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In this article, we present a complete, proof-of-concept sense-and-avoid solution for small
unmanned aircraft systems, including a small low-cost ground-based radar system, multi-
target tracking and estimation, collision detection, and an avoidance planner. We describe
the development of a small frequency-modulated continuous-wave phased-array radar system
that provides a 3D surveillance volume. The radar measurements are processed using the
recursive random sample consensus algorithm, producing tracks for the intruders and the
ownship. We propose a collision-detection algorithm based on the geometric relationship
between encountering aircraft. If a collision threat is detected, a collision-free new path is
generated for the ownship using a two-step path-planning algorithm. In the first step, an
initial suboptimal path is generated using an A* search. In the second step, the path is refined
using a variant of the potential fields technique, adapted to the sense and avoid scenario. The

performance of the complete system is demonstrated with flight test experiments.
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path planning threat cost associated with an intruder
down location of target

down location of radar station

diameter of cylindrical safety volume

horizontal collision distance threshold

east location of target

east location of radar station

height of cylindrical safety volume

number of radar frequency bins

number of radar samples

north location of target

north location of radar station

probability of false alarm for range bin i

estimate of noise power for range bin i of each radar channel
inertial position of jth intruder

inertial position of ownship

correlation matrix for radar range bin i

time averaged correlation matrix for radar range bin i
range to tracking target

return power function for range bin i

false alarm amplitude threshold for range bin i
current time

time of closest point of approach for jth intruder
inertial velocity of jth intruder

inertial velocity of ownship

state vector for target motion model

measurement vector for target motion model

return power weight vector for a particular azimuth and elevation angle pair
azimuth angle to tracking target

radar range compressed image from kth channel for range bin i
position of jth intruder relative to ownship

velocity of jth intruder relative to ownship



£ = elevation angle to tracking target

Ai = inverse of expected value of noise power estimate for range bin i
o = standard deviation of range measurement noise

o = standard deviation of azimuth measurement noise

o = standard deviation of elevation measurement noise

T = look-ahead time for collision detection

Tepa,j = time to closest point of approach for jth intruder

Tih = collision time threshold

I. Introduction

An important goal of the unmanned aircraft systems (UAS) community is to achieve routine, safe, and affordable
access to the national airspace system (NAS). The need to integrate UAS into the NAS is motivated by the rapid growth of
the UAS industry, especially small UAS weighing less than 55 1b. Most research efforts have focused on technologies for
integrating medium and larger UAS into the NAS. However, there are many potential civil and commercial applications
for small UAS, including package delivery, precision agriculture, wildfire monitoring, border patrol, and infrastructure
monitoring. As such, there is a significant need for sense and avoid technologies that are focused on small UAS.

With regard to UAS in the NAS, the Federal Aviation Administration (FAA) has mandated that UAS be capable of
an equivalent level of safety to the see-and-avoid mandate for manned aircraft [1, 2]. As a result, a UAS must be capable
of monitoring and avoiding other manned or unmanned aircraft in its vicinity, similar to a pilot’s ability to visually scan
the surrounding airspace, and then to respond appropriately so that the UAS remains well clear, and avoids collisions
with other air traffic [3].

A complete sense and avoid system is comprised of sensors and associated trackers, collision detection algorithms,
and a collision avoidance planner. The main role of the sensor and tracker is to detect air traffic and to track the motion
of the detected aircraft to gain sufficient confidence that the detection is valid. Not every aircraft that is observed by
the sensing system, however, presents a collision threat. The ownship should only maneuver to avoid intruders when
a collision threat is imminent. Therefore, the collision detection system determines whether or not an approaching
intruder is on a collision course. Once a collision threat has been detected, the collision avoidance system must plan the
proper evasive maneuver.

A collision is declared when two or more aircraft are less than the minimum allowed horizontal and vertical distance,
which is called the collision volume [4, 5]. A common specification for the collision volume is a horizontal distance of
500 ft and a vertical distance of 200 ft [3, 6, 7].

In general, the most suitable SAA configuration depends on the dynamic characteristics, size, weight, and power



(SWaP) resources, payload of the UAS airframe, and the nature of the mission. In this paper, we present a ground-based
SAA system that consists of a ground control station that includes all sensors, communication, signal processing, and

control logic.
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Fig.1 Surveillance and operating volumes associated with the ground-based radar SAA system.

Figure 1 shows the typical operating volumes associated with a ground-based SAA system. In this configuration, the
ground-based sensor detects air traffic in a fixed volume of airspace called the surveillance volume. The ownship flies in
a volume of airspace referred as the operation volume. The size and geometry of the operation volume depends on (1)
the minimum required detection range to be able to detect and track the intruder, (2) the time required to evaluate the
encounter scenario, (3) the time required to plan an avoidance maneuver, and (4) the time required to take an evasive
action. A drawback to using a ground-based SAA system is that it provides a static coverage volume, which may be less
than the operating range of the UAS. Also, using ground-based SAA introduces the issue of maintaining a reliable, and
efficient data link between the ground control station and the ownship. In addition, local terrain may also reduce the
surveillance volume, and introduce noise in the measured information.

