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s relevant technologies become smaller and less 
expensive, micro air vehicles (MAVs) are transi-
tioning from predominantly military and hobby-
ist applications to mainstream use. Exciting new 
applications include the delivery of medical 

supplies to remote areas, infrastructure inspection, environ-
mental change detection, precision agriculture, survelliance 
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t a s k s s u c h a s fi r e o r t r affi c m o nit o ri n g, a n d t h e fil m a n d 

e nt e rt ai n m e nt  i n d u st r y.  H o w e v e r,  b ef or e  M A Vs  b e c o m e  

f ull y i nt e g r at e d i nt o s o ci et y a n d t h e ai r s p a c e, hi g h e r l e v el s 

of s af et y a n d r eli a bilit y m u st b e a s s u r e d.

O n e of t h e f a ct or s t h at m o st li mit s M A V r o b u st n e s s i s t h e 

h e a v y r eli a n c e o n c o n si st e nt a n d a c c u r at e m e a s u r e m e nt s 

fr o m s at ellit e n a vi g ati o n s y st e m s s u c h a s t h e Gl o b al P o siti o n-

i n g S y st e m ( G P S). T h e s e m e a s u r e m e nt s p r o vi d e r e g ul a r 

u p d at e s of gl o b al p o siti o n, h e a di n g, a n d v el o cit y, dir e ctl y 

i nfl u e n ci n g st at e e sti m ati o n a n d c o ntr ol. H o w e v er, G P S s ol u-

ti o n s  ar e  s u s c e pti bl e  t o  d e gr a d ati o n  a n d  dr o p o ut,  a s  ill u s-

tr at e d c o n c e pt u all y i n Fi g ur e 1. T h e w e a k si g n al c a n b e e a sil y 

bl o c k e d b y b uil di n g s a n d f oli a g e, j a m m e d, or s p o of e d. F ur -

t h er m or e, t h e m e a s ur e m e nt q u alit y c a n d e gr a d e d u e t o m ul-

ti p at h si g n al s, at m o s p h eri c d el a y s, or t h e n u m b er a n d p o siti o n 

of vi si bl e s at ellit e s. T h e s e i s s u e s a r e p a rti c ul a rl y p r e v al e nt 

w h e n fl yi n g n e ar t h e gr o u n d, w h er e s af et y a n d r eli a bilit y ar e 

e s p e ci all y i m p ort a nt.

T o ci r c u m v e nt t h e s e diffi c ulti e s, m a n y G P S- d e ni e d n a v -

i g ati o n s ol uti o n s h a v e b e e n d e v el o p e d t h at utili z e r el ati v e 

m e a s u r e m e nt s f r o m al g orit h m s s u c h a s vi s u al o d o m et r y or 

l a s e r s c a n m at c hi n g [ 1] –[ 4]. E v e n wit h t h e s e m e a s u r e m e nt s, 

w h e n G P S m e a s u r e m e nt s a r e u n a v ail a bl e, t h e gl o b al p o si -

ti o n a n d h e a di n g st at e s a r e n ot o b s e r v a bl e [ 5], [ 6], a s s h o w n 

i n t h e o b s e r v a bilit y a n al y si s i n [ 7]. T hi s m e a n s t h at t h e r e i s 

n o g u a r a nt e e t h at t h e s e st at e s c a n b e a c c u r at el y r e c o n -

st r u ct e d f r o m t h e a v ail a bl e i n p ut s a n d m e a s u r e m e nt s. S p e -

cifi c all y, n o n o b s e r v a bilit y i n d u c e s t h r e e m ai n diffi c ulti e s.

1)  G l o b al drift: I nt e g r ati n g n oi s y i n p ut s wit h o ut c or r e c-

ti o n will c a u s e t h e gl o b al st at e t o d rift a r bit r a ril y f a r 

f r o m t r ut h.

2)  E sti m at o r i n c o n si st e n c y : A n i n c o n si st e nt e sti m at o r i s 

o n e w h e r e eit h e r t h e e sti m at e s a r e bi a s e d or t h e c o v a -

ri a n c e e sti m at e d o e s n ot w ell r e pr e s e nt t h e u n d e rl y -

i n g u n c e rt ai nt y di st ri b uti o n.

3)  P ote nti al i nst a bilit y : F e e d b a c k c o nt r ol t y pi c all y a s s u m e s 

s o m e l e v el of st at e o b s er v a bilit y. T h er e i s n o g u a r a nt e e 

t h at d ri vi n g a n u n o b s e r v a bl e e sti m at e d st at e t o a 

d e si r e d st at e will a ct u all y st a bili z e t h e s y st e m.

C u r r e nt filt e r- b a s e d a p pr o a c h e s t o G P S- d e ni e d n a vi g a -

ti o n di r e ctl y e sti m at e t h e gl o b al st at e of t h e v e hi cl e. I n t hi s 

a rti cl e, w e d e m o n st r at e f o r s u c h s y st e m s t h at, b e c a u s e of 

u n o b s e r v a bilit y, e sti m ati o n a n d c o nt r ol p e rf o r m a n c e c a n 

d e g r a d e si g nifi c a ntl y d u ri n g p e ri o d s of p r ol o n g e d G P S 

d r o p o ut a n d h e a di n g u n c e rt ai nt y. W e pr e s e nt a s a n alt e r -

n ati v e t h e r el ati v e n a vi g ati o n ( R N) f r a m e w o r k, w hi c h 

m ai nt ai n s f ull- st at e o b s e r v a bilit y i n s pit e of G P S d r o p o ut 

b y e sti m ati n g wit h r e s p e ct t o a l o c al r ef e r e n c e f r a m e. W hil e 

R N ( a s w ell a s G P S- d e ni e d n a vi g ati o n a p pr o a c h e s) i s s u b -

j e ct t o gl o b al d rift, it m ai nt ai n s a m or e a c c u r at e e sti m at e of 

gl o b al u n c e rt ai nt y a n d pr o vi d e s b ett e r i n p ut s t o t e c h ni q u e s 

s u c h a s m a p o pti mi z ati o n u si n g l o o p cl o s u r e s t h at h el p t o 

f iG u r e 1  G P S s ol uti o n s ar e p arti c ul arl y pr o n e t o d e gr a d ati o n or 
dr o p o ut w h e n fl yi n g n e ar t h e gr o u n d.
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reduce this drift. RN facilitates consistent state estimation 
and stable control, thereby improving the overall safety 
and reliability of MAVs.

This article promotes a paradigm shift within the GPS-
denied navigation literature. Many researchers are accus-
tomed to working with respect to a global reference frame 
and, as a result, concede that state observability is inevita-
bly lost in the absence of global updates [5]. As discussed in 
“Summary,” this article highlights the issues associated 
with such a concession and provides a viable alternative. In 
particular, we show that unobservability leads to a loss of 
estimator consistency. Inconsistency implies a loss of esti-
mator optimality [8]. By subtly restructuring the problem, 
RN avoids this and other pitfalls that are prevalent in GPS-
denied navigation systems. In terms of implementation, 
the modifications that need to be made to an existing 

keyframe-based global filter implementation to convert it 
to RN are relatively minor and straightforward.

We begin the article with a tutorial overview of the cur-
rent state-of-the-art, keyframe-based approaches for GPS-
denied MAV navigation. We first summarize the most 
common global estimation approaches in a side-by-side 
comparison, highlighting the differences in how they incor-
porate the relative odometry measurements. We then intro-
duce the RN framework, explaining how it incorporates 
relative measurements to produce local state estimates and 
how it uses these local estimates to produce an estimate of 
the global pose of the MAV. With these preliminaries estab-
lished, we then present the main contribution of this article, 
which is a rigorous analysis and comparison of the perfor-
mance of each estimation approach in simulation. We show 
that the RN framework provides advantages in terms of 
accuracy, consistency, and its ability handle global updates 
after a prolonged GPS outage. To demonstrate that the find-
ings in the simulation apply to real-world environments, we 
also present limited multirotor flight-test results for each of 
the approaches. We then conclude with some final discus-
sion. It should be noted that the purpose of this article is to 
compare the performance of different theoretical estimation 
frameworks, rather than to present the specific details of a 
new estimator. While a background in Kalman filtering and 
statistical analysis will be useful to the reader, relevant con-
cepts are reviewed as needed.

State-of-the-Art MAV Navigation
The majority of autonomous MAVs currently in operation 
use GPS with an inertial navigation system (GPS/INS) for 
state estimation and control. High-rate, body-fixed acceler-
ometers and gyroscope measurements are integrated to 
estimate change in position and attitude. When properly 
calibrated, these measurements are remarkably accurate 
over small time steps and commonly used as inputs to the 
estimator’s dynamics. Integrating noise, however, ulti-
mately causes these estimates to drift. GPS measurements 
constrain this drift but are available at a slower rate. Com-
monly, a probabilistic filter [such as an extended Kalman 
filter (EKF)] fuses measurements from these two sensors 
using a model of the vehicle dynamics. When GPS measure-
ments are available and reliable, GPS/INS solutions work 
well for global missions requiring position hold or way-
point following. GPS/INS systems have been thoroughly 
researched and are widely used.

Summary

S tate estimation for micro air vehicles (MAVs) often de-

pends heavily on reliable global measurements such as 

the Global Positioning System (GPS). When global mea-

surements are unavailable, additional sensors, such as 

cameras or laser scanners, are commonly used to provide 

measurements of the MAV’s translation and rotation rela-

tive to a previously observed keyframe image or scan. With 

the use of only relative sensors, however, the global posi-

tion and heading of the vehicle are unobservable and can-

not be reliably reconstructed. Many existing approaches 

work with respect to a global reference frame, resulting in a 

loss of state observability. This article highlights that unob-

servability leads to inconsistency and a loss of optimality, 

which reduces estimation accuracy and robustness of the 

navigation solution. Relative navigation is presented as an 

alternative approach that maintains observability by always 

working with respect to a local coordinate frame. While still 

subject to global drift, relative navigation is shown through 

rigorous simulation and hardware validation to produce 

accurate and consistent state estimates when other ap-

proaches break down. By subtly restructuring the state 

estimation problem to a relative framework, many of the pit-

falls prevalent in GPS-denied MAV navigation systems are 

inherently mitigated.

We present as an alternative the relative navigation framework,  

which maintains full-state observability in spite of GPS dropout by  

estimating with respect to a local reference frame.
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When no GPS solution is available, MAV navigation ap-
proaches typically utilize odometry computed from extero-
ceptive sensors such as cameras or laser scanners. Many 
such odometry algorithms exist for a variety of sensors and 
include methods such as visual odometry [9], [10] and laser 
scan matching [4], [11].

Odometry can be computed either between consecutive 
frames (images or scans) or between the current frame and 
a keyframe. When a keyframe is used, a series of odometry 
measurements is computed with respect to this common, 
fixed reference frame. Typically, the keyframe is updated 
only when there is insufficient overlap to provide a reliable 
odometry measurement. As a result, keyframe-based 
odometry reduces temporal drift in the computed odome-
try as compared to frame-to-frame matching [1], [3]. We fo-
cus on global keyframe filters, which build upon GPS/
INS solutions but incorporate the relative pose measure-
ments provided by these keyframe-based odometry ap-
proaches. Many of the concepts in this article find parallels 
in the simultaneous localization and mapping (SLAM) lit-
erature. “Connection to Simultaneous Localization and 
Mapping” briefly summarizes the development of SLAM, 
including the recent emphasis on improving consistency 
through relative formulations and efforts to reduce com-
putational complexity.

In the next section, we briefly review the EKF algorithm 
in a general sense and establish the notation that is used 
throughout this article. We then describe the three global 
keyframe filters to be analyzed. While the formulation 
presented in this article is for a discrete-time system, the 
principles apply to continuous or continuous-discrete for-
mulations as well.

Extended Kalman Filter
The EKF applies to systems with nonlinear dynamics and/
or nonlinear measurement models. It recursively estimates 
the system state xtt  as a function of the state estimate at the 
previous time step ,xt 1-t  inputs ,ut  and measurements .zt  It 
also maintains an estimate of its uncertainty, represented 
by the covariance matrix .Pt

Consider the discrete-time system

, ,x f x ut t t t t1 y p= + +-^ h

where ~ ,0 QNt uy ^ h and ~ ,0 QNt xp ^ h are zero-mean Gauss-
ian random variables. In the prediction step, the filter propa-
gates the state estimates forward as

	 , .x f x ut t t t t1 1 1=- - -t t^ h � (1)

The covariance is propagated according to the linear 
approximation

,P F P F G Q G Qt t t t t t t t1 1 1 u x= + +< <
- - -

where Ft  and Gt  are the Jacobians of the system dynamics 
with respect to the state and input, respectively.

The update step is performed after the prediction step 
when a new measurement z  is available. In practice, sev-
eral prediction steps may be performed between updates. 
A measurement is modeled as

	 ,z h xt t tg= +^ h � (2)

where ~ ( ),0 RNtg  is zero-mean Gaussian noise. The Kalman 
gain is computed as

	 ,K P H H P H Rt t t t t t t t1 1
1

= +<<
- -

-^ h � (3)

where Htk  is the Jacobian of the measurement model with 
respect to the state. The state and covariance are updated as

	
,

,
x x K z h x

P I K H P I K H K RK
t t t t t t t t

t t t t t t t t t t

1 1

1

= + -

= - - +< <

- -

-

t

^

^

^

^

h

hh

h
�

(4)

using Joseph’s form to avoid numerical instability [8].
Several of the estimation approaches examined in this 

article also utilize a third step that we refer to as marginal-
ization. When the odometry algorithm declares a new key-
frame, portions of the state vector are reset. We express this 
operation as ( ).x m x=+t t  The covariance is also updated 
according to the linear approximation ,P MPM= <+  where 

/M m x2 2=  is the Jacobian of the marginalization opera-
tion with respect to the state.

