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FORESIGHT PAPER

Towards an integrated science of movement: converging
research on animal movement ecology and human mobility
science
Harvey J. Miller a, Somayeh Dodge b, Jennifer Millerc and Gil Bohrer d

aDepartment of Geography and Center for Urban and Regional Analysis (CURA), The Ohio State University,
Columbus, Ohio, USA; bDepartment of Geography, Environment and Society, University of Minnesota,
Minneapolis, Minnesota, USA; cDepartment of Geography and the Environment, The University of Texas at
Austin, Austin, Texas, USA; dDepartment of Civil, Environmental and Geodetic Engineering, Environmental
and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA

ABSTRACT
There is long-standing scientific interest in understanding purposeful
movement by animals and humans. Traditionally, collecting data on
individual moving entities was difficult and time-consuming, limiting
scientific progress. The growth of location-aware and other geospatial
technologies for capturing, managing and analyzing moving objects
data are shattering these limitations, leading to revolutions in animal
movement ecology and human mobility science. Despite parallel tran-
sitions towards massive individual-level data collected automatically
via sensors, there is little scientific cross-fertilization across the animal
and human divide. There are potential synergies from converging
these separate domains towards an integrated science of movement.
This paper discusses the data-driven revolutions in the animal move-
ment ecology and human mobility science, their contrasting world-
views and, as examples of complementarity, transdisciplinary questions
that span both fields. We also identify research challenges that should
be met to develop an integrated science of movement trajectories.
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Introduction

Among the traits shared by animals and humans is intentional movement through space to
perform activities. These purposeful movements are fundamental to the dynamics of ecosys-
tems, cities and environments. Consequently, there is a long-standing scientific concern with
analyzing and interpreting intentional movement in both basic and applied research.
Ecologists and biologists study animal movement patterns to understand behaviors such as
habitat selection, migration, territoriality, foraging and mating, and also to understand
responses to environmental changes. Human mobility researchers, spanning disciplines such
as geography, anthropology, transportation, urban planning and public health, are concerned
with how humans move through natural and built environments to conduct required and
desired activities such as working, shopping, recreation and socializing, how to plan transpor-
tation and cities to facilitate mobility and accessibility, and the impacts of mobility on the
environment, health, social capital and well-being.
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For years, animal movement and human mobility researchers struggled with scarce data
on movement behavior, relying on painstaking data collection (e.g. observational studies,
mark-recapture, travel diaries) and/or aggregate data (e.g. seasonal distribution maps, origin-
destination flows, intercept counting). This is changing due to stunning advances in location-
aware technologies (LATs) for moving objects data (MOD) collection, such as global position-
ing system (GPS) data recorders, mobile phones, radiofrequency identification (RFID) chips,
geotags, radiolocation devices and georeferenced social media (González et al. 2008,
Giannotti et al. 2011, Batty 2012, Kays et al. 2015). These technologies facilitate the collection
of massive individual-level mobility databases on animal and humanmovement patterns. For
example, Figure 1 shows 546,502 GPS points for 55 individual turkey vultures (Cathartes aura).
Individual tracks cover observation periods of 1 month to 11 years, ~2 years per bird on
average, during November 2003–December 2016. The image includes individuals from both
South and North American populations conducting seasonal migrations to and from
Venezuela and the Northern Amazon Region (data can be accessed through Bildstein et al.

Figure 1. 546,502 GPS points for 55 individual turkey vultures (Cathartes aura) from 2003 to 2016.
(Source: Bildstein et al. 2016)
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2016, more details about the dataset in Dodge et al. 2014). Figure 2 shows 2,678,893 GPS
points for 536 humans (Homo sapiens) over individual one-week time periods in 2013, around
Salt Lake City, Utah, USA (data provided by the authors). Complementing the growth of
individual movement data is the increasing availability of contextual data about the move-
ment environment via embedded and remote sensors, crowd-sourced observational net-
works and global reanalysis data (Stefanidis and Nittel 2004, Trenberth et al. 2008, Heipke
2010). A third converging and complementary trend is the rise of geosimulation techniques
that can model large systems such as cities, ecosystems and societies at the level of the
individual entities that comprise these systems (Benenson and Torrens 2004).

Collecting and analyzing individual-level animal and human movement data has chal-
lenges. LATs have technical issues such as limited battery life, blocked signals and a need to
operate continuously in sometimes harsh conditions, sometimes leading to data gaps. Data
derived from georeferenced social media and location-based services (LBS) are unlikely to
be representative of the larger population or the general behaviors of individuals (Miller
and Goodchild 2015). Collecting animal movement data can involve trapping with poten-
tial risks to the individual. Both human and animals face locational privacy concerns.
Movement data, combined with land use and other data, can reveal intimate details of
human lives (Gkoulalas-Divanis and Bettini 2018). Animal location data create risks to
species that have economic value to humans (Cooke et al. 2017). Data sharing can be
blocked by these privacy concerns, but also the monetary and strategic value of these data
(Lazer et al. 2009). Despite these persistent challenges, it is not an exaggeration to declare

Figure 2. 2,678,893 GPS points for 536 humans (Homo sapiens) over individual one-week time
periods in 2013.
(Source: authors)
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that a data-driven scientific revolution is occurring animal and human movement beha-
viors and their relationships to other ecological and human dynamics.

The emergence of interdisciplinary scientific communities focusing on moving objects
data analytics reflects the data-driven revolution in movement and mobility research
(Demšar et al. 2015). However, while connections and collaborations are growing among
researchers in the respective domains of animal movement and human mobility, linkages
across the animal-human divide are not growing as strongly. This is understandable given
the different nature of the moving entities in the two domains, and the different scientific
and policy questions surrounding their movement at the individual and aggregate levels.
However, we believe there is potential for a fundamental science of movement that spans
this intentional behavior in both domains. There are potential commonalities in methods
used by researchers in both domains for describing movement, and collecting, managing,
analyzing and visualizing moving objects data (see, for example, Figures 1 and 2, visualized
using similar approaches). There are lessons to be learned by exchanging worldviews,
theories and methods across the animal and human divide. The synergy that will be gained
by converging animal and human movement science may advance research in both fields,
and perhaps support a more holistic approach to understanding movement and other
spatial dynamics that will erase the artificial boundary between animal and human worlds.

This paper discusses the background, opportunities and challenges underlying
a convergent science of movement trajectory data. Although we do not intend to
draw sharp boundaries around this field, we focus on entities such as animals and
humans that move with intent across geographic space to perform activities.
Movement by unintentional entities propelled by purely physical processes such as
hurricanes or pollen is relevant; however, this is a subset of broader and more difficult
problem of understanding entities that move with an internal drive to conduct activities.
Similarly, although movement and kinetics in situations such as sports and dance are
intentional, these are special activities that take us beyond the focus of movement as
a part of daily life and as a means to arrive at geographic locations to perform activities.

Background

This section discusses the technological advances that are creating a revolution in
animal movement ecology and human mobility science. It also describes the interdisci-
plinary research communities that have evolved separately within each domain. To
illustrate the potential synergy from converging animal and human movement research,
this section concludes by illustrating several transdisciplinary research questions that
span both domains.

Advances in mobile objects data collection and management

A mobile entity is an individually identifiable thing in the real world that can change its
geometry and/or location frequently with respect to time. In animal movement ecology and
in human mobility science, changes in the location of mobile entities are often more
important than changes in their geometry, therefore a mobile entity is often conceptualized
as a point, although polygons can also be used if the entity has crucial space-occupying
properties (e.g. cars on a highway). Amobile object is the representation of this entity using
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mathematical or computational means. A trajectory is a mathematical representation of the
path of mobile object and is quantified as a time-ordered sequence of locations. Mobile
objects databases are computerized record-keeping systems that allow integrated storage,
updating and querying of mobile objects (Miller 2008).

Location-aware technologies (LATs) are technologies that can frequently report their
location in geographic space. LATs are generally associated with mobile entities: they
include the global positioning system (GPS), radiolocation, telemetry, and dead-reckoning
techniques coupled with computers and tablets on the desks and laps of humans, sensors
transported by vehicles or attached to animals. New generation of multimodal sensors (e.g.
smart watches, fitness trackers, GPS collars) equipped with accelerometers and gyroscopes
provide auxiliary activity data of moving objects (Long et al. 2018). Geosensor networks are
wirelessly communicating, sensor-enabled, small computing devices distributed in geogra-
phy and connected as a network to enable in-situ monitoring of dynamic properties such as
location change and movement (Duckham 2012). Remote sensing devices include passive
and active sensors carried on aircraft and satellites for environmental monitoring over local
(urban/ecosystem patch), regional, and global scales using both passive (reflected light) and
active (laser) methods (Pettorelli et al. 2014). These sensors provide contextual information
about the environment of mobile entities. Helping to manage all these data are geographic
information systems (GIS), and mobile objects database systems (Miller 2008): all have seen
remarkable growth in their capabilities to handle MOD and data describing dynamic
geographic phenomena. We can fuse these locational and environmental data with beha-
vioral and physiological data from animal ‘biologgers’ (Rutz and Hays 2009, Kays et al. 2015)
and human ‘lifeloggers’ (Swan 2012). The result is an explosion of data on moving entities
that is outpacing the development of appropriate analytical methods.

Another source of MOD is simulation methods such as agent-based models (ABMs).
ABMs can be used to generate trajectories of moving objects over space with respect to
time by integrating known aggregate information (such as origin-destination flow totals,
population counts, or coarse movement data) with assumed or empirically derived goals
and intentions for individual entities, and parameters for individual movement steps and
interactions between objects. Simulated trajectory data is important for cases where track-
ing is limited or may be impossible (e.g. small or endangered species, large population
flows, remote areas, and for data with gaps and signal loss). Application domains include
crowd behavior (Torrens 2014), travel demand (Zhong et al. 2015), habitat analysis (McLane
et al. 2011), animal migration (Bennett and Tang 2006, Bohrer et al. 2014) and foraging and
other movement behaviors (Vincenot et al. 2015, Ahearn et al. 2017). These simulation
methods can scale to large urban populations and beyond; an example is the TRANSIMS
activity and travel simulation system that can model individual movements for the entire
population of a large city such as Sydney, Australia (Huynh et al. 2015).

Emergence of interdisciplinary research communities

Human mobility
Scientific study of human mobility emerged in the 1950s with the application of
computers and mathematical modeling to analyze traffic patterns in support of urban
planning. Most of the early techniques involved undifferentiated flows among aggre-
gated spatial zones using techniques such as regression analysis, spatial interaction
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modeling and network flow equilibrium. In the mid-twentieth century, time geography
emerged as a conceptual framework and notation system for representing individual
activities in space and time within human geography – well in advance of the existence
of mobility data (Hägerstrand 1970, Ellegård and Svedin 2012). A behavioral turn in the
1970s used consumer choice models based on microeconomic theory and activity-based
analysis based on time-use studies; these approaches require survey and diary data that
was burdensome, expensive and time-consuming to collect (Lay 2005). The rise of LATs
is revolutionizing the scientific study of human mobility by facilitating the acquisition
and analysis of detailed movement data.

Two interrelated fields have emerged at the interface of Geographic Information
Science (GIScience) and transportation science. Computational movement analysis
(CMA) focuses on the development and application of techniques for collecting, mana-
ging, and analyzing MOD to better understand moving entities and related spatial
dynamics (Gudmundsson et al. 2012). Mobility science also focuses on computational
techniques for MOD, but with a stronger focus on transportation and cities. Mobility
science leverages MOD to move beyond the aggregate and static transportation and
urban models of the twentieth century to individual-level models that recognize social
differences in accessibility and the potential for human systems to exhibit emergent
behavior. Applications include human activity and travel demand (Alexander et al., 2015;
Toole et al. 2015), urban dynamics (Batty 2012), potential exposures to environmental
hazards (Su et al. 2015), formation and maintenance of social networks (Wang and Song
2015) and other phenomena associated with humans’ use of time, space and technol-
ogies associated with movement.

Animal movement
A rapidly growing subfield of ecology, animal movement ecology focuses on under-
standing the ‘causes, mechanisms, and spatio-temporal patterns of (organismal) move-
ment and their role in various ecological and evolutionary processes’ (Nathan et al. 2008,
p. 19052). Ecology is fundamentally spatial, and movement connects these processes
operating across heterogeneous landscapes and from the scale of an individual to
population (Cagnacci et al. 2010).

Traditional animal-movement studies dating back to the 1950s were focused on
better understanding where animals go and how they use resources in order to improve
management strategies. This was typically done by estimating an animal’s ‘home range’,
defined by Burt (1943, p. 351) as ‘that area traversed by the individual in its normal
activities of food gathering, mating, and caring for young’. The home range methods are
continuously evolving and have been superseded by statistical modeling of space use,
geostatistics, and spatially explicit mechanistic models (e.g. Börger et al. 2008, Kie et al.
2010). Nonetheless, the home range concept and methods used to estimate one are still
controversial 75 years later, and this disconnect between a better conceptual under-
standing of what a home range is and the rapid technological advancements in data and
algorithms used to measure it provides a good example of putting the ‘technological
cart before the conceptual horse’ (Powell and Mitchell 2012, p. 948).

More contemporary animal movement studies quantify movement patterns (see
Turchin 1998) to make inferences about likely behaviors. The movement ecology para-
digm views animal movement phenomena as interactions between internal (e.g.
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intention, readiness to move, motivation) and external factors (e.g. environment, other
individuals), movement and navigation capacities (e.g. speed, modality), generating the
observed movement path (Nathan et al. 2008). Movement parameters describing these
interactions can be compared to determine whether statistically different characteristics
are suggestive of different behaviors or processes (e.g. foraging, navigation, environ-
mental preferences). Movement models such as random walks are used as null models
to compare real movement parameters (e.g. step length, turn angle, net displacement)
for animals as diverse as bottlenose dolphins (Bailey and Thompson 2006), caribou
(Bergman et al. 2000), geckos (Gruber and Henle 2004), caterpillars (Wallin 1991), cows
(Laube and Purves 2011), tigers (Ahearn et al. 2017), and butterflies (Root and Kareiva
1984). Any discrepancies between the null and real movement parameters can help infer
the interactions between an organism and its environment that influence the movement
process (Schick et al. 2008, Miller 2012).

Transdisciplinary questions

While there has been limited collaboration between animal movement ecologists and
human mobility researchers, there is evidence of parallel play: researchers in these
disparate fields addressing similar research questions in their respective domains. To
illustrate the potential synergy from converging animal movement and human mobility
research, this section discusses four research questions that have received attention in
both fields. These are: i) measuring and interpreting interactions among mobile entities;
ii) analyzing movement in geographic context; iii) integrating mobility and sensor data;
and, iv) visualizing movement. These questions are not exhaustive; rather, they are
illustrative of the difficult but common questions facing both domains.

Measuring and interpreting interactions among mobile entities
The most basic unit for studying interactions is a pair of locations for two individuals (a dyad),
but more complex units such as networks can be used as well. While interactions can be
considered an extension of movement, the social and psychological explanations and impli-
cations of interactions are not as easily discerned or generalized as first order movement
properties. For example, what kind of interactions exist among themultiple vultures following
similar migration track from North to South America (Figure 1) or among commuters moving
toward downtown Salt Lake City (Figure 2)? Do interactions facilitate a more efficient move-
ment: with vulture – help find thermals that other bird detected; for humans – help avoid
traffic congestion using crowd-sourced traffic information? Do moving individuals prefer to
swarm to the samemovement paths or prefer larger space between individuals? Is the timing
of the movement (time in the morning for Figure 2, or a particular day in Spring in Figure 1
that an individual starts its movement trajectory) affected by the timing and density of the
movements of other individuals?

Movement ecology defines interactions as ‘actions directed towards, or affecting, the
behavior of another animal’ (Whitehead 2009, p. 765). However, measuring interactions
between animals is not straightforward, and depending on the objective of the study,
what is considered an ‘interaction’ can range from physical contact to sharing common
resources, to proximity, or simply being aware of each other. In human mobility science,
interactions among moving humans are crucial for understanding a diverse range of
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phenomena beyond transportation and traffic; these include the dynamic nature of
spatial segregation (Palmer et al. 2013), spatial interaction through social media net-
works (Sui and Goodchild 2011, Liu et al. 2014), and the spread of infectious disease
(Jacquez et al. 2005, Bian et al. 2012).

Measuring interactions among moving entities is difficult in both animal and human
domains. A common approach is demarcating locations in space and time where interac-
tions could potentially occur. It is straightforward to calculate intersections among indivi-
dual activity spaces from MOD, indicating where and when social interaction and joint
activity participation could have occurred (Fieberg and Kochanny 2005, Miller 2005, Neutens
et al. 2008, 2013, Farber et al. 2013). Interactions can also be inferred by measuring the
frequency at which multiple individuals are spatially and temporally proximal to each other
(i.e. co-location of moving points); these are often termed encounter rates, contact rates (in
context of disease spread) and associations in animal movement ecology (Cooper et al.
2008, Crofoot et al. 2008, Ramos-Fernández et al. 2009, Haddadi et al. 2011, Strandburg-
Peshkin et al. 2015). This quantification is dependent upon subjective decisions with respect
to appropriate spatial and temporal thresholds as well as technical limitations of available
resolutions and is especially challengingwhen fine-resolution tracking data are not available
due to the uncertainty of observed trajectories.

Recent contributions to study movement interactions have focused primarily on tech-
nological advancements related to measuring interactions. One of the most basic methods
to measure interaction empirically involves counting paired observations that occurred
within a pre-defined spatial and temporal threshold, and comparing this to a null expecta-
tion. A recent technological advancement employs proximity loggers that are attached to
animals to automate this process. A fix is recorded when a similarly outfitted animal comes
within the specified spatial and temporal distances; however, proximity loggers are limited
to relatively short distances and do not automatically include location information (see
Drewe et al. 2012, Cross et al. 2012 for overview). Bluetooth sensors embedded in mobile
phones have potential for inferring human proximity and interaction (Do and Gatica-Perez
2011, 2013, Matic et al. 2012), although WiFi-based methods have better scalability
(Sapiezynski et al. 2017). However, while these new technologies enable collection of
more and higher quality data, there has not been concurrent methodological advance-
ments for improving the ability to characterize, detect, visualize, analyze and understand
interactions. Many interaction metrics were developed when MOD had coarser spatial and
temporal resolution; the assumptions underlying these metrics are inadequate for the new
types of multidimensional MOD now available. In addition, few studies have tested a range
of interaction metrics using the same data; when they have been compared, the results are
inconsistent (Miller 2012, 2015, Long et al. 2014). Conclusions about interactions among
moving entities are problematic without a better understanding of what interaction metrics
are measuring and how they should be interpreted.

Analyzing movement in geographic context
Traditionally, animal movement ecologists place a greater emphasis on geographic
context such as habitats and land cover, but these data are typically coarse-scale and
static (see Figure 1). Human mobility researchers tend to represent geography using
abstract space (focusing on trajectory geometry) or networks (focusing on network
routes and flows (see Figure 2), with the latter traditionally involving more detailed
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representation of transportation infrastructure than the movement within the infrastruc-
ture. These differences result from the respective intellectual histories of the two fields.
This is changing as high-resolution, detailed geographic data are increasingly available
for natural and built environments (Dodge et al. 2016)

Seidel et al. (2018) review recent contributions to path and space-use metrics, including
those that incorporate environmental context explicitly (e.g. step selection function).
Movement models that include environmental context are effective in determining the
drivers of movement behavior and the parameters that describe it, and in shaping path
choices (Bartlam-Brooks et al. 2013, Bohrer et al. 2014, Dodge et al. 2014, Ahearn et al.
2017). For example using a subset of the vultures in Figure 1, Bohrer et al. (2012) showed
that the vultures prefer to move in locations where thermal uplift is strong. And, with the
same dataset, Dodge et al. (2014) showed that the extent of movement within the nesting
home range (northern edges of the migration tracks) is affected by vegetation greenness
and seasonal temperature. In human mobility studies, geographic context has traditionally
received less attention than behavioral states or social, and/or demographic factors,
although this is changing with newly available data (see, e.g. Horanont et al. 2013,
Siła-Nowicka et al. 2016, Brum-Bastos et al. 2018). Despite this increasing interest in
understanding the geographic context of movement, there has been surprisingly little
cross-over between animal movement ecology and human mobility science.

The wealth of MOD provided by LATs comes with a significant cost, namely, the lack
of path semantics or the motivations and activities associated with the mobility behavior.
Consequently, most methods for analyzing MOD focus on the morphology of an entity’s
trajectory in space with respect to time. For example, a major focus of attention in MOD
analytics is path similarity or the degree of correspondence between two space-time
paths. These methods include shape-based similarity measures (such as Euclidean and
Hausdorff distances) that focus only on the geometry and sequence-based methods, such
as sequence alignment (Shoval and Isaacson 2007, Kwan et al. 2014), Fréchet distances
and edit-distance functions (Yuan and Raubal 2014) that exploit sequence and time in
the trajectory. Other methods for analyzing collections of space-time paths include path
clustering methods and spatial field methods (Long and Nelson 2013). Time-geographic
approaches have also been used to compare activity spaces of different groups of
people and study social context in human mobility (Kwan and Lee 2004, Tribby et al.
2017, Kwan et al. 2018). Geographic context is frequently ignored, but this can help
researchers infer among different behaviors that are consistent with the same mobility
behavior, such as whether apparently coordinated movement is coincidental or indica-
tive of a shared activity. For example, most vultures take very similar paths through
eastern Central America (Figure 1), but that is probably an outcome of the narrow
geography of the region, as vultures cannot fly effectively over water. Similarly, many
of the identical paths taken by humans in Salt Lake City (Figure 2) are driven by the
structure of the road network and not by social interactions.

Merging movement data with geographic context is often referred to as track
annotation, (Mandel et al. 2011) a term that originates in web-browsing, where environ-
mental variables are used to add attributes to the path. Tools that can handle such
merging of movement and geographical context are emerging. Recently, Google
announced the development of Earth Engine (https://earthengine.google.org/#intro), ‘a
planetary-scale platform for environmental data and analysis’, which could become

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9

https://earthengine.google.org/#intro


a common platform for contextual movement analysis. Other, domain-specific tools
have also recently become available, for example the Environmental-Data Track
Annotation (Env-DATA) system in the on-line animal-movement database ‘movebank’
(www.movebank.org), dedicated to geographic annotation of animal movement data
(Dodge et al. 2013, and see a recent example for application of the system: Hallworth
and Marra 2015).

While trajectory annotation techniques are valuable, there is a paucity of analytical
methods that can exploit annotated tracks. A vital research frontier involves developing
mobility analytical techniques and movement models that go beyond the movement
pattern devoid of geographic context to multi-dimensional models that includes what
other things were in the place where the movement occurred. Such context-aware
models will enable research on investigating the influence of a changing environment
on the behavior of moving individuals (Dodge 2016).

Integrating mobility and sensor data
LATs can be bundled with other low-cost sensors that can concurrently measure physio-
logical states, such as the individual’s activity level, heart rate, stress, body temperature,
and environmental states, such as ambient temperature, humidity, light, noise and proxi-
mity to other individuals with devices. Some devices, such as smartphones and critter-
cams, also have cameras and activity logs. These data can be fused with mobility data to
better understand the physiological and environmental context of movement.

In movement ecology, researchers combine accelerometer and tracking data to infer
the behavioral modes of animals, such as foraging, feeding, aggression and active versus
passive flight, and to calculate energy expenditures by animals (Shepard et al. 2008,
Nathan et al. 2012, Shamoun-Baranes et al. 2012). In human mobility analysis, fused GPS
and accelerometer data can help to infer the transportation modes used by individuals
(e.g. walk, bike, drive, bus, light rail) and estimate energy expenditures from active
transportation, such as walking and biking (Brown et al. 2015, 2016, Miller et al. 2015,
Duncan et al. 2016, Lee and Kwan 2018). Body temperature data can help explain diurnal
activity patterns in animals, such as sharks (Papastamatiou et al. 2015), and physiological
indicators of stress can help identify ‘landscapes of fear’ experienced by animals from
interactions with predators or proximity to humans (Støen et al. 2015). The diverse set of
sensors and activity loggers available in smartphones can capture behavioral features
describing movement and physical activity, face-to-face and mediated social interac-
tions, and daily activities such as vacuuming and taking out the trash, health-related
symptoms, such as coughing and sleeping patterns (Harari et al. 2016, 2017).

While fused location and sensor data are promising, there are challenges that cross-
cut animal and human research. Major research challenges include determining the
psychometric and behavioral validity and reliability of sensor data, inferring more
complex behaviors (e.g. grooming among animals; business meetings among humans)
and understanding the relationships between sensed behaviors and consequential life
outcomes such as survival, health and social status (Harari et al. 2016). Another challenge
is that some sensors, especially those bundled with smartphones, are consumer-grade
rather than carefully calibrated scientific instruments, leading to potential data quality
issues (Ganti et al. 2011). Finally, the integration of mobility data with seemingly
innocuous sensor data can lead to ethical challenges since biometric, environmental
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and other contextual data can reveal personal information beyond only location and
time (Christin et al. 2011). Although privacy concerns may seem more apparent for
humans than animals, as noted above these data can expose animals to adverse
interactions with humans. Also, attaching the devices is invasive and stressful to animals,
and their presence may affect the behavior being monitored and perhaps the survival of
the animal (Wilson et al. 2015, Cooke et al. 2017).

Visualizing movement
Visualization can support all stages of movement trajectory data management and
analysis, including data exploration, data cleaning and preprocessing, querying, analysis
and communication of results. Visualization is especially important in a transdisciplinary
science of movement as it provides a common visual language to facilitate data
exploration, uncover hidden patterns in data, disseminate knowledge and even formu-
late hypothesis through visual exploration of movement patterns (Dodge 2016).
Common visualization approaches for representing trajectory data include point and
line density maps (Willems et al. 2009), aggregated maps (Andrienko and Andrienko
2008), flow maps (Wood et al. 2011, Guo and Zhu 2014), and 3D space-time representa-
tions (Demšar et al. 2014, Kveladze et al. 2015).

Movement data is inherently complex due to the intricacies and multidimensionality
of movement in time and space, the heterogeneity and diversity of moving objects,
events, processes and contexts associated with movement, and the wide variety of
spatial, temporal and spatio-temporal properties and relations inherent in these data.
Consequently, transforming movement trajectory data into a small set of effective visual
channels is challenging. Visual analytics of movement refer to technologies, processes
and knowledge that allow humans and computers to cooperate in analysis, problem-
solving and decision-making with complex movement trajectory data (Andrienko et al.
2013). There are a large number of movement data visual analytical techniques emer-
ging; these can be conceptualized and organized in different ways. For example,
Andrienko et al. (2013) arrange their discussion into techniques that focus on the
moving objects and their context, spatial events associated with movement, the places
visited by the objects, and the times when movement occurred. In contrast, Andrienko
and Andrienko (2013) categorize techniques based on whether they examine movement
trajectories as a whole, look within the trajectories for variations in movement proper-
ties, summarize multiple trajectories, or visualize trajectories within context. Chen et al.
(2015) organize their discussion based on the movement data properties being visua-
lized, namely, spatial, temporal, spatio-temporal, and whether these properties are
combined with other object attributes.

Techniques for visual analytics of movement data can crossover between the human
and animal domains since tasks, such as pattern discovery, clustering, summarization
and generalization, are required in both. Major differences between techniques in the
domains concern the types of decisions supported and the role of context in the
visualization process. Visual analytics for human mobility data go beyond exploration
and analysis to also support modeling forecasting, planning and situational awareness
for operational management of transportation, cities and other socio-technical systems
(Chen et al. 2015, Andrienko et al. 2017). Visualizing movement within its geographic
context is important in both human and animal domains, although human movement is
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typically more constrained by infrastructure than animal movement, meaning that the
infrastructure itself can serve as a basis for visualization (Xavier and Dodge 2014,
Andrienko et al. 2017). A challenge facing researchers in both human and animal
domains is balancing the need for sophisticated and powerful techniques for analyzing
complex movement trajectory data with user-friendliness for domain scientists and
decision-makers (Pack 2010, Slingsby and van Loon 2016).

Towards an integrated science of movement: research challenges

The wealth of movement data generated by LATs, managed by MODs and leveraged
with ancillary georeferenced data is not only revolutionizing animal movement ecology
and human mobility science but also creating potential synergies between these com-
munities. As noted above, both communities are undergoing a similar transition from
a data-poor to a data-rich research environment. At the same time, this also involves
a transition from thick data (i.e. highly attributed via painstaking but rich observational
or survey methods) to thin data (i.e. sparingly attributed, often containing only the entity
type and its movement trace). This convergence on similar opportunities and challenges
creates the possibility for cross-fertilization and integration of concepts and methods.

New insights derived from the unprecedented analysis of large collections of
human trajectories have revealed mobility features that have parallels in animal
movement. The central paradigm of animal movement ecology – how resource
variability across landscapes interact with internal drivers and movement and naviga-
tion capacities to affect the performance of individuals and population-level demo-
graphy – is equally applicable to the study of humans (Meekan et al. 2017). For
example, the density of places of employment is likely an important factor in the daily
movement from the outskirts to the center of Salt Lake City (Figure 2), or seasonal
changes in prey density that drive large-distance migrations (Figure 1). At the same
time, data-driven approaches that have ‘fast-tracked’ human mobility science, such as
the identification of emergent movement properties, activity space analysis, analysis
of networks of movement and behavior, and the development and application of
machine learning, advanced visualization and other exploratory techniques, can
inform animal movement ecology (Thums et al. 2018).

This section explores the possibility of a transdisciplinary science of movement that
encompasses both humans and animals. We identify several cross-cutting research
challenges that should be resolved to advance scientific understanding in both domains
and the integration of these fields into a unified research community.

Different approaches to the same problem

Animal movement ecologists tend to follow a bottom-up approach known as step selection
functions (SSFs): they analyze the animal’s selection of step length and direction at the
microscale, inferring the animal’s activities from the movement (Thurfjell et al. 2014).
Conversely, human mobility researchers tend to follow a top-down approach that starts
with the activities that a human needs orwants to conduct, andmodels themobility needed
to fulfill the activity schedule (Miller 2014). The source of this schism is likely the different
approaches used to understand movement in the two domains. With animal movement,
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a bottom-up, inductive approach evolved because it is difficult to knowwhy an animal took
a particular step. Consequently, SSFs associate movement with habitat and environmental
factors. With people, a top-down, deductive approach evolved since investigators could ask
why movement occurred. However, this is not as feasible with big data. We believe there is
value in both approaches; a key research frontier is integrating these approaches into
a common conceptual framework.

The challenge of big but thin data

Both animal movement and human mobility researchers are facing the same challenge
regarding data. In both domains, data was historically scarce but richly attributed. New
location-aware technologies are generating data that is plentiful but thinly attributed. In
both domains, these new data sources favor phenomenological (observed pattern
summary and reproduction) descriptions over mechanistic (process models rooted in
first principles) descriptions. How do we derive explanatory models from data that favors
correlation over causality?

The role of quasi and natural experiments

In both animal and human domains, location-aware technologies, sensors and other
technologies increasingly allow ongoing, persistent observation of movement patterns.
Persistent observation allows the possibilities of natural and quasi-experimental designs
in anticipation (prospective) or response (retrospective) to real-world changes or events.
These approaches can reconcile some of the issues with big but thin data since experi-
mental designs allow stronger causality claims.

Focus: individual or collective?

For both human and animal movement, there are questions surrounding the research
focus. Do we care more about characterizing individual movement to a high degree, or
collective patterns? To what extent are movement patterns of individuals representative
of collective patterns and vice versa? Theoretically, both fields are concerned with
individuals as a basic unit. However, from a pragmatic perspective, understanding
collective movement patterns is often easier since it is simpler to separate general
trends and tendencies from idiosyncratic or episodic behaviors. Furthermore, collective
movement has bigger impacts on broader systems, such as ecosystems, populations,
and cities.

Different scales of movement

Animal-movement ecologists and human-mobility analysts focus on different scales of
both collective and individual movement and tend to use different point of view for the
analysis. Animal movement ecologists tend to focus on collective behaviors, such as
flocking and schooling using a Lagrangian point of view, focusing on the movement of
the dynamic collective object (e.g. Couzin et al. 2002), while human mobility analysts
tend to treat collective movement at broader scales, such as traffic patterns and origin-
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destination flows, and represent these using an Eulerian, fixed-frame point of view that
focuses on locations of interest, where collective movement may occur. In movement
ecology, movement is typically modeled through step-selection functions or random
walks with an emphasis on local movement choices of individuals and the characteristic
of proximate space. In human mobility, movement is often modeled as global patterns
and origin-destination flow. New multi-scale approaches emerging from the intersection
of these models may benefit both areas to study movement across scales. Can we make
movement analytics techniques that work across scales? Can we combine Eulerian and
Lagrangian frameworks? To what extent goal-oriented movement can be inferred from
local movement patterns?

Prediction of movement

Prediction is a common research interest in both movement ecology and human
mobility domains. Movement prediction is essential to inform the mechanisms that
underpin movement (Dodge 2016, Birkin et al. 2018). In mobility it is important to
predict patterns of movement flows at aggregate levels such as migration flows
between countries and traffic flows in urban areas. Here the emphasis is less on
individual trajectories and rather on aggregate movement patterns. Similarly, animal
ecologists are also interested in the prediction of aggregate movement patterns (e.g.
predictions of home ranges, migration corridors, and migration times). However, in
some ecological applications the fine-detail predictive models at individual levels are
also important to generate insight into behavioral differences and responses of
individuals to their changing environment. Nevertheless, the general question is
how to predict trajectories or collective movement patterns in space and time across
spatial and temporal scales.

Validation and calibration of methods

Access to tracking data provide a new opportunity to calibrate and parametrize models
using knowledge constructed from actual observations; for example, how does scale
affect calculation of movement parameters (Laube and Purves 2011)? Future research
should leverage data to advance methodologies in movement science through
a combination of theory-driven models and data-driven analytics.

Do we need a grand theory of movement?

An encompassing theory is an obvious goal of a scientific field. However, it is unclear
whether a grand theory of movement is currently possible. Some animal ecologists
contend there are too many species for a grand theory; some human mobility research-
ers contend there are too many types of travel for an overall theory. A crucial question is
the possibility and utility of a grand theory of movement and whether this is necessary
for a new interdisciplinary science of movement.
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Relationships to grand scientific challenges

To establish the importance of the new interdisciplinary science, we must articulate the
contributions to movement science to grand societal challenges such as environmental
change, sustainability, resilience and social equity.

Conclusion

Due to its fundamental role in the dynamics of life at scales from the individual to
ecosystems, there is long-standing scientific interest in animal and human movement
behavior and patterns. In the past, collecting, managing and analysis data on moving
objects was onerous, leading to small (but thick) individual-level datasets or aggregate
measures. Concepts and methods in the animal movement and human mobility domains
developed independently due to the nature of the entities being studied, leading to distinct
emphases in both fields. Location-aware and geospatial technologies have shattered these
limitations, leading to parallel revolutions in the animal movement ecology and human
mobility science, including the development of interdisciplinary research communities.
While scientific frontiers are advancing in both domains, there has been minimal cross-
fertilization across the animal and human divide. In a classic example of parallel-play, both
fields are converging on the use of big but thin data derived from low-cost sensors but
maintain distinct worldviews. We argue there are potential synergies to be gained from
a transdisciplinary science of intentional movement with respect to geographic space.
Breaking down the conceptual walls between animal movement ecology and human
mobility science requires deliberate effort: history matters, even in science. This paper is
a step in the direction of an integrated science of movement trajectories.
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