Various solutions exist for ground-based SAA, however, these solutions have limitations when applied to small UAS.
One ground-based SAA system is the mobile aircraft tracking system (MATS) [8]. The MATS consists of a 2D primary
radar, which provides range and azimuth information about targets, an ADS-B receiver and a transponding interrogator.
The primary radar of the MATS has a peak output power of 25 kW and provides two modes of instrumented range:
54 nmi with resolution of 180 m or 27 nmi with resolution of 45 m. The performance of MATS was examined as
part of the Smart Skies project using a specially equipped Cessna 172R. The main function of MATS is to detect and
track intruding aircraft and provide this information to the UAS pilot located at the ground control station. In other
words, the MATS system provides the sense element while the pilot evaluates the risk and performs the avoidance
function if needed. Another example is the modern Thales Star 2000 air traffic control (ATC) radar that has a peak

output power of 28 kW and provides a coverage of 100 nmi with resolution of 230 m. Similar to MATS it provides only



range and azimuth information about threats. The lack of elevation data is a limitation of the system. The MATS and
Star 200 system assume low density traffic where 2D information is sufficient and another cooperative sensor provides
the altitude information to supplement the radar data [4]. The sense-and-avoid display system (SAVDS) which uses the
Sentinel AN/MPQ-64 air defense radar is a ground-based SAA system that is capable of providing 3D information
about targets. It has a peak output power of 23 kW and provides a coverage of 40 nmi with resolution of 150 m [4]. In
general, traffic control radar and high-tech military radars tend to be very expensive. For example, the cost guide of the

terminal maneuvering area radar is 8 million U.S. dollars [9].
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Fig. 2 Ground-based radar sense-and-avoid system structure diagram.

The key contribution of this paper is to present a complete, proof-of-concept ground-based sense-and-avoid
solution that is feasible for small UAS. This system uses a reliable ground-based radar sensor, tracking and estimation
algorithms, collision detection algorithms, and a collision avoidance scheme. As shown in Figure 2, radar returns
from all of the targets are received by a phased-array antenna. The radar data is processed to produce range and
azimuth and elevation angles to all targets. In the tracking step, the target’s measurements are processed using the
recursive-RANSAC (R-RANSAC) algorithm [10] to estimate the state of potential intruders, and to distinguish the
ownship. After R-RANSAC filtering, the time to closest point of approach (CPA) and the distance at CPA are computed
to identify possible collisions. If a collision threat is detected, the intruder position and velocity estimates and an
activation flag are passed to the collision avoidance algorithm. Once the collision level of the avoidance logic has been
activated, a new collision-free path is generated using a two-step collision avoidance algorithm. In the first step, an
initial suboptimal path is generated using A* search. In the second step, a simulated chain of unit masses connected by

springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary differential equations



that is driven by virtual forces to find the steady-state equilibrium. The final output of the SAA system is a revised set of
waypoints that are transmitted to the ownship. The system shown in Figure 2 is a complete SAA system for small UAS.
It is viable for both fixed wing and multirotor aircraft, and could reasonably be extended for larger UAS outside of the
small UAS definition.

The rest of the paper is organized as follows. Section II describes the ground-based sensor system. The target
tracking and management algorithm is presented in Section III. Section IV proposes a geometric-based approach to
detect collisions with encountering intruders. Section V presents the two-step collision avoidance algorithm. Flight test

results are discussed in Section VI, while Section VII concludes the paper.

II. Ground-Based Sensor

For sense and avoid systems, radar has many advantages over other sensors like EO/IR cameras, lidar, and ultrasound.
In particular, radar has inherently good range resolution and functions in diverse weather and lighting conditions [11].
However, small UAS present a unique sensing challenge. Whereas general aviation happens at higher altitudes where
they are far removed from sources of clutter, small UAS fly below 500 ft near the surface of the earth.

Modern air traffic control (ATC) radars use large ground-based systems that can detect aircraft approaching from up
to 400 km away [12]. These radar systems achieve a long detection range by using large, high-gain antennas to focus the
radar energy into beam widths ranging from 2 to 5 deg. The antennas are placed on large mechanical gimbals that
rotate the antenna to scan the narrow beam. Since most aircraft fly at predictable altitudes, these systems scan over a
relatively narrow set of angles vertically, while providing 360 deg of horizontal coverage. Although the large antennas
and high transmitted power permit long-range detection, the system has a doughnut shaped detection pattern that is
blind to targets directly overhead. These systems also avoid scanning too close to the horizon to avoid ground clutter
reflections from man-made structures.

Although miniature scale versions of current ATC radar exist, they are not viable for small UAS because they
provide only two-dimensional sensing where UAS sensing requires three-dimensional spatial localization. Gimballed
radar systems not only have blind-spot issues overhead, but their update rate is very slow: on the order of a few seconds
[4]. For long-range radar systems, this is not an issue since their detection range is long enough to compensate for a slow
update rate, but for short-range radar systems, aircraft could travel most of the way through the field of view in a single
update interval. A solution to resolve the issues of a mechanically steered antenna is to replace it with an electronically
steered array (ESA) of antennas. An ESA or phased-array antenna has the same narrow beam and high resolution as a
mechanically steered antenna, but it can be steered with a wider field of view and a much higher update rate.