Global Estimation Approaches
The three types of global keyframe filters that we examine 
in this article are pseudoglobal (PG), stochastic cloning 
(SC), and robocentric (RC). These methods all utilize the 
EKF paradigm but differ in the way they use the relative 
odometry measurements to update the global state 
estimate. In the following sections, we describe the inter-
nal states, propagation and measurement models, and 
marginalization steps used by each filter. This information 
is also presented graphically in Figure 2. The acronyms 
used throughout the article to refer to each approach are 
summarized in Table 1.

To simplify the presentation, it is assumed that the vehi-
cle’s dynamics with respect to some arbitrary, inertial refer-
ence frame can be described by the function ,fx  which is a 
specific instantiation of (1). The Jacobians of these dynamics 
with respect to the state and input noise are notated as Fx  
and Gx , respectively.

An operation that we use with some frequency is com-
pounding the poses represented by two states. Using nota-
tion similar to [12], we denote this operation using the +  
operator as

	 x x xa b5= � (5)
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for frames a  and .b  We also commonly take the Jacobian of 
this operation for two poses xat  and .xbt  For compactness, 
we define the Jacobians

,

.

J
x

x x

J
x

x x

,
,

,
,

a

a b

b

a b

1

2

x x
x x

x x
x x

a b
a b

a b
a b

5

5

2
2

2

2

=

=

5

5

t t
t t

t t
t t

^

^

h

h

We also commonly reverse the direction of the first pose in 
the compounding operation. This reversal is denoted by 
the 6  operator, so that in the expression

	 ,x x xa b6 5= � (6)

the reversal of xa  is compounded with .xb  The Jacobian of 
the reversal operation for some pose xt  is defined as

Connection to Simultaneous Localization and Mapping

When a vehicle enters an unknown, global positioning sys-

tem (GPS)-denied environment, it must estimate both its 

state and the locally observed environment. The simultane-

ous localization and mapping (SLAM) problem solves for the 

most probable vehicle trajectory and landmark locations, given 

a time history of inputs and relative measurements to the lo-

cal environment [S1], [S2]. Often, simplifying assumptions are 

made to reduce the computational burden on resource-con-

strained platforms. While full-SLAM solves for the most likely 

vehicle trajectory, online-SLAM, such as extended Kalman fil-

ter (EKF)-SLAM [S3], solves only for the current state of the 

vehicle and nearby features or landmarks [S4]. Keyframe fil-

ters further simplify the estimation problem by tracking a single 

keyframe rather than many individual landmarks.

Micro air vehicle (MAV) state estimators are generally lim-

ited to solving some simplified form of the SLAM problem due 

to size, weight, and power limitations specific to each platform. 

Some MAV navigation solutions are derived from the EKF-

SLAM framework [35], [S5], while others avoid filtering tech-

niques altogether, electing to solve for the MAV’s pose using 

nonlinear optimization techniques such as factor graphs [S6]. 

Yet many others choose to use keyframe-based approaches 

for their reduced computational complexity [1], [3], [4], [16], 

[22]. Each approach works toward solving similar problems but 

with different assumptions and different formulations.

Another prominent research emphasis for SLAM is main-

taining consistency. While traditional SLAM approaches es-

timate the vehicle and landmark locations with respect to a 

global coordinate frame, it has been shown that such param-

eterizations lose consistency as heading uncertainty increases 

[17]. As such, an increasing number of relative SLAM imple-

mentations are being published. Robocentric approaches esti-

mate the pose of landmarks and the global origin with respect 

to the vehicle’s current position and attitude [19]. Relative 

submaps estimate the state of the vehicle and landmarks with 

respect to a local inertial coordinate frame [24], [25]. These 

submaps are subsequently fused and form a more consistent 

global estimate.

In summary, keyframe-based filters are common for MAV 

state estimation because of the reduced computational bur-

den, while relative formulations are common within the SLAM 

literature to improve consistency. This article presents a rela-

tive keyframe filter, which we call relative navigation (RN), as 

the logical method to improve the consistency of global key-

frame approaches. The purpose of this article is not to com-

pare the performance of keyframe-based MAV navigation ap-

proaches to other SLAM techniques but, rather, to rigorously 

compare RN to state-of-the-art global keyframe filters. These 

ideas are illustrated in Figure S1.
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Figure S1  A relative keyframe filter, such as relative naviga-
tion (RN), builds upon ideas presented in the simultaneous 
localization and mapping (SLAM) literature to ensure reduced 
computational complexity and improved consistency. This arti-
cle compares the RN framework to popular global key-
frame filters.
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As an example, for the two-dimensional planar case where 
a pose is represented by the three-vector ,x yxi
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these operations and Jacobians are
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Pseudoglobal
The PG approach, illustrated in Figure 2(a), is perhaps the 
simplest and most intuitive of the methods, but it is techni-
cally incorrect and has significant theoretical shortcom-
ings. While it produces surprisingly accurate estimates, the 

approach becomes grossly overconfident because it ignores 
important cross-correlation terms. We include it here because 
several prominent research groups have used this approach 
for MAV navigation [4], [13].

In one embodiment of this approach, the vision sensor is 
fed into a monocular-SLAM framework, whose output is 
treated as a black-box global pose update fused directly in 
the filter [13], [14]. In other implementations [4], [15], the 
relative measurement is applied by appending it to a saved 
estimate of the keyframe’s global position xt  and then treat-
ing it as a global measurement. In this case, the estimated 
state is simply the global state of the vehicle

, ,x x P PPG
g

PG
g= =t t

and the propagation equations are the vehicle dynamics

, , , , .f x u f x u F F G GPG PG
g

PG PGx x x x xg g= = =t t t t^ ^h h

The PG measurement is obtained by compounding the saved 
estimate of the keyframe state with the relative measure-
ment obtained from the odometry as

	 .z x zPG
k 5= t � (7)

BL Baseline (propagation only, no vision update)

PG Pseudoglobal 

SC Stochastic cloning 

kRC Keyframe robocentric 

kRCi Keyframe robocentric (inertial error) 

RN Relative navigation 

bRN Relative navigation (body-fixed dynamics) 

Table 1 T he estimation framework legend.
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Figure 2  A comparison of estimator architectures. Pseudoglobal (PG) compounds the keyframe state and measurement to apply a 
global-like update. Stochastic cloning (SC) estimates both the global and keyframe states and applies the update as the relative 
difference. Keyframe robocentric (kRC) reverses the state direction and uses a delta state for applying the prediction and update steps. 
Relative navigation (RN) estimates only the relative state. The coordinate frames labeled g, k, and b correspond to the global, keyframe, 
and body frame of the robot, respectively. (a) PG, (b) SC, (c) kRC, and (d) RN.



36  IEEE CONTROL SYSTEMS MAGAZINE »  AUGUST 2018

An estimate of the measurement covariance is also needed. 
The most naive approach is to simply use the covariance for 
the relative odometry measurement. However, this method 
ignores uncertainty in the saved keyframe state xkt  used to 
construct the measurement. A slightly better approach is to 
use the covariance of (7), which is

.R J P J J R J, , , ,1 1 2 2PG
k

x z x z x z x zk k k k= +5 5 5 5
< <

t t t t^ ^ ^ ^h h h h

When the measurement is constructed in this fashion, the 
predicted measurement is then simply the global state of 
the vehicle ( )h x xPG PG

g=t t  and .H IPG =

While the modified measurement covariance described 
above incorporates uncertainty in the saved estimate of the 
keyframe state, it ignores cross-correlation terms between 
the keyframe state and the current global pose. In addition, 
treating a relative measurement as a direct update to the 
global state in this fashion causes the estimator to become 
grossly overconfident, as will be demonstrated in the “Sim-
ulation Results” section  of this article.

Stochastic Cloning
The SC approach [16] improves on the PG approach by 
accounting for the uncertainty in the global pose of the 
keyframe as well as the cross-correlations with the vehicle’s 
global pose. In this approach, illustrated by Figure 2(b), the 
state and covariance are augmented with the global pose of 
the keyframe xk  as

, ,x x
x
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g k
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t
; ;E E

where Pg  is the uncertainty in the global state, Pk  is the 
uncertainty in the keyframe state, and Pg,k  is the cross-
correlation. During the prediction step, the keyframe 
state is not expected to change since there is no new 
information about it. The propagation equations there-
fore become
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The predicted measurement is obtained by compounding 
the inverse keyframe state with the global vehicle state to 

estimate the relative measurement from the keyframe to the 
body. The measurement model is then

.

,
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Each time the odometry algorithm declares a new key-
frame, the estimator’s keyframe state must be updated. The 
old keyframe state is marginalized out, and the new key-
frame state is initialized as the current estimate of the vehi-
cle’s global state

, .
0
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g SC SC= =t
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t
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The SC approach is much more theoretically sound than 
the PG approach. However, as will be demonstrated in the 
“Simulation Results” section  of this article, it still suffers 
from estimator inconsistency. One reason for this is that the 
linearization about unobservable, drifted global states in 
the measurement update artificially introduces extra infor-
mation to the filter [17]. While some methods for addressing 
this shortcoming have been proposed [18], we demonstrate 
that the fundamental, underlying issue of unobservability 
can be avoided entirely with the RN approach.

Keyframe Robocentric
RC mapping [19] is a more recent approach that addresses 
many of the consistency issues observed in EKF-SLAM 
approaches that express the vehicle and feature locations 
with respect to a fixed frame. RC mapping improves con-
sistency by expressing feature locations with respect to a 
body-fixed—or RC—frame, thus reducing the linearization 
errors that lead to inconsistency.

To our knowledge, RC mapping has, to date, been 
applied exclusively to the EKF-SLAM problem, where the 
locations of many features are tracked as states in the filter. 
To facilitate comparisons with the other approaches, we 
adapt it to a keyframe-based approach by treating the key-
frame as the only feature being tracked in the filter. We 
refer to this adaptation as keyframe-RC (kRC) to differenti-
ate from the existing literature.

The state vector for the kRC filter, illustrated in Fig
ure 2(c), consists of the location of the global origin expressed 
in the body-fixed frame ,xglt  the location of the keyframe 

We show that the RN framework provides advantages in terms  

of accuracy, consistency, and its ability handle global updates  

after a prolonged GPS outage.
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expressed in the body-fixed frame ,xklt  and the displace-
ment state xTt
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The displacement state represents how the vehicle has 
moved since the last relative measurement. It is computed by 
aggregating the changes produced by the prediction equa-
tions. Only xTt  is updated during the prediction step, so that
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The measurement model consists of the inverse of the 
keyframe state composed with the current displace-
ment state
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After the update has been applied, the displacement state is 
compounded onto the global and keyframe states and then 
reset to zero. This is accomplished with a state marginal-
ization of the form
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The purpose of this delayed composition is to ensure that 
the Jacobians associated with the composition, ,MkRC,z  are 
evaluated only after correction by a measurement update 
to reduce linearization errors.

Another state augmentation and marginalization also 
must be performed when a new keyframe is declared. Because 
the location of the keyframe is expressed in the body frame 
and the body frame was exactly at the location of the keyframe 
at the time it was declared, this procedure consists of setting 
the keyframe state to zero with no uncertainty
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As a postprocessing operation, it is also common to 
transform the kRC global state into an inertial frame, de
noted kRCi, for purposes such as plotting and path plan-
ning. This is accomplished as

.
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Note that PkRCi  is simply a rotation of .PkRC

Relative Navigation
The RN approach addresses the unobservability of the 
global state by not estimating it in the filter. Instead, only 
the relative state of the vehicle with respect to the last key-
frame is estimated, as illustrated in Figure 2(d). The result 
is that the odometry provides a direct measurement of the 
state, making the state observable by construction. The 
global state can be subsequently reconstructed in a back-
end map by composing the series of relative pose esti-
mates produced by the filter together. This effectively 
removes the uncertainty in the global pose from the filter 
and hands it off to the back end, and, as a result, the uncer-
tainty of the relative state in the filter remains bounded 
and consistent. In addition, the pose-graph representation 
of the global state in the back end creates a more accurate 
representation of the global uncertainty than can be 
obtained when representing the global state directly (see 
“The Banana Distribution”).

Another key advantage of the RN approach is the loose 
coupling between the relative front end and the global 
back end, illustrated by the architecture shown in Figure 3. 
The intuition for this can be developed by imagining a 
human driver navigating through a city with respect to his 
local environment—traffic lanes and other vehicles—while 
opportunistically incorporating local guidance such as 
“take the next right turn” from a navigator in the passenger 
seat. Similarly, with the RN approach, a vehicle is able to 
maintain stable flight and avoid collisions indefinitely, 
even when no global information is available, by using the 
front-end relative state estimates for local guidance and 
control. When back-end estimates of the global state change 
dramatically due to new information, this merely results in 
a new relative goal being passed to the front end, avoiding 
the large spikes in control effort seen by systems that con-
trol using the global state directly. The system is similarly 
insulated from delayed or degraded global information.

It is important to note that the general framework in 
Figure 3 is agnostic to a particular platform, sensor suite, 

The three types of global keyframe filters that we examine in this  

article are pseudoglobal, stochastic cloning, and robocentric.
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or class of estimation filter. As such, the RN approach can 
be readily applied to existing systems. The following sec-
tions give high-level descriptions of the relative front end 
and global back end. For further details on the RN approach 
and its implementation, see [20]–[22].

