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of polarizability inputs for refractive index
predictions in organic polymersy
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In a previous study, we introduced a new computational protocol to accurately predict the index of
refraction (RI) of organic polymers using a combination of first-principles and data modeling. This
protocol is based on the Lorentz—Lorenz equation and involves the calculation of static polarizabilities and
number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute
the polarizabilities within the density functional theory (DFT) framework using the PBEO/def2-TZVP-D3 model
chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a
computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting
its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that
exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations
on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark
DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for
this application domain. We compare results for conjugated and non-conjugated polymers, augment our
original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into

rsc.li/pccp

|. Introduction

Organic materials with high index of refraction (RI) have gained
considerable attention in recent years as they hold tremendous
potential for applications in optic and optoelectronic devices."
The vast majority of carbon-based polymers has relatively low RI
values (typically in the range of 1.3 to 1.5),>” which has made
the search for compounds with high and very high RIs (greater
than 1.8) an active area of research.®® The key to increasing the
RI values of organic polymers is our ability to tailor their
molecular structure.**™"' However, the number of compounds
that results from considering even only a modest selection of
polymer building blocks is practically infinite. Experimental
efforts alone are too time-, labor-, and resource-intensive to
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the RI predictions, and offer guidance for method selection.

effectively survey the massive chemical space associated with this
problem setting (and many others in the molecular sciences).
Computational high-throughput screening approaches have
emerged as a way to rapidly characterize and assess large
candidate pools, and to identify lead compounds for further
in-detail investigations (see, e.g., ref. 12-20). In the context of
optical materials with large dielectric constants (and thus large
RI values), the work by Ramprasad et al.> > is particularly
noteworthy. The foundation for any in silico screening study are
suitable modeling protocols for the properties and compound
classes of interest. For use in large-scale investigations, these
protocols not only have to produce sufficiently accurate predictions,
but they also have to be fast. A number of modeling approaches for
the RI values of polymers have been introduced in the past,*?>**2°
each with distinct advantages and disadvantages in the areas of
accuracy, reliability, robustness, cost, and range of applicability.
We recently introduced a new protocol’® based on a synergistic
combination of first-principles and data modeling. In this protocol,
we calculate RI values 7, using the Lorentz-Lorenz equation with the
number density N and polarizability o of a given candidate
compound as input parameters. We obtain the former using the
van der Waals volume and packing factor of the compound, and
the latter directly from quantum chemistry. Specifically, we com-
pute the van der Waals volumes using Slonimskii’s method,*"
and for the packing fraction of the amorphous bulk polymer,
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we introduced a support vector regression®>** (i.e., machine
learning) model. For the polarizabilities, we employ Kohn-Sham
density functional theory (DFT)**** using the PBEO functional
and def2-TZVP basis set along with D3 dispersion correction. As
the protocol’s target systems are quasi-infinite polymers, we
obtain the asymptotic trends towards the polymer limit through
a linear extrapolation scheme from a sequence of small-oligomer
calculations. This scheme exploits the relatively short correlation
length in many systems, in which it leads to an early onset of
extensivity in the response properties. We tested the RI predictions
of the protocol on 112 non-conjugated polymers and the results
show very good agreement with the experimental values (R* = 0.94).
The protocol is overall economical and suitable for high-
throughput in silico studies. However, the polarizability calculations
nonetheless stand out as the bottleneck that limits its efficiency.
Another concern is that for conjugated systems with long-range
correlation, the linear extrapolation scheme will require results
of very long oligomers to reach extensivity, and thus become
prohibitively costly.

