39.3 24.5 32.6 23.7 23.7 23.7
Number of biased trajectories at 99% level 31/32 31/32 31/32 4/32 32/32 0/32
Average NEES at t; 10.2 3.52e7 175 7.77 7.89 3.09
Average position update given zgy (m) 104.2 7.2e-4 70.3 69.0 — —

31.4 0.02 10.5 19.5 — —

AUGUST 2018 <« IEEE CONTROL SYSTEMS MAGAZINE 41



Average Position Error (m)

Average Absolute Heading Error (°)

/

ol

o4 ’
0 200 400 600 0 200 400 600
Time (s) Time (s)
e Bl = PG ===SC
e KRC === kRCi RN

FIGURE 5 The average position and absolute heading error over
each trial on each trajectory. While the estimation error grows
unbounded for each approach without global measurements, the
error for relative navigation (RN) grows at the slowest rate. kRC,
kRCi, and RN have identical heading errors.

RN, kRC, and PG all have a comparatively low error. In
their own way, they each apply the relative measurement to
a state with a bounded covariance estimate. In contrast,
despite using the same relative measurements, SC per-
forms notably worse than the other estimators. One poten-
tial explanation for this difference in accuracy is illustrated
by the image inset in Figure 4, which shows the jagged
nature of the SC trajectory. This jaggedness occurs because
the update step for SC sometimes produces unnaturally
large corrections, often much larger than the measurement
innovation term itself. This phenomenon, first described
in [17], occurs when heading uncertainty is allowed to
grow unchecked.

Consistency

A consistent estimator is one whose estimates are unbiased
and whose covariance estimate well represents the true
underlying uncertainty distribution [8]. These properties
are explored in the following sections.

Estimator Bias
Figure 6 shows, for each estimator, the distribution of errors
across all realizations of input and measurement noise for
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FIGURE 6 The estimation error for one of the trajectories. The cross indicates the mean error. BL, PG, SC, and kRCi are biased, while

kRC and RN are not. Units are in meters.
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one of the generated trajectories. For all of the estimators
except RN, the errors form a banana-like distribution. The
expected values of epi, erg, esc, and exrci, marked with
crosses, are nonzero, indicating a bias that is a direct result
of the banana-like distribution. The distribution of ern in
Figure 6(f), on the other hand, is not banana shaped because
the matrix logarithm unwarps the distribution. As a result,
the expected value of ern is approximately zero. As an
addendum to the discussion in “The Banana Distribution,”
because Figure 6(f) appears approximately elliptical, this
suggests that a Gaussian covariance parameterization in
exponential coordinates is appropriate for the RN pose-
graph representation.

To investigate bias more precisely, the Hotelling T* sta-
tistic is computed for each estimator and each trajectory.
The statistic is defined as

T?>=N,e"S g,

where e and S are the sample mean and covariance, and is
distributed according to

where p = 3 is the dimensionality of the state vector and F
is the F-distribution with the indicated degrees of free-
dom. Table 2 indicates the number of trajectories for each
estimator that are statistically biased at a 99% confidence
level. RN is the only estimation approach that can be con-
sidered unbiased for every trajectory at this level. kRC is
usually not biased while working in the body-centered
frame, but it is always biased when represented in an iner-
tial frame (kRCi).

Estimator Uncertainty

Having an accurate covariance estimate is important for
proper sensor fusion [8]. In addition, many higher-level
algorithms, such as path planning, rely on accurate uncer-
tainty estimates.

Figure 4 shows the typical sizes and shapes of the uncer-
tainty estimates for each approach. The covariance of the
PG approach remains on the same order as the relative
measurement uncertainty R, which is too small to be seen
in Figure 4. The covariance of the SC approach does not
grow sufficiently because the measurement model artifi-
cially introduces extra information. Additional steps can
reduce this effect [18], but the root cause—unobservabil-
ity—is avoided altogether by the RN approach. Because
kRC predominately works in an observable, local frame,
the uncertainty estimate grows at the appropriate rate [19],
but, like PG, SC, and BL, the covariance representation only
supports an elliptical confidence bound. The banana-like
confidence bound of RN properly represents the true uncer-
tainty distribution.
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FIGURE 7 The normalized estimation error squared probability den-
sity function (pdf) for each estimation approach with the ideal x3
pdf overlaid. € is calculated once per second over each trial of each
trajectory. Relative navigation appears globally consistent, while
the other approaches are overconfident. The distribution mean is
labeled, where the ideal mean is three.

The degree to which the underlying uncertainty is well-
modeled is evaluated using the normalized estimation
error squared (NEES), defined at each time step t as

e =e; Pile:.

This metric, commonly referred to as the Mahalanobis dis-
tance, weights the deviations in each state based on the
inverse of the associated uncertainty. When P is the true
covariance, NEES has the property

e~xp Elel=p,

where p = 3 is dimensionality of the state vector.

Figure 7 presents the observed probability distribution
function (pdf) of € for each approach. € was calculated
once per second over each trial of each trajectory. The ideal
x% pdfis overlaid, and the expected value is labeled. When
the observed distribution is more heavily weighted on the
left than the ideal y3 distribution, the filter is said to be
conservative, indicating that the covariance is too large.
Conversely, when the observed distribution has a longer or
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fatter tail to the right than the ideal, the filter is optimistic
[17] or overconfident. It is usually better for an estimator to
be conservative.

From Figure 7, we see that RN appears to be globally
consistent in spite of prolonged GPS-dropout and substan-
tial heading uncertainty. PG does not provide an accurate
global uncertainty estimate where the smallest epc is 320.
Only occasionally does SC provide a reasonable global
covariance estimate given these circumstances. kRC, kRCj,
and BL follow the general trend but experience an abnor-
mally high number of large NEES estimates. For example,
given the particularly erroneous inputs illustrated in
Figure 4, ep. = 279, €pg = 2.7 X 108, esc = 1275, exrc = 39.8,
€xrci = 67.9, and ern = 6.03 at time .

To explore how estimation approaches break down, it
is insightful to see how the average NEES changes over
time. In Figure 8, we see RN begins and stays approximately
equal to the ideal value of three. PG almost immediately
loses consistency. Interestingly, the consistency of BL, SC,
kRC, and kRCi all degrade at the same rate for the first
50 s. At this point, SC continues to degrade, while the others
approximately settle out. Plots similar to Figure 8 are common
in the SLAM literature, although typically only 20-50 trials
are averaged [17], [29], [30]. They similarly show that consis-
tency is lost without global information such as loop closures,
even when using an iterative EKF, unscented KF, or ideal
Jacobians evaluated at the true unknown state. RN avoids
this issue completely by working in an observable frame.

Eventual Global Update

If a global measurement such as GPS update becomes avail-
able, it is useful to incorporate that information into the
state estimate. After a prolonged period of GPS dropout,
the discrepancy between the true and estimated global
position is likely to be large due to drift in the estimates.
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FIGURE 8 The average normalized estimation error squared
(NEES) over all trials and all trajectories as a function of time. The
expected value for a consistent estimator should be three. Rela-
tive navigation begins and stays near the ideal, while the other
approaches lose consistency from the start.
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When an estimator’s uncertainty is also large, it will read-
ily accept the measurement, causing a large state jump that
could potentially produce a large spike in control effort.
This is particularly troubling when the GPS is degraded;
even when the global information is accurate, however,
directly fusing the information using a Kalman filter update is
known to degrade both the estimation and control [1], [31].
The extent to which each approach is affected by a delay-
ed global update is examined in the following extension to
the simulation.

For each trial, a global position measurement z; is gen-
erated, where z; ~N(xt;, Rz,) and R,, = diag(25, 25). Using
(2)—(4), the state update is computed as

A=K(z;— h(%).

While the measurement only includes position informa-
tion, the heading estimate is updated through the cross-
correlation covariance terms. Table 2 lists the average
magnitude of the position and heading updates. Note that
the magnitude of the average update as well as its relative
size to the average error is informative. From (3), it is clear
that if P is substantially smaller than R, the Kalman gain
approaches zero and the measurement innovation is largely
rejected, as demonstrated with PG. Conversely, when P is
substantially larger than R, the Kalman gain approaches
identity and the measurement innovation is readily
accepted, causing a large state jump as demonstrated by BL
and kRC. SC only partially accepts the global update. None
of these scenarios are conducive to robust MAV navigation
and control.