Relative Front End
The central component of the front end is a filter that esti-
mates the local state of the vehicle. The filter state is the 
relative pose of the vehicle with respect to the last key-
frame, as illustrated in Figure 2(d)

, .x P PxRN
r

RN
r= =t t

During the prediction step, the relative state evolves accord-
ing to the vehicle dynamics

, , , , .f x u f x u F F G GRN RN
r

RN RNx x x x xr r= = =t t t t^ ^h h

The measurement model is simply the current relative state

.h x xRN RN
r=t t^ h

The Banana Distribution

The “banana distribution,” first described in [S7], is the sickle-

shaped distribution of position uncertainty that arises due 

to heading uncertainty in robot localization problems. Intuition 

about why the banana distribution occurs can be developed by 

considering the arc-like distribution that arises for a robot that 

travels in a straight line for a known distance but with an uncer-

tain initial heading or growing heading uncertainty.

A similar distribution arises in the pose-graph representa-

tion of the relative navigation (RN) approach, where several 

short transforms are concatenated as in the example in Fig-

ure S2. Because the length of each transform is small and the 

heading uncertainty is low, the uncertainties on the transforms 

are well approximated by Gaussian normal distributions. How-

ever, when several transforms are concatenated, the resulting 

global uncertainty becomes distinctly banana shaped. This is 

illustrated in the distribution shown in Figure S2, created by 

sampling from the individual transform uncertainties in a Monte 

Carlo fashion.

The most common parameterization of uncertainty, inherent 

to the Kalman filter and its variants, is a Gaussian normal distri-

bution. For filters that estimate the global state directly, the co-

variance is computed directly in a Cartesian coordinate system. 

However, this parameterization, illustrated with red ellipses in 

Figure S2, results in a poor fit for the true underlying distribution.

The distribution captured by the pose-graph representation 

can be better parameterized using a Gaussian normal distribu-

tion in exponential coordinates [S8]. While methods exist for 

approximating the final distribution directly from the covariance 

matrices of the concatenated transforms [23], we discuss com-

puting an approximate distribution from the sample covariance 

Figure S2  The banana-shaped distribution arising from the 
concatenation of small, uncertain transforms. The black line 
shows the nominal path created by concatenating several 
small transforms with Gaussian uncertainties shown by the 
purple ellipses. The gray lines and dots show a Monte Carlo 
sampling from the transform distributions. The level contours 
of a Gaussian distribution are shown parameterized with Car-
tesian coordinates in red and parameterized with exponential 
coordinates in blue.
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Figure 3  The vehicle-mounted sensors feed a probabilistic filter 
estimating the vehicle’s state relative to its local environment. 
Here “view-based odometry” refers to algorithms such as visual 
odometry and laser scan matching. Local path planning and con-
trol stabilize the vehicle in this local frame. Meanwhile, on a dis-
tinct thread, a time history of local information can be fused with 
any available global information to form a global map. The back 
end only influences the flight-critical front end in the form of global 
goals represented in the current relative coordinate frame.
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The Jacobian of this measurement model is constant, elimi-
nating linearization errors during the update step

.H IRN =

When a new keyframe is declared, the filter first passes its 
current relative pose estimate and estimated covariance to 
the back end and then resets its relative state. Because we 
know that the vehicle was, by definition, at the location at 
which the keyframe is declared, the relative state can be 
reset identically to zero with zero uncertainty as

, .0 0m x MRN RN RN= =^ h

Therefore, at each new keyframe, the filter starts with zero 
pose uncertainty, helping to maintain filter consistency 
[23]. This concept parallels ideas found in the relative SLAM 
literature [24], [25].

In addition to the estimator, the front end is also respon-
sible for the real-time control of the vehicle. All path plan-
ning and control are carried out in the current local frame 
of the estimator, using goals represented in that coordi-
nate system that come from the back-end global planner. 

This separation of path planning and control from the 
global states insulates the system from the large shifts 
in global state that can occur when loop closure or 
GPS measurements are obtained and avoids spikes in 
control effort.

Global Back End
Each time the front-end estimator resets its state at a new 
keyframe, it first passes its current estimate of that state and 
the associated covariance to the back end. These relative 
pose estimates and covariances from the front-end filter 
comprise the edges of a pose-graph map. By compounding 
these edges, the global pose of the vehicle can be computed 
at any time [26].

Each edge in the graph has a Gaussian uncertainty asso-
ciated with it, parameterized by the covariance matrix. 
Compounding these Gaussian uncertainties results in a 
banana-shaped distribution for the uncertainty in the vehi-
cle’s global pose. “The Banana Distribution” explains that 
representing the vehicle’s global pose as a series of small 
transforms with Gaussian uncertainty results in a better 
representation of the global uncertainty than can be obtain
ed by directly representing the global pose.

of the Monte Carlo points used in [S8] and as the baseline 

method in [23]. To accomplish this, we need to lay some theo-

retical groundwork.

Rigid body rotations are represented by members of the 

special orthogonal group

, detSO 2 1C CC I CR2 2_ ! = =# <^ h " ,

for planar motion, or similarly SO 3^ h for six-degree-of-freedom 

(6DOF) motion. The special Euclidean group

,SE SO2
1

20T
C r

C rR R3 3 2#_ ! != #^ ^h h; E) " , 3

[or SE 3^ h for 6DOF] represents transformations parameter-

ized by a translation r  and rotation .C  The pose compound-

ing operations of (5) and (6) are equivalent to representing the 

poses as transforms in SE 2^ h and multiplying them (or their 

inverses) as appropriate.

SE 2^ h is an example of a Lie group, and associated with that 

group is the Lie algebra .se 2^ h  The Lie algebra is the tangent 

space to the Lie group around the identity element and, unlike 

the group, is a vector space. Members of the Lie algebra can be 

mapped to elements of the group via the exponential mapping, 

while the matrix logarithm provides the inverse mapping.

Expressing a difference in pose in exponential coordinates 

is equivalent to mapping the error transform into the Lie alge-

bra. For each Monte Carlo point x i  in Figure S2, we express 

the distance from the true pose x  in exponential coordinates as

,log x xi i6 5pd = ^ h

where for SE 2^ h
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Level curves of the resulting distribution are shown by the blue 

lines in Figure S2 and are a much better fit for the distribution 

represented by the pose graph. This is numerically verified us-

ing a log-likelihood ratio test in [S8]. Unlike the native pose-graph 

representation, however, the distribution is parameterized en-

tirely by the mean and covariance, and so additional statistics 

can easily be computed. This idea is used throughout the ar-

ticle to define the global uncertainty estimate, determine bias, 

and compute normalized estimation error squared estimates 

for the RN approach.
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The pose-graph map can also be used to incorporate 
additional information as it becomes available, such as loop 
closures or intermittent GPS measurements. These mea-
surements are represented as additional edges in the 
pose graph, which overconstrains the graph. Optimization 
methods then adjust the edges in the graph to reduce drift 
[27], [28]. Global mission planning is carried out using this 
optimized map.

In this article, these additional sources of global infor-
mation will not be incorporated to facilitate comparison 
with the other estimation approaches. The global results 
for RN presented here are produced using a limited back 
end that simply compounds the relative poses and uncer-
tainties provided by the front-end estimator.