In this paper, we present a benchmark study of several DFT
model chemistries to identify approaches that deliver a more
favorable balance of accuracy and efficiency for polarizabilities
in the context of large-scale RI studies, and to understand the
nature of prediction errors. We also revisit the protocol’s extra-
polation scheme, augmenting it with a non-linear option that uses
shorter oligomer sequences below the extensivity threshold, and
demonstrate its validity and performance. We provide an analysis
of how the errors in the polarizability results propagate into the RI
value predictions. In Section II, we introduce the benchmarking
methodology and computational details of this study. Section III
presents and discusses the results for the model chemistry
performance analysis (Section IIIA), the improved extrapolation
approach (Section IIIB), and the error propagation (Section IIC).
Our findings are summarized in Section IV.

lIl. Methods and computational details

As mentioned in Section I, the RI protocol introduced in ref. 30,
employs the PBEO/def2-TZVP-D3 model chemistry to compute
the static polarizabilities that serve as input for the Lorentz-Lorenz
equation. The protocol calls for calculations on a sequence of
small oligomers until a constant increase in the polarizability per
added monomer unit is observed, which allows for a linear
extrapolation to the polymer limit. For the non-conjugated
polymers studied in ref. 30, extensivity was reached for very
short oligomers (i.e., n « 10 monomer units).

Computed polarizability values and the derived RI predic-
tions generally depend on the employed quantum chemical
approximation, and different model chemistries yield different
results at different computational cost. In the DFT benchmark study
at hand, we compare six reasonable functional choices from across
Jacob’s ladder,*® covering generalized gradient approximation
(BP86®”?%), hybrid (B3LYP,**™*° PBE0"'"), meta-hybrid (TPSSh*?),
highly-parametrized meta-hybrid (M06-2X****), and double-hybrid
(B2PLYP®) functionals. Their formal cost scaling with system size is
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n® (generalized gradient approximation), n* (hybrid functionals),
and n° (double-hybrid functionals), respectively. Each functional is
tested with the atom-centered double-{ def2-SVP and triple-{
def2-TZVP basis sets (abbreviated for convenience as DZ and TZ,
respectively) from the highly successful def2 basis set family by
Ahlrichs et al.*® The polarizability calculations were performed
analytically via the solution of the coupled-perturbed self-
consistent field equations in all-electron, closed-shell mode,
and include Grimme’s D3 dispersion correction®” (we omit the
D3 label for brevity). By default, we use single-point calculations
on geometries optimized at the universal force field (UFF) level*®
via the OpenBabel code® as outlined in ref. 30. For the PA,
PB, PE, and PT studies in Section IIIB, we utilize B3LYP/DZ
optimized structures instead in order to obtain a clean results as
UFF gives less reliable geometries for conjugated systems. We
included these optimized geometries (xyz coordinates) in the
ESIL.{ All DFT calculations were carried out using the ORCA 3.0.2
quantum chemistry program package®® with default settings.
The benchmark study involved about 5400 individual DFT
calculations, which we performed using our automated virtual
high-throughput screening code ChemHTPS 0.7.%"°>

The RI predictions from the different model chemistries are
compared with the experimentally known RI values of the same
112 non-conjugated polymers used in ref. 30. In addition, we
perform an in-depth analysis of two prototypical examples for
non-conjugated and conjugated polymers, ie., polyethylene (PE)
and polyacetylene (PA), respectively. To study the transition from
the conjugated to the non-conjugated regime, we further select
polythiophene (PT) and poly(1,4-phenylene) (PB) as test cases, and
break their conjugation by introducing non-planarity in the polymer
chain (ie., by constraining consecutive rings as perpendicular to
each other as shown in Fig. 1).

The following statistical measures are used in the error analyses:
mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean squared error (RMSE), root mean squared
percentage error (RMSPE), mean error (ME), mean percentage error
(MPE), maximum absolute error (MaxAE), maximum absolute
percentage error (MaxAPE), and difference of most extreme (i.e.,
spread of largest positive and negative) errors (AMaxE). Aside
from providing these direct measures, we also quantify the

 Cg A P Pa S S & o gt

PB (planar)

PR AR PSS oS e ]

PB (nan-planar)

\/PT (planar)

- St
J J J
PT (non-planar)

Fig. 1 Planar and non-planar structures of poly(1,4-phenylene) (PB) and
polythiophene (PT).
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extent of correlations between results of different methods by
listing R?, slope, and offset values of linear regressions.

lll. Results and discussion
A. Model chemistry performance

Fig. 2 compares the RI predictions based on the different model
chemistries with the experimentally known values of our 112-
polymer data set, and Table 1 summarizes the corresponding
error and correlation statistics. The analysis reveals that the
PBEO/TZ and B3LYP/TZ results are favorable by most measures
without a clear advantage for either one. This is a somewhat
surprising finding considering the competition of more modern
and more advanced functionals. Since PBE0/TZ was the method
used in ref. 30, we choose it as the high-level reference through-
out the following benchmarking. The RI prediction errors it
yields are very reasonable with MAPE = 0.9%, RMSPE = 1.2%,
and MaxAPE = 3.0%, and the results have very little directional
bias as seen from MPE = —0.3%.

The basis set error between DZ and TZ is the most signifi-
cant error contribution we observe, with the best DZ result
being inferior to the worst one from TZ. Most RI values derived
from TZ polarizabilities follow the experimental trends faithfully,
with linear regression slopes close to 1, offsets close to 0, and only
moderate spread (all R* > 0.91, except for BP86 with R* = 0.86).
B2PLYP and BP86 show the largest MAE, MAPE, and RMSPE
with B2PLYP systematically under- and BP86 systematically
overpredicting (MPE = —1.7% and +1.8%, respectively). BP86 also
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shows the largest values for the worst-case metrics MaxAE,
MaxAPE, and AMaxE. Despite its lower-order scaling, BP86/TZ
is thus not a convincing alternative to the PBEO/TZ reference.
The more expensive B2PLYP/TZ does not offer any benefits,
despite featuring a higher-level functional.

Considering only the DZ results, this picture changes notably,
with BP86 having the lowest MAE, MAPE, RMSE, RMSPE, ME,
and MPE. B2PLYP is doing worst in most of these measures,
while the remaining functionals show comparable performance
without a distinct competitive edge. However, considering the
correlation with the experimental data, B3LYP, PBEO, and TPSSh
with R values between 0.86 and 0.90 have an advantage over the
other functionals (including BP86 with only 0.81). Given the
considerable savings due to the smaller basis set, there is a case
to be made for either BP86/DZ, B3PLY/DZ, PBEQ/DZ, or TPSSh/
DZ as low-cost alternatives to the PBEO/TZ reference. The errors
for each of these methods are, however, 3-4 times larger. While
BP86/DZ is the cheapest option with overall low errors, it does
exhibit some of the most extreme failures and weakest correlation
with respect to more accurate approaches. An interesting observation
for the DZ results is that all functionals lead to underestimates of
the RI predictions with negative MPE values between —2.8% and
—5.1%. This bias is more pronounced for high-RI compounds,
which is apparent from the linear regression slopes being signifi-
cantly below 1.

In Fig. 3, we show the polarizability results underlying these
RI predictions and compare them with the PBEO/TZ benchmark
reference. An analysis of the errors and correlations is provided
in Table 2. Despite the considerable differences in the employed
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Fig. 2 Comparison of refractive index (RI) values calculated from polarizabilities of different model chemistries with experimental values of 112 non-
conjugated polymers. Linear regressions (red lines) and their correlation coefficients (R?) are provided in each case.
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Table 1 Performance of different model chemistries for Rl predictions. The error and correlation analysis compares the computational results to the
experimentally known values of 112 non-conjugated polymers. The most favorable finding for each statistical measure is highlighted in bold and the best
results within the DZ method spectrum in bold-italics

