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In this article, we present a complete, proof-of-concept sense-and-avoid solution for small

unmanned aircraft systems, including a small low-cost ground-based radar system, multi-

target tracking and estimation, collision detection, and an avoidance planner. We describe

the development of a small frequency-modulated continuous-wave phased-array radar system

that provides a 3D surveillance volume. The radar measurements are processed using the

recursive random sample consensus algorithm, producing tracks for the intruders and the

ownship. We propose a collision-detection algorithm based on the geometric relationship

between encountering aircraft. If a collision threat is detected, a collision-free new path is

generated for the ownship using a two-step path-planning algorithm. In the first step, an

initial suboptimal path is generated using an A⇤ search. In the second step, the path is refined

using a variant of the potential fields technique, adapted to the sense and avoid scenario. The

performance of the complete system is demonstrated with flight test experiments.
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ct = path planning threat cost associated with an intruder

d = down location of target

drd = down location of radar station

ds = diameter of cylindrical safety volume

dth = horizontal collision distance threshold

e = east location of target

erd = east location of radar station

hs = height of cylindrical safety volume

Nbins = number of radar frequency bins

Ns = number of radar samples

n = north location of target

nrd = north location of radar station

Pi
fa = probability of false alarm for range bin i

p̃i = estimate of noise power for range bin i of each radar channel

p j = inertial position of jth intruder

pO = inertial position of ownship

Ri = correlation matrix for radar range bin i

R̄i = time averaged correlation matrix for radar range bin i

r = range to tracking target

S = return power function for range bin i

Ti = false alarm amplitude threshold for range bin i

t = current time

tcpa,j = time of closest point of approach for jth intruder

v j = inertial velocity of jth intruder

vO = inertial velocity of ownship

x = state vector for target motion model

y = measurement vector for target motion model

w(↵, ") = return power weight vector for a particular azimuth and elevation angle pair

↵ = azimuth angle to tracking target

�k [i] = radar range compressed image from kth channel for range bin i

�p j = position of jth intruder relative to ownship

�v j = velocity of jth intruder relative to ownship

2



" = elevation angle to tracking target

�i = inverse of expected value of noise power estimate for range bin i

�r = standard deviation of range measurement noise

�↵ = standard deviation of azimuth measurement noise

�" = standard deviation of elevation measurement noise

⌧ = look-ahead time for collision detection

⌧cpa,j = time to closest point of approach for jth intruder

⌧th = collision time threshold

I. Introduction
An important goal of the unmanned aircraft systems (UAS) community is to achieve routine, safe, and a�ordable

access to the national airspace system (NAS). The need to integrate UAS into the NAS is motivated by the rapid growth of

the UAS industry, especially small UAS weighing less than 55 lb. Most research e�orts have focused on technologies for

integrating medium and larger UAS into the NAS. However, there are many potential civil and commercial applications

for small UAS, including package delivery, precision agriculture, wildfire monitoring, border patrol, and infrastructure

monitoring. As such, there is a significant need for sense and avoid technologies that are focused on small UAS.

With regard to UAS in the NAS, the Federal Aviation Administration (FAA) has mandated that UAS be capable of

an equivalent level of safety to the see-and-avoid mandate for manned aircraft [1, 2]. As a result, a UAS must be capable

of monitoring and avoiding other manned or unmanned aircraft in its vicinity, similar to a pilot’s ability to visually scan

the surrounding airspace, and then to respond appropriately so that the UAS remains well clear, and avoids collisions

with other air tra�c [3].

A complete sense and avoid system is comprised of sensors and associated trackers, collision detection algorithms,

and a collision avoidance planner. The main role of the sensor and tracker is to detect air tra�c and to track the motion

of the detected aircraft to gain su�cient confidence that the detection is valid. Not every aircraft that is observed by

the sensing system, however, presents a collision threat. The ownship should only maneuver to avoid intruders when

a collision threat is imminent. Therefore, the collision detection system determines whether or not an approaching

intruder is on a collision course. Once a collision threat has been detected, the collision avoidance system must plan the

proper evasive maneuver.

A collision is declared when two or more aircraft are less than the minimum allowed horizontal and vertical distance,

which is called the collision volume [4, 5]. A common specification for the collision volume is a horizontal distance of

500 ft and a vertical distance of 200 ft [3, 6, 7].

In general, the most suitable SAA configuration depends on the dynamic characteristics, size, weight, and power
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(SWaP) resources, payload of the UAS airframe, and the nature of the mission. In this paper, we present a ground-based

SAA system that consists of a ground control station that includes all sensors, communication, signal processing, and

control logic.

Operation volume

Surveillance volume

UAS

intruder

Ground-based 
SAA station

Protection zone

Fig. 1 Surveillance and operating volumes associated with the ground-based radar SAA system.

Figure 1 shows the typical operating volumes associated with a ground-based SAA system. In this configuration, the

ground-based sensor detects air tra�c in a fixed volume of airspace called the surveillance volume. The ownship flies in

a volume of airspace referred as the operation volume. The size and geometry of the operation volume depends on (1)

the minimum required detection range to be able to detect and track the intruder, (2) the time required to evaluate the

encounter scenario, (3) the time required to plan an avoidance maneuver, and (4) the time required to take an evasive

action. A drawback to using a ground-based SAA system is that it provides a static coverage volume, which may be less

than the operating range of the UAS. Also, using ground-based SAA introduces the issue of maintaining a reliable, and

e�cient data link between the ground control station and the ownship. In addition, local terrain may also reduce the

surveillance volume, and introduce noise in the measured information.

Various solutions exist for ground-based SAA, however, these solutions have limitations when applied to small UAS.

One ground-based SAA system is the mobile aircraft tracking system (MATS) [8]. The MATS consists of a 2D primary

radar, which provides range and azimuth information about targets, an ADS-B receiver and a transponding interrogator.

The primary radar of the MATS has a peak output power of 25 kW and provides two modes of instrumented range:

54 nmi with resolution of 180 m or 27 nmi with resolution of 45 m. The performance of MATS was examined as

part of the Smart Skies project using a specially equipped Cessna 172R. The main function of MATS is to detect and

track intruding aircraft and provide this information to the UAS pilot located at the ground control station. In other

words, the MATS system provides the sense element while the pilot evaluates the risk and performs the avoidance

function if needed. Another example is the modern Thales Star 2000 air tra�c control (ATC) radar that has a peak

output power of 28 kW and provides a coverage of 100 nmi with resolution of 230 m. Similar to MATS it provides only
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range and azimuth information about threats. The lack of elevation data is a limitation of the system. The MATS and

Star 200 system assume low density tra�c where 2D information is su�cient and another cooperative sensor provides

the altitude information to supplement the radar data [4]. The sense-and-avoid display system (SAVDS) which uses the

Sentinel AN/MPQ-64 air defense radar is a ground-based SAA system that is capable of providing 3D information

about targets. It has a peak output power of 23 kW and provides a coverage of 40 nmi with resolution of 150 m [4]. In

general, tra�c control radar and high-tech military radars tend to be very expensive. For example, the cost guide of the

terminal maneuvering area radar is 8 million U.S. dollars [9].

Ownship UAS

Tracking and Estimation 
(R-RANSAC)

Collision Detection

Collision Avoidance

Radar Data Processing

Ground Control Station

Intruder position and 
velocity estimates

Collision Flag

Ownship Position and 
Velocity States

Avoidance Waypoints

Radio Antenna

Range, azimuth and 
elevation angles 
measurements 

Phased Array Antenna 

intruder

Fig. 2 Ground-based radar sense-and-avoid system structure diagram.

The key contribution of this paper is to present a complete, proof-of-concept ground-based sense-and-avoid

solution that is feasible for small UAS. This system uses a reliable ground-based radar sensor, tracking and estimation

algorithms, collision detection algorithms, and a collision avoidance scheme. As shown in Figure 2, radar returns

from all of the targets are received by a phased-array antenna. The radar data is processed to produce range and

azimuth and elevation angles to all targets. In the tracking step, the target’s measurements are processed using the

recursive-RANSAC (R-RANSAC) algorithm [10] to estimate the state of potential intruders, and to distinguish the

ownship. After R-RANSAC filtering, the time to closest point of approach (CPA) and the distance at CPA are computed

to identify possible collisions. If a collision threat is detected, the intruder position and velocity estimates and an

activation flag are passed to the collision avoidance algorithm. Once the collision level of the avoidance logic has been

activated, a new collision-free path is generated using a two-step collision avoidance algorithm. In the first step, an

initial suboptimal path is generated using A⇤ search. In the second step, a simulated chain of unit masses connected by

springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary di�erential equations
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that is driven by virtual forces to find the steady-state equilibrium. The final output of the SAA system is a revised set of

waypoints that are transmitted to the ownship. The system shown in Figure 2 is a complete SAA system for small UAS.

It is viable for both fixed wing and multirotor aircraft, and could reasonably be extended for larger UAS outside of the

small UAS definition.

The rest of the paper is organized as follows. Section II describes the ground-based sensor system. The target

tracking and management algorithm is presented in Section III. Section IV proposes a geometric-based approach to

detect collisions with encountering intruders. Section V presents the two-step collision avoidance algorithm. Flight test

results are discussed in Section VI, while Section VII concludes the paper.

II. Ground-Based Sensor
For sense and avoid systems, radar has many advantages over other sensors like EO/IR cameras, lidar, and ultrasound.

In particular, radar has inherently good range resolution and functions in diverse weather and lighting conditions [11].

However, small UAS present a unique sensing challenge. Whereas general aviation happens at higher altitudes where

they are far removed from sources of clutter, small UAS fly below 500 ft near the surface of the earth.

Modern air tra�c control (ATC) radars use large ground-based systems that can detect aircraft approaching from up

to 400 km away [12]. These radar systems achieve a long detection range by using large, high-gain antennas to focus the

radar energy into beam widths ranging from 2 to 5 deg. The antennas are placed on large mechanical gimbals that

rotate the antenna to scan the narrow beam. Since most aircraft fly at predictable altitudes, these systems scan over a

relatively narrow set of angles vertically, while providing 360 deg of horizontal coverage. Although the large antennas

and high transmitted power permit long-range detection, the system has a doughnut shaped detection pattern that is

blind to targets directly overhead. These systems also avoid scanning too close to the horizon to avoid ground clutter

reflections from man-made structures.