Several approaches have been presented to work around
these issues, such as simultaneously tracking a GPS-cor-
rected and odometry-only global trajectory [1], [31], or
using a series of measurement gates [32]. Other approaches
refrain from incorporating the GPS into the filter at all,
opting instead to incorporate it exclusively using a pose
graph [33].

Because RN only estimates a relative state, directly fusing
an eventual global measurement is not an option. Rather,
these measurements are incorporated using a pose-graph
map as described in [21]. This formulation completely avoids
the problem of large jumps in the filter states that are used
for control. In addition, it makes it possible to identify erro-
neous measurements and completely eliminate their effect
on the global state estimate at any time as more information
is received.

Summary of Implications

Implications of the simulation results are summarized in
Figures 9 and 10. Rather than showing data flow, these dia-
grams illustrate consequences, where implications are rep-
resented as connecting arrows. The blue boxes, comprising
prolonged GPS dropout, heading uncertainty, intermittent
and erroneous global measurements, as well as loop-closure



constraints, represent the nonideal yet realistic inputs to the
system. Green boxes highlight the deficiencies that inevita-
bly result.

The simulation results are summarized by discussing
paths through Figure 9, proceeding from top to bottom and
from left to right. During prolonged GPS dropout and in
the presence of heading uncertainty, the global position
and heading state will inevitably drift. This drift will
induce an underlying probability distribution that is
banana shaped, which is not well modeled by a Gaussian in
Cartesian coordinates. Furthermore, some approaches tend
to introduce undue information into the filter, artificially
constraining the uncertainty magnitude. Eventually, this
leads to inconsistent uncertainty estimates, causing mea-
surements to be fused suboptimally. When filters properly
acknowledge that the state is unobservable, the uncertainty
will grow without bound. A large uncertainty also causes
the system to strongly trust eventual global measurements,
whether they be degraded or not, often leading to large

state updates. Sudden jumps in state lead to degraded po-
sition control, impacting MAV reliability. Finally, many
approaches attempt to reduce drift by identifying when the
vehicle returns to a previously visited location. Incorporat-
ing loop closure constraints through nonlinear optimiza-
tion techniques also results in large state updates and
either presents nonnegligible delays, stresses the platform’s
size, weight, and power (SWaP) constraints, or assumes an
uninterrupted network connection.

A wide variety of techniques is used in practice to
address the issues presented in Figure 9, particularly for
handling large state updates. It should be noted, however,
that the root of each issue stems from working with respect
to an unobservable coordinate frame. Figure 10 illustrates
how decoupling the system into relative and global frames
allows for optimal navigation within the local frame itself,
avoiding many of these issues entirely. Because relative
measurements directly update the relative state, the state
covariance represents the underlying uncertainty well,
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FIGURE 9 A diagram summarizing the implications that prolonged GPS dropout and heading noise have when working in a global coor-
dinate frame. Arrows indicate implications, blue boxes highlight nonideal yet realistic inputs to the system, and green boxes highlight
inevitable deficiencies. Ultimately, global drift will induce an inconsistent and/or unbounded state uncertainty estimate P, which leads
to nonrobust navigation. For each approach, the relevant consequences are labeled according to the legend.
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FIGURE 10 A diagram summarizing the implications that prolonged GPS dropout and heading noise have when global and relative
frames are decoupled with relative navigation (RN). Note that, unlike the global estimation techniques described in Figure 9, the noni-
deal inputs (blue) and inevitable deficiencies (green) are specific to the global frame and do not affect the robustness of RN.

leading to optimal sensor fusion. While the nonideal inputs
and inevitable deficiencies may hamper the completion of a
global mission, they need not degrade the stability of the
system. For example, in the worst case, a large, erroneous
global update results in an incorrect relative goal.

HARDWARE RESULTS

The simulation results constitute the primary contribu-
tions of this article, showing that global keyframe filters
break down more readily than RN during prolonged GPS
dropout. To supplement these contributions, this section
presents the estimation performance of each method
when implemented on MAV hardware. This section is not
intended to thoroughly describe all MAV implementa-
tion details but, rather, to demonstrate that the perfor-
mance of full-state estimators running on actual hardware
parallels the results seen in simulation. Complete details
on the RN implementation used for these results, along
with a presentation of more extensive flight-test results,
are given in [21].