A potential solution for ground-based collision avoidance sensors for UAS is to create a planar phased-array radar
with a wide field of view angled directly at the sky as shown in Fig. 3(a). This would create a 3D hemispherical bubble

where the radar can detect targets and guarantee safe flight within the bubble. The update rate for a phased-array radar



that implements digital beam forming is the pulse rate of the system, which is on the order of milliseconds. As a result,
such a system can provide high resolution in range, elevation angle, azimuth angle, and time. The field of view of these
planar phased-array systems covers the full extent of UAS flight paths, and can implement filtering methods to remove

background reflections from the environment.

(a) 3D surveillance volume of a single planar (b) Radar Network Cells
phased-array radar

Fig. 3 UAS surveillance using planar phased arrays.

To expand the coverage of the radar along the ground, multiple radar systems could be arranged into a grid similar to
the current cell phone antenna network. This configuration, shown in Fig. 3(b), is designed to establish coverage over a
wide area while maintaining low radiated power and ensuring that a single antenna is not overwhelmed with traffic.
Since UAS only need to know about nearby air traffic, this cellular radar sensor network also provides an efficient
solution to manage the volume of data produced by air traffic monitoring. A maneuvering aircraft will communicate
only with nearby radar sensors to obtain local air traffic information rather than being required to communicate with
a central source that transmits global air traffic. This type of a system is scalable depending on the amount of air
traffic expected. In rural areas, the cells could be very large or the system could just use on-board sensors for collision
avoidance since little intruding traffic is expected. In densely populated urban environments where a lot of traffic is
expected cells could be made smaller to ensure adequate coverage and load balancing.

The system described in the previous paragraphs is feasible using currently available technology. While radar
systems of the past have typically been large and cumbersome, being made up of bulky waveguides and heavy ferrite
components, progress in microwave integrated circuits has driven down the cost and the size of radar systems to create a
new class of small, short range, low power, low cost systems [13]. While automotive applications make up the majority
of these systems, there is a growing body of work using small frequency modulated continuous wave (FMCW) radar
systems in UAS sensing. Kemkemian et al. proposed a MIMO radar architecture for UAS sensing to to determine angle
of arrival information in elevation and azimuth [14, 15]. Itcia et al. implemented a SAA radar on a Cessna that was

capable of detecting larger aircraft using floodlight illumination and digital beamforming receiver for a fully static



system [16]. Shi et al. produced a similar system using off the shelf components that demonstrated good performance
in bench-top testing [17].

Radar inherently has high resolution in range but poor resolution in angle, which is why it requires a phased-array
antenna to provide that information. Antennas arranged in a regular pattern use the propagation path difference between
elements as a way of determining the direction of arrival of a target. A phased array forms a beam in a particular
direction by multiplying the antenna outputs by pre-calculated weights and summing the outputs to produce a single
result that simulates an antenna pointed in that direction. In systems where receivers are costly, this beamforming
occurs directly at the antenna output and is referred to as analog beamforming. In systems such as this one where the
cost of adding multiple receiver channels is low, the beamforming occurs after the signal has been digitized and is
referred to as digital beamforming. Analog beamforming allows the system to steer the beam much more rapidly than a
mechanical gimbal. Digital beamforming allows the user to form many beams and track multiple targets at different
angles simultaneously.

A phased-array radar sensor offers many advantages for SAA detection in UAS applications. Using a ground-based
phased-array radar frees up payload requirements on UAS. A planar phased array also can provide fast update rates
as well as accurate angle and range information. Finally, using smaller, low-power, and short-range systems, such
as the planar phased-array FMCW radar design described in this paper, enable a scalable, low-cost radar network to
provide surveillance capabilities required for SAA detection. The flight results presented in Section VI use a preliminary

prototype of this radar, a four-channel phased-array system that scans only in the azimuth direction.

III. Target Tracking and Track Management

In this section we address the major components of target tracking and multi-track management.

A. Front-End Signal Processing

The signal produced by an FMCW homodyne radar is a sum of sinusoids of different frequencies, where each
frequency corresponds to a target’s range. The signal is sampled and the FFT is used to produce a range compressed
image (RCI) for each radar pulse. Each RCI is composed of the positive frequency bins of the FFT, where the number
of bins is Mpins = Ns/2 and each frequency bin is proportional to a specific range bin. The sampling and FFT are
performed on each of the N, receiver channels.

Letting y«[i] denote the RCI from the kth channel for range bin i, and letting

T
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then the correlation matrix for each range bin is
R; = x[ix"[il. ©)

To increase the signal-to-noise ratio (SNR) of the targets, N,y correlation matrices, from consecutive radar pulses, are
averaged to form the averaged correlation matrix R;.

Using these averaged correlation matrices, target range detection is performed. Targets are detected by setting an
amplitude threshold based on the noise statistics of the radar. The detection system then discriminates between targets
and non-targets based on whether a particular return rises above the threshold or not. The radar system sets a threshold
based on the estimate of the noise power in each range bin [18]. In this threshold method, the estimate of the noise
power p; for each of the N, channels in the ith range bin is computed by saving multiple R; in a noise-only environment,
averaging over an Nsue window, and then computing the mean of the diagonal elements of R;. The estimate of the
noise power p; is given by

1 -
b= D Riliidl. 3)

€ j<Ne
The noise statics of each range bin follows an exponential probability distribution, Pr( yx)=A; exp P, where
A;=1/E{p;} is the inverse of the expected value of the noise power estimate for each range bin [19]. By using this noise
power estimate to calculate the exponential parameter A; for each range bin, the probability of false alarm for each range
bin is given by [19]

Py, = exp (=4, Ty), )

where T; is the amplitude threshold. Then, by choosing an appropriate value for the probability of false alarm for each

range bin, we solve for 7; in Eq. (4) as 4
In(1/ ija)

1 &)

i

Finally, digital beamforming is used to obtain the azimuth and elevation angles to each target. The return power as a

function of the ith range bin, azimuth angle @, and elevation angle ¢ is given by
S(r.a,e) = w (@, )R w(a, ), 6)

where w(a, €) is the weight vector for a particular azimuth and elevation angle pair (@, ). The bearing angle with the

greatest returned power is used as the estimate of the target’s azimuth and elevation angles.



B. Multiple Target Tracking

One of the requirements of a SAA system is the ability to detect and track multiple targets. There are numerous
multiple target tracking (MTT) algorithms available in the literature. In this paper we use the recursive-RANSAC
algorithm developed by Niedfeldt [20-24], that has several advantages over existing MTT algorithms. The SAA
problem for small UAS requires that the MTT algorithm includes track management, is robust to clutter and missed
measurements, and is computationally efficient. Competing algorithms do not include all of these features. For example,
the global nearest neighbor [25], (joint) probabilistic data association filters [26] [27], and particle filters [28] do not
include track management. The probabilistic hypothesis filter [29, 30] is not robust to missed measurements, and the
multiple hypothesis tracking filter [31] is not computationally efficient.

The R-RANSAC algorithm retains in memory all measurements from the past N, time steps and uses a stochastic
search algorithm to find trajectories that fit the data over the time window. The data is fit using a Kalman filter using an

assumed motion model given by

x[k] = Ax[k — 1] + £[k],

ylk]l = Cx[k] + nlk], (7

where £[k] and [ k] are zero-mean Gaussian random vectors with known covariance. For this paper we assume that the
targets move with nearly constants acceleration, implying that the state x € R® is composed of the inertial position and

velocity of the target. Accordingly, the system matrices are given by

| ENZIAVS ENG
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where we have assumed that the radar measurements of range r, azimuth «, and elevation &, have been converted to

NED coordinates using

n = rcos(a) cos(e) + ny,
e = rsin(a) cos(g) + e,4,

d = rsin(e) — d,y, ®)

where (1,4, €,4, drq) 7 is the NED location of the radar station.

One of the issues that arise when using the transformed measurement in Equation (8) is that the noise characteristics

10



of the radar cannot be accurately transformed into the NED coordinate frame. This is a problem because the noise
characteristics are used in the R-RANSAC algorithm to decide if a new measurement is an inlier to an existing model.
The noise characteristics in the range, azimuth, and elevation frame can be described as an inverted shallow bowl as
illustrated in Figure 4. As the range to the target increases the diameter of this bowl also increases because o, and o
remain constant. This means that the noise in the north, east, and altitude directions grows with range, and the relative

noise among the three directions changes depending on the azimuth and elevation angles.

Fig.4 Covariance of radar measurements.

The solution is to convert the NED coordinates of the existing tracks to range, azimuth, and elevation using

r Vn? + €2 + d?

1% £ tan~! (%) ) &)
& sin~! (4)
VnZ+el+d?

and then to determine if the current measurement is an inlier to the existing track, using o, 0, and 0.

Another modification is needed to make the R-RANSAC algorithm work with a ground-based radar SAA scenerio.
Since a ground-based radar will provide measurements for all aircraft in its field of view, measurements of the ownship
will be sent to the R-RANSAC algorithm, a track will be created for the ownship, and the ownship track will be identified
as an intruder. If the ownship is identified as an intruder, the path planner will create an avoidance path causing the
ownship to deviate from its path when such a maneuver is not necessary. The modification made within R-RANSAC is
to use the ownship’s known states, received from the data link between the ownship and the ground control station, as a

second set of measurements that is used to identify the track corresponding to the ownship.

IV. Collision Detection
Collision detection is a challenging problem due to inherent noise, errors in prediction, and modeling the uncertain

dynamics and intent of intruding aircraft [32—-36]. Moreover, limited on-board computational resources, fast closing
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speeds, and unanticipated maneuvers make it challenging to detect collisions without excessive false alarms.