Although miniature scale versions of current ATC radar exist, they are not viable for small UAS because they

provide only two-dimensional sensing where UAS sensing requires three-dimensional spatial localization. Gimballed

radar systems not only have blind-spot issues overhead, but their update rate is very slow: on the order of a few seconds

[4]. For long-range radar systems, this is not an issue since their detection range is long enough to compensate for a slow

update rate, but for short-range radar systems, aircraft could travel most of the way through the field of view in a single

update interval. A solution to resolve the issues of a mechanically steered antenna is to replace it with an electronically

steered array (ESA) of antennas. An ESA or phased-array antenna has the same narrow beam and high resolution as a

mechanically steered antenna, but it can be steered with a wider field of view and a much higher update rate.

A potential solution for ground-based collision avoidance sensors for UAS is to create a planar phased-array radar

with a wide field of view angled directly at the sky as shown in Fig. 3(a). This would create a 3D hemispherical bubble

where the radar can detect targets and guarantee safe flight within the bubble. The update rate for a phased-array radar
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that implements digital beam forming is the pulse rate of the system, which is on the order of milliseconds. As a result,

such a system can provide high resolution in range, elevation angle, azimuth angle, and time. The field of view of these

planar phased-array systems covers the full extent of UAS flight paths, and can implement filtering methods to remove

background reflections from the environment.

(a) 3D surveillance volume of a single planar
phased-array radar

(b) Radar Network Cells

Fig. 3 UAS surveillance using planar phased arrays.

To expand the coverage of the radar along the ground, multiple radar systems could be arranged into a grid similar to

the current cell phone antenna network. This configuration, shown in Fig. 3(b), is designed to establish coverage over a

wide area while maintaining low radiated power and ensuring that a single antenna is not overwhelmed with tra�c.

Since UAS only need to know about nearby air tra�c, this cellular radar sensor network also provides an e�cient

solution to manage the volume of data produced by air tra�c monitoring. A maneuvering aircraft will communicate

only with nearby radar sensors to obtain local air tra�c information rather than being required to communicate with

a central source that transmits global air tra�c. This type of a system is scalable depending on the amount of air

tra�c expected. In rural areas, the cells could be very large or the system could just use on-board sensors for collision

avoidance since little intruding tra�c is expected. In densely populated urban environments where a lot of tra�c is

expected cells could be made smaller to ensure adequate coverage and load balancing.

The system described in the previous paragraphs is feasible using currently available technology. While radar

systems of the past have typically been large and cumbersome, being made up of bulky waveguides and heavy ferrite

components, progress in microwave integrated circuits has driven down the cost and the size of radar systems to create a

new class of small, short range, low power, low cost systems [13]. While automotive applications make up the majority

of these systems, there is a growing body of work using small frequency modulated continuous wave (FMCW) radar

systems in UAS sensing. Kemkemian et al. proposed a MIMO radar architecture for UAS sensing to to determine angle

of arrival information in elevation and azimuth [14, 15]. Itcia et al. implemented a SAA radar on a Cessna that was

capable of detecting larger aircraft using floodlight illumination and digital beamforming receiver for a fully static
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system [16]. Shi et al. produced a similar system using o� the shelf components that demonstrated good performance

in bench-top testing [17].

Radar inherently has high resolution in range but poor resolution in angle, which is why it requires a phased-array

antenna to provide that information. Antennas arranged in a regular pattern use the propagation path di�erence between

elements as a way of determining the direction of arrival of a target. A phased array forms a beam in a particular

direction by multiplying the antenna outputs by pre-calculated weights and summing the outputs to produce a single

result that simulates an antenna pointed in that direction. In systems where receivers are costly, this beamforming

occurs directly at the antenna output and is referred to as analog beamforming. In systems such as this one where the

cost of adding multiple receiver channels is low, the beamforming occurs after the signal has been digitized and is

referred to as digital beamforming. Analog beamforming allows the system to steer the beam much more rapidly than a

mechanical gimbal. Digital beamforming allows the user to form many beams and track multiple targets at di�erent

angles simultaneously.

A phased-array radar sensor o�ers many advantages for SAA detection in UAS applications. Using a ground-based

phased-array radar frees up payload requirements on UAS. A planar phased array also can provide fast update rates

as well as accurate angle and range information. Finally, using smaller, low-power, and short-range systems, such

as the planar phased-array FMCW radar design described in this paper, enable a scalable, low-cost radar network to

provide surveillance capabilities required for SAA detection. The flight results presented in Section VI use a preliminary

prototype of this radar, a four-channel phased-array system that scans only in the azimuth direction.

III. Target Tracking and Track Management
In this section we address the major components of target tracking and multi-track management.

A. Front-End Signal Processing

The signal produced by an FMCW homodyne radar is a sum of sinusoids of di�erent frequencies, where each

frequency corresponds to a target’s range. The signal is sampled and the FFT is used to produce a range compressed

image (RCI) for each radar pulse. Each RCI is composed of the positive frequency bins of the FFT, where the number

of bins is Nbins = Ns/2 and each frequency bin is proportional to a specific range bin. The sampling and FFT are

performed on each of the Nc receiver channels.

Letting �k [i] denote the RCI from the kth channel for range bin i, and letting

�[i] =
"
�1[i] �2[i] . . . �Nc [i]

#>
, (1)
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then the correlation matrix for each range bin is

Ri = �[i]�H [i]. (2)

To increase the signal-to-noise ratio (SNR) of the targets, Navg correlation matrices, from consecutive radar pulses, are

averaged to form the averaged correlation matrix R̄i .

Using these averaged correlation matrices, target range detection is performed. Targets are detected by setting an

amplitude threshold based on the noise statistics of the radar. The detection system then discriminates between targets

and non-targets based on whether a particular return rises above the threshold or not. The radar system sets a threshold

based on the estimate of the noise power in each range bin [18]. In this threshold method, the estimate of the noise

power p̃i for each of the Nc channels in the ith range bin is computed by saving multiple R̄i in a noise-only environment,

averaging over an Nsave window, and then computing the mean of the diagonal elements of R̄i . The estimate of the

noise power p̃i is given by

p̃i =
1
Nc

X

jNc

R̄i[ j, j]. (3)

The noise statics of each range bin follows an exponential probability distribution, Pr( �k )=�i exp��i p̃i , where

�i=1/E{p̃i } is the inverse of the expected value of the noise power estimate for each range bin [19]. By using this noise

power estimate to calculate the exponential parameter �i for each range bin, the probability of false alarm for each range

bin is given by [19]

Pi
fa = exp (��iTi ), (4)

where Ti is the amplitude threshold. Then, by choosing an appropriate value for the probability of false alarm for each

range bin, we solve for Ti in Eq. (4) as

Ti =
ln(1/Pi

fa)

�i
. (5)

Finally, digital beamforming is used to obtain the azimuth and elevation angles to each target. The return power as a

function of the ith range bin, azimuth angle ↵, and elevation angle " is given by

S(r, ↵, ") = wH (↵, ")R̄iw(↵, "), (6)

where w(↵, ") is the weight vector for a particular azimuth and elevation angle pair (↵, "). The bearing angle with the

greatest returned power is used as the estimate of the target’s azimuth and elevation angles.
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B. Multiple Target Tracking

One of the requirements of a SAA system is the ability to detect and track multiple targets. There are numerous

multiple target tracking (MTT) algorithms available in the literature. In this paper we use the recursive-RANSAC

algorithm developed by Niedfeldt [20–24], that has several advantages over existing MTT algorithms. The SAA

problem for small UAS requires that the MTT algorithm includes track management, is robust to clutter and missed

measurements, and is computationally e�cient. Competing algorithms do not include all of these features. For example,

the global nearest neighbor [25], (joint) probabilistic data association filters [26] [27], and particle filters [28] do not

include track management. The probabilistic hypothesis filter [29, 30] is not robust to missed measurements, and the

multiple hypothesis tracking filter [31] is not computationally e�cient.

The R-RANSAC algorithm retains in memory all measurements from the past Nw time steps and uses a stochastic

search algorithm to find trajectories that fit the data over the time window. The data is fit using a Kalman filter using an

assumed motion model given by

x[k] = Ax[k � 1] + ⇠[k],

y[k] = Cx[k] + ⌘[k], (7)

where ⇠[k] and ⌘[k] are zero-mean Gaussian random vectors with known covariance. For this paper we assume that the

targets move with nearly constants acceleration, implying that the state x 2 R6 is composed of the inertial position and

velocity of the target. Accordingly, the system matrices are given by

A =

*....
,
I3⇥3 �tI3⇥3

03⇥3 I3⇥3

+////
-

C =

 
I3⇥3 03⇥3

!
,

where we have assumed that the radar measurements of range r, azimuth ↵, and elevation ", have been converted to

NED coordinates using

n = r cos(↵) cos(") + nrd,

e = r sin(↵) cos(") + erd,

d = r sin(") � drd, (8)

where (nrd, erd, drd)> is the NED location of the radar station.

One of the issues that arise when using the transformed measurement in Equation (8) is that the noise characteristics
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of the radar cannot be accurately transformed into the NED coordinate frame. This is a problem because the noise

characteristics are used in the R-RANSAC algorithm to decide if a new measurement is an inlier to an existing model.

The noise characteristics in the range, azimuth, and elevation frame can be described as an inverted shallow bowl as

illustrated in Figure 4. As the range to the target increases the diameter of this bowl also increases because �↵ and �"

remain constant. This means that the noise in the north, east, and altitude directions grows with range, and the relative

noise among the three directions changes depending on the azimuth and elevation angles.

"

north↵

r

�"

�r

�↵

east

Fig. 4 Covariance of radar measurements.

The solution is to convert the NED coordinates of the existing tracks to range, azimuth, and elevation using

*........
,

r

↵

"

+////////
-
,

*........
,

p
n2 + e2 + d2

tan�1
⇣
e
n

⌘

sin�1
✓

�dp
n2+e2+d2

◆

+////////
-
, (9)

and then to determine if the current measurement is an inlier to the existing track, using �r , �↵ and �" .

Another modification is needed to make the R-RANSAC algorithm work with a ground-based radar SAA scenerio.

Since a ground-based radar will provide measurements for all aircraft in its field of view, measurements of the ownship

will be sent to the R-RANSAC algorithm, a track will be created for the ownship, and the ownship track will be identified

as an intruder. If the ownship is identified as an intruder, the path planner will create an avoidance path causing the

ownship to deviate from its path when such a maneuver is not necessary. The modification made within R-RANSAC is

to use the ownship’s known states, received from the data link between the ownship and the ground control station, as a

second set of measurements that is used to identify the track corresponding to the ownship.

IV. Collision Detection
Collision detection is a challenging problem due to inherent noise, errors in prediction, and modeling the uncertain

dynamics and intent of intruding aircraft [32–36]. Moreover, limited on-board computational resources, fast closing
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speeds, and unanticipated maneuvers make it challenging to detect collisions without excessive false alarms.

The purpose of computing the collision risk is to determine an alert threshold value that triggers the initiation of an

evasive maneuver to avoid an imminent collision with the detected intruding aircraft. A number of collision detection

methods have been suggested in the context of air tra�c management, mobile robotics, and autonomous control. Recent

surveys on this topic include Kuchar & Yang [37], Albaker & Rahim[38], and Angelov [4]. Many of these approaches

can either be classified as geometric or probabilistic, where each approach has di�erent techniques to deal with errors.

In the geometric approach, the collision risk is based on the geometric relationship between aircraft. Aircraft trajectory

predictions are based on linear projections of current aircraft states such that the uncertainty of the predicted trajectory

is translated into areas around the predicted trajectory referred to as safe zones. Linear projections are computationally

e�cient and prediction errors are negligible over short time horizons [39, 40] or assumed known when flight plans

are communicated [41]. On the other hand, probabilistic methods estimate the probability of collision based on a

probabilistic model of future intruder dynamics. The event probability is then compared to a certain threshold above

which the aircraft is deemed to be in collision. These probabilities can be estimated using approximate analytical

solutions [42], numerical approximation [43, 44], or Monte Carlo methods [45–47]. The expected utility is another

approach used to develop a risk alerting system that accounts for future changes in alerts [48]. In general, probabilistic

approaches are computationally intensive but su�er from fewer false alarms than geometric approaches.

In this paper, we use a simple collision detection logic that assumes that both the intruder and ownship are following

straight-line paths. The collision logic is continually updated to account for scenarios where this assumption is violated.

Let �p j = p j � pO be the position of the jth intruder relative to the ownship, and let �v j = v j � vO be the relative

velocity, where (p j, v j ) and (pO, vO) are the inertial positions and velocities of the jth intruder and ownship respectively.

If t is the current time, and ⌧ is the look-ahead time, then the relative position of the intruder at future time t + ⌧ is given

by

�p j (t + ⌧) = �p j (t) + ⌧�v j (t).

The time to the closest point of approach denoted as ⌧cpa is defined as the future time instant at which the relative

distance between aircraft is at a minimum. Assuming that the future flight paths of both aircraft are a straight line, the

point of closest approach is calculated by finding ⌧ so that ����p j (t + ⌧)
��� is minimized. By simple calculus we get that

tcpa,j =

8>>>>><>>>>>:

��p>j �v j
k�v j k2 if ����v j��� , 0,

0 otherwise.
(10)

Note that tcpa,j will be zero when the relative position vector �p j is perpendicular to the relative velocity vector

�v j . The product �p>j �v j characterizes whether or not the two aircraft are converging (�p>j �v j < 0), or diverging
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(�p>j �v j > 0). A negative closest point of approach implies that the aircraft are diverging from each other.

The standard choice of the protection zone is a cylindrical volume with radius ds and height hs . Accordingly, the

horizontal and vertical range to the target at future time t + ⌧ is given by

d j (t + ⌧) =
���(I3⇥3 � kk>)(�p j (t) + ⌧�v j (t))���

h j (t + ⌧) =
���k>(�p j (t) + ⌧�v j (t))���,

where k = (0 0 1)>.

To predict whether or not the collision will occur for each intruder within the sensor range, we use the collision

detection logic listed in Algorithm 1. In Algorithm 1, the horizontal distance threshold dth and the time threshold ⌧th

are design parameters that define the collision avoidance threshold. The collision avoidance threshold is a variable

boundary around the ownship, larger than the collision volume and depends not only on distance, but time and other

factors [49, 50]. Line 2 in Algorithm 1 checks whether the current horizontal range d j (t) to the intruder is less than a

horizontal threshold distance dth, or if the intruder is converging and the time to CPA is below a time threshold ⌧th. Line

3 checks to see if the horizontal and vertical distances at the predicted CPA are below the minimum safe distances ds

and hs/2, respectively. If so, then line 4 initiates a collision avoidance maneuver.

Algorithm 1 Collision detection algorithm
1: for each jth intruder within sensor range do
2: if ����p j

���  dth or (�p>j �v j < 0 and tcpa,j  ⌧th) then
3: if d j (t + ⌧cpa,j)  ds and h j (t + ⌧cpa,j)  hs/2 then
4: Initiate avoidance maneuver.
5: end if
6: end if
7: end for

V. Collision Avoidance Planning
Once a collision threat has been detected, the collision avoidance system must select the proper evasive maneuver.

The essential requirement for the collision avoidance algorithm is to perform the avoidance maneuver so that the

distance at the closest point of approach to the intruder is equal to, or greater than a minimum required safe distance.

There are many di�erent options for path planning for collision avoidance, and numerous algorithms have been

proposed [35, 51–58]. In this paper, we use the two-step collision avoidance algorithm proposed in [59]. The basic idea

is to use a high-level deliberative planning technique that updates a set of high-level waypoints on a relatively slow time

scale, and then refines that waypoint path with a low-level reactive planner that accommodates the vehicle dynamics

and reacts to wind and unexpected motion of the intruders on a relatively fast time scale. Therefore, the path-planning

approach taken in this paper consists of two steps. In the first step, an initial suboptimal path is generated using an
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A⇤ search. In the second step, a chain of unit masses connected by springs and dampers evolves in a simulated force

field, using the A⇤ solution as an initial condition. The chain is described by a set of ordinary di�erential equations that

is driven by virtual forces to find the steady-state equilibrium.

The A⇤ algorithm is a widely used graph-based search method that uses an admissible heuristic to guide the search

for a minimum-cost path between an initial node and one or more possible goal nodes. The A⇤ algorithm is proven to be

complete subject to the resolution of the grid employed and will always find a solution if one exists [60]. A drawback of

A⇤ search is that it is inherently a static algorithm, which means that when the workspace changes the previous path is

no longer valid and the A⇤ algorithm must replan from scratch. For the collision avoidance problem, the airspace around

the ownship is represented by a grid of regularly sized cells. The ownship and intruders are localized to a specific cell,

and the nominal ownship path is represented as sequence of connected cells. Unlike many path planning methods that

use A⇤ search, the nodes of the graph must take into account timing information. Therefore, a node on the graph is

uniquely defined by its position, and the time of potential arrival of the ownship to that cell. The algorithm expands a

position cell by determining the surrounding cells that are reachable from the current cell, and then determining the

average time to transition between cells. In our current implementation, we assume that altitude can only change when

the aircraft is flying straight ahead.

The segment cost of moving from a cell centered at wa to a cell centered at wb is given by

g (wa,wb ) = kd kwb � wa k + ktct (wb, p j ) + kncn + kr cr, (11)

where kwb � wa k is the Euclidian distance between wa and wb , ct (wb, p j ) is the threat cost that intruder j exerts on

cell wb , cn is the cost of deviating from the original path, cr is the risk of collision, and kd , kt , kn , and kr , are positive

gains [59]. The final cost for the cell centered at wb is given by

e(wb ) = g (wa,wb ) +
���wb � w f

���,

where w f is the center of the cell that contains the nominal path when it leaves the local A⇤ grid, and the last term is the

heuristic that guides the A⇤ search. Figure 5(a) and 5(c) show the results of the A⇤ algorithm for a single intruder.

The second step of the collision avoidance planner is a chained-based potential field planner that explicitly takes

timing information into account. Once an initial path has been generated by the A⇤ algorithm as shown in Figures 5(a),

and 5(c), it is superimposed by a chain of unit masses that are connected to one another by springs and dampers. The

chain-based method is employed for two reasons. The first is to smooth the initial path generated by the A⇤ algorithm,

and the second is to dynamically react to changes in the environment. The basic idea is to impose forces on each mass

in the chain based on the predicted location of the intruders, assuming that the intruder follows a straight-line path from
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Fig. 5 The chain-based collision avoidance initialized by the A⇤ algorithm.

its current location. Additional forces are imposed on the elements of the chain to ensure that turning rate constraints

and flight-path angle constraints are respected. Additional details for the chain-based planner are given in [59]. The

final results of the chain-based planner for one intruder are shown in Figures 5(b) and 5(d).

VI. Flight Results
The algorithms described in this paper have been extensively tested in simulation and results are described in [19]. In

this paper, we will focus on hardware implementation and flight results that demonstrate the performance of the proposed

ground-based radar sensor, R-RANSAC estimation scheme, collision detection, and collision avoidance algorithms. We

used a 3D Robotics (3DR) X8 multicopter for the ownship and two 3DR Y6 multicopters for the intruders. A high-level

depiction of the flight experiments is shown in Figure 6. Both the ground control station and the radar sensor are fixed

on a platform that is positioned 1.83 m above the ground with the radar sensor is angled up by 3 deg to reduce ground

clutter. All multicopters are flying at a constant altitude of 4.5 m above ground, and their start locations are roughly

50 m apart from each other. In addition, we have attached a corner reflector on each of the multicopters to enhance the

radar cross section (RCS), and hence improved radar detectability.

15



1.83 m

ownship intruder 2 intruder 1

3 deg.

4.5 m
ground control

station with radar

50 m 50 m

Fig. 6 Sketch of the encounter geometry of flight test (not to scale).

In this experiment, the R-RANSAC algorithm, the collision detection and avoidance algorithms, the interface module

with the radar hardware, and communication with the ownship multicopter are implemented in Matlab/Simulink on a

Lenovo Intel core i5 processor. The experimental setup is depicted in Figure 7. The telemetry of the ownship including

position and velocity states and the avoidance waypoints are communicated between the ground-station laptop and the

Pixhawk autopilot on-board the ownship using MAVLink message protocol over a 915 MHz 3DR telemetry radio set.

The radar measurements are received through a wired connection with the laptop and read into Matlab/Simulink using a

UDP receive block.
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Fig. 7 The ground-based radar SAA experiment structure diagram.

In the flight test, we used a compact 2D line-array radar system that provides range and azimuth information about

targets. The radar system is shown in Figure 8 and the key design parameters are listed in Table 1. It worth noting that

this radar sensor was initially designed for an airborne SAA system for small UAS [61–63]. The main design objectives
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were to minimize SWaP, and to provide a reasonably large field-of-view of approximately 120 deg horizontally and

30 deg vertically.

Table 1 Radar Sensor Parameters

Parameter Value Parameter Value
Weight 120 g (0.26 lb) Size 2.25 in x 4 in x 1 in
Consumed power 12 W Transmitted power 250 mW
Center frequency 10.25 GHz Radio frequency bandwidth 500 MHz
Sweep duration 2.048 ms Intermediate frequency bandwidth 1 MHz
System noise figure 6 dB Antenna elevation beamwidth 18 deg
Antenna gain 12 dB Antenna azimuth beamwidth 80 deg
Array steerable range 120 deg Number of receive elements 4
Peak channel coupling approx. �20dB Synthesized azimuth beamwidth 25 deg

(a) Single transmitting and four-channel phased-array
receiving antennas.

(b) Radar system processing boards.

Fig. 8 Portable 10 GHz FMCW phased-array radar system.

During the flight test, the radar processing board was used for digital signal processing. In the future, this board will

also run the R-RANSAC tracking, collision detection, and collision avoidance algorithms. From the radar processing

boards, the radar measurements were sent to a laptop, that served as a ground control station and also ran the tracking,

collision detection, and collision avoidance algorithms. Since the current radar hardware is only capable of providing

angular measurements in the azimuth direction, the altitude of the tracked targets is unobservable. Therefore, we

assumed that each of the aircraft were flying at a constant known altitude.

The radar system uses a single transmitting antenna and a four-channel phased-array receiver that scans the azimuth

angle as shown in Figure 8(a). The beamwidth of the synthesized beam varies from approximately 25 deg when steered

at boresight to 32 deg when steered near the edge of field of view. Since these beamwidths are quite wide and the

range bins are quite narrow, the radar system is unable to resolve two detected aircraft that are within 10 to 15 deg

of each other at the same range bin. The R-RANSAC tracking algorithm is designed to take into account unresolved
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Fig. 9 Encounter geometry of ground-based SAA flight test.

measurements of multiple targets.

As shown in Figure 8(b), the radar processing system consists of four printed circuit boards. These boards are

(bottom to top): (1) the RF transmitter and receivers, (2) the IF amplification and filtering, (3) the A/D converters, and

(4) the digital signal processing and control board. In the flight test, the radar measurement is sampled 4096 times at a

sampling frequency of 2.048 MHz. To increase the SNR, we averaged correlation matrices across 32 time steps. In

addition, to remove the background clutter we collected 400 noise measurements using a variable probability of false

alarm from 0.03 at the near range bins to 0.15 at the far range bins.

The initial encounter geometry of the flight test is shown in Figure 9. A snap shot at the start of flight test is shown

in Figure 10. The initial intended paths of the ownship and the intruders are shown with dashed black and solid blue

lines, respectively. In the flight test, we have defined the paths of the ownship and intruders in the NED reference

frame, however, the plots of results are shown in the forward-right (FR) reference frame of the radar system. In this

configuration, the forward-axis points out the radar antenna, and the right-axis points out the right of the radar system.

The orientation of the FR radar reference frame is approximately 73.8 deg relative to north. This specific orientation

was due to the physical location of the flight test. For convenience purpose, the collision avoidance path is also shown

in the radar FR reference frame. The location of the ground control station and the radar system were obtained with

respect to the Global Positioning System (GPS) home location. GPS provided ground truth data for the flight results.

As shown in Figure 9, the ownship starts at (1, 0)> in the FR reference frame, with an initial heading of zero degrees

measured from the forward direction and follows a straight line path to reach the next waypoint located at (101, 0)> m.

The ownship flies at a constant speed of 1 m/s. The ground control station is located at (�2, 0)> (not shown in the

18



Ownship
Intruder 2Intruder 1

Fig. 10 Ground control station with radar and three aircraft at the start of the test.
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Fig. 11 The avoidance path of the ownship and the paths of the intruders in the FR inertial frame centered
about the home location.

figure). Since the avoidance planning is performed in the horizontal plane, the virtual collision volume is reduced to a

circle. Because of the small scale of the designed encounter geometry for this flight test, our choice of the collision

volume is a scaled-down circular disk of radius ds = 10 m.

The encounter geometry consists of two intruders: one is approaching head-on and the other is converging from the

right with respect to the ownship. These intruders follow straight-line paths at a constant speed of 1 m/s. If no collision
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avoidance is planned, the dcpa with respect to the first and second intruders is approximately 8 m and 27 m, respectively.

Since the dcpa with the first intruder is less than the defined horizontal safety distance ds , this encounter scenario will

lead to a collision. The ownship needs to plan an avoidance maneuver that does not as well lead to a collision with

either intruder. Figure 11 shows the intruders’ paths and the avoidance path planned by the ownship.

The horizontal distance and time threshold parameters are set to dth = 100 m and ⌧th = 10 s. A detailed description

of the collision avoidance algorithm and its design parameters can be found in [19]. The region of the flight test is

discretized into grid cells of size 10 by 10 m. Through the implementation of the collision avoidance algorithm, we

found it desirable to append certain functionality to increase robustness of the avoidance maneuver. In the A⇤ search

algorithm, the cost term is modified to include the time to CPA in the denominator as in [19]

cr =
kr

dcpa⌧cpa
. (12)

The reason for including ⌧cpa is primarily to o�set the e�ects of a small dcpa in certain situations. Specifically, if a small

dcpa is not expected to occur for an extended period of time, then we should temporarily reduce this cost allowing the

ownship greater versatility in its flight path to overcome other threats in the immediate future [19]. An additional cost

term is added to Eq. (11) to reward a node that causes the ownship to travel in a direction opposite to the direction of the

jth intruder. The objective is to select grid cells which are behind the intruders. The cV cost term is expressed as [19]

cV =
kV
tcpa

(v j � vO), (13)

where � is the dot product operator, and kV is a tunable cost parameter. Similarly, an additional force term is added to

the chain-based planning algorithm to push the nodes of the chain behind intruder if they come within certain distance

the the intruder [19]. The direction that this force is applied is the opposite the direction of the intruder velocity vector,

however it does not allow the ownship path to be pushed directly in front of an intruder which would lead to a collision.

Figure 12 shows the range and azimuth angle to all aircraft measured by the radar system. This figure shows that the

principal signal decay happens as the azimuth angle increases o� boresight as the aircraft leave the antenna beam. The

range data, however, remains well resolved for the duration of the test. From this figure we also note that, the measured

range has a slight scale factor error compared to the true range to each of the aircraft which could be corrected through

further calibration and testing.

As discussed earlier, during the flight test we attempted to orient the radar with a precise heading relative to north,

and a specific elevation angle. We also attempted to position the radar at a specific GPS latitude, longitude and altitude

location relative to the ground. Although we attempted to position and orient the radar with specific values, errors

were unavoidable that resulted in inaccuracies in our measured values when compared to the truth. For ground truth
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Fig. 12 Radar measurements: range, and azimuth of ownship and intruders.

data, we used the estimated GPS positions of the three aircraft from the Pixhawk autopilot state estimators that also had

inaccuracies due to IMU sensor, GPS, and state estimator errors. These errors are further seen in Figure 13, which

shows the radar measurements of each aircraft in the FR coordinate frame.
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Fig. 13 Aircraft paths constructed using radar measurements.

The state estimates of position and velocity are shown in Figures 14 and 15, respectively. Further details on

R-RANSAC implementation and its design parameters for this application are given in [19]. In this flight test, the

R-RANSAC algorithm runs at a sample rate of 0.1 s. In the R-RANSAC algorithm, we also chose to implement a
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Fig. 15 R-RANSAC tracks: velocity estimates of aircraft.

constant acceleration dynamic model for aircraft. The R-RANSAC algorithm successfully tracks all aircraft as shown

in Figures 14 and 15. Additionally, we note that the modifications made to the R-RANSAC algorithm successfully

enable it to distinguish the ownship track from the intruder’s tracks given that the ownship states are provided from the

telemetry link via the 3DR radio. These figures show that the R-RANSAC algorithm takes about 5 s for good models to

appear after the initial measurements are received.

The position state estimates of the aircraft are shown in Figure 16. The estimated paths are shown in the radar’s FR
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reference frame. The R-RANSAC tracks accurately align with the predicted location of the radar measurements.

The relative range between the ownship and the two intruders is shown in Figure 17. For both intruders, the relative

range never falls below the safety defined distance ds which means that no collisions have occurred, and that the ownship

successfully planned an avoidance maneuver.

VII. Summary and Conclusions
In this article, we have introduced a ground-based sense-and-avoid system that is feasible for small UAS. We have

demonstrated a complete proof-of-concept SAA solution, including a portable and low-cost ground-based radar system,

multi-target tracking and estimation, collision detection, and avoidance planning algorithms.

The proposed radar system is a compact phased-array that operates in FMCW mode and exploits state-of-the-art
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digital signal processing techniques to drive down the size, weight, power, and cost of the radar design. The digitally

steered phased-array radar system described in this paper can track targets simultaneously, while eliminating the need for

gimbaled steering or mechanical scanning. In the flight test, the radar system prototype transmitted 250 mW of power,

which is su�cient to detect a small-UAS with an RCS of 0.01 m2 at about 250 m. The radar sensor can detect larger

aircraft at approximately 800 m if the target’s RCS is 1 m2 or larger. In general, the radar cross section of the intruder

aircraft and the power of the transmitted pulse are two major variables in determining the maximum detection range.

As evident by the flight test results, the R-RANSAC algorithm provides a robust and reliable tracking method that

properly exploits radar measurements to track multiple intruders and distinguish them from the ownship in the presence

of noisy, cluttered, and missed measurements. The R-RANSAC algorithm provides an increased level of safety and

integrity to the SAA system and allows for an adequate time window for the collision avoidance logic to plan an evasive

maneuver.

The proposed collision detection algorithm is designed to reduce risk of collisions between aircraft. Using the

geometric relationship between aircraft, it estimates the time and distance at the closest point of approach to predict

collision alerts that trigger the avoidance algorithm. Linear projections and geometric parameters can be computed

e�ciently making it a tractable solution for multiple intruders. Moreover, prediction errors are negligible over short

look-ahead time windows.

The proposed collision avoidance approach generates solution paths that balance the objectives avoiding collisions

and minimizing path length. One of the advantages of our approach is that timing information is specifically embedded

in the future path representation of the aircraft, thus allowing the ownship to plan a free-collision path over a wide range

of encounter scenarios including multiple intruders and dynamic environments.
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