Reference [20] includes the details necessary to imple-
ment a relative state estimator for an MAV, including vehicle
dynamics and measurement models. The estimator imple-
mentations of each approach for the results in this article
are all based on the error-state, multiplicative EKF described
in [20]. The changes needed to adapt this filter to each of the
different estimation approaches were minimal, requiring
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modifications to fewer than ten lines of code for each
approach. The vehicle’s state includes position, velocity, atti-
tude parameterized with a quaternion, and gyroscope and
accelerometer biases. Inputs were body-fixed accelerometer
and gyroscope measurements at 100 Hz from a calibrated
MicroStrain 3DM-GX3-15 inertial measurement unit. A
MaxBotix MB1242 ultrasonic altimeter provided height-
above-ground measurements, while visual odometry
updates were obtained at 15 Hz using the algorithm from
[34] with an ASUS Xtion Pro Live RGB-D camera.

A user provided velocity commands to navigate the mul-
tirotor around the perimeter of the building shown in
Figure 11. The flight lasted 9 min and traversed 320 m. The
RN estimator provided the necessary onboard state esti-
mates for feedback control. Afterward, time-stamped mea-
surements were provided to each estimator, resulting in the
trajectory and covariance estimates shown in Figure 11.

As shown in Figure 11, the flight-test produced similar
results to those seen in simulation. While a single trial cannot be
used to make claims about the relative accuracy of the differ-
ent approaches, all of the approaches produced reasonably
accurate results with errors on a similar order of magnitude.
Like in the simulation results, PG produced an extremely
overconfident uncertainty bound, while SC produced a some-
what better, but still overconfident, uncertainty estimate. The
RN approach produced a banana-shaped uncertainty bound
that includes the true pose of the vehicle.
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FIGURE 11 The estimation results from a multirotor flight; 90% con-
fidence bounds are drawn. A body-fixed relative navigation (bRN)
approach was also included. While kRCi had the lowest error, the
overall accuracy of an approach should only be evaluated after
many trials, as done in Figure 5. However, the confidence bounds
are typical; only relative navigation (RN) and bRN include the true
state. A baseline estimator quickly degraded due to significant
inertial measurement unit noise and was excluded from the figure.
(Background image courtesy of the U.S. Geological Survey.)

Because conventional multirotor dynamics assume an in-
ertial reference frame, the RC displacement vector x* in Fig-
ure 2(c) cannot be propagated directly. Instead, following
[35] kRC was implemented using vehicle dynamics ex-
pressed with respect to the body, also described in [20]. Be-
cause these position dynamics do not depend on the current
attitude, the EKF has no mechanism to properly increase
position uncertainty due to heading uncertainty. As a result,
the kRC confidence bound remained small.

To provide a more direct comparison to the body-fixed
implementation of kRC, RN was additionally implemented
using the body-fixed dynamics (bRN) presented in [20]. In
contrast to kRC, the coupling between position and head-
ing uncertainty at the keyframe level is negligible. As a
result, when the global state and uncertainty are recon-
structed using a sequence of many relative states, as
described in “The Banana Distribution,” a reasonable
banana-shaped confidence bound results. A more thor-
ough investigation into the consistency of bRN remains as
future work.

CONCLUSIONS

Global drift is inevitable when MAVs fly in GPS-denied
environments because the global position and heading
states are unobservable when only relative measurements
are available. While most navigation frameworks estimate
the global state directly despite this unobservability, RN
maintains local observability by estimating the vehicle
states with respect to a local frame. As demonstrated in this
article, estimating and controlling with respect to a local
frame produces more consistent global position estimates
and avoids many of the consistency and stability issues

common to existing global approaches. RN also provides a
framework for robustly incorporating intermittent global
information. Moving from a global to a relative estimation
approach is a fairly small adjustment conceptually and in
terms of implementation, but it yields significant advan-
tages that can benefit systems that currently use a global
estimation approach.
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