Simulation
A comparison of each of the estimation approaches (PG, 
SC, kRC, and RN) was performed in simulation. Since each 
of these approaches has previously been demonstrated to 
work on real MAV platforms, the purpose of the simula-
tion is to compare the theoretical performance of the 
approaches rather than to evaluate the suitability of any 
one approach for MAV navigation in isolation. To accom-
plish this comparison, a simple simulation environment 
was chosen so as not to obscure the underlying trends. 
Specifically, simple dynamics and measurement models 
were used, and process and measurement noise were 
drawn from known normal distributions. The authors 
postulate that if an approach breaks down theoretically in 
an idealized simulation environment, it will perform no 
better under the complications that arise on an actual MAV 
platform. The extension to MAV hardware is explored later 
in the article.

The simulated vehicle is an idealized ground robot fol-
lowing the standard unicycle model. The state of the vehi-
cle is position and heading

.
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A random reference trajectory of duration t f  is defined by 
generating forward velocities and angular rates at a rate of 
fu  and applying them to the dynamics
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Identical noisy inputs u  are provided to each estimator to 
simulate wheel odometry, where
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Only input noise is added to the dynamic propagation in 
the simulation, that is .0Qx =

Keyframes are established at a rate of fk  as the vehicle 
moves through the environment. Relative measurements 
are then simulated at a rate of fz  by differencing the 
keyframe’s true pose from the vehicle’s current true pose 
and then applying Gaussian white noise with covariance 

( , , ).diagR x y
2 2 2v v v= z

The estimators use the true values of , ,Q Qu x  and .R  
While the performance of any one estimator could be tuned 
by artificially inflating these noise terms, this analysis 
compares the theoretical performance using the true 
values. In all, N1  trajectories were generated, and for each 
trajectory N2  realizations of u  and z  were simulated and 
provided to each of the estimators; these realizations are 
subsequently referred to as trials. The values used for this 
simulation are , , , ,N N t f32 1000 600 100s Hzf1 2 u= = = =  

, , / , . / ,f f V1 10 1 0 3Hz Hz m s m sk Vnominalz h h= = = = =~  
. / , . , . , . ,0 5 0 3 0 35 0 03rad s m/s rad/s mV x yv v v v= = = =~  

and . .0 052 radv =z

A baseline (BL) estimator is also established by propa-
gating the input u  while ignoring the relative measure-
ments .z  While a propagation-only approach is typically 
not practical, it is useful for observing how the various 
measurement models influence accuracy and consistency.

Simulation Results
Figure 4 shows an example result from a single simulation 
trial for the PG, SC, keyframe-RC (kRC/kRCi), and RN 

 The PG approach is perhaps the simplest and most intuitive of the methods, 

but it is technically incorrect and has significant theoretical shortcomings.
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approaches. In addition to the maximum-likelihood trajec-
tory, the level curve corresponding to the 90% confidence 
bound for each estimation approach, derived from the esti-
mator’s covariance estimate, is shown. For a given trial, any 
of the estimation approaches could be the most accurate, but 
the shape and size of the level curves in this figure are repre-
sentative of the trends observed across all trials.

The following sections present an analysis of the perfor-
mance of each estimator based on the Monte Carlo simula-
tion results. The accuracy and consistency of each estimator 
are examined. In addition, the way in which each estima-
tor handles a global measurement update, if one were to 
become available, is examined. These results are summa-
rized in Table 2.

Many of the performance metrics deal with estimation 
error. Global error for each of the estimation approaches 
listed in Table 1 is defined as
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where x g)t  is the global component of the estimated state. 
Error for an RC estimator can be computed either in the 
body frame ( )ekRC  or inertial frame ( ).ekRCi  The former is 
relevant when control is computed directly from the 
body-fixed state estimates. The latter introduces heading 
error into the inertial position states, but it is relevant 
whenever the estimated states are ultimately utilized in 
an inertial frame. Error for RN uses the matrix logarithm 
defined in “The Banana Distribution.”

It is important to note that when better input odo
metry is available, the differences in est imat o r  perfor-
mance are not as prevalent. The following simulation 
results should be interpreted in the context of identifying 
underlying issues and trends and not a universal judgment 

on the quality or effectiveness of each estimation approach 
for a given scenario.

Accuracy
The accuracy of each estimator is evaluated by averaging 
the position and absolute heading errors over each trial of 
each trajectory. Figure 5 shows that, for each estimator, as 
expected, the average error grows unbounded when global 
measurements are unavailable. However, each estimator 
loses accuracy at a different rate. By 600 s, each estimator has 
a statistically significant difference in average position and 
heading error given a 99% confidence interval, except the 
kRC and kRCi positions and the kRC, kRCi, and RN head-
ings. The final error is listed in Table 2. Whether these dif-
ferences are practically important is application specific.

BL PG SC kRC kRCi RN 

Average position error at ( )t mf  104.9 67.4 89.3 70.1 69.9 66.6

Average absolute heading error at tf  (degrees) 39.3 24.5 32.6 23.7 23.7 23.7

Number of biased trajectories at 99% level 31/32 31/32 31/32 4/32 32/32 0/32

Average NEES at tf  10.2 3.52e7 175 7.77 7.89 3.09

Average position update given ( )mzg  104.2 7.2e-4 70.3 69.0 — —

Average absolute heading update after zg  (degrees) 31.4 0.02 10.5 19.5 — —

Table 2  A summary comparison of the estimation approaches. Relative navigation (RN) exhibits improved performance in terms 
of average position error, average absolute heading error, estimation bias, and average normalized estimation error squared 
(NEES). When a global measurement zg is eventually applied at tf, the global estimation approaches either experience a 
large state jump or the measurement is rejected.
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Figure 4 An example simulation for a single trial showing the tra-
jectory estimated by each approach. Using the global uncertainty 
covariance, 90% confidence bounds are drawn for each. Only the 
banana-like distribution available with relative navigation (RN) 
contained the true position. The uncertainty bounds for pseudo-
global (PG) are too small to see. The inset image shows the jag-
gedness of the stochastic cloning (SC) estimates.
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RN, kRC, and PG all have a comparatively low error. In 
their own way, they each apply the relative measurement to 
a state with a bounded covariance estimate. In contrast, 
despite using the same relative measurements, SC per-
forms notably worse than the other estimators. One poten-
tial explanation for this difference in accuracy is illustrated 
by the image inset in Figure 4, which shows the jagged 
nature of the SC trajectory. This jaggedness occurs because 
the update step for SC sometimes produces unnaturally 
large corrections, often much larger than the measurement 
innovation term itself. This phenomenon, first described 
in [17], occurs when heading uncertainty is allowed to 
grow unchecked.

Consistency
A consistent estimator is one whose estimates are unbiased 
and whose covariance estimate well represents the true 
underlying uncertainty distribution [8]. These properties 
are explored in the following sections.