The purpose of computing the collision risk is to determine an alert threshold value that triggers the initiation of an
evasive maneuver to avoid an imminent collision with the detected intruding aircraft. A number of collision detection
methods have been suggested in the context of air traffic management, mobile robotics, and autonomous control. Recent
surveys on this topic include Kuchar & Yang [37], Albaker & Rahim[38], and Angelov [4]. Many of these approaches
can either be classified as geometric or probabilistic, where each approach has different techniques to deal with errors.
In the geometric approach, the collision risk is based on the geometric relationship between aircraft. Aircraft trajectory
predictions are based on linear projections of current aircraft states such that the uncertainty of the predicted trajectory
is translated into areas around the predicted trajectory referred to as safe zones. Linear projections are computationally
efficient and prediction errors are negligible over short time horizons [39, 40] or assumed known when flight plans
are communicated [41]. On the other hand, probabilistic methods estimate the probability of collision based on a
probabilistic model of future intruder dynamics. The event probability is then compared to a certain threshold above
which the aircraft is deemed to be in collision. These probabilities can be estimated using approximate analytical
solutions [42], numerical approximation [43, 44], or Monte Carlo methods [45—47]. The expected utility is another
approach used to develop a risk alerting system that accounts for future changes in alerts [48]. In general, probabilistic
approaches are computationally intensive but suffer from fewer false alarms than geometric approaches.

In this paper, we use a simple collision detection logic that assumes that both the intruder and ownship are following
straight-line paths. The collision logic is continually updated to account for scenarios where this assumption is violated.
Let 0p; = pj — po be the position of the jth intruder relative to the ownship, and let 6v; = v; — v be the relative
velocity, where (p;, v;) and (po, Vo) are the inertial positions and velocities of the jth intruder and ownship respectively.
If ¢ is the current time, and 7 is the look-ahead time, then the relative position of the intruder at future time ¢ + 7 is given
by

op;(t + 1) =06p;@) +1oV; (7).

The time to the closest point of approach denoted as 7, is defined as the future time instant at which the relative
distance between aircraft is at a minimum. Assuming that the future flight paths of both aircraft are a straight line, the

point of closest approach is calculated by finding 7 so that H(Spj (t+ T)“ is minimized. By simple calculus we get that

—6p_;r6v_,-

tepaj = { 101 i (10)

0 otherwise.

Note that #.,,,; will be zero when the relative position vector op; is perpendicular to the relative velocity vector

ov;. The product 6pJT6V j characterizes whether or not the two aircraft are converging (5pJT6V 7 < 0), or diverging

12



(6pjT6v 7 > 0). A negative closest point of approach implies that the aircraft are diverging from each other.
The standard choice of the protection zone is a cylindrical volume with radius d and height . Accordingly, the

horizontal and vertical range to the target at future time 7 + 7 is given by

d;(t +7) = ||(Iaxs — Kk)(6p; (1) + T6v; (1))|

|’

hi(t+7) = [KT(6p; (1) + 76V, (1))

wherek=(001)".

To predict whether or not the collision will occur for each intruder within the sensor range, we use the collision
detection logic listed in Algorithm 1. In Algorithm 1, the horizontal distance threshold d;;, and the time threshold 7y,
are design parameters that define the collision avoidance threshold. The collision avoidance threshold is a variable
boundary around the ownship, larger than the collision volume and depends not only on distance, but time and other
factors [49, 50]. Line 2 in Algorithm 1 checks whether the current horizontal range d; (¢) to the intruder is less than a
horizontal threshold distance dy;, or if the intruder is converging and the time to CPA is below a time threshold 7;,. Line
3 checks to see if the horizontal and vertical distances at the predicted CPA are below the minimum safe distances d

and h, /2, respectively. If so, then line 4 initiates a collision avoidance maneuver.

Algorithm 1 Collision detection algorithm

1: for each jth intruder within sensor range do

2 if [[op;| < du or (6] 6v; < 0and tepe; < 7,) then

3 if d;(t + Tepay) < dgand hj(t + 7epa ;) < hg/2 then
4: Initiate avoidance maneuver.

5 end if

6: end if

7: end for

V. Collision Avoidance Planning

Once a collision threat has been detected, the collision avoidance system must select the proper evasive maneuver.
The essential requirement for the collision avoidance algorithm is to perform the avoidance maneuver so that the
distance at the closest point of approach to the intruder is equal to, or greater than a minimum required safe distance.
There are many different options for path planning for collision avoidance, and numerous algorithms have been
proposed [35, 51-58]. In this paper, we use the two-step collision avoidance algorithm proposed in [59]. The basic idea
is to use a high-level deliberative planning technique that updates a set of high-level waypoints on a relatively slow time
scale, and then refines that waypoint path with a low-level reactive planner that accommodates the vehicle dynamics
and reacts to wind and unexpected motion of the intruders on a relatively fast time scale. Therefore, the path-planning

approach taken in this paper consists of two steps. In the first step, an initial suboptimal path is generated using an
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A* search. In the second step, a chain of unit masses connected by springs and dampers evolves in a simulated force
field, using the A* solution as an initial condition. The chain is described by a set of ordinary differential equations that
is driven by virtual forces to find the steady-state equilibrium.

The A* algorithm is a widely used graph-based search method that uses an admissible heuristic to guide the search
for a minimum-cost path between an initial node and one or more possible goal nodes. The A* algorithm is proven to be
complete subject to the resolution of the grid employed and will always find a solution if one exists [60]. A drawback of
A* search is that it is inherently a static algorithm, which means that when the workspace changes the previous path is
no longer valid and the A* algorithm must replan from scratch. For the collision avoidance problem, the airspace around
the ownship is represented by a grid of regularly sized cells. The ownship and intruders are localized to a specific cell,
and the nominal ownship path is represented as sequence of connected cells. Unlike many path planning methods that
use A* search, the nodes of the graph must take into account timing information. Therefore, a node on the graph is
uniquely defined by its position, and the time of potential arrival of the ownship to that cell. The algorithm expands a
position cell by determining the surrounding cells that are reachable from the current cell, and then determining the
average time to transition between cells. In our current implementation, we assume that altitude can only change when
the aircraft is flying straight ahead.