Functional ~ BP86 B3LYP PBEO TPSSh MO06-2X B2PLYP
Basis set DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ
MAE 0.043 0.029 0.058 0.013 0.060 0.014 0.054  0.016 0.065 0.017 0.079 0.027
RMSE 0.052 0.038 0.082 0.031 0.063 0.018 0.064  0.018 0.058 0.021 0.070 0.022
ME —0.042 0.027  —0.057 0.001  —0.060  —0.004  —0.054  0.005 —0.060 —0.008 —0.078  —0.026
MaxAE 0.177 0.159 0.166 0.077 0.142 0.045 0.137  0.073 0.149 0.088 0.161 0.068
deltaMaxE 0.195 0.197 0.218 0.111 0.170 0.089 0.144  0.115 0.290 0.137 0.242 0.096
MAPE 2.8% 1.9% 3.8% 0.8% 4.0% 0.9% 3.6%  1.1% 4.2% 1.1% 5.2% 1.8%
RMSPE 3.4% 2.5% 4.1% 1.1% 4.2% 1.2% 3.8%  1.4% 4.5% 1.4% 5.4% 2.1%
MPE —2.8% 1.8%  —3.8% 01%  -3.9%  —03% —-35% 03% —39% -05% —51% —17%
MaxAPE 12.1%  10.9%  11.3% 4.8% 8.9% 3.0% 8.6%  4.3% 9.6% 6.1%  10.1% 4.4%
R 0.811 0.863 0.856 0.943 0.876 0.937 0.901  0.915 0.728 0.911 0.835 0.933
Slope 0.900 0.980 0.930 1.050 0.910 1.000 0.900  1.000 0.820 0.950 0.860 0.990
Offset 0.110 0.060 0.050  —0.080 0.070  —0.010 0.100  0.000 0.210 0.070 0.130  —0.020
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Fig. 3 Comparison of polarizability results « for 112 non-conjugate polymers from different model chemistries compared to PBEO/def2-TZVP-D3

(PBEO/TZ) benchmark reference results. Linear regressions (red lines) and

electronic structure approximations, we can clearly see that the
results of the different methods are very strongly correlated. With
respect to PBE0/TZ, we find R> values of at least 0.97 (0.99 within
the TZ approaches). However, the direct polarizability error
metrics are many times larger than those for the RI predictions.

The DZ results stand out for all having large negative MPE
values between —6.4% and —12.6%, slopes <1, and negative
offsets, ie., they all systematically underestimate the polariz-
abilities, and the bias increases with increasing magnitude of
the polarizability values. For TZ, the slope is in each case much
closer to 1 and the offset closer to 0 (except for BP86 where TZ

This journal is © the Owner Societies 2019

their R? values are provided in each case.

has a larger offset). The B3LYP/TZ results are closest to those of
the reference, with TPSSh/TZ giving acceptable accuracy as well.
Amongst the DZ results, BP86 again yielded the best results for
several of the error metrics, however, it also exhibits some of
the most extreme discrepancies, i.e., with respect to MaxAE, MaxAPE,
AMaxE, and R? it performs worst (together with M06-2X). B3LYP/DZ,
PBE0/DZ, and TPSSh/DZ again yield very good results without
the extreme error instances seen in BP86/DZ. B2PLYP and
MO06-2X do not offer any benefits in either basis.

In summatry, we find that DZ approaches result in systematically
lower polarizability values than the corresponding TZ models,

Phys. Chem. Chem. Phys., 2019, 21, 4452-4460 | 4455
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Table 2 Performance of different model chemistries for polarizability calculations. The error and correlation analysis compares the results of 112 non-
conjugate polymers to those of the PBEO/TZ benchmark reference. The most favorable finding for each statistical measure is highlighted in bold and the

best results within the DZ method spectrum in bold-italics

. BP86 B3LYP PBEO TPSSh MO06-2X B2PLYP

Functional

Basis set DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ DZ TZ
MAE 6.087 5.451 8.500 1.539 8.569 0.000 7.600 2.303 9.613 2.072 11.817 3.552
RMSE 8.914 6.905 13.166 4.549 9.816 0.000 9.661 2.429 8.563 3.429 11.126 3.631
ME —5.948 4.855 —8.192 0.753 —8.510 0.000 —7.585 1.386 —8.381 —0.646 —11.511 —3.475
MaxAE 53.633 30.601 39.532 13.474 24.988 0.000 23.220 12.839 38.311 16.574 40.911 12.447
delta MaxE 60.449 42.629 52.706 21.072 28.291 0.000 24.057 23.107 62.492 32.505 58.001 13.847
MAPE 6.5% 5.6% 9.3% 1.6% 9.5% 0.0% 8.4% 2.2% 10.3% 2.0% 12.8% 3.8%
RMSPE 81.1% 64.1% 93.9% 23.0% 93.0% 0.0% 82.1% 30.9% 104.0% 32.3% 124.6% 42.8%
MPE —6.4% 5.2% —9.1% 0.8% —9.5% 0.0% —8.4% 1.4% —9.4% —0.6% —12.6% —3.7%
MaxAPE 35.0% 23.5% 31.6% 10.5% 17.3% 0.0% 16.4% 9.2% 23.2% 17.7% 21.3% 11.9%
R? 0.977 0.989 0.987 0.997 0.992 1.000 0.995 0.995 0.972 0.993 0.987 0.996
Slope 0.940 1.036 0.928 1.006 0.929 1.000 0.930 1.011 0.928 0.983 0.887 0.964
Offset —0.276 1.492 —1.420 0.183 —1.742 0.000 —0.952 0.338 —1.581 0.925 —0.800 —0.083

which we can rationalize based on the less flexible DZ expansion
of the frontier orbitals that have to facilitate the electronic
response. Between the functionals, BP86 yields the largest
polarizabilities, which is consistent with the well-known over-
delocalization of orbitals from generalized gradient approxi-
mation functionals. The order of the other functionals is (based
on their MPEs): TPSSh > B3LYP > PBEO > M06-2X > B2PLYP.
For the hybrid functionals, this correlates directly with their
increasing amount of exact exchange, i.e., 10%, 20%, 25%, and
54%, respectively, which is known to lead to increasing orbital
localization, thus damping the electronic response.> For the
double-hybrid B2PLYP with 53% exact exchange, additional
perturbation contributions play a role in further lowering the
polarizability values it produces.

B. Extrapolation scheme

In Fig. 4, we show for the non-conjugated prototype polymer PE
the incremental increase of the polarizability o with oligomer
size, i.e., with the number of monomer units n. We observe the
rapid convergence of o/n to a constant value after only a few

341 —=— BP86/DZ —+— TPSSh/DZ
—=— BP86/TZ —+— TPSSh/TZ
35| —— B3LYPDZ —— M06-2X/DZ
—e— B3LYP/TZ —— M06-2X/TZ
30/ — PBEO/DZ —— B2PLYP/DZ
—+— PBEO/TZ —— B2PLYP/TZ

28

26

24

Polarizability per unit a/n (bohr3/unit)

22

2 4 6 8 10
# of monomer units n

Fig. 4 Polarizability o per number of monomer units n of polyethylene
(PE) with varying oligomer chain length computed using different model
chemistries. DZ results are shown in blue, TZ results in red.
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monomer units. This behavior represents the basis of the linear
extrapolation scheme used to great effect in the original RI protocol.
The initial decrease in o/n from monomer to trimer is due to finite
size effects and the diminishing impact of the terminal hydrogens.
Note that the order of the asymptotic values for the different model
chemistries is consistent with our discussion of basis set and
functional effects at the end of Section IITA.

While this behavior is typical for non-conjugated polymers,
systems with a conjugated n-electron backbone may only show
extensivity for very long oligomers, ie., when the system
becomes larger than its electronic correlation length. Fig. 5
shows the o/n values for the conjugated prototype polymer PA as a
function of oligomer size. Unlike PE (which reaches a constant
o/n for n = 4), the a/n of PA does not converge in the plotted range
up to n = 11, but rather it increases with increasing number of
monomer units throughout which the valence electrons are
correlated. As the oligomer size increases, so do the conjugation
and polarizability. The n-system is subject to response in its entirety
(rather than its individual constituent monomer units), which thus
cooperatively amplifies the polarizability values it yields.

=
N
o

BP86/DZ
—=— BP86/TZ
—e— B3LYP/DZ
—e— B3LYP/TZ
—+— PBEO/DZ
801 —— PBEO/TZ
TPSSh/DZ
—¥— TPSSh/TZ
601 —« M06-2X/DZ

—<— MO06-2X/TZ
—— B2PLYP/DZ
—— B2PLYP/TZ

100

40

Polarizability per unit a/n (bohr3/unit)

20

2 4 6 8 10
# of monomer units n

Fig. 5 Polarizability « per number of monomer units n of polyacetylene
(PA) with varying chain length computed using different model chemistries.
DZ results are shown in blue, TZ results in red.
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Fig. 5 offers another interesting observation, ie., that for
conjugated systems, the basis set effect (reflecting the more
inflexible DZ orbital expansion) stops being the dominant factor
and that the functional effect (reflecting exact-exchange-driven
localization) starts dominating the order of the results for
longer chains. Instead of a clean separation by basis set (all
TZ values above DZ), we now approach an order by functional.
This trend is consistent with the regression slopes discussed in
Section IIIA. Finally, we note that while the individual monomer
units of PE and PA have comparable polarizabilities, the o/n
values of PA grow dramatically and become much larger than
those of PE.

For a clearer comparison of the conjugated and non-conjugated
regimes, we study two conjugated example polymers — PB and
PT - for which we break conjugation by introducing non-planarity
as shown in Fig. 1. As expected, the o/n values for conjugated PB
and PT increase rapidly with oligomer length (see Fig. 6 and 7),
while for non-conjugated PB and PT, they increase significantly
less and start to taper off. (The slight residual increase may be due
to a weak conjugation between the m-system of the aromatic rings
and the o-framework of the perpendicular adjacent rings.)

= 160
= = BP86/DZ
=2 e B3LYP/DZ
%140 +  PBEO/DZ
S v TPSSh/DZ
§120 <« MO06-2X/DZ
o » B2PLYP/DZ
g —— PB (planar)
% 1001 —— PB (non-planar)
o
oy
S 80
@©
N —— = ———
N =
o
o 60
o
0 2 4 6 8 10

# of monomer units n

Fig. 6 Polarizability per monomer unit of planar and non-planar PB as a
function of chain length, calculated from different model chemistries.
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Fig. 7 Polarizability per monomer unit of planar and non-planar PT as a
function of chain length, calculated from different model chemistries.
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Fig. 8 Highest occupied molecular orbital electron density of planar and
non-planar pentamers of PB and PT at PBEO/TZ level of theory.

To illustrate the change from conjugated to non-conjugated
systems, we plot the electron density of the highest occupied
molecular orbital (HOMO) for PB and PT pentamers (see Fig. 8;
plots of the HOMOs themselves are provided in the ESIT). The
conjugated systems feature a relatively evenly delocalized HOMO
density that can readily facilitate substantial charge redistribution
throughout the molecule. The non-conjugated systems in contrast
have HOMO density that is more localized on the disconnected
monomer units.

As the polarizability in conjugated systems increases non-
linearly until extensivity is reached, we propose a non-linear fit
to efficiently account for this behavior. (We stress that the linear
extrapolation scheme introduced in ref. 30 still works in principle,
but in practice, it may require calculations of extended oligomer
sequences that would be prohibitive.) The a/n value shows a quasi-
linear trend for smaller n before it asymptotically converges to a
constant value for large n. A mathematical expression (eqn (1)) was

proposed by Hurst et al.>* to model this behavior.

o = ex a—l—é—i-i (1)
o n n?

However, it does not provide a good fit for long oligomers
(¢f Fig. 9). We propose to add a 3rd-order term as outlined in
eqn (2).

o= ex a+é+£+i (2)
B n n? o
We can show that this new model improves the predictions

significantly, in particular by capturing the correct asymptotic
limit: Fig. 9 displays the PBEO/DZ results for PA, PB, and PT for
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Fig. 9 Validation of the old (1) and new (2) polarizability models for long
oligomers (up to n = 50) of PA, PB, and PT. The models are parametrized
using a fit of PBEQ/DZ data for short oligomers (up to n = 10).

n up to 50. (To save computing time, the structures were not
fully optimized, but bond lengths and angles were selected
based on the optimized geometry of the PBEO/DZ optimized
n = 10 oligomer.) The model predictions are based on para-
meters fitted using the DFT results for relatively small oligomers
up to n = 10. The new model is valid for all the three example
polymers yielding very small asymptotic errors, while the model
by Hurst et al. shows significant discrepancies in each case. We
note that the model rapidly improves further as additional
trainings points are provided.

C. Error propagation

As we remarked on in Section IIIA, the deviations between the
polarizability results with respect to the reference is relatively
large with MAPEs between 1.6-5.6% for TZ and 6.5-12.8% for
DZ, while those of the RI predictions that build on these o
values is much smaller with MAPEs (with respect to the
experimental data) between 0.8-1.9% for TZ and 2.8-5.2% for
DZ. To understand the error propagation from polarizability
(and number density) to RI values, we consider the underlying
Lorentz-Lorenz equation (eqn (3)).

2—1 4
EZE ¥ 23 - ?TEN“ (3)
dn, n2—1)(n2+2)/dN da
)
g =)@ +2) 5)

6n,2

We differentiate eqn (3) to obtain eqn (4) and subsequently
the error factor (E) as shown in eqn (5). We observe that E is
only dependent on the magnitude of the RI value. For RI values
ranging from 1 to 1.8, the value of E ranges from 0 to 0.59,
respectively, as plotted in Fig. 10. Hence, when the error in the
number density is ignored, the error in the RI predictions, for RI
around 1.5, should be in the order of 40% of the inherent error
in the polarizabilities. For instance, if a lower-level method such
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Fig. 10 Error factor (E) for Rl values (n,) ranging from 1 to 1.8.

as BP86/DZ is employed for the polarizability input instead of
the PBEO/TZ reference (with MAPE of 6.5%), the additional error
in the RI prediction would be about 2.5% points (the observed
value is somewhat larger with 2.8% points). This analysis
suggests that the use of more affordable model chemistries
with larger polarizability errors can be justified as it only leads
to a modest increase in the RI prediction errors. The same
argument holds for using an extrapolation scheme with relatively
short oligomer sequences below the extensibility threshold with
reasonable asymptotic errors.

IV. Conclusions

In the work presented here, we benchmarked a range of different
DFT model chemistries for the calculation of polarizability inputs
for RI predictions via the Lorentz-Lorenz equation. We found that
PBE0/def2-TZVP-D3 and B3LYP/def2-TZVP-D3 perform best with
RI prediction MAPEs of less than 1%. They notably outperform
several more modern and complex functionals, including B2PLYP.
Amongst the less demanding approaches, BP86/def2-SVP-D3,
B3PLY/def2-SVP-D3, PBEO/def2-SVP-D3, and TPSSh/def2-SVP-D3
emerge as viable alternatives with reasonable errors given the
considerable cost savings, with BP86 being the most efficient
option (alas also exhibiting the largest uncertainties). We could
observe trends and systematic biases consistent with small basis
set inflexibility and over-localization driven by exact exchange.
Aside from this model chemistry assessment, we also revisited
the oligomer extrapolation scheme to rapidly obtain polarizability
values at the polymer limit. We augmented our linear approach
that is highly efficient for non-conjugated polymers with a non-
linear alternative for conjugated systems, building on a model by
Hurst et al. We could show that this more flexible model can
make accurate asymptotic predictions given data from relatively
short oligomer sequences, which renders it dramatically more
efficient than the linear scheme and more accurate than the
Hurst model without additional cost. Finally, we conducted a
formal analysis of the polarizability error propagation into the RI
predictions and found a relatively modest impact, suggesting
that reasonable errors in the polarizabilities due to the use of
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lower-level model chemistries or approximate extrapolation
schemes are acceptable. With these additional insights, we
can make informed and rational (rather than ad hoc) decisions
regarding the computation of polarizabilities, and tailor our RI
modeling protocol to alleviate bottlenecks that limit its utility
in the context of high-throughput studies. In subsequent work,
we plan to deploy the adjusted protocol for the large-scale
screening of organic polymer candidate libraries in order to
identify concrete high-RI lead compounds.
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