Estimator Bias
Figure 6 shows, for each estimator, the distribution of errors 
across all realizations of input and measurement noise for 
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one of the generated trajectories. For all of the estimators 
except RN, the errors form a banana-like distribution. The 
expected values of , , ,e e eBL PG SC  and ,ekRCi  marked with 
crosses, are nonzero, indicating a bias that is a direct result 
of the banana-like distribution. The distribution of eRN  in 
Figure 6(f), on the other hand, is not banana shaped because 
the matrix logarithm unwarps the distribution. As a result, 
the expected value of eRN  is approximately zero. As an 
addendum to the discussion in “The Banana Distribution,” 
because Figure 6(f) appears approximately elliptical, this 
suggests that a Gaussian covariance parameterization in 
exponential coordinates is appropriate for the RN pose-
graph representation.

To investigate bias more precisely, the Hotelling T2  sta-
tistic is computed for each estimator and each trajectory. 
The statistic is defined as

,T N e S e2
2

1= < -r r

where er  and S are the sample mean and covariance, and is 
distributed according to

~
( )

,T N p
p N

F
1

,p N p
2

2

2
2-

-
-

where p 3=  is the dimensionality of the state vector and F 
is the F-distribution with the indicated degrees of free-
dom. Table 2 indicates the number of trajectories for each 
estimator that are statistically biased at a 99% confidence 
level. RN is the only estimation approach that can be con-
sidered unbiased for every trajectory at this level. kRC is 
usually not biased while working in the body-centered 
frame, but it is always biased when represented in an iner-
tial frame .kRCi^ h

Estimator Uncertainty
Having an accurate covariance estimate is important for 
proper sensor fusion [8]. In addition, many higher-level 
algorithms, such as path planning, rely on accurate uncer-
tainty estimates.

Figure 4 shows the typical sizes and shapes of the uncer-
tainty estimates for each approach. The covariance of the 
PG approach remains on the same order as the relative 
measurement uncertainty ,R  which is too small to be seen 
in Figure 4. The covariance of the SC approach does not 
grow sufficiently because the measurement model artifi-
cially introduces extra information. Additional steps can 
reduce this effect [18], but the root cause—unobservabil-
ity—is avoided altogether by the RN approach. Because 
kRC predominately works in an observable, local frame, 
the uncertainty estimate grows at the appropriate rate [19], 
but, like PG, SC, and BL, the covariance representation only 
supports an elliptical confidence bound. The banana-like 
confidence bound of RN properly represents the true uncer-
tainty distribution.

The degree to which the underlying uncertainty is well-
modeled is evaluated using the normalized estimation 
error squared (NEES), defined at each time step t  as

.e P et t t t
1e = < -

This metric, commonly referred to as the Mahalanobis dis-
tance, weights the deviations in each state based on the 
inverse of the associated uncertainty. When P  is the true 
covariance, NEES has the property

~ , [ ] ,E pp
2|e e =

where p 3=  is dimensionality of the state vector.
Figure 7 presents the observed probability distribution 

function (pdf) of e  for each approach. e  was calculated 
once per second over each trial of each trajectory. The ideal 

3
2|  pdf is overlaid, and the expected value is labeled. When 

the observed distribution is more heavily weighted on the 
left than the ideal 3

2|  distribution, the filter is said to be 
conservative, indicating that the covariance is too large. 
Conversely, when the observed distribution has a longer or 
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fatter tail to the right than the ideal, the filter is optimistic 
[17] or overconfident. It is usually better for an estimator to 
be conservative.

From Figure 7, we see that RN appears to be globally 
consistent in spite of prolonged GPS-dropout and substan-
tial heading uncertainty. PG does not provide an accurate 
global uncertainty estimate where the smallest PGe  is 320. 
Only occasionally does SC provide a reasonable global 
covariance estimate given these circumstances. kRC, kRCi, 
and BL follow the general trend but experience an abnor-
mally high number of large NEES estimates. For example, 
given the particularly erroneous inputs illustrated in 
Figure 4, ,279BLe =  . ,2 7 108

PG #e =  ,1275SCe =  . ,39 8kRCe =  
. ,67 9kRCie =  and .6 03RNe =  at time .t f

To explore how estimation approaches break down, it 
is insightful to see how the average NEES changes over 
time. In Figure 8, we see RN begins and stays approximately 
equal to the ideal value of three. PG almost immediately 
loses consistency. Interestingly, the consistency of BL, SC, 
kRC, and kRCi all degrade at the same rate for the first 
50 s. At this point, SC continues to degrade, while the others 
approximately settle out. Plots similar to Figure 8 are common 
in the SLAM literature, although typically only 20–50 trials 
are averaged [17], [29], [30]. They similarly show that consis-
tency is lost without global information such as loop closures, 
even when using an iterative EKF, unscented KF, or ideal 
Jacobians evaluated at the true unknown state. RN avoids 
this issue completely by working in an observable frame.

Eventual Global Update
If a global measurement such as GPS update becomes avail-
able, it is useful to incorporate that information into the 
state estimate. After a prolonged period of GPS dropout, 
the discrepancy between the true and estimated global 
position is likely to be large due to drift in the estimates. 

When an estimator’s uncertainty is also large, it will read-
ily accept the measurement, causing a large state jump that 
could potentially produce a large spike in control effort. 
This is particularly troubling when the GPS is degraded; 
even when the global information is accurate, however, 
directly fusing the information using a Kalman filter update is 
known to degrade both the estimation and control [1], [31]. 
The extent to which each approach is affected by a delay
ed global update is examined in the following extension to 
the simulation.

For each trial, a global position measurement zg  is gen-
erated, where  ~ ( , )Rz xNg t zf g  and ( , ).25 25diagRzg =  Using 
(2)–(4), the state update is computed as

( ( )) .hK z xgT = - t

While the measurement only includes position informa-
tion, the heading estimate is updated through the cross-
correlation covariance terms. Table 2 lists the average 
magnitude of the position and heading updates. Note that 
the magnitude of the average update as well as its relative 
size to the average error is informative. From (3), it is clear 
that if P  is substantially smaller than ,R  the Kalman gain 
approaches zero and the measurement innovation is largely 
rejected, as demonstrated with PG. Conversely, when P  is 
substantially larger than ,R  the Kalman gain approaches 
identity and the measurement innovation is readily 
accepted, causing a large state jump as demonstrated by BL 
and kRC. SC only partially accepts the global update. None 
of these scenarios are conducive to robust MAV navigation 
and control.

Several approaches have been presented to work around 
these issues, such as simultaneously tracking a GPS-cor-
rected and odometry-only global trajectory [1], [31], or 
using a series of measurement gates [32]. Other approaches 
refrain from incorporating the GPS into the filter at all, 
opting instead to incorporate it exclusively using a pose 
graph [33].

Because RN only estimates a relative state, directly fusing 
an eventual global measurement is not an option. Rather, 
these measurements are incorporated using a pose-graph 
map as described in [21]. This formulation completely avoids 
the problem of large jumps in the filter states that are used 
for control. In addition, it makes it possible to identify erro-
neous measurements and completely eliminate their effect 
on the global state estimate at any time as more information 
is received.

Summary of Implications
Implications of the simulation results are summarized in 
Figures 9 and 10. Rather than showing data flow, these dia-
grams illustrate consequences, where implications are rep-
resented as connecting arrows. The blue boxes, comprising 
prolonged GPS dropout, heading uncertainty, intermittent 
and erroneous global measurements, as well as loop-closure 
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constraints, represent the nonideal yet realistic inputs to the 
system. Green boxes highlight the deficiencies that inevita-
bly result.

The simulation results are summarized by discussing 
paths through Figure 9, proceeding from top to bottom and 
from left to right. During prolonged GPS dropout and in 
the presence of heading uncertainty, the global position 
and heading state will inevitably drift. This drift will 
induce an underlying probability distribution that is 
banana shaped, which is not well modeled by a Gaussian in 
Cartesian coordinates. Furthermore, some approaches tend 
to introduce undue information into the filter, artificially 
constraining the uncertainty magnitude. Eventually, this 
leads to inconsistent uncertainty estimates, causing mea-
surements to be fused suboptimally. When filters properly 
acknowledge that the state is unobservable, the uncertainty 
will grow without bound. A large uncertainty also causes 
the system to strongly trust eventual global measurements, 
whether they be degraded or not, often leading to large 

state updates. Sudden jumps in state lead to degraded po
sition control, impacting MAV reliability. Finally, many 
approaches attempt to reduce drift by identifying when the 
vehicle returns to a previously visited location. Incorporat-
ing loop closure constraints through nonlinear optimiza-
tion techniques also results in large state updates and 
either presents nonnegligible delays, stresses the platform’s 
size, weight, and power (SWaP) constraints, or assumes an 
uninterrupted network connection.

A wide variety of techniques is used in practice to 
address the issues presented in Figure 9, particularly for 
handling large state updates. It should be noted, however, 
that the root of each issue stems from working with respect 
to an unobservable coordinate frame. Figure 10 illustrates 
how decoupling the system into relative and global frames 
allows for optimal navigation within the local frame itself, 
avoiding many of these issues entirely. Because relative 
measurements directly update the relative state, the state 
covariance represents the underlying uncertainty well, 
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dinate frame. Arrows indicate implications, blue boxes highlight nonideal yet realistic inputs to the system, and green boxes highlight 
inevitable deficiencies. Ultimately, global drift will induce an inconsistent and/or unbounded state uncertainty estimate ,P  which leads 
to nonrobust navigation. For each approach, the relevant consequences are labeled according to the legend.
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leading to optimal sensor fusion. While the nonideal inputs 
and inevitable deficiencies may hamper the completion of a 
global mission, they need not degrade the stability of the 
system. For example, in the worst case, a large, erroneous 
global update results in an incorrect relative goal.

Hardware Results
The simulation results constitute the primary contribu-
tions of this article, showing that global keyframe filters 
break down more readily than RN during prolonged GPS 
dropout. To supplement these contributions, this section 
presents the estimation performance of each method 
when implemented on MAV hardware. This section is not 
intended to thoroughly describe all MAV implementa-
tion details but, rather, to demonstrate that the perfor-
mance of full-state estimators running on actual hardware 
parallels the results seen in simulation. Complete details 
on the RN implementation used for these results, along 
with a presentation of more extensive flight-test results, 
are given in [21].

Reference [20] includes the details necessary to imple-
ment a relative state estimator for an MAV, including vehicle 
dynamics and measurement models. The estimator imple-
mentations of each approach for the results in this article 
are all based on the error-state, multiplicative EKF described 
in [20]. The changes needed to adapt this filter to each of the 
different estimation approaches were minimal, requiring 

modifications to fewer than ten lines of code for each 
approach. The vehicle’s state includes position, velocity, atti-
tude parameterized with a quaternion, and gyroscope and 
accelerometer biases. Inputs were body-fixed accelerometer 
and gyroscope measurements at 100 Hz from a calibrated 
MicroStrain 3DM-GX3-15 inertial measurement unit. A 
MaxBotix MB1242 ultrasonic altimeter provided height-
above-ground measurements, while visual odometry 
updates were obtained at 15 Hz using the algorithm from 
[34] with an ASUS Xtion Pro Live RGB-D camera.

A user provided velocity commands to navigate the mul-
tirotor around the perimeter of the building shown in 
Figure 11. The flight lasted 9 min and traversed 320 m. The 
RN estimator provided the necessary onboard state esti-
mates for feedback control. Afterward, time-stamped mea-
surements were provided to each estimator, resulting in the 
trajectory and covariance estimates shown in Figure 11.

As shown in Figure 11, the flight-test produced similar 
results to those seen in simulation. While a single trial cannot be 
used to make claims about the relative accuracy of the differ-
ent approaches, all of the approaches produced reasonably 
accurate results with errors on a similar order of magnitude. 
Like in the simulation results, PG produced an extremely 
overconfident uncertainty bound, while SC produced a some-
what better, but still overconfident, uncertainty estimate. The 
RN approach produced a banana-shaped uncertainty bound 
that includes the true pose of the vehicle.
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Because conventional multirotor dynamics assume an in-
ertial reference frame, the RC displacement vector xTt  in Fig-
ure 2(c) cannot be propagated directly. Instead, following 
[35] kRC was implemented using vehicle dynamics ex-
pressed with respect to the body, also described in [20]. Be-
cause these position dynamics do not depend on the current 
attitude, the EKF has no mechanism to properly increase 
position uncertainty due to heading uncertainty. As a result, 
the kRC confidence bound remained small.

To provide a more direct comparison to the body-fixed 
implementation of kRC, RN was additionally implemented 
using the body-fixed dynamics (bRN) presented in [20]. In 
contrast to kRC, the coupling between position and head-
ing uncertainty at the keyframe level is negligible. As a 
result, when the global state and uncertainty are recon-
structed using a sequence of many relative states, as 
described in “The Banana Distribution,” a reasonable 
banana-shaped confidence bound results. A more thor-
ough investigation into the consistency of bRN remains as 
future work.

Conclusions
Global drift is inevitable when MAVs fly in GPS-denied 
environments because the global position and heading 
states are unobservable when only relative measurements 
are available. While most navigation frameworks estimate 
the global state directly despite this unobservability, RN 
maintains local observability by estimating the vehicle 
states with respect to a local frame. As demonstrated in this 
article, estimating and controlling with respect to a local 
frame produces more consistent global position estimates 
and avoids many of the consistency and stability issues 

common to existing global approaches. RN also provides a 
framework for robustly incorporating intermittent global 
information. Moving from a global to a relative estimation 
approach is a fairly small adjustment conceptually and in 
terms of implementation, but it yields significant advan-
tages that can benefit systems that currently use a global 
estimation approach.
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