The segment cost of moving from a cell centered at w,, to a cell centered at wy, is given by
8 (Wa, Wp) = kallWp — Wl + kycr (Wp, pj) + kncn + ke, (11

where ||[w;, — w, || is the Euclidian distance between w,, and wy,, ¢; (Wp, p;) is the threat cost that intruder j exerts on
cell wy,, ¢, is the cost of deviating from the original path, ¢, is the risk of collision, and k4, k;, k,, and k,, are positive

gains [59]. The final cost for the cell centered at wy, is given by
e(Wp) = g (Wa, Wp) + [ Wi, = Wy

where Wy is the center of the cell that contains the nominal path when it leaves the local A* grid, and the last term is the
heuristic that guides the A* search. Figure 5(a) and 5(c) show the results of the A* algorithm for a single intruder.
The second step of the collision avoidance planner is a chained-based potential field planner that explicitly takes
timing information into account. Once an initial path has been generated by the A* algorithm as shown in Figures 5(a),
and 5(c), it is superimposed by a chain of unit masses that are connected to one another by springs and dampers. The
chain-based method is employed for two reasons. The first is to smooth the initial path generated by the A* algorithm,
and the second is to dynamically react to changes in the environment. The basic idea is to impose forces on each mass

in the chain based on the predicted location of the intruders, assuming that the intruder follows a straight-line path from
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Fig. 5 The chain-based collision avoidance initialized by the A* algorithm.

its current location. Additional forces are imposed on the elements of the chain to ensure that turning rate constraints
and flight-path angle constraints are respected. Additional details for the chain-based planner are given in [59]. The

final results of the chain-based planner for one intruder are shown in Figures 5(b) and 5(d).

VI. Flight Results

The algorithms described in this paper have been extensively tested in simulation and results are described in [19]. In
this paper, we will focus on hardware implementation and flight results that demonstrate the performance of the proposed
ground-based radar sensor, R-RANSAC estimation scheme, collision detection, and collision avoidance algorithms. We
used a 3D Robotics (3DR) X8 multicopter for the ownship and two 3DR Y6 multicopters for the intruders. A high-level
depiction of the flight experiments is shown in Figure 6. Both the ground control station and the radar sensor are fixed
on a platform that is positioned 1.83 m above the ground with the radar sensor is angled up by 3 deg to reduce ground
clutter. All multicopters are flying at a constant altitude of 4.5 m above ground, and their start locations are roughly
50 m apart from each other. In addition, we have attached a corner reflector on each of the multicopters to enhance the

radar cross section (RCS), and hence improved radar detectability.
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Fig. 6 Sketch of the encounter geometry of flight test (not to scale).

In this experiment, the R-RANSAC algorithm, the collision detection and avoidance algorithms, the interface module
with the radar hardware, and communication with the ownship multicopter are implemented in Matlab/Simulink on a
Lenovo Intel core i5 processor. The experimental setup is depicted in Figure 7. The telemetry of the ownship including
position and velocity states and the avoidance waypoints are communicated between the ground-station laptop and the
Pixhawk autopilot on-board the ownship using MAVLink message protocol over a 915 MHz 3DR telemetry radio set.
The radar measurements are received through a wired connection with the laptop and read into Matlab/Simulink using a

UDP receive block.

7~ Matab/Simulink "\ 3

UDP Receive Interface ‘

Range, azimuth angles|
measurements

Tracking and Estimation (R-
RANSACQC)

Intruder position and
velocity estimates

Collision Detection ‘

Collision Flag l

Collision Avoidance ‘

Avoidance Waypointsl Radio 915 MHz I
Radio Set 915MHz .
j| K Ground Control Station /

Fig.7 The ground-based radar SAA experiment structure diagram.

In the flight test, we used a compact 2D line-array radar system that provides range and azimuth information about
targets. The radar system is shown in Figure 8 and the key design parameters are listed in Table 1. It worth noting that

this radar sensor was initially designed for an airborne SAA system for small UAS [61-63]. The main design objectives
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were to minimize SWaP, and to provide a reasonably large field-of-view of approximately 120 deg horizontally and

30 deg vertically.
Table 1 Radar Sensor Parameters

Parameter Value Parameter Value
Weight 120 g (0.26 Ib) | Size 225inx4inx 1in
Consumed power 12W Transmitted power 250 mW
Center frequency 10.25 GHz Radio frequency bandwidth 500 MHz
Sweep duration 2.048 ms Intermediate frequency bandwidth 1 MHz
System noise figure 6 dB Antenna elevation beamwidth 18 deg
Antenna gain 12 dB Antenna azimuth beamwidth 80 deg
Array steerable range 120 deg Number of receive elements 4
Peak channel coupling | approx. —20dB | Synthesized azimuth beamwidth 25 deg

(a) Single transmitting and four-channel phased-array

receiving antennas.

(b) Radar system processing boards.

Fig. 8 Portable 10 GHz FMCW phased-array radar system.

During the flight test, the radar processing board was used for digital signal processing. In the future, this board will

also run the R-RANSAC tracking, collision detection, and collision avoidance algorithms. From the radar processing

boards, the radar measurements were sent to a laptop, that served as a ground control station and also ran the tracking,

collision detection, and collision avoidance algorithms. Since the current radar hardware is only capable of providing

angular measurements in the azimuth direction, the altitude of the tracked targets is unobservable. Therefore, we

assumed that each of the aircraft were flying at a constant known altitude.

The radar system uses a single transmitting antenna and a four-channel phased-array receiver that scans the azimuth

angle as shown in Figure 8(a). The beamwidth of the synthesized beam varies from approximately 25 deg when steered

at boresight to 32 deg when steered near the edge of field of view. Since these beamwidths are quite wide and the

range bins are quite narrow, the radar system is unable to resolve two detected aircraft that are within 10 to 15 deg

of each other at the same range bin. The R-RANSAC tracking algorithm is designed to take into account unresolved
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Fig. 9 Encounter geometry of ground-based SAA flight test.

measurements of multiple targets.

As shown in Figure 8(b), the radar processing system consists of four printed circuit boards. These boards are
(bottom to top): (1) the RF transmitter and receivers, (2) the IF amplification and filtering, (3) the A/D converters, and
(4) the digital signal processing and control board. In the flight test, the radar measurement is sampled 4096 times at a
sampling frequency of 2.048 MHz. To increase the SNR, we averaged correlation matrices across 32 time steps. In
addition, to remove the background clutter we collected 400 noise measurements using a variable probability of false
alarm from 0.03 at the near range bins to 0.15 at the far range bins.

The initial encounter geometry of the flight test is shown in Figure 9. A snap shot at the start of flight test is shown
in Figure 10. The initial intended paths of the ownship and the intruders are shown with dashed black and solid blue
lines, respectively. In the flight test, we have defined the paths of the ownship and intruders in the NED reference
frame, however, the plots of results are shown in the forward-right (FR) reference frame of the radar system. In this
configuration, the forward-axis points out the radar antenna, and the right-axis points out the right of the radar system.
The orientation of the FR radar reference frame is approximately 73.8 deg relative to north. This specific orientation
was due to the physical location of the flight test. For convenience purpose, the collision avoidance path is also shown
in the radar FR reference frame. The location of the ground control station and the radar system were obtained with
respect to the Global Positioning System (GPS) home location. GPS provided ground truth data for the flight results.

As shown in Figure 9, the ownship starts at (1,0) " in the FR reference frame, with an initial heading of zero degrees
measured from the forward direction and follows a straight line path to reach the next waypoint located at (101,0)™ m.

The ownship flies at a constant speed of 1 m/s. The ground control station is located at (—2,0)T (not shown in the
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Fig. 11 The avoidance path of the ownship and the paths of the intruders in the FR inertial frame centered
about the home location.

figure). Since the avoidance planning is performed in the horizontal plane, the virtual collision volume is reduced to a
circle. Because of the small scale of the designed encounter geometry for this flight test, our choice of the collision
volume is a scaled-down circular disk of radius dg; = 10 m.

The encounter geometry consists of two intruders: one is approaching head-on and the other is converging from the

right with respect to the ownship. These intruders follow straight-line paths at a constant speed of 1 m/s. If no collision
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avoidance is planned, the d.,, with respect to the first and second intruders is approximately 8 m and 27 m, respectively.
Since the dp, with the first intruder is less than the defined horizontal safety distance d, this encounter scenario will
lead to a collision. The ownship needs to plan an avoidance maneuver that does not as well lead to a collision with
either intruder. Figure 11 shows the intruders’ paths and the avoidance path planned by the ownship.

The horizontal distance and time threshold parameters are set to d;, = 100 m and 7, = 10 s. A detailed description
of the collision avoidance algorithm and its design parameters can be found in [19]. The region of the flight test is
discretized into grid cells of size 10 by 10 m. Through the implementation of the collision avoidance algorithm, we
found it desirable to append certain functionality to increase robustness of the avoidance maneuver. In the A* search

algorithm, the cost term is modified to include the time to CPA in the denominator as in [19]

ke

_— (12)
dcpaTcpa

cr =

The reason for including 7, is primarily to offset the effects of a small d.,, in certain situations. Specifically, if a small
dpq is not expected to occur for an extended period of time, then we should temporarily reduce this cost allowing the
ownship greater versatility in its flight path to overcome other threats in the immediate future [19]. An additional cost
term is added to Eq. (11) to reward a node that causes the ownship to travel in a direction opposite to the direction of the

jth intruder. The objective is to select grid cells which are behind the intruders. The cy cost term is expressed as [19]

ky

ev =~ (V; Vo), (13)

cpa

where O is the dot product operator, and ky is a tunable cost parameter. Similarly, an additional force term is added to
the chain-based planning algorithm to push the nodes of the chain behind intruder if they come within certain distance
the the intruder [19]. The direction that this force is applied is the opposite the direction of the intruder velocity vector,
however it does not allow the ownship path to be pushed directly in front of an intruder which would lead to a collision.

Figure 12 shows the range and azimuth angle to all aircraft measured by the radar system. This figure shows that the
principal signal decay happens as the azimuth angle increases off boresight as the aircraft leave the antenna beam. The
range data, however, remains well resolved for the duration of the test. From this figure we also note that, the measured
range has a slight scale factor error compared to the true range to each of the aircraft which could be corrected through
further calibration and testing.

As discussed earlier, during the flight test we attempted to orient the radar with a precise heading relative to north,
and a specific elevation angle. We also attempted to position the radar at a specific GPS latitude, longitude and altitude
location relative to the ground. Although we attempted to position and orient the radar with specific values, errors

were unavoidable that resulted in inaccuracies in our measured values when compared to the truth. For ground truth
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Fig. 12 Radar measurements: range, and azimuth of ownship and intruders.

data, we used the estimated GPS positions of the three aircraft from the Pixhawk autopilot state estimators that also had
inaccuracies due to IMU sensor, GPS, and state estimator errors. These errors are further seen in Figure 13, which

shows the radar measurements of each aircraft in the FR coordinate frame.
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Fig. 13 Aircraft paths constructed using radar measurements.

The state estimates of position and velocity are shown in Figures 14 and 15, respectively. Further details on
R-RANSAC implementation and its design parameters for this application are given in [19]. In this flight test, the

R-RANSAC algorithm runs at a sample rate of 0.1 s. In the R-RANSAC algorithm, we also chose to implement a
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Fig. 15 R-RANSAC tracks: velocity estimates of aircraft.

constant acceleration dynamic model for aircraft. The R-RANSAC algorithm successfully tracks all aircraft as shown
in Figures 14 and 15. Additionally, we note that the modifications made to the R-RANSAC algorithm successfully
enable it to distinguish the ownship track from the intruder’s tracks given that the ownship states are provided from the
telemetry link via the 3DR radio. These figures show that the R-RANSAC algorithm takes about 5 s for good models to
appear after the initial measurements are received.

The position state estimates of the aircraft are shown in Figure 16. The estimated paths are shown in the radar’s FR

22



100

_____ ownship
90+ true position
77777 intruder
80 true position
. radar
70 measurements
~ intruder
g 60r . -
= estimate position
= 50+ ownship
; estimate position
=
LS 40
30|
20
10

0 | | { | i | | | |
-50 -40 -30 20 -10 O 10 20 30 40 50
right (m)

Fig. 16 Aircraft paths constructed using radar measurements and R-RANSAC position estimates.

—intruder 1 intruder 2 —d
100
SE o\ P,
§ B 755 \\ //
g 3 [ \\/
— O 25 L
Be
0 L L L L L L L L L L L L L L L
0 20 40 60 80 100 120
time (S)
Fig. 17 Relative range to intruders.

reference frame. The R-RANSAC tracks accurately align with the predicted location of the radar measurements.
The relative range between the ownship and the two intruders is shown in Figure 17. For both intruders, the relative
range never falls below the safety defined distance dy which means that no collisions have occurred, and that the ownship

successfully planned an avoidance maneuver.

VII. Summary and Conclusions
In this article, we have introduced a ground-based sense-and-avoid system that is feasible for small UAS. We have
demonstrated a complete proof-of-concept SAA solution, including a portable and low-cost ground-based radar system,
multi-target tracking and estimation, collision detection, and avoidance planning algorithms.

The proposed radar system is a compact phased-array that operates in FMCW mode and exploits state-of-the-art
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digital signal processing techniques to drive down the size, weight, power, and cost of the radar design. The digitally
steered phased-array radar system described in this paper can track targets simultaneously, while eliminating the need for
gimbaled steering or mechanical scanning. In the flight test, the radar system prototype transmitted 250 mW of power,
which is sufficient to detect a small-UAS with an RCS of 0.01 m? at about 250 m. The radar sensor can detect larger
aircraft at approximately 800 m if the target’s RCS is 1 m? or larger. In general, the radar cross section of the intruder
aircraft and the power of the transmitted pulse are two major variables in determining the maximum detection range.

As evident by the flight test results, the R-RANSAC algorithm provides a robust and reliable tracking method that
properly exploits radar measurements to track multiple intruders and distinguish them from the ownship in the presence
of noisy, cluttered, and missed measurements. The R-RANSAC algorithm provides an increased level of safety and
integrity to the SAA system and allows for an adequate time window for the collision avoidance logic to plan an evasive
maneuver.

The proposed collision detection algorithm is designed to reduce risk of collisions between aircraft. Using the
geometric relationship between aircraft, it estimates the time and distance at the closest point of approach to predict
collision alerts that trigger the avoidance algorithm. Linear projections and geometric parameters can be computed
efficiently making it a tractable solution for multiple intruders. Moreover, prediction errors are negligible over short
look-ahead time windows.

The proposed collision avoidance approach generates solution paths that balance the objectives avoiding collisions
and minimizing path length. One of the advantages of our approach is that timing information is specifically embedded
in the future path representation of the aircraft, thus allowing the ownship to plan a free-collision path over a wide range

of encounter scenarios including multiple intruders and dynamic environments.
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