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Exponential Error Rates of SDP for Block Models:
Beyond Grothendieck’s Inequality

Yingjie Fei and Yudong Chen

Abstract— In this paper, we consider the cluster estimation
problem under the stochastic block model. We show that the
semidefinite programming (SDP) formulation for this problem
achieves an error rate that decays exponentially in the signal-
to-noise ratio. The error bound implies weak recovery in the
sparse graph regime with bounded expected degrees as well as
exact recovery in the dense regime. An immediate corollary
of our results yields error bounds under the censored block
model. Moreover, these error bounds are robust, continuing
to hold under heterogeneous edge probabilities and a form
of the so-called monotone attack. Significantly, this error rate
is achieved by the SDP solution itself without any further
pre- or post-processing and improves upon existing polynomi-
ally decaying error bounds proved using the Grothendieck’s
inequality. Our analysis builds on two key ingredients: 1) showing
that the graph has a well-behaved spectrum, even in the sparse
regime, after discounting an exponentially small number of edges
and 2) an order-statistics argument that governs the final error
rate. Both arguments highlight the implicit regularization effect
of the SDP formulation.

Index Terms— Stochastic block models, semidefinite
programming, convex relaxation, exponential rates.

I. INTRODUCTION

I
N this paper, we consider the cluster/community1 estima-
tion problem under the Stochastic Block Model (SBM) [1]

with a growing number of clusters. In this model, a set of n

nodes are partitioned into k unknown clusters of equal size; a
random graph is generated by independently connecting each
pair of nodes with probability p if they are in the same cluster,
and with probability q otherwise. Given one realization of the
graph represented by its adjacency matrix A ∈ {0, 1}n×n , the
goal is to estimate the underlying clusters.

Much recent progress has been made on this problem,
particularly in identifying the precise conditions for
exact/weak recovery when there are a few communities
of size linear in n. Moving beyond this regime, however, the
understanding of the problem is far more limited, especially
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in terms of characterizing its behaviors with a growing (in n)
number of clusters of sublinear sizes, and how the estimation
errors depend on the model parameters in between the exact
and weak recovery regimes [2], [3]. We focus on precisely
these questions.

Let the ground-truth clusters be encoded by a cluster matrix

Y∗ ∈ {0, 1}n×n defined as

Y ∗
i j =

�
1 if nodes i and j are in the same community,

0 if nodes i and j are in different communities,

and we use the convention that Y ∗
ii = 1 for all i ∈ [n]. We

consider a (now standard) semidefinite programming (SDP)
approach for estimating the ground-truth Y∗:

�Y = arg max
Y∈Rn×n

�
Y, A− p + q

2
J

�

s.t. Y � 0, 0 ≤ Y ≤ J,

Yii = 1,∀i ∈ [n], (1)

where J is the n×n all-one matrix and h·, ·i denotes the trace
inner product. We seek to characterize the accuracy of the SDP
solution �Y as an estimator of the true clustering. Our main
focus is the `1 error k�Y − Y∗k1, where kMk1 :=

�
i, j

��Mi j

��
denotes the entry-wise `1 norm. This `1 error is a natural
metric that measures a form of pairwise cluster/link errors.
In particular, note that the matrix Y∗ encodes the cluster
relationship between each pair of nodes; an estimator of such
is given by the matrix �YR ∈ {0, 1}n×n obtained from rounding
�Y element-wise. The above `1 error satisfies k�Y − Y∗k1 ≥��{(i, j) : �Y R

i j 6= Y ∗
i j }

��/2, and therefore upper bounds the
number of pairs whose relationships are incorrectly estimated
by the SDP.

In a seminal paper, Guédon and Vershynin [4] exhib-
ited a remarkable use of the Grothendieck’s inequality, and
obtained the following high-probability error bound for the
SDP solution �Y:

k�Y − Y∗k1

kY∗k1
�

�
k2

SNR · n
. (2)

Here SNR = (p − q)2/
	 1

k
p + (1− 1

k
)q



≈ (p − q)2/p is a

measure of the signal-to-noise ratio. This bound holds even
in the sparse graph regime with constant expected degrees,
namely p, q = 2(1/n), which is a manifest of the power of
the Grothendieck’s inequality.
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In this paper, we go beyond the above results, and show
that �Y in fact satisfies (with high probability) the following
exponentially-decaying error bound

k�Y − Y∗k1

kY∗k1
� exp

�
−�

�
SNR · n

k


�
(3)

as long as SNR � k2

n
(Theorem 1). The bound is valid in both

the sparse and dense regimes. Significantly, this error rate is
achieved by the SDP (1) itself, without the need of a multi-step
procedure, even though we are estimating a discrete structure
by solving a continuous optimization problem. In particular,
the SDP approach does not require pre-processing of graph
(such as trimming and splitting) or an initial estimate of the
clusters, nor any non-trivial post-processing of �Y (such as local
cluster refinement or randomized rounding).

If an explicit clustering of the nodes is concerned, the result
above also yields an error bound for estimating σ

∗, the true
cluster labels. In particular, an explicit cluster labeling �σ can
be obtained efficiently from �Y. Let err(�σ , σ ∗) denote the
fraction of nodes that are labeled differently by �σ and σ

∗

(after accounting for permutation of the labels). This mis-
classification error can be shown to be bounded from above
by the `1 error k�Y − Y∗k1/kY∗k1, and therefore satisfies the
same exponential bound (Theorem 2):

err(�σ , σ ∗) � exp
�
−�

�
SNR · n

k


�
. (4)

When specialized to different values of the errors, this single
error bound (3) implies sufficient conditions for achieving
exact recovery (strong consistency), almost exact recovery
(weak consistency) and weak recovery; see Section I-B for the
definitions of these recovery types. More generally, the above
bound yields SNR conditions sufficient for achieving any δ

error. As to be discussed in details in Section III-A.1, these
conditions are (at least order-wise) optimal, and improve upon
existing results especially when the number of clusters k is
allowed to scale with n. In addition, we prove that the above
guarantees for SDP are robust against deviations from the
standard SBM: the same exponential bounds continue to hold
in the presence of heterogeneous edge probabilities as well as
a form of monotone attack where an adversary can modify the
graph (Theorem 3). Furthermore, our results readily extend to
the Censored Block Model, in which only partially observed
data are available (Corollary 1).

In addition to providing improved error bounds, our results
also involve the development of several new analytical tech-
niques, as are discussed below. We expect these techniques to
be broadly useful in the analysis of SDP and other algorithms
for SBM and related statistical problems.

A. Technical Highlights

Our analysis of the SDP formulation builds on two key
ingredients. The first ingredient involves showing that the
graph can be partitioned into two components: one with a
well-behaved spectrum, and a sparse residual with an expo-

nentially small number of edges; cf. Proposition 2. Note that
this partitioning is done in the analysis, rather than in the
algorithm. This argument ensures that the SDP produces a

useful solution all the way down to the sparse regime with
p, q = 2( 1

n
). The second ingredient is an order-statistics

argument that characterizes the interplay between the error
matrix and the randomness in the graph; cf. Proposition 1.
This argument establishes a connection between the estima-
tion error and the sum of the top order statistics of certain
appropriately constructed random variables; upper bounds on
this sum are what ultimately dictate the exponential decay
of the error. In both arguments, we make crucial use of the
entry-wise boundedness of the SDP solution �Y, which is
a manifest of the implicit regularization effect of the SDP
formulation.

Our results are non-asymptotic in nature, valid for finite
values of n; letting n → ∞ gives asymptotic results. All
the parameters p, q and k are allowed to scale arbitrarily
with n. In particular, the number of clusters k may grow
with n, the clusters may have size sublinear in n, and the
edge probabilities p and q may range from the sparse case
2( 1

n
) to the dense case 2(1). Our results therefore provide

a general characterization of the relationship between the
SNR, the cluster sizes and the recovery errors. This point is
particularly important in the regime of sublinear cluster sizes,
in which case all values of p and q are of interest. The price of
such generality is that we do not seek to obtain optimal values
of the multiplicative constants in the error bounds — doing so
typically requires asymptotic analysis with restrictions on the
scaling of the parameters. In this sense, our results complement
the recent work on the fundamental limits and sharp recovery
thresholds of SBM [2].

B. Related Work

The Stochastic Block Model [1], [5], also known as the
Planted Partition Model in the computer science literature, is a
standard model for studying graph clustering and community
detection in networks. There is a large body of work on
the theoretical and algorithmic aspects of this model; see
for example [2], [6]–[8], and the references therein. Here
we briefly discuss the most relevant work, and defer to
Section III for a more detailed comparison after stating our
main theorems.

Existing work distinguishes between several types of
recovery [2], [9], including: (a) weak recovery, where the frac-
tion of mis-clustered nodes satisfies err(�σ , σ ∗) < 1− 1

k
and

is hence better than random guess; (b) almost exact recovery
(weak consistency), where err(�σ , σ ∗) = o(1); (c) exact
recovery (strong consistency), where err(�σ , σ ∗) = 0. Here a
fundamental question is identifying the thresholds for the SNR
above which different types of recovery can be achieved with
high probability. The SDP relaxation approach to SBM has
been studied in [7] and [10]–[16], which mostly focus on exact
recovery in the logarithmic-degree regime p = �

�
log n

n



.

Using the Grothendieck’s inequality, the work in [4] proves for
the first time that SDP achieves a non-trivial error bound in the
sparse regime p = 2( 1

n
) with bounded expected degrees.

In the two-cluster case, it is further shown in [17] that SDP
in fact achieves the optimal weak recovery threshold as long
as the expected degree is large (but still bounded). Our error
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bound implies exact and weak recovery in the logarithmic
and bounded degree regimes, respectively. Our result in fact
goes beyond these existing ones and applies to every setting
in between the two extreme regimes, capturing the exponential
decay of error rates from O(1) to zero.

A very recent line of research aims to precisely char-
acterize the fundamental limits and phase transition behav-
iors of SBM — in particular, what are the sharp SNR
thresholds, including the leading constants, for achieving the
recovery types discussed in the last paragraph. When the
number k of clusters is bounded, many of these questions
now have satisfactory answers. Without attempting to exhaust
this still growing line of remarkable work, we refer to [8]
and [18]–[21] for weak recovery, [10] and [22]–[25] for
almost exact recovery, and [22], [23], and [26] for exact
recovery. SDP has in fact been shown to achieve the optimal
exact recovery threshold [27]–[30]. Our results imply sufficient
conditions for SDP achieving these various types of recovery,
and moreover interpolate between them. As mentioned, we
are mostly concerned with the non-asymptotic setting with a
growing number of clusters, and do not attempt to optimize the
values of the leading constants. Therefore, we have focused
on somewhat different regimes than the work above.

Particularly relevant to us is the work in [4], [23]–[25],
and [31]–[33], which provides explicit bounds on the error
rates of alternative algorithms for estimating the ground-truth
clustering in SBM. The Censored Block Model is studied
in [31] and [34]–[38]. Robustness issues in SBM are consid-
ered in the work in [14], [28], [33], and [39]–[44]. We discuss
these results in more details in Section III.

C. Notations

Column vectors are denoted by lower-case bold letters such
as u, where ui is its i -th entry. Matrices are denoted by bold
capital letters such as M, with M> denoting the transpose
of M, Tr(M) its trace, Mi j its (i, j)-th entry, and diag (M)
the vector of its diagonal entries. For a matrix M, kMk1 :=�

i, j

��Mi j

�� is its entry-wise `1 norm, kMk∞ := maxi, j

��Mi j

��
the entry-wise `∞ norm, and kMkop the spectral norm (the
maximum singular value). Denote by Mi• the i -th row of the
matrix M and M• j its j -th column. We write M � 0 if M

is symmetric and positive semidefinite. For two matrices M

and G of the same dimension, we let hM, Gi := Tr(M>G)

denote their trace inner product, and use M ≥ G to mean
that Mi j ≥ Gi j for all i, j ∈ [n]. Let I and J be the n × n

identity matrix and all-one matrix, respectively, and 1 the all-
one column vector of length n.

We use Bern(µ) to denote the Bernoulli distribution with
rate µ ∈ [0, 1]. For a positive integer i , let [i ] := {1, 2, . . . , i}.
For a real number x , dxe denotes its ceiling. Throughout the
paper, a universal constant C means a fixed number that is
independent of the model parameters (n, k, p, q , etc.) and the
graph distribution. We use the following standard notations
for order comparison of two non-negative sequences {an} and
{bn}: We write an = O(bn), bn = �(an) or an � bn if there
exists a universal constant C > 0 such that an ≤ Cbn for
all n. We write an = 2(bn) or an � bn if an = O(bn)

and an = �(bn). We write an = o(bn) or bn = ω(an) if
limn→∞ an/bn = 0.

II. PROBLEM SETUP

In this section, we formally set up the problem of cluster
estimation under SBM and describe the SDP approach.

A. The Stochastic Block Model

Given n nodes, we assume that each node belongs to exactly
one of k ground truth clusters, where the clusters have equal
size n/k. Let σ

∗ ∈ [k]n be the vector of ground-truth cluster
labels, where σ ∗i is the index of the cluster that contains node i .
(The cluster labels are unique only up to permutation; here
σ
∗ is defined with respect to an arbitrary permutation.) This

ground-truth can be equivalently encoded in the cluster matrix
Y∗ ∈ {0, 1}n×n defined in Section I. We do not know σ

∗ or Y∗,
but we observe the adjacency matrix A of a graph generated
from the following Stochastic Block Model (SBM).

Model 1 (Standard Stochastic Block Model): The graph
adjacency matrix A ∈ {0, 1}n×n is symmetric with its entries
{Ai j , i < j} generated independently by

Ai j ∼

⎧
⎨
⎩

Bern(p) if Y ∗
i j = 1,

Bern(q) if Y ∗
i j = 0,

where 0 ≤ q < p ≤ 1.

The values of the diagonal entries of A are inconsequential
for the SDP formulation (1) due to the constraint Yii = 1,∀i .
Therefore, we may assume that Aii = 0 for all i ∈ [n],
which simplifies the presentation of the analysis. The goal
is to estimate Y∗ given the observed graph A.

Playing a crucial role in our results is the quantity

s := (p − q)2

1
k

p + (1− 1
k
)q

, (5)

which is a measure of the SNR of the model. In particular,
the numerator of s is the squared expected difference between
the in- and cross-cluster edge probabilities, and the denomi-
nator is essentially the average variance of the entries of A.
The quantity s has been shown to capture the hardness of
SBM, and defines the celebrated Kesten-Stigum threshold [21].
To avoid cluttered notation, we assume throughout the paper
that n ≥ 4, 2 ≤ k < n and there exists a universal constant
0 < c < 1 such that q ≥ cp; this setting encompasses
most interesting regimes of the problem, as clustering is more
challenging when q is large.

B. Semidefinite Programming Relaxation

We consider the SDP formulation in (1), whose optimal
solution �Y serves as an estimator of the ground-truth cluster
matrix Y∗. This SDP can be interpreted as a convex relax-
ation for the maximum likelihood estimator, the modularity
maximization problem, the optimal subgraph/cut problem, or a
variant of the robust/sparse PCA problem; see [5], [7], [10],
[12], [15] for such derivations. Our goal is to study the
recovery error of �Y, and in particular how it depends on the
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number of nodes n, the number of clusters k and the SNR
measure s defined above.

Note that there is nothing special about the particular
formulation in (1). All our results apply to, for example,
the following alternative SDP formulation:

�Y = arg max
Y∈Rn×n

hY, Ai

s.t. Y � 0, 0 ≤ Y ≤ J,
n�

i, j=1

Yi j =
n�

i, j=1

Y ∗
i j ,

Yii = 1,∀i ∈ [n]. (6)

This formulation was previously considered in [7]. We may
further replace the third constraint above with the row-wise
constraints

�n
j=1 Yi j =

�n
j=1 Y ∗

i j ,∀i ∈ [n], akin to the formu-
lation in [10] motivated by weak assortative SBMs. Under
the standard assumption of equal-sized clusters, the values�n

i, j=1 Y ∗
i j = n2/k and

�n
j=1 Y ∗

i j = n/k are fixed and known.
Therefore, the formulation (6) has the advantage that it does
not require knowledge of the edge probabilities p and q , but
instead the number of clusters k.2

The optimization problems in (1) and (6) can be solved
in polynomial time using any general-purpose SDP solvers or
first-order algorithms. Moreover, this SDP approach continues
to motivate, and benefit from, the rapid development of
efficient algorithms for solving structured SDPs. For example,
the algorithms considered in [42] and [45] can solve a problem
involving n = 105 nodes within seconds on a laptop. In addi-
tion to computational efficiency, the SDP approach also enjoys
several other desired properties including robustness, applica-
bility to sparse graphs and conceptual simplicity, making it
an attractive option among other clustering and community
detection algorithms. The empirical performance of SDP has
been extensively studied, both under SBM and with real data;
see for example the work in [10], [15], [16], [42], and [45].
Here we focus on the theoretical guarantees of this SDP
approach.

C. Explicit Clustering by k-Medians

After solving the SDP formulations (1) or (6), an estimate of
the cluster membership can be extracted from the solution �Y.
This can be done using many simple procedures. For example,
when k�Y − Y∗k1 < 1

2 , simply rounding the entries of �Y
will exactly recover Y∗, which immediately reveals the true
clusters. In the case with k = 2 clusters, one may use the
signs of the entries of first eigenvector of �Y− 1

2 J, a procedure
analyzed in [4] and [17] among others. More generally, our
theoretical results guarantee that the SDP solution �Y is already
close to true cluster matrix Y∗; in this case, we expect that
many local rounding/refinement procedures, such as Lloyd’s-
style greedy algorithms [46], will be able to extract a high-
quality clustering.

For the sake of retaining focus on the SDP formulation
itself, we choose not to separately analyze these possible

2Note that the constraint Y ≤ J in the formulations (1) and (6) is in fact
redundant, as it is implied by the constraints Y � 0 and Yii = 1,∀i . We still
keep this constraint, as the property �Y ≤ J plays a crucial role in our analysis.

extraction procedures, but instead consider the following more
unified approach. In particular, we view the rows of �Y as n

points in Rn , and apply k-medians clustering to these points to
find the clusters. While exactly solving the k-medians problem
is computationally hard, there exist polynomial-time constant-
factor approximation schemes, such as the 6 2

3 -approximation
algorithm in [47], which suffices for our purpose. This
algorithm may not be the most efficient way to extract an
explicit clustering from �Y; rather, it is intended as a simple
venue for deriving a clustering error bound that can be readily
compared with existing results.

Formally, we use ρ-kmed(�Y) to denote a ρ-approximate
k-median procedure applied to the rows of �Y; details are
provided in Appendix I. The output

�σ := ρ-kmed(�Y)

is a vector in [k]n such that node i is assigned to the �σi -
th cluster by the procedure. We are interested in bounding
the clustering error of �σ relative to the ground-truth σ

∗. Let
Sk denote the symmetric group consisting of all permutations
of [k]; we consider the error metric

err(�σ , σ ∗) := min
π∈Sk

1

n

���i ∈ [n] :�σi 6= π(σ ∗i )
��� , (7)

which is the proportion of nodes that are mis-classified,
modulo permutations of the cluster labels.

Before proceeding, we briefly mention several possible
extensions of the setting discussed above. The number p+q

2
in the SDP (1) can be replaced by a tuning parameter λ; as
would become evident from the proof, our theoretical results
in fact hold for an entire range of λ values, for example
λ ∈ [ 1

4 p + 3
4 q, 3

4 p + 1
4 q]. Our theory also generalizes to

the setting with unequal cluster sizes; in this case the same
theoretical guarantees hold with k replaced by n/`, where `

is any lower bound of the cluster sizes.

III. MAIN RESULTS

We present in Section III-A our main theorems, which
provide exponentially-decaying error bounds for the SDP
formulation under SBM. We also discuss the consequences
of our results, including their implications for robustness
in Section III-B and applications to the Censored Block Model
in Section III-C. In the sequel, �Y denotes any optimal solution
to the SDP formulation in either (1) or (6).

A. Error Rates Under Standard SBM

In this section, we consider the standard SBM setting
in Model 1. Recall that n and k are respectively the numbers of
nodes and clusters, and Y∗ is the ground-truth cluster matrix
(defined in Section I) with σ

∗ being the corresponding vector
of true cluster labels. Our results are stated in terms of the
SNR measure s given in equation (5).

The first theorem, proved in Section IV, shows that the SDP
solution �Y achieves an exponential error rate.

Theorem 1 (Exponential Error Rate): Under Model 1,
there exist universal constants Cs , Cg, Ce > 0 for which the
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following holds. If s ≥ Csk2/n, then we have

k�Y − Y∗k1

kY∗k1
≤ Cg exp

�
− sn

Cek

�

with probability at least 1− 7
n
− 7e−�(

√
n).

Our next result concerns the explicit clustering �σ :=
ρ-kmed(�Y) extracted from �Y using the approximate k-
medians procedure given in Section II-C, where ρ = 6 2

3 . As
we show in the proof of the following theorem, the error rate
in �σ is (deterministically) upper-bounded by the error in �Y:

err(�σ , σ ∗) ≤ 86

3
· k

�Y − Y∗k1

kY∗k1
;

cf. Proposition 3. Consequently, the number of misclassified
nodes also exhibits an exponential decay.

Theorem 2 (Clustering Error): Under Model 1, there exist
universal constants Cs , Cm , Ce > 0 for which the following
holds. If s ≥ Csk2/n, then we have

err(�σ , σ ∗) ≤ Cm exp

�
− sn

Cek

�

with probability at least 1− 7
n
− 7e−�(

√
n).

We prove this theorem in Appendix III.
Theorems 1 and 2 are applicable in the sparse graph regime

with bounded expected degrees. For example, suppose that k =
2, p = a

n
and q = b

n
for two constants a, b; the results above

guarantee non-trivial accuracy for the SDP (i.e., k�Y−Y∗k1 <
1
2kY∗k1 or err(�σ , σ ∗) < 1

2 ) as long as (a − b)2 ≥ C(a + b)

for some constant C . Another interesting regime to which our
results apply, is when there is a large number of clusters. For
example, for any constant � ∈ (0, 1

2 ), if k = n1/2−� and p =
2q , then SDP achieves exact recovery (i.e.,err(�σ , σ ∗) < 1

n
)

provided that p � n−2� .
Below we provide additional discussion of our results, and

compare with existing work.
1) Consequences and Optimality: Theorems 1 and 2 imme-

diately imply sufficient conditions for the various recovery
types discussed in Section I-B.
• Exact Recovery (Strong Consistency): When s �

k2+k log n
n

, Theorem 1 guarantees that k�Y−Y∗k1 < 1
2 with

high probability, in which case element-wise rounding �Y
exactly recovers the true cluster matrix Y∗.3 This result
matches the best known exact recovery guarantees for
SDP (and other polynomial-time algorithms) when k is
allowed to grow with n; see [7], [10] for a review of these
results.

• Almost Exact Recovery (Weak Consistency): Under
the condition s = ω( k2

n
), Theorem 2 ensures that

err(�σ , σ ∗) = o(1) with high probability as n → ∞,
hence SDP achieves weak consistency. This condition is
optimal — necessary for any algorithms — as has been
proved in [22] and [23].

• Weak Recovery: When s � k2

n
, Theorem 2 ensures that

err(�σ , σ ∗) < 1 − 1
k

with high probability, hence SDP

3In fact, a simple modification of our analysis proves that �Y = Y∗ in
this case. We omit the details of such refinement for a more streamlined
presentation of the analysis.

achieves weak recovery. In particular, in the setting with
k = 2 clusters, SDP recovers a binary clustering that
is positively correlated with the ground-truth clustering
under the condition s � 1

n
. This condition matches up

to constants the so-called Kesten-Stigum (KS) threshold
s > 1

n
, which is known to be optimal [8], [18]–[21].

• Recovery With δ Error: More generally, for each
number δ ∈ (0, 1), Theorem 2 implies that if s �

max{ k2

n
, k

n
log 1

δ
}, then err(�σ , σ ∗) < δ with high prob-

ability. In the case with k = 2, the minimax rate result
in [24] and [48] implies that s � 1

n
log 1

δ
is necessary for

any algorithm to achieve a δ clustering error. Our results
are thus optimal up to a multiplicative constant.

Our results therefore cover these different recovery regimes
via a unified error bound, using a single algorithm. This can
be contrasted with the existing error bound (2) proved using
the Grothendieck’s inequality approach, which fails to identify
the exact recovery condition above. In particular, the bound (2)
decays polynomially with the SNR measure s; since s is
at most k and kY∗k1 = n2/k, the smallest possible error that
can be derived from this bound is k�Y − Y∗k1 = O(

�
n3/k).

Our results apply to general values of k that is allowed
to scale with n, hence the size of the clusters can be
sublinear in n. We note that in this regime, a computational-
barrier phenomenon seems to take place: there may exist
parameter regimes of SBM for which cluster recovery is
information-theoretically possible but cannot be achieved by
computationally efficient algorithms. For example, the work
in [7] proves that the intractable maximum likelihood estimator
succeeds in exact recovery when s �

k log n
n

; it also provides
evidences suggesting that all efficient algorithms fail unless
s �

k2+k log n
n

. Note that the latter is consistent with the exact
recovery condition derived above from our theorems.

The above discussion has the following implications for
the optimality of Theorems 1 and 2. On the one hand,
the general minimax rate result in [24] and [48] suggests that
all algorithms (regardless of their computational complexity)
incur at least exp [−2(sn/k)] error. Our exponential error rate
matches this information-theoretic lower bound. On the other
hand, in view of the computational barrier discussed in the
last paragraph, our SNR assumption s � k2/n is likely to be
unimprovable when efficient algorithms are considered.

2) Comparison With Existing Results: We discuss some
prior work that also provides efficient algorithms attaining
an exponentially-decaying rate for the clustering error
err(�σ , σ ∗). To be clear, these algorithms are very different
from ours, often involving a two-step procedure that first
computes an accurate initial estimate (typically by spectral
clustering) followed by a “clean-up” process to obtain the
final solution. Some of them require additional steps of sample
splitting and graph trimming/regularization. As discussed
in Section III-B to follow, many of these procedures rely on
delicate properties of the standard SBM, and therefore are not
robust against model deviation.

Most relevant to us is the work in [31], which develops
a spectral algorithm with sample splitting. As stated in their
main theorem, their algorithm achieves the error rate
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exp
�
−�(sn/k2)

�
when s � k2/n, as long as k is a fixed

constant when n → ∞. The work in [25] and [32] also
considers spectral algorithms, which attain exponential error
rates assuming that k is a constant and pn → ∞. The algo-
rithms in [24] and [49] involves obtaining an initial clustering
using spectral algorithms, which require s � k3/n; a post-
processing step (e.g., using a Lloyd’s-style algorithm [46])
then outputs a final solution that asymptotically achieves the
minimax error rate exp

�
−I ∗ · n/k

�
, where I ∗ is an appro-

priate form of Renyi divergence and satisfies I ∗ � s. The work
in [23] proposes an efficient algorithm called Sphere Compar-
ison, which achieves an exponential error rate in the constant
degree regime p = 2(1/n) when s ≥ k2/n. The work [33]
uses SDP to produce an initial clustering solution to be fed
to another clustering algorithm; their analysis generalizes the
techniques in [4] to the setting with corrupted observations,
and their overall algorithm attains an exponential error rate
assuming that s � k4/n.

B. Robustness

Compared to other clustering algorithms, one notable advan-
tage of the SDP approach is its robustness under various
challenging settings of SBM. For instance, standard spectral
clustering is known to be inconsistent in the sparse graph
regime with p, q = O(1/n) due to the existence of atypical
node degrees, and alleviating this difficulty generally requires
sophisticated algorithmic techniques. In contrast, as shown
in Theorem 1 as well as other recent work [4], [15], [17],
the SDP approach is applicable without change to this sparse
regime. SDP is also robust against the existence of o(n) outlier
nodes and/or edge modifications, while standard spectral clus-
tering is fairly fragile in these settings [17], [28], [33], [39],
[42], [44].

Here we focus on another remarkable form of robustness
enjoyed by SDP with respect to heterogeneous edge probabil-
ities and monotone attack, which is captured in the following
generalization of the standard SBM.

Model 2 (Heterogeneous Stochastic Block Model): Given
the ground-truth clustering σ

∗ (encoded in the cluster
matrix Y∗), the entries {Ai j , i < j} of the graph adjacency
matrix A are generated independently as follows:

�
Ai j is Bernoulli with rate at least p if Y ∗

i j = 1,

Ai j is Bernoulli with rate at most q if Y ∗
i j = 0,

where p > q .
The above model imposes no constraint on the edge

probabilities besides the upper/lower bounds; in particular
the probabilities can be non-uniform inside and outside the
clusters. This model encompasses a variant of the so-called
monotone attack studied extensively in the computer science
literature [14], [41], [43]: here an adversary can arbitrarily
set some edge probabilities to 1 or 0, which is equivalent to
adding edges to node pairs in the same cluster and removing
edges across clusters.4 Note that the adversary can make far

4We do note that here the addition/removal of edges are determined before
the realization of the random edge connections, which is more restrictive
than the standard monotone attack model. We believe that this restriction is
an artifact of the analysis, and leave further improvements to future work.

more than o(n) edge modifications — O(n2) to be precise —
in a restrictive way that seems to strengthen the clustering
structure (hence the name). However, monotone attack does
not necessarily make the clustering problem easier. On the
contrary, the adversary can significantly alter some predictable
structures that arise in standard SBM (such as the graph spec-
trum, node degrees, subgraph counts and the non-existence of
dense spots [41]), and hence foil algorithms that over-exploit
such structures. Indeed, some spectral algorithms provably fail
in this setting [42], [43]. More generally, Model 2 allows for
unpredictable, non-random deviations (not necessarily due to
a malicious adversary) from the standard SBM setting, which
has statistical properties that are rarely possessed by real-world
graphs.

It is straightforward to show that when exact recovery

is concerned, SDP is unaffected by the heterogeneity
in Model 2; see [16], [27], [41]. The following theorem,
proved in Section V, shows that SDP in fact achieves the same
exponential error rates in the presence of heterogeneity.

Theorem 3 (Robustness): The conclusions in Theorems 1
and 2 continue to hold under Model 2.
Consequently, under the same conditions given in
Section III-A.1, the SDP approach achieves exact recovery,
almost exact recovery, weak recovery and a δ-error in the
more general Model 2.

As a passing note, the results in [44] show that when exact
constant values are concerned, the optimal threshold for weak
recovery changes in the presence of monotone attack, and
there may exist a fundamental tradeoff between achieving
optimal recovery in standard SBM and robustness against
model deviation.

C. Censored Block Model

The Censored Block Model [34] is a variant of the standard
SBM that represents the scenario with partially observed data,
akin to the settings of matrix completion [50] and graph
clustering with measurement budgets [7]. In this section,
we show that Theorems 1 and 2 immediately yield recovery
guarantees for an SDP formulation of this model.

Concretely, again assume a ground-truth set of k equal-size
clusters over n nodes, with the corresponding label vector σ

∗ ∈
[k]n. These clusters can be encoded by the cluster matrix Y∗ ∈
{0, 1}n×n as defined in Section I, but it is more convenient to
work with its ±1 version 2Y∗− J. Under the Censored Block
Model, one observes the entries of the matrix 2Y∗−J restricted
to the edges of an Erdos-Renyi graph G(n, α), but with each
entry flipped with probability � < 1

2 . The model is described
formally below.

Model 3 (Censored Block Model): The observed matrix
Z ∈ {−1, 0, 1}n×n is symmetric and has entries generated
independently across all i < j with

Z i j =

⎧
⎪⎨
⎪⎩

0, with probability 1− α,

2Y ∗
i j − 1 with probability α(1 − �),

−(2Y ∗
i j − 1) with probability α�,

where 0 < α ≤ 1 and 0 < � < 1
2 .
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The goal is again to estimate Y∗ (equivalently 2Y∗−J) given
the observed matrix Z.

We can reduce this problem to the standard SBM by
constructing an adjacency matrix A ∈ {0, 1}n×n with Ai j =
|Z i j | · (Z i j + 1)/2; that is, we take the binary representation
(Z+J)/2 of Z and zero out its unobserved entries. The upper-
triangular entries of A are independent Bernoulli variables with

P
	
Ai j = 1



= P

	
Z i j = 1



=

�
α(1 − �) if Y ∗

i j = 1,

α� if Y ∗
i j = 0.

Therefore, the matrix A can be viewed as generated from the
standard SBM (Model 1) with p = α(1 − �) and q = α�.
We can then obtain an estimate �Y of Y∗ by solving the SDP
formulation (1) or (6) with A as the input, possibly followed
by the approximate k-medians procedure to obtain an explicit
clustering �σ . Bounds on the error rates of �Y and �σ can be
derived as a corollary of Theorems 1 and 2.

Corollary 1 (Censored Block Model): Under Model 3,
there exist universal constants Cs , Cg, Ce > 0 for which the

following holds. If α(1 − 2�)2 ≥ Cs
k2

n
, then

3

86
err(�σ , σ ∗) ≤ k�Y − Y∗k1

kY∗k1

≤ Cg exp

�
−α(1− 2�)2 · n

Cek

�

with probability at least 1− 7
n
− 7e−�(

√
n).

Specializing this corollary to the different types of
recovery defined in Section I-B, we immediately obtain
the following sufficient conditions for SDP under the
Censored Block Model:
• Exact recovery is achieved when α �

max
�
k log n,k2

�

n(1−2�)2 .
• Almost exact recovery is achieved when α =

ω
�

k2

n(1−2�)2



.

• Weak recovery is achieved when α � k2

n(1−2�)2 .
• A δ clustering error is achieved when α �

max
�
k2,k log(1/δ)

�

n(1−2�)2 .
Several existing results focus on the Censored Block Model
with k = 2 clusters in the asymptotic regime n →∞. In this
setting, the work in [34] proves that exact recovery is possible
if and only if α >

2 log n

n(1−2�)2 in the limit � → 1/2, and provides
an SDP-based algorithm that succeeds twice the above
threshold; a more precise threshold α >

log n

n
	√

1−�−√�

2 is given

in [35]. For weak recovery with a sparse graph α = 2(1/n),
it is conjectured in [36] that the problem is solvable if and
only if α > 1

n(1−2�)2 . The converse and achievability parts
of the conjecture are proved in [37] and [38], respectively.
Corollary 1 shows that SDP achieves (up to constants) the
above exact and weak recovery thresholds; moreover, our
results apply to the more general setting with k ≥ 2 clusters.

IV. PROOF OF THEOREM 1

In this section we prove our main theoretical results
in Theorem 1 for Model 1 (Standard SBM). While Model 1 is
a special case of Model 2 (Heterogeneous SBM), we choose
not to deduce Theorem 1 as a corollary of Theorem 3 which
concerns the more general model. Instead, to highlight the

main ideas of the analysis and avoid technicalities, we provide
a self-contained proof of Theorem 1. In Section V to follow,
we show how to adapt the proof to Model 2.

Before going into the details, we make a few observations
that simplify the subsequent proof. Firstly, it suffices to prove
the theorem for the first SDP formulation (1). To see this,
note that the ground-truth matrix Y∗ is also feasible to second
formulation (6); moreover, thanks to the equality constraint�n

i, j=1 Yi j =
�n

i, j=1 Y ∗
i j , subtracting the constant-valued term�

Y, p+q
2 J

�
from the objective of (6) does not affect its optimal

solutions. The two formulations are therefore identical except
for the above equality constraint, which is never used in the
proof below. Secondly, under the assumption cp ≤ q ≤ p with
a universal constant c > 0, we have 1

k
p + (1− 1

k
)q ≥ cp.

Therefore, it suffices to prove the theorem with the SNR
redefined as s = (p−q)2

p
, doing which only affects the values

of universal constants Cs and Ce in the theorem statement.
Thirdly, it is in fact sufficient to prove the bound

k�Y − Y∗k1 ≤ Cgn2 exp

�
− sn

2Cek

�
. (8)

Suppose that this bound holds; under the premise s ≥ Csk2/n

of the theorem with the constant Cs sufficiently large, we have
exp

�
− sn

4Cek

�
≤ exp

�
− Cs

4Ce
· k

�
≤ 1

k
, hence the RHS of the

bound (8) is at most

Cgn2 · 1

k
· exp

�
− sn

4Cek

�
= CgkY∗k1 exp

�
− sn

4Cek

�
,

which implies the error bound in theorem statement again
up to a change in the universal constant Ce. To summarize,
the desired Theorem 1 is implied by the following statement.

Theorem 4: Under Model 1 with 0 ≤ q < p ≤ 1,
there exist universal constants Cs , Cg, Ce > 0 for which the
following holds. If s := (p − q)2/p ≥ Csk2/n, then with
probability at least 1− 7

n
− 7e−�(

√
n), any optimal solution �Y

of SDP (1) satisfies the bound (8).
We prove this theorem in the rest of the section. Throughout

the proof we make use of the convenient shorthands γ :=
k�Y − Y∗k1 for the error and ` := n

k
for the cluster size.

Our proof begins with a basic inequality using optimality.
Since Y∗ is feasible to the SDP (1) and �Y is optimal, we have

0 ≤
�
�Y − Y∗, A − p + q

2
J

�

=
�
�Y − Y∗, EA − p + q

2
J

�
+

��Y − Y∗, A − EA
�
. (9)

A simple observation is that the entries of the error matrix
Y∗ −�Y have matching signs with those of EA − p+q

2 J. This
observation implies the following relationship between the first
term on the RHS of equation (9) and the error γ := k�Y−Y∗k1.

Fact 1: We have the inequality
�
Y∗ −�Y, EA − p + q

2
J

�
≥ p − q

2
γ. (10)

The proof of this fact is deferred to Appendix II-A. Taking this
fact as given and combining with inequality (9), we obtain that

p − q

2
γ ≤

��Y − Y∗, A − EA
�
. (11)
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To bound the error γ , it suffices to control the RHS of
equation (11). This is where we depart from existing analysis.
The seminal work in [4] bounds the RHS by a direct appli-
cation of the Grothendieck’s inequality. As we discuss below,
this argument fails to expose the fast, exponential decay of
the error γ . Our analysis establishes a more precise bound.
To describe our approach, some additional notation is needed.
Let U ∈ Rn×k be the matrix whose columns are the left
singular vectors of Y∗ corresponding to non-zero singular
values. Define the projection PT (M) := UU>M + MUU> −
UU>MUU> and its orthogonal complement PT⊥(M) = M−
PT (M) for any M ∈ Rn×n . Our crucial observation is that one
should control h�Y− Y∗, A− EAi by separating the contribu-
tions from the two projected components of �Y − Y∗ defined
by PT and PT⊥ . In particular, we rewrite the inequality (11)
as

p − q

2
γ ≤

�
PT (�Y − Y∗), A − EA

�
� ��  

S1

+
�
PT⊥(�Y − Y∗), A− EA

�
� ��  

S2

. (12)

The first term S1 involves the component of error �Y−Y∗ that
is “aligned” with Y∗; in particular, the matrix PT (�Y − Y∗)
lies in the subspace spanned by matrices with the same
column or row space as Y∗. The second term S2 involves
the orthogonal component PT⊥(�Y − Y∗), whose column and
row spaces are orthogonal to those of Y∗. The main step of
our analysis consists of controlling S1 and S2 separately.

The following proposition bounds the term S1 and is proved
in Section IV-B to follow.

Proposition 1: Under the conditions of Theorem 4, with
probability at least 1 − 6

nk
− 2( e

2 )−2n , at least one of the
following inequalities hold:

γ ≤ Cgn2e−sn/(2Cek),

S1 ≤ D1γ

�
p log

	
3n2/γ




`
, (13)

where D1 = 12D = 12
√

10.
The next proposition, proved in Section IV-C to follow,

controls the term S2.
Proposition 2: Under the conditions of Theorem 4, with

probability 1− 1
n2 − e−(3−ln 2)n − 4e−c0

√
n , at least one of the

following inequalities hold:

γ ≤ Cgn2e−sn/(2Cek),

S2 ≤ D2
√

pn
γ

`
+ 1

8
(p − q)γ . (14)

where D2 > 0 is a universal constant.
Given these two propositions, the desired bound (8) follows

easily. If the first inequality in the two propositions holds,
then we are already done. Otherwise, there must hold the
inequalities (13) and (14), which can be plugged into the RHS
of equation (12) to get

p − q

2
γ ≤ D1γ

�
p log

	
3n2/γ




`
+ D2

�
pk2

n
γ + 1

8
(p − q)γ .

Under the premise s ≥ Csk2/n of Theorem 4, we know that

D2

!
pk2

n
≤ p−q

8 . It follows that

p − q

4
γ ≤ D1γ

�
p log

	
3n2/γ




`
.

Doing some algebra yields the inequality γ ≤ 3n2

exp[−sn/(16D2
1k)], so the desired bound (8) again holds.

The rest of this section is devoted to establishing Propo-
sitions 1 and 2. Before proceeding to the proofs, we remark
on the above arguments and contrast them with alternative
approaches.

Comparison With the Grothendieck’s Inequality Approach:

The proof in [4] also begins with a version of the
inequality (11), and proceeds by observing that

p − q

2
γ ≤

��Y − Y∗, A − EA
�

(i)
≤ 2 sup

Y�0,diag(Y)≤1

|hY, A − EAi| , (15)

where step (i) follows from the triangle inequality and the
feasibility of �Y and Y∗. This argument reduces the problem
to bounding the RHS of (15), which can be done using
the celebrated Grothendieck’s inequality. One can already see
at this point that this approach yields sub-optimal bounds. For
example, SDP is known to achieve exact recovery (γ = 0)
under certain conditions, yet the inequality (15) can never
guarantee a zero γ . Sub-optimality arises in step (i): the
quantity

��Y− Y∗, A − EA
�

diminishes when �Y−Y∗ is small,
but the triangle inequality and the worse-case bound used in (i)

are too crude to capture such behaviors. In comparison, our
proof takes advantage of the structures of the error matrix
�Y−Y∗ as well as its interplay with the noise matrix A−EA.

Bounding the S1 Term: A common approach involves using
the generalized Holder’s inequality

S1 =
��Y − Y∗,PT (A− EA)

�
≤ γ · kPT (A − EA)k∞.

Under SBM, one can show that kPT (A−EA)k∞ �

!
p log n2

`
with high probability, hence yielding the bound S1 �

γ

!
p log n2

`
. Variants of this approach are in fact common

(sometimes implicitly) in the proofs of exact recovery for

SDP [7], [10], [12], [27], [51]. However, when
!

p log n2

`
≥

p − q (where exact recovery is impossible), applying this
bound of S1 to the inequality (12) would yield a vacuous bound
for γ . In comparison, Proposition 1 gives a strictly sharper
bound (13), which correctly characterizes the behaviors of S1
beyond the exact recovery regime.

Bounding the S2 Term: Note that since PT⊥(Y∗) = 0,
we have the equality S2 = hPT⊥(�Y), A − EAi. It is easy
to show that the matrix PT⊥(�Y) is positive semidefinite and
has diagonal entries at most 4 (cf. Fact 3). Given these
two properties, one may attempt to control S2 again using
the Grothendieck’s inequality, which would yield the bound
S2 ≤ 4 · g(A − EA) for some function g independent of γ .
The bound (14) in Proposition 2 is substantially stronger —
it depends on γ , which is in turn proportional to the trace of
the matrix PT⊥(�Y) (cf. Fact 2).
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A. Preliminaries and Additional Notation

Recall that U ∈ Rn×k is the matrix of the left singular
vectors of Y∗. This matrix is explicitly given by Uia = 1/

√
`

if node i is in cluster a and Uia = 0 otherwise. Consequently,
UU> is a block diagonal matrix where the entries inside each
diagonal block are all equal to 1/`.

Define the noise matrix W := A − EA. The matrix W is
symmetric, which introduces some minor dependency among
its entries. To handle this, we let 9 be the matrix obtained
from W with its entries in the lower triangular part set to
zero. Note that W = 9 +9

>, and 9 has independent entries
(with zero entries considered Bern(0)). Similarly, we define 3

as the upper triangular part of the adjacency matrix A.
In the proof we frequently use the inequalities s = (p−q)2

p
<

p−q ≤ p. Consequently, the assumption s ≥ Csk2/n implies
that p ≥ Csk2/n. We also record an elementary inequality
that is used multiple times.

Lemma 1: For each number α > 0, there exists a number
C(α) ≥ 1 such that if s ≥ C(α)k

n
, then

pe−pn/(αk) ≤ (p − q)e−sn/(2αk).

Proof: Note that pn ≥ (p − q)n ≥ sn ≥ C(α)k. As long
as C(α) is sufficiently large, we have pn

k
≤ e pn/(2αk). These

inequalities imply that

p

p − q
≤ pn

k
≤ e pn/(2αk) ≤ e(2p−s)n/(2αk).

Multiplying both sides by (p − q)e−2pn/(2αk) yields the
claimed inequality.

B. Proof of Proposition 1

In this section we prove Proposition 1, which controls the
quantity S1. Using the symmetry of �Y − Y∗ and the cyclic
invariance of the trace, we obtain the identity

S1 =
�
PT (W) ,�Y − Y∗�

=
"
UU>W,�Y − Y∗

#
+

"
WUU>,�Y − Y∗

#

−
"
UU>WUU>,�Y − Y∗

#

= 2
"
UU>W,�Y − Y∗

#

−
"
UU>WUU>,�Y − Y∗

#

= 2
"
UU>

9,�Y − Y∗
#
+ 2

"
UU>

9
>,�Y − Y∗

#

−
"
UU>(9 +9

>)UU>,�Y − Y∗
#

= 2
"
UU>

9,�Y − Y∗
#
+ 2

"
UU>

9
>,�Y − Y∗

#

−2
"
UU>

9UU>,�Y − Y∗
#

= 2
"
UU>

9,�Y − Y∗
#
+ 2

"
UU>

9
>,�Y − Y∗

#

−2
"
UU>

9, (�Y − Y∗)UU>
#
.

It follows that

S1 ≤ 2
���
"
UU>

9,�Y − Y∗
#���

+2
���
"
UU>

9
>,�Y − Y∗

#���

+2
���
"
UU>

9, (�Y − Y∗)UU>
#��� . (16)

Note that k�Y − Y∗k∞ ≤ 1 since �Y, Y∗ ∈ {0, 1}n×n . One
can also check that k(�Y − Y∗)UU>k∞ ≤ 1. This is due to
the fact that each entry of the matrix inside the norm is the
mean of ` entries in �Y−Y∗ given the block diagonal structure
of UU>, and the absolute value of the mean does not exceed 1.
With the same reasoning, we see that k(�Y − Y∗)UU>k1 ≤
k�Y − Y∗k1 = γ .

Key to our proof is a bound on the sum of order statistics.
Intuitively, given m i.i.d. random variables, the sum of the β

largest of them (in absolute value) scales as O
	
β
�

log(m/β)


.

The following lemma, proved in Appendix II-B, makes the
above intuition precise and moreover establishes a uniform
bound in β.

Lemma 2: Let m ≥ 8 and g ≥ 1 be positive integers. For
each j ∈ [m], define X j :=

�g
i=1(Bi j − EBi j ), where Bi j

are independent Bernoulli variables with variance at most ρ.
Then for a constant D =

√
10, we have

dβe�

j=1

��X( j )

�� ≤ D dβe
�

gρ log (3m/β),

∀β ∈ (3me−gρ/Ce , m],
with probability at least 1− P1(m), where P1(m) ≤ 3

m
.

We are ready to bound the RHS of equation (16) and hence
prove Proposition 1. Consider the event

E1 :=
$ ���hUU>

9, Mi
��� ≤ 2Db

�
p log

	
3n2/b




`
,

∀M, b : kMk∞ ≤ 1, kMk1 ≤ b,

3n2e−sn/(2Cek) < b ≤ n2
%
,

and let E2 be defined similarly with 9 replaced by 9
>.

Note that the last line of E1 is valid since the assumption
s ≥ Csk2/n for a sufficiently large Cs > 0 implies that
3n2e−sn/(2Cek) < n2. We will use Lemma 2 to show that Ei

holds with probability at least 1− P1 := 1− P1(nk) for each
i = 1, 2. Taking this claim as given, we now condition on the
intersection of the events E1, E2. Note that the matrix �Y−Y∗

satisfies k�Y−Y∗k∞ ≤ 1, and therefore γ := k�Y−Y∗k1 ≤ n2.
If γ ≤ 3n2e−sn/(2Cek), then the first inequality in Proposition 1
holds and we are done. Otherwise, on the event E1, we are
guaranteed that

���hUU>
9,�Y − Y∗i

��� ≤ 2Dγ

�
p log

	
3n2/γ




`
.

Since the matrix M :=
	�Y − Y∗
 UU> satisfies kMk∞ ≤ 1

and kMk1 ≤ γ , we have the bound

���
"
UU>

9, (�Y − Y∗)UU>
#��� ≤ 2Dγ

�
p log

	
3n2/γ




`
.
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Similarly, on the event E2, we have the bound

���hUU>
9
>,�Y − Y∗i

��� ≤ 2Dγ

�
p log

	
3n2/γ




`
.

Applying these estimates to the RHS of equation (16), we

arrive at the bound S1 ≤ 12Dγ

!
p log(3n2/γ )

`
, which is

the second inequality in Proposition 1.
It remains to bound the probability of the event E1, for

which we shall use Lemma 2; the same arguments apply to the
event E2. Let us take a digression to inspect the structure of the
random matrix V := UU>

9. We treat each zero entry in 9

as a Bern(0) random variable with its mean subtracted and
independent of all other entries. Therefore, all entries of 9 are
independent. Since UU> is a block diagonal matrix, V can be
partitioned into k submatrices of size `× n stacked vertically,
where rows within the same submatrix are identical and rows
from different submatrices are independent with each of their
entries equal to 1/` times the sum of ` independent centered
Bernoulli random variables. To verify our observations, for
a ∈ [k] we use Ra := {(a − 1)`+ 1, . . . , a`} to denote the
set of row indices of the a-th submatrix of V. Consider any
i ∈ Ra , that is, any row index of the a-th submatrix of V.
Then for all j ∈ [n], we have Vi j =

�n
t=1

	
UU>


it
9t j =

`−1 �
u∈Ra

9u j . We see that we get the same random variable
by varying i within Ra while fixing j , but independent random
variables by fixing i while varying j .

Fix an index ia := (a − 1)` + 1 ∈ Ra for each a ∈ [k].
Consider any n × n matrix M and number b such that
kMk∞ ≤ 1, kMk1 ≤ b and 3n2e−sn/(2Cek) < b ≤ n2. We
can compute

|hV, Mi| ≤
n�

i=1

n�

j=1

��Vi j

�� ��Mi j

��

=
k�

a=1

�

i∈Ra

n�

j=1

��Vi j

�� ��Mi j

��

=
�

a∈[k], j∈[n]

��`Via j

��
⎡
⎣�

i∈Ra

��Mi j

��
`

⎤
⎦ ,

where the last step follows from the previously established
fact that Vi j = Via j ,∀i ∈ Ra . Recall that the nk random
variables {`Via j , a ∈ [k], j ∈ [n]} are independent; moreover,
each `Via j is the sum of ` independent Bernoulli variables with
variance at most p. Let X(t) denote the element in these nk

random variables with the t-th largest absolute value. Define
the quantity w := kMk1/` =

�
a∈[k], j∈[n]

�
i∈Ra

��Mi j

�� /`.
Since

�
i∈Ra

`−1
��Mi j

�� ≤ kMk∞ ≤ 1 and w ≤ b/`, we have

|hV, Mi| ≤
��dwe

t=1

��X(t)

�� ≤ �db/`e
t=1

��X(t)

�� , b/` ≥ 1��X(1)

�� (b/`), b/` < 1.
(17)

Here we use the fact that for any sequence of numbers

a1, a2, . . . in [0, 1],
�

t |X t | at ≤
��

i ai

t=1

��X(t)

��. Now note
that b/` ∈ (3nke−sn/(2Cek), nk], which implies that b/` ∈
(3nke−p`/Ce, nk] by Lemma 1. Applying Lemma 2 with

m = nk ≥ 8, g = `, ρ = p and β = b/`, we are guaranteed
that with probability at least 1− P1(nk),

db/`e�

t=1

��X(t)

�� ≤ D db/`e
�

`p log

*
3nk

b/`

+

and
��X(1)

�� ≤ D
�

`p log(3nk)

simultaneously for all relevant b/`. On this event, we can
continue the inequality (17) to conclude that

|hV, Mi| ≤

⎧
⎨
⎩

D db/`e
,

`p log
�

3nk
b/`



, b/` ≥ 1

D(b/`)
�

`p log(3nk), b/` < 1

simultaneously for all relevant matrices M. It is easy to see

that the last RHS is bounded by 2Db

!
p log(3nk/w)

` in either
case, hence the event E1 holds.

We remark that the box constraints in the SDP (1) are
crucial to the above arguments, which are ultimately applied
to the matrix M = �Y − Y∗. In particular, the box constraints
ensure that kMk∞ = k�Y − Y∗k∞ ≤ 1, which allows us
to establish the inequality (17) and apply the order statistics
bound in Lemma 2.

C. Proof of Proposition 2

We begin our proof by re-writing S2 as

S2 =
�
PT⊥(�Y), W

�
, (18)

which holds since PT⊥(Y∗) = 0 by definition of the projection
PT⊥ . We can relate the matrix PT⊥(�Y) appeared above to the
quantity of interest, γ = k�Y − Y∗k1. In particular, observe
that

Tr
�
PT⊥

	�Y

�

= Tr
-�

I− UU>

 	�Y − Y∗
 �I − UU>


.

(i)= Tr
-�

I− UU>

 	�Y − Y∗
.

(ii)= Tr
-

UU> 	
Y∗ −�Y


.
,

where step (i) holds since trace is invariant under cyclic
permutations and I − UU> is a projection matrix, and step
(i i) holds since diag

	�Y


= diag (Y∗) = 1 by feasibility of �Y

and Y∗ to the SDP (1). Recall that all the non-zero entries
of UU> are in its diagonal block and equal to 1/`. Since the
corresponding diagonal-block entries of the matrix Y∗−�Y are
non-negative, we have

Tr
-

UU> 	
Y∗ −�Y


.
=

�

(i, j ):Y ∗i j=1

1

`
·
���
	
Y∗ −�Y



i j

��� ≤ γ

`
.

Combining these pieces gives
Fact 2: Tr

�
PT⊥

	�Y

�
≤ γ

`
.

Equipped with this fact, we proceed to bound the quantity S2
given by equation (18). We consider separately the dense case
p ≥ cd

log n
n

and the sparse case p ≤ cd
log n

n
, where cd > 0 is

a constant given in the statement of Lemma 5.
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1) The Dense Case: First assume that p ≥ cd
log n

n
. In this

case bounding S2 is relatively straightforward, as the graph
spectrum is well-behaved. We first recall that the nuclear norm
kPT⊥(�Y)k∗ is defined as the sum of the singular values of
the matrix PT⊥(�Y). Since �Y � 0 by feasibility, we have
PT⊥(�Y) = (I−UU>)�Y(I−UU>) � 0, whence kPT⊥(�Y)k∗ =
Tr

�
PT⊥(�Y)

�
. Revisiting the expression (18), we obtain that

S2 =
�
PT⊥(�Y), W

�

≤ Tr
�
PT⊥

	�Y

�
· kWkop

≤ γ

`
· kWkop,

where the first inequality follows from the duality between the
nuclear and spectral norms, and the second inequality follows
from Fact 2.

It remains to control the spectral norm kWkop of the
centered adjacency matrix W := A − EA. This can be done
in the following lemma, which is proved in Appendix II-C
using standard tools from random matrix theory.

Lemma 3: We have kA−EAkop ≤ 8
√

pn+174
√

log n with
probability at least 1− P2 where P2 := n−2.
Applying the lemma, we obtain that with probability at least
1− P2,

S2 ≤
�

8
√

pn + 174
�

log n


· γ

`
≤ D2

√
pn · γ

`
,

where in the last step holds for some constant D2 sufficiently
large under the assumption p ≥ cd

log n
n

. This completes the
proof of Proposition 2 in the dense case.

2) The Sparse Case: Now suppose that p ≤ cd
log n

n
. In this

case we can no longer use the arguments above, because
some nodes will have degrees far exceeding their expectation
O(pn), and kWkop will be dominated by these nodes and
become much larger than

√
pn. This issue is particularly

severe when p, q � 1
n

, in which case the expected degree is a
constant, yet the maximum node degree diverges. Addressing
this issue requires a new argument. In particular, we show that
the matrix W can be partitioned into two parts, where the first
part has a spectral norm bounded as desired, and the second
part involves only a small number of edges; the structure of
the SDP solution allows us to control the impact of the second
part.

As before, to avoid the minor dependency due to symmetry,
we focus on the upper triangular parts 3 and 9 of the matrices
A and W := A − EA, and later make use of the relations
A = 3+3

> and W = 9 +9
>. We define the sets

Vrow :=

⎧
⎨
⎩i ∈ [n] :

�

j∈[n]
(3)i j > 40 pn

⎫
⎬
⎭ ,

Vcol :=

⎧
⎨
⎩ j ∈ [n] :

�

i∈[n]
(3)i j > 40 pn

⎫
⎬
⎭ ,

which are the nodes whose degrees (more specifically,
row/column sums w.r.t. the halved matrix 3) are
large compared to their expectation O(pn). For each

matrix M ∈ Rn×n , we define the matrix 2M such that

2Mi j =
�

0, if i ∈ Vrow or j ∈ Vcol,

Mi j , otherwise.

In other words, 2M is obtained from M by “trimming” the
rows/columns corresponding to nodes with large degrees. With
this notation, we can write 9 = 29 + (9 − 29), which can be
combined with the expression (18) to yield

S2 = hPT⊥(�Y),9 +9
>i

= 2hPT⊥(�Y),9i
= 2hPT⊥(�Y), 29i + 2hPT⊥(�Y),9 − 29i
≤ 2 Tr

�
PT⊥(�Y)

�
· k29kop + 2hPT⊥(�Y),9 − 29i, (19)

where in the last step we use the fact that �Y � 0 and thus
PT⊥(�Y) = (I − UU>)�Y(I − UU>) � 0.

The first term in (19) can be controlled using the fact that the
spectrum of the trimmed matrix 29 is well-behaved, for any p.
In particular, we prove the following lemma in Appendix II-D
as a consequence of known results.

Lemma 4: For some absolute constant C > 0, we have
k29kop ≤ C

√
pn, with probability at least 1 − P3, where

P3 := e−(3−ln 2)2n + (2n)−3.
One shall compare the bound in Lemma 4 with that

in Lemma 3. After trimming, the term
√

log n in Lemma 3
(which would dominate in the sparse regime) disappears,
and the spectral norm of 29 behaves similarly as a random
matrix with Gaussian entries. Such a bound is in fact standard
in recent work on spectral algorithms applied to sparse graphs
with constant expected degrees [31], [50]. Typically these
algorithms proceed by first trimming the graph, and then
running standard spectral algorithms with the trimmed graph
as the input. We emphasize that in our case trimming is used
only in the analysis; our algorithm itself does not require any
trimming, and the SDP (1) is applied to the original graph.
As shown below, we are able to control the contributions from
what is not trimmed, namely the second term in (19). Such
a bound is made possible by leveraging the structures of the
solution �Y induced by the box constraints of the SDP (1) — a
manifest of the regularization effect of SDP.

Turning to the second term in equation (19), we first note
that the Holder’s type inequality

hPT⊥(�Y),9 − 29i ≤ Tr
�
PT⊥(�Y)

�
k9 − 29kop

is no longer sufficient, as the residual matrix 9 − 29 may
have large eigenvalues. Here it is crucial to use an important
property of the matrix PT⊥(�Y), namely the fact that the
magnitudes of its entries are O(1), a consequence of the
constraint 0 ≤ Y ≤ J in the SDP (1). More precisely, we
have the following bound, which is proved in Appendix II-E.

Fact 3: We have kPT⊥(�Y)k∞ ≤ 4.
Intuitively, this bound ensures that the mass of the matrix
PT⊥(�Y) is spread across its entries, so its eigen-space is
unlikely to be aligned with the top eigenvector of the random
matrix 9 − 29, which by definition is supported on a few
columns/rows indexed by Vcol and Vrow. Consequently,
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the quantity hPT⊥(�Y),9 − 29i is likely to be small. To make
this precise, we start with the inequality

hPT⊥(�Y),9 − 29i ≤ kPT⊥(�Y)k∞ · k9 − 29k1 (20)

The following lemma bounds the `1 norm of the residual
matrix 9 − 29.

Lemma 5: Suppose p ≥ Cp/n for some sufficiently large
constant Cp > 0, and p ≤ cd log n/n for some sufficiently
small constant cd > 0. Then there exist some constants
C, c0 > 0 such that

k9 − 29k1 ≤ Cpn2e−pn/Ce

with probability at least 1− P4 where P4 := 4e−c0
√

n .
We prove this lemma in Section IV-D to follow using tail
bounds for sub-exponential random variables.

Equipped with the above bounds, we are ready to bound S2.
If γ ≤ Cgn2e−sn/(2Cek), then the first inequality in Propo-
sition 2 holds and we are done. It remains to consider the
case with γ > Cgn2e−sn/(2Cek), which by Lemma 1 implies
that γ > Cgn2 · p

p−q
e−pn/Ce . The inequalities (19) and (20)

together give

S2 ≤ 2 Tr
�
PT⊥(�Y)

�
· k29kop

+kPT⊥(�Y)k∞ · k9 − 29k1

≤ 2
γ

`
k29kop + 4k9 − 29k1,

where we use Facts 2 and 3 in the second step. Applying
Lemma 4 to the first RHS term above and Lemma 5 to the
second, we obtain that

S2 ≤ 2C

√
pn

`
γ + 4Cpn2e−pn/Ce

with probability at least 1 − P3 − P4. Since γ > Cgn2 ·
p

p−q
e−pn/Ce as shown above, we obtain that

S2 ≤ 2C

√
pn

`
γ + 4C

Cg

(p − q)γ ≤ 2C

√
pn

`
γ + 1

8
(p − q)γ,

where the last step holds provided that the constant Cg is large
enough. This proves the second inequality in Proposition 2.

D. Proof of Lemma 5

For any matrix M, let posi•(M) and pos• j (M) denote the
number of positive entries in i -th row and j -th column of M,
respectively. Recall that the entries of 3 are independent
Bernoulli random variables with variance at most p, where
Cp/n ≤ p ≤ cd log n/n for some sufficiently large constant
Cp > 0 and sufficiently small constant cp > 0. By definition,
we have 9 := 3− E3, whence

k9 − 29k1 = k(3− E3)− ^(3− E3)k1

= k(3− E3)− (23−3E3)k1

≤ kE3−3E3k1 + k3− 23k1.

The two terms on the last RHS are both random quantities
depending on the sets Vrow = {i : posi•(3) ≥ 40 pn} and
Vcol := { j : pos• j (3) ≥ 40 pn}. We bound these two terms
separately.

1) Bounding kE3 −]E3k1: Let I(·) denote the indicator
function. We begin by investigating the indicator variable
Gi := I(i ∈ Vrow) = I(posi•(3) ≥ 40 pn); similar properties
hold for G0

j := I( j ∈ Vcol). Note that {Gi , i ∈ [n]} are
independent Bernoulli random variables. To bound their rates
EGi , we observe that each posi•(3) =

�
j 3i j is the sum of n

independent Bernoulli random variables with variance at most
p(1− p)n, and E posi•(3) ≤ pn. The Bernstein’s inequality
ensures that for any number z > pn,

P
�
posi•(3) ≥ z

�

≤ P
�
posi•(3)− E posi•(3) ≥ z − pn

�

≤ exp

�
−

1
2 (z − pn)2

p(1− p)n + 1
3 · 1 · (z − pn)

4

≤ exp

$
− (z − pn)2

2z

%
. (21)

Plugging in z = 40 pn yields

EGi = P
�
posi•(3) ≥ 40 pn

�

≤ exp

$
− (40 pn − pn)2

2 · 40 pn

%

≤ e−8pn.

We now turn to the quantity of interest, kE3−3E3k1. Since
E3i j ≤ p for all (i, j), we have that

kE3−3E3k1 =
�

i

�

j

E3i j · I(i ∈ Vrow or j ∈ Vcol)

≤
�

i

�

j

p · I(i ∈ Vrow)

+
�

i

�

j

p · I( j ∈ Vcol)

= pn
�

i

Gi + pn
�

j

G0
j .

The quantity
�

i Gi is the sum of independent Bernoulli
variables with rates bounded above. Applying the Bernstein’s
inequality to this sum, we obtain that

P

��

i

Gi > 2ne−pn/Ce

4

≤ P

��

i

Gi −
�

i

EGi > 2ne−pn/Ce − ne−pn/Ce

4

≤ exp

�
−

1
2

	
ne−pn/Ce


2

n · e−pn/Ce + 1
3 · 1 · ne−pn/Ce

4

≤ exp

$
−3

8
ne−pn/Ce

%
≤ exp

$
−3

8

√
n

%
,

where the first two steps hold because Ce ≥ 28, and the last
step holds by the assumption in Lemma 5 that p ≤ cd log n/n

for some sufficiently small cd > 0. The same tail bound holds
for the sum

�
j G0

j . It follows that with probability at least

1− 2e−
3
8
√

n , we have

kE3−3E3k1 ≤ 4 pn2e−pn/Ce
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2) Bounding k3−23k1: Since the matrix 3−23 have non-
negative entries, we have the inequality

k3− 23k1 =
�

i

�

j

3i j I(i ∈ Vrow or j ∈ Vcol)

≤
�

i

�

j

3i j I(i ∈ Vrow)

� ��  
Zi

+
�

j

�

i

3i j I( j ∈ Vcol)

� ��  
Z 0j

. (22)

The variables {Z i , i ∈ [n]} are independent. Below we show
that they are sub-exponential, for which we recall that a
variable X is called sub-exponential with parameter λ if

Eet (X−EX) ≤ et2λ2/2, for all t ∈ R with |t| ≤ 1

λ
. (23)

It is a standard fact [52] that sub-exponential variables can be
equivalently defined in terms of the tail condition

P {|X | ≥ z} ≤ 2e−8z/λ, for all z ≥ 0. (24)

For the sake of completeness and tracking explicit constant
values, we prove in Appendix II-F the one-sided implica-
tion (24)⇒(23), which is what we need below.

To verify the condition (24) for each Z i , we observe that
by definition either Z i = 0 or Z i ≥ 40 pn. Therefore, for each
number z ≥ 40 pn, we have the tail bound

P {Z i ≥ z} = P
�
posi•(3) ≥ z

�

(i)
≤ exp

$
− (z − pn)2

2z

%

≤ exp

$
− (z − z/40)2

2z

%

≤ e−z/4,

where in step (i) we use the previously established bound (21).
For each 0 < z < 40 pn, we use the bound (21) again to get

P {Z i ≥ z} = P {Z i ≥ 40 pn}
= P

�
posi•(3) ≥ 40 pn

�

≤ e−8pn ≤ e−z/4.

We conclude that P {Z i ≥ z} ≤ e−z/4 for all z ≥ 0. Since Z i

is non-negative, it satisfies the tail condition (24) with λ = 32
and hence is sub-exponential as claimed. Moreover, the non-
negative variable Z i satisfies the expectation bound

EZ i =
5 20pn

0
P {Z i > z} dz +

5 ∞

20pn

P {Z i > z} dz

(i)
≤

5 20pn

0
e−8pndz +

5 ∞

20pn

e−z/4dz

= 20 pn · e−8pn + 4e−5pn

(ii)
≤ 24 pne−5pn,

where step (i) follows the previously established tail bounds
for Z i , and step (i i) follows from the assumption that

p ≥ Cp/n for some sufficiently large constant Cp > 0.
It follows that E

��
i Z i

�
≤ 24 pn2e−5pn.

To control the sum
�

i Z i in equation (22), we use a
Bernstein-type inequality for the sum of sub-exponential
random variables.

Lemma 6 (Theorem 1.13 of [53]): Suppose that X1, . . . ,

Xn are independent random variables, each of which is sub-
exponential with parameter λ in the sense of (23). Then for
each t ≥ 0, we have

P

�
n�

i=1

(X i − EX i ) ≥ t

4
≤ exp

$
−1

2
min

*
t2

λ2n
,

t

λ

+%
.

For a sufficiently large constant C2 > 1, we apply the
lemma above to obtain the tail bound

P

��

i

Z i ≥ 2C2 pn2e−5pn

4

(i)
≤ P

��

i

(Z i − EZ i ) ≥ C2 pn2e−5pn

4

(ii)
≤ exp

�
−1

2
min

6
(C2 pn2e−5pn)2

(32)2n
,

C2 pn2e−5pn

32

74
,

where step (i) follows from our previous bound on E
��

i Z i

�
.

To proceed, we recall the assumption in Lemma 5 that p

satisfies Cp/n ≤ p ≤ cd log n/n for Cp sufficiently large
and cd > 0 sufficiently small, which implies that

log
�

C2 pn2e−5pn


= log C2 + log(pn)+ log n − 5 pn

≥ 3

4
log n,

whence C2 pn2e−5pn ≥ n3/4. Plugging into the above tail
bound, we get that

P

��

i

Z i ≥ 2C2 pn2e−5pn

4

≤ exp

$
−1

2
min

*
n1/2

(32)2
,

n3/4

32

+%
≤ e−c0

√
n,

for some absolute constant c0. The same tail bound holds
for the sum

�
j Z 0j . Combining these two bounds with the

inequality (22), we obtain that

k3− 23k1 ≤ 4C2 pn2e−5pn

with probability at least 1− 2e−c0
√

n .

Putting together the above bounds on kE3 − 3E3k1 and
k3−23k1, we conclude that there exists an absolute constant
C > 0 such that

k9 − 29k1 ≤ kE3−3E3k1 + k3− 23k1 ≤ Cpn2e−pn/Ce

with probability at least 1− 4e−c0
√

n , as desired.
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V. PROOF OF THEOREM 3

We only need to show that the conclusion of Theorem 1
(the bound on k�Y − Y∗k1) holds under the Heterogeneous
SBM in Model 2. Once this is established, the conclu-
sion in Theorem 2 follows immediately, as the clustering
error is deterministically upper bounded by k�Y − Y∗k1

(cf. Proposition I).
To achieve the goal above, we first consider a model that

bridges Model 1 and Model 2, and prove robustness under this
intermediate model.

Model 4 (Semi-Random Stochastic Block Model): Given
an arbitrary set of node pairs L ⊆ {(i, j) ∈ [n] × [n] : i < j}
and the ground-truth clustering σ

∗ (encoded in the matrix Y∗),
a graph is generated as follows. For each (i, j) ∈ L,
Ai j = Y ∗

i j deterministically. For each (i, j) /∈ L, Ai j is
generated according to the standard SBM in Model 1; that is,
Ai j ∼ Bern(p) if Y ∗

i j = 1, and Ai j ∼ Bern(q) if Y ∗
i j = 0.

Note that the standard SBM in Model 1 is a special case
of the Semi-random SBM in Model 4 with an empty set L.
Model 4 is in turn a special case of the Heterogeneous
SBM in Model 2 where Ai j ∼ Bern(I(Y ∗

i j = 1)) for each

(i, j) ∈ L, and Ai j ∼ Bern
�

p I(Y ∗
i j = 1)+ q I(Y ∗

i j = 0)



for
each (i, j) /∈ L.

We first show that the conclusion of Theorem 1 holds under
Model 4. We do so by verifying the steps of the proof of
Theorem 1 given in Section IV. The proof consists of Fact 1
concerning the expected graph EA, and Propositions 1 and 2,
which bound the deviation terms S1 and S2. Under Model 4,
Fact 1 remains valid: each entry of A in the set L is changed
in the direction of the sign of the corresponding entries of �Y−
Y∗, which only increases the LHS of equation (10). Both terms
S1 and S2 involve the noise matrix W := A−EA. Examining
the proofs of Propositions 1 and 2, we see that they only rely
on the independence of the entries of 9 := 3 − E3 (that
is, the upper triangular entries of W := A − EA) as well
as upper bounds on their expectations and variances. Under
Model 4, the entries of A indexed by L are deterministically
set to 1 or 0; the corresponding entries of 9 become Bern(0),
in which case they remain independent, with their expectations
and variances decreased to zero.5 Therefore, Propositions 1
and 2, and hence all the steps in the proof of Theorem 1,
continue to hold under Model 4.

We now turn to the Heterogeneous SBM in Model 2, and
show that this model can be reduced to Model 4 via a coupling
argument. Suppose that under Model 2, Ai j ∼ Bern(pi j ) for
each (i, j) with Y ∗

i j = 1, and Ai j ∼ Bern(qi j ) for each (i, j)

with Y ∗
i j = 0, where by assumption pi j ≥ p and qi j ≤ q .

Model 2 is equivalent to the following 3-step process:
Step 1: We first generate a set of edge pairs L as follows:

independently for each (i, j), i < j , if Y ∗
i j = 1, then

(i, j) is included in L with probability 1 − 1−pi j

1−p
; if

5We illustrate this argument using Section IV-D as an example. There
we would like to upper bound the quantity k9 − 29k1. Suppose that under
Model 4, the entry (i, j) ∈ L is such that Ai j = Y ∗i j = 1 surely. In this
case 9i j ∼ Bern(0), which can be written as 9i j = 3i j − E3i j with
E3i j = 0 ≤ p and Var(3i j ) = 0 ≤ p(1 − p). This is all that is required
when we proceed to bound kE3−3E3k1 and k3− 23k1.

Y ∗
i j = 0, then (i, j) is included in L with probability

1− qi j

q
.

Step 2: Independently of above, we sample a graph from
Model 1; let A0 denote its adjacency matrix.

Step 3: The final graph A is constructed as follows: for
each (i, j), i < j with Y ∗

i j = 1, Ai j =
I
�

A0
i j = 1 or (i, j) ∈ L



; for each (i, j), i < j with

Y ∗
i j = 0, Ai j = I

�
A0

i j = 1 and (i, j) /∈ L



.

Note that the assumption pi j ≥ p and qi j ≤ q ensures that
the probabilities in step 1 are in [0, 1]. One can verify that the
distribution of A is the same as in Model 2; in particular, for
each (i, j), i < j , we have

P(Ai j = 1)

=

⎧
⎨
⎩

P
�

A0
i j = 1 or (i, j) ∈ L



, if Y ∗

i j = 1,

P
�

A0
i j = 1 and (i, j) /∈ L



, if Y ∗

i j = 0.

=
�

1− (1− p) · 1−pi j

1−p
= pi j , if Y ∗

i j = 1,

q · qi j

q
= qi j , if Y ∗

i j = 0.

Now, conditioned on the set L, the distribution of A follows
Model 4, since steps 1 and 2 are independent. We have estab-
lished above that under Model 4, the error bound in Theorem 1
holds with high probability. Integrating out the randomness of
the set L proves that the error bound holds with the same
probability under Model 2.

APPENDIX I
APPROXIMATE k-MEDIANS ALGORITHM

We describe the procedure for extracting an explicit clus-
tering �σ from the solution �Y of the SDP (1) or (6). Our
procedure builds on the idea in [15], and applies a version of
the k-median algorithm to the rows of �Y, viewed as n points
in Rn . The k-median algorithm seeks a partition of these n

points into k clusters, and a center associated with each cluster,
such that the sum of the `1 distances of each point to its cluster
center is minimized. Note that this procedure differs from the
standard k-means algorithm: the latter minimizes the sum of
squared distance, and uses the `2 distance rather than `1.

To formally specify the algorithm, we need some additional
notations. Let Rows(M) be the set of rows in the matrix
M. Define Mn,k to be the set of membership matrices corre-
sponding to all k-partitions of [n]; that is, Mn,k is the set of
matrices in {0, 1}n×k such that each of their rows has exactly
one entry equal to 1 and each of their columns has at least
one entry equal to 1. By definition each element in Mn,k has
exactly k distinct rows. The k-medians algorithm described
above can be written as an optimization problem:

min
9,X

k9X −�Yk1

s.t. 9 ∈ Mn,k,

X ∈ Rk×n , Rows(X) ⊂ Rows(�Y) (25)

Here the optimization variable 9 encodes a partition of n

points, assigning the i -th point to the cluster indexed by the
unique non-zero element of the i -th row of 9; the rows of the
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Algorithm 1 Approximate k-Median ρ-kmed

Input: data matrix �Y ∈ Rn×n ; approximation factor ρ ≥ 1.
1. Use a ρ-approximation algorithm to solve the optimization
problem (25). Denote the solution as (9̌, X̌).
2. For each i ∈ [n], set �σi ∈ [k] to be the index of the unique
non-zero element of

-
9̌1i , 9̌2i , . . . , 9̌ki

.
; assign node i to

cluster �σi .
Output: Clustering assignment �σ ∈ [k]n .

variable X represent the r cluster centers. Note that the last
constraint in (25) stipulates that the cluster centers be elements
of the input data points represented by the rows of �Y, so this
procedure is sometimes called k-medoids. Let (9, X) be the
optimal solution of the problem (25).

Finding the exact solution (9, X) is in general computation-
ally intractable, but polynomial-time constant-factor approxi-
mation algorithms exist. In particular, we will make use of
the polynomial-time procedure in [47], which produces an
approximate solution (9̌, X̌) ∈ Mn,k×Rk×n that is guaranteed
to satisfy Rows(X̌) ⊂ Rows(�Y) and

k9̌X̌−�Yk1 ≤ ρk9X −�Yk1 (26)

with an approximation ratio ρ = 20
3 . The variable 9̌ encodes

our final clustering assignment.
The complete procedure ρ-kmed is given in Algorithm 1,

which takes as input a data matrix �Y (which in our case is
the solution to the SDP (1) or (6)) and outputs an explicit
clustering �σ = ρ-kmed(�Y). We assume that the number of
clusters k is known.

APPENDIX II
TECHNICAL LEMMAS

In this section we provide the proofs of the technical lemmas
used in the main text.

A. Proof of Fact 1

For each pair i 6= j , if nodes i and j belong to the same
cluster, then Y ∗

i j = 1 ≥ �Yi j and EAi j− p+q
2 = p− p+q

2 = p−q
2 ;

if nodes i and j belong to different clusters, then Y ∗
i j = 0 ≤ �Yi j

and EAi j − p+q
2 = q − p+q

2 = − p−q
2 . For i = j , we have

�Yi j = Y ∗
i j . In each case, we have the expression

�
Y ∗

i j − �Yi j


*
EAi j −

p + q

2

+
= p − q

2

����Yi j − Y ∗
i j

��� .

Summing up the above equation for all i, j ∈ [n] gives the
desired equation (10).

B. Proof of Lemma 2

To establish a uniform bound in β, we apply a discretization
argument to the possible values of β. Define the short-
hand E := (3me−gρ/Ce , m]. We can cover E by the sub-
intervals Et := (t − 1, t] for integers t ∈ [

8
3me−gρ/Ce

9
, m].

By construction we have

gρ

Ce

= log
3m

3me−gρ/Ce
≥ log

3m

t
. (27)

We also know that our choice of D =
√

10 satisfies 1
2 D2 ≥

4
�

1+ 1
3
√

Ce
D



since Ce ≥ 28.
We define the shorthand

Rβ := D dβe
�

gρ log(3m/β).

For each t ∈ [
8
3me−gρ/Ce

9
, m] we define the probabilities

αt := P

⎧
⎨
⎩∃β ∈ Et :

dβe�

j=1

��X( j )

�� > Rβ

⎫
⎬
⎭ .

We bound each of these probabilities:

αt

(i)
≤ P

⎧
⎨
⎩

t�

j=1

��X( j )

�� > Rt

⎫
⎬
⎭

= P

⎧
⎨
⎩

:

i1<···<it

⎧
⎨
⎩

t�

j=1

��X i j

�� > Rt

⎫
⎬
⎭

⎫
⎬
⎭

≤
�

i1<···<it

P

⎧
⎨
⎩

t�

j=1

��X i j

�� > Rt

⎫
⎬
⎭

=
�

i1<···<it

P

⎧
⎨
⎩ max

u∈{±1}t

t�

j=1

X i j u j > Rt

⎫
⎬
⎭

≤
�

i1<···<it

�

u∈{±1}t
P

⎧
⎨
⎩

t�

j=1

X i j u j > Rt

⎫
⎬
⎭ , (28)

where step (i) holds since β ∈ Et implies β ≤ dβe = t .
For each positive integer t , fix an index set (i j )

t
j=1 and a

sign pattern u ∈ {±1}t . Note that
�t

j=1 X i j u j is the sum of tg

centered Bernoulli random variables with Var(Bi j−EBi j ) ≤ ρ

and
��Bi j − EBi j

�� ≤ 1 for each j ∈ [t] and i ∈ [g]. We apply
Bernstein inequality to bound the probability on the RHS of
equation (28):

P

⎧
⎨
⎩

t�

j=1

X i j u j > Rt

⎫
⎬
⎭

≤ exp

�
−

1
2 D2t2gρ log(3m/t)

tgρ + 1
3 Dt

�
gρ log(3m/t)

4

(a)
≤ exp

⎧
⎨
⎩−

1
2 D2t2gρ log(3m/t)�

1+ 1
3
√

Ce
D



tgρ

⎫
⎬
⎭

(b)
≤ exp {−4t log(3m/t)} ,

where step (a) holds by equation (27) and step (b) holds
by our choice of the constant D. Plugging this back to
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equation (28), we get that for each
8

3me−gρ/Ce
9
≤ t ≤ m,

αt ≤
�

i1<···<it

�

u∈{±1}t
exp {−4t log(3m/t)}

=
*

m

t

+
· 2t · exp {−4t log(3m/t)}

≤
�me

t


t

et exp {−4t log(3m/t)}
= exp {t log(m/t)+ 2t − 4t log(3m/t)}

≤ exp {−t log(3m/t)} =
*

t

3m

+t

, (29)

where the last inequality follows from t ≤ t log(3m/t) since
m ≥ t . It follows that

P

⎧
⎨
⎩∃β ∈ E :

dβe�

j=1

��X( j )

�� > Rβ

⎫
⎬
⎭

≤
m�

t=d3me−ρg/Cee
αt

≤
m�

t=d3me−ρg/Cee

*
t

3m

+t

≤
m�

t=1

*
t

3m

+t

=: P1(m).

It remains to show that P1(m) ≤ 3
m

. Since

P1(m) ≤ 1

3m
+

m�

t=2

*
t

3m

+t

≤ 2

m
+ m · max

t=2,3,...,m

*
t

3m

+t

,

the proof is completed if for each integer t = 2, 3, . . . , m,
we can show the bound

	
t

3m


t ≤ 1
m2 , or equivalently f (t) :=

t (log 3m − log t) ≥ 2 log m. Since t ≤ m, f (t) has derivative

f 0(t) = log 3m − log t − 1 ≥ log 3− 1 ≥ 0.

Therefore, f (t) is non-decreasing for 2 ≤ t ≤ m and hence
f (t) ≥ f (2) = 2 log 3m − 2 log 2 ≥ 2 log m. Hence, we have	

t
3m


t ≤ 1
m2 and P1(m) ≤ 3

m
. �

C. Proof of Lemma 3

Our proof follows similar lines as that of [15, Lemma 3].
We first bound EkA−EAkop using a standard symmetrization
argument. Let A0 be an independent copy of A, and R be an
n × n symmetric matrix, independent of both A and A0, with
i.i.d. Rademacher entries on and above its diagonal. We can
compute

EkA − EAkop = EkA − EA0kop

(i)
≤ EkA − A0kop

(ii)= Ek
	
A − A0
 ◦ Rkop

(iii)
≤ 2EkA ◦ Rkop,

where step (i) follows from convexity of the spectral norm,
step (i i) holds since the matrices A−A0 and

	
A− A0
◦R are

identically distributed, and step (i i i) follows from the triangle
inequality.

We proceed by bounding EkA ◦ Rkop. Write kζka :=
E[ζ a]1/a for a random variable ζ and an integer a ≥ 0.
Define the scalars (bi j )i≥ j by bi j =

�
EAi j . Also define the

independent random variables (ξi j )i≥ j as follows: if EAi j = 0,
then ξi j is a Rademacher random variable; if EAi j > 0,

ξi j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1√
EAi j

, with probability EAi j /2,

− 1√
EAi j

, with probability EAi j /2,

0, with probability 1− EAi j .

It can be seen that the lower triangular entries of the symmetric
matrix A◦R can be written as Ai j Ri j = ξi j bi j . By definition,
the random variables (ξi j )i≥ j are symmetric and have zero
mean and unit variance. We can therefore make use of the
following known result:

Lemma 7 (Corollary 3.6 in [54]): Let X be the n × n

symmetric random matrix with X i j = ξi j bi j , where
{ξi j , i ≥ j} are independent symmetric random variables with
unit variance and {bi j : i ≥ j} are given scalars. Then we
have for any α ≥ 3,

EkXkop ≤ e2/α

$
2σ + 14α max

i j
kξi j bi j k2dα log ne

�
log n

%
,

where σ := maxi

!�
j b2

i j .
For every pair i ≥ j , the random variable ξi j bi j is

surely bounded by 1 in absolute value and thus satisfies
kξi j bi jk2dα log ne ≤ 1 for any α ≥ 3. The scalars (bi j )i≥ j are
all bounded by

√
p, so σ ≤ √

pn. Applying the above lemma
with α = 3 gives

EkA ◦Rkop ≤ e2/3
�

2
√

pn + 42
�

log n



≤ 4
√

pn + 84
�

log n,

whence

EkA − EAkop ≤ 2EkA ◦ Rkop ≤ 8
√

pn + 168
�

log n.

We complete the proof by bounding the deviation of kA−
EAkop from its expectation. This can be done using a standard
Lipschitz concentration inequality:

Lemma 8 (Theorem 6.10 in [55], Generalized in Exer-

cise 6.5 Therein): Let X ⊂ Rd be a convex compact set with
diameter B . Let X1, . . . , X N be independent random variables
taking values in X and assume that f : X N → R is separately
convex and 1-Lipschitz, that is, | f (x)− f (y)| ≤ kx − yk for
all x, y ∈ X N ⊂ Rd N . Then Z = f (X1, . . . , X N ) satisfies,
for all t > 0,

P {Z > EZ + t} ≤ e−t2/(2B2).

To use this result for our purpose, we note that Z =
kA − EAkop/

√
2 is a function of the N = n(n − 1)/2

independent lower triangular entries of the symmetric matrix
A − EA. Moreover, this function is separately convex and
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1-Lipschitz. In our setting, each entry of A−EA takes values
in the interval X = [−p, 1 − q], which is convex compact
with diameter B = 1−q+ p ≤ 2. Applying the above lemma
yields that for each t ≥ 0,

P

$
1√
2
kA − EAkop >

1√
2

EkA − EAkop + t

%

≤ e−t2/(2B2) ≤ e−t2/8.

Choosing t = 3
√

2 log n and combining with the previous
bound on EkA − EAkop, gives the desired inequality

P
-
kA− EAkop > 8

√
pn + 174

�
log n

.
≤ n−2.

D. Proof of Lemma 4

For future reference, we state below a more general result;
Lemma 4 is a special case with σ 2 = p.

Lemma 9: Suppose that X ∈ Rn×n is a random matrix with
independent entries of the following distributions

X i j =

⎧
⎨
⎩

1− pi j with probability pi j

−pi j with probability 1− pi j .

Let σ be a number that satisfies pi j ≤ σ 2 for all (i, j), and←→
X be the matrix obtained from X by zeroing out all the rows

and columns having more than 40σ 2n positive entries. Then
with probability at least 1 − P3 = 1 − e−(3−ln 2)2n − (2n)−3,

k←→X kop ≤ Cσ
√

n for some absolute constant C > 0.
We now prove this lemma. Note that the matrix X

is not symmetric. To make use of a known result that
requires symmetry, we employ a standard dilation argument.
We construct the matrix

D :=
;

O1 X

X> O2

<
∈ R2n×2n,

where O1, O2 ∈ Rn×n are all-zero matrices. The matrices O1
and O2 can be viewed as random symmetric matrices whose
entries above the diagonal are independent centered Bernoulli
random variable of rate zero. The matrix D is symmetric and
satisfies the assumptions in the following known result with
N = 2n.

Lemma 10 (Lemma 12 of [31]): Suppose that D ∈ RN×N

is a random symmetric matrix with zero on the diagonal whose
entries above the diagonal are independent with the following
distributions

Di j =

⎧
⎨
⎩

1− pi j with probability pi j

−pi j with probability 1− pi j .

Let σ be a quantity such that pi j ≤ σ 2 for all (i, j) ∈ [N] ×
[N], and D1 be the matrix obtained from D by zeroing out
all the rows and columns having more than 20σ 2 N positive
entries. Then with probability 1−o(1), kD1kop ≤ C 0σ

√
N for

some absolute constant C 0 > 0.
Remark 1: The probability above is in fact 1 − o(1) =

1− P3 = 1− e−(3−ln 2)N − N−3 , as can be seen by inspecting
the proof of the lemma. Moreover, since D is symmetric,

the indices of the rows and columns being zeroed out are
identical.

Lemma 10 ensures that kD1kop ≤ C 0σ
√

2n = Cσ
√

n with
probability at least 1−P3, where C =

√
2C 0. The lemma at the

beginning of this sub-section then follows from the claim that
k←→X kop = kD1kop.

It remains to prove the above claim. Recall that pos i•(M)

and pos • j (M) are the numbers of positive entries in the i -th
row and j -th column of a matrix M, respectively. For each
(i, j) ∈ [n] × [n], we observe that by construction,

pos i•(D) > 20σ 2 N ⇔ posi•(X) > 40σ 2n

pos•( j+n)(D) > 20σ 2 N ⇔ pos• j (X) > 40σ 2n

and similarly

pos(i+n)•(D) > 20σ 2 N ⇔ posi•(X
>) > 40σ 2n

pos• j (D) > 20σ 2 N ⇔ pos• j (X
>) > 40σ 2n.

It then follows from the definitions of D and D1 that

D1 =

⎡
⎣

O1
←→
X

←→
X> O2

⎤
⎦ =

⎡
⎣ O1

←→
X

←→
X > O2

⎤
⎦ ,

whence kD1kop = k←→X kop.

E. Proof of Fact 3

Because �Y is feasible to the SDP (1), we know that
k�Yk∞ ≤ 1. Let c(i) be the index of the cluster that contains
node i . For each (i, j) ∈ [n] × [n], we have the bound

|(UU>�Y)i j | =

������
�

t :c(t)=c(i)

(UU>)it
�Yt j

������
≤ ` · 1

`
· k�Yk∞ ≤ 1

thanks to the structure of the matrix UU>. The same bound
holds for the matrices �YUU> and UU>�YUU> by similar
arguments. It follows that

kPT⊥(�Y)k∞

= k�Y − UU>�Y −�YUU> + UU>�YUU>k∞

≤ k�Yk∞ + kUU>�Yk∞

+k�YUU>k∞ + kUU>�YUU>k∞

≤ 4.

F. Proof of the Implication (24)⇒(23)

We first show that the tail condition (24) of a random
variable X implies a bound for its moments. Note that we
do not require X to be centered.

Lemma 11: Suppose that for some λ > 0, the random
variable X satisfies P (|X | > z) ≤ 2e−8z/λ,∀z ≥ 0. Then for
each positive integer m ≥ 1,

	
E
�
|X |m

�
1/m ≤ 1

4
λ (m!)1/m .
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Proof: Let 0(·) denote the Gamma function. We have the
bound

E
�
|X |m

�
=

5 ∞

0
P
	
|X |m > z



dz

=
5 ∞

0
P
�
|X | > z1/m



dz

≤
5 ∞

0
2 exp

*
−8z1/m

λ

+
dz

(i)= 2 · (λ/8)m · m

5 ∞

0
e−uum−1 du

≤ (λ/4)m ·m0 (m) = (λ/4)mm!,

where step (i) follows from a change of variable u = 8z1/m/λ.
Taking the m-th root of both sides proves the result.

Using Minkowski’s inequality, we can see that the above
moment bounds are sub-additive:

Lemma 12: Suppose that for some λ1, λ2 > 0, the random
variables X1 and X2 satisfy

	
E
�
|X1|m

�
1/m ≤ λ1 (m!)1/m ,

	
E
�
|X2|m

�
1/m ≤ λ2 (m!)1/m

for each positive integer m. Then for each positive
integer m,

	
E
�
|X1 + X2|m

�
1/m ≤ (λ1 + λ2) (m!)1/m .

Consequently, centering a random variable does not affect
its sub-exponentiality up to constant factors. In particular,
suppose that X satisfies the moment bounds in Lemma 11.
Then for every positive integer m,

	
E
�
|EX |m

�
1/m =
	
|EX |m


1/m

(i)
≤

	
E |X |m


1/m

≤ λ

4
(m!)1/m ,

where step (i) uses the Jensen’s inequality. Applying
Lemma 12 gives

	
E
�
|X − EX |m

�
1/m ≤ λ

2
(m!)1/m .

The next lemma shows that the moment bound implies
the bound (23) on the moment generating function, hence
completing the proof of the implication (24)⇒(23).

Lemma 13: Suppose that for some number λ > 0, the
random variable X satisfies

	
E
�
|X − EX |m

�
1/m ≤ λ

2
· (m!)1/m

for each positive integer m. Then we have

E
�
et (X−EX)

�
≤ et2λ2/2, ∀ |t| ≤ 1

λ
.

Proof: For each t such that |t| ≤ 1/λ, we have

E
�
et (X−EX)

�
= 1+ tE [X − EX]

+
∞�

m=2

tmE
�
(X − EX)m

�

m!

(i)
≤ 1+

∞�

m=2

|t|m E
�
|X − EX |m

�

m!

≤ 1+
∞�

m=2

*
|t| · λ

2

+m

= 1+ t2λ2

4

∞�

m=0

*
|t| · λ

2

+m

≤ 1+ t2λ2

2
≤ et2λ2/2,

where step (i) holds since E [X − EX] = 0.

APPENDIX III
PROOF OF THEOREM 2

As mentioned in Appendix I, we use an approximate
k-medians clustering algorithm with approximation ratio
ρ = 20

3 . Theorem 2 follows immediately by combining
Theorem 1 and the proposition below.

Proposition 3: The clustering assignment �σ = ρ-kmed(�Y)

produced by the ρ-approximate k-median algorithm
(Algorithm 1) satisfies the error bound

err(�σ , σ ∗) ≤ 2(1+ 2ρ) · k
�Y − Y∗k1

kY∗k1
.

We note that a similar result appeared in [15], specifi-
cally their Theorem 2 restricted to the non-degree-corrected
setting. The proposition provides a moderate generalization,
establishing a general relationship between clustering error of
the ρ-approximation k-median procedure and the error of its
input �Y. The rest of this section is devoted to the proof of
Proposition 3.

Recall that (9, X) is the optimal solution of the k-medians
problem (25), and (9̌, X̌) is a ρ-approximate solution. Set
Y := 9X and Y̌ := 9̌X̌. Note that the solution (9̌, X̌)

corresponds to at most k clusters. Without loss of generality
we may assume that it actually contains exactly k clusters,
and thus the cluster membership matrix9̌ is in Mn,k and has
exactly k distinct rows. If this is not true, we can always
move an arbitrary point from the n input points to a new
cluster, without changing the k-medians objective value of the
approximation solution (9̌, X̌).

We next rewrite the cluster error metric (7) in matrix form.
Let 9

∗ ∈ Mn,k be the membership matrix corresponding to
the ground truth clusters; that is, for each i ∈ [n], 9∗

iσ ∗i
is the only non-zero element of the i -th row of 9

∗, and
thus 9

∗(9∗)> = Y∗. Let Sk be the set of k × k permutation
matrices. The set of misclassified nodes with respect to a
permutation 5 ∈ Sk , is then given by

E(5) :=
-

i ∈ [n] :
�
9̌5



i•
6= 9

∗
i•
.

.
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With this notation, the error metric (7) can be expressed as
err(�σ , σ ∗) = min5∈Sk

n−1 |E(5)| , and it remains to bound
the RHS.

To this end, we construct several useful sets. For each a ∈
[k], let C∗

a = {i ∈ [n] : σ ∗i = a} be the a-th cluster, and we
define the node index sets

Ta :=
-

i ∈ C∗
a : kY̌i• − Y∗

i•k1 < `
.

and Sa := C∗
a\Ta . Let T :=

=
a∈[k] Ta and S :=

=
a∈[k] Sa .

Note that S1, . . . , Sk , T1, . . . , Tk are disjoint with T ∪ S = [n].
Further define the cluster index sets

R1 := {a ∈ [k] : Ta = ∅} ,
R2 :=

-
a ∈ [k] : Ta 6= ∅; 9̌i• = 9̌ j•,∀i, j ∈ Ta

.
,

R3 := [k] \ (R1 ∪ R2)

=
-

a ∈ [k] : Ta 6= ∅; 9̌i• 6= 9̌ j•, ∃i, j ∈ Ta

.
.

Note that R1, R2 and R3 are disjoint sets. With the above
notations, we have the following claims.

Claim 1: min5∈Sk
|E(5)| ≤ |S| + |R3| `.

Claim 2: |R3| ≤ |R1|.
Claim 3: |R1| ` ≤ |S| ≤ 1

`kY̌ − Y∗k1.
Claim 4: kY̌ − Y∗k1 ≤ (1+ 2ρ)k�Y − Y∗k1.
Applying the above claims in order, we obtain that

min
5∈Sk

n−1 |E(5)| ≤ 2(1+ 2ρ)

n`
k�Y − Y∗k1

= 2(1+ 2ρ)
k�Y − Y∗k1

kY∗k1
,

where the last equality follows from kY∗k1 = n`.
Combining with the aforementioned expression err(�σ , σ ∗) =
min5∈Sk

n−1 |E(5)| proves Proposition 3.
We prove the the above claims in the sub-sections to follow.

A. Proof of Claim 1

We record a property of the cluster membership matrix 9̌

of the approximate k-medians solution.
Lemma 14: For each cluster pair a, b ∈ R2∪R3 with a 6= b

and each node pair i ∈ Ta, j ∈ Tb, we have 9̌ i• 6= 9̌ j•.
Proof: For each pair a, b ∈ R2 ∪ R3 with a 6= b, we have

Ta 6= ∅ and Tb 6= ∅ by definition. For each pair i ∈ Ta, j ∈ Tb,
we have the inequality

kY̌i• − Y̌ j•k1 ≥ kY∗
i• − Y∗

j•k1

−kY̌i• − Y∗
i•k1 − kY̌ j• − Y∗

j•k1.

Since nodes i and j are in two different clusters, each of Y∗
i•

and Y∗
j• is a binary vector with exactly ` ones, and they

have disjoint support; we therefore have kY∗
i• − Y∗

j•k1 = 2`.

Moreover, note that kY̌i• −Y∗
i•k1 < ` and kY̌ j•−Y∗

j•k1 < `

by definition of Ta and Tb. It follows that kY̌i• − Y̌ j•k1 >

2` − ` − ` = 0, and thus Y̌i• 6= Y̌ j•. The latter implies
that 9̌ i• 6= 9̌ j•; otherwise we would reach a contradiction

Y̌i• =
�
9̌ i•


>
X̌ =

�
9̌ j•


>
X̌ = Y̌ j•.

Proceeding to the proof of Claim 1, we observe that
S, T1, T2, . . . , Tk are disjoint and satisfy

[n] = S ∪ T = S ∪

⎛
⎝ :

a∈R2

Ta

⎞
⎠ ∪

⎛
⎝ :

a∈R3

Ta

⎞
⎠ ,

where the last equality holds since a ∈ R1 implies Ta = ∅.
To prove the claim, it suffices to show that there exists some
5 ∈ Sk such that E(5) ⊆ S ∪

	=
a∈R3

Ta



= [n]\

=
a∈R2

Ta .
Indeed, for each a ∈ R2, any pair i, j ∈ Ta satisfies 9̌ i• = 9̌ j•
by definition. This fact, combined with Lemma 14, implies
that there exists some 5 ∈ Sk such that

�
9̌5



i•
= 9

∗
i• for

all i ∈
=

a∈R2
Ta . By definition of E(5), we have E(5) ∩	=

a∈R2
Ta



= ∅ and are therefore done.

B. Proof of Claim 2

The claim follows by rearranging the left and right hand
sides of the equation

|R2| + 2 |R3| ≤ k = |R1| + |R2| + |R3| ,

which we now prove. The equality follows from the definition
of R1, R2 and R3. For the inequality, note that each element
of R2 contributes at least one distinct row in 9̌ and each
element of R3 contributes at least two distinct rows in 9̌.
The indices of these rows are all in T by definition, and
Lemma 14 guarantees that these rows are distinct across
R2 ∪ R3. The inequality then follows from the fact that 9̌

has k distinct rows.

C. Proof of Claim 3

The first inequality in the claim holds because

|S| =
�

a∈[k]
|Sa | ≥

�

a∈R1

|Sa |
(i)=

�

a∈R1

��C∗
a

�� = |R1| `,

where step (i) holds since Ta = ∅ for each a ∈ R1 and thus
Sa = C∗

a . On the other hand, we have

|S|
(ii)
≤

�

i∈S

1

`
kY̌i• − Y∗

i•k1
(iii)
≤ 1

`
kY̌ − Y∗k1,

where step (i i) holds since 1
`
kY̌i•−Y∗

i•k1 ≥ 1 for each i ∈ S,
and step (i i i) holds since S ⊆ [n]. This proves the second
inequality in the claim.

D. Proof of Claim 4

Recall that Y∗ = 9
∗ 	

9
∗
> and 9

∗ ∈ Mn,k . Introducing

an extra piece of notation X∗ :=
	
9
∗
>, we can write Y∗ =

9
∗X∗. Let 2X ∈ Rk×n be the matrix whose a-th row is equal

to the element in
��Yi• : i ∈ C∗

a

�
that is closest to X∗

a• in `1

norm (with arbitrary tie-breaking); that is,

2Xa• := arg min
x∈{�Yi•:i∈C∗

a }
kx − X∗

a•k1 for each a ∈ [k].
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Finally let 2Y := 9
∗2X. We have the inequality

k�Y − Y∗k1 =
�

a∈[k]

�

i∈C∗
a

k�Yi• − Y∗
i•k1

(i)=
�

a∈[k]

�

i∈C∗
a

k�Yi• − X∗
a•k1

≥
�

a∈[k]

�

i∈C∗
a

k2Xa• − X∗
a•k1

(ii)=
�

a∈[k]

�

i∈C∗
a

k2Yi• − Y∗
i•k1

= k2Y − Y∗k1,

where step (i) holds since for each a ∈ [k], the a-th row of X∗

is the distinct row in Y∗ corresponding to the cluster C∗
a and

thus X∗
a• = Y∗

i• for all i ∈ C∗
a ; step (i i) can be justified by

applying the same argument to 2X and 2Y. It follows that

k2Y −�Yk1 ≤ k�Y − Y∗k1 + k2Y − Y∗k1 ≤ 2k�Y − Y∗k1

and hence

kY̌ −�Yk1
(i)
≤ ρkY −�Yk1
(ii)
≤ ρk2Y −�Yk1

≤ 2ρk�Y − Y∗k1,

where step (i) holds by the approximation ratio guarantee (26),
and step (i i) holds since (9, X) is optimal for the k-medians
problem (25) (recall that Y := 9X) while (9∗,2X) is feasible
for the same problem (because 9

∗ ∈ Mn,k and the rows
of 2X are selected from �Y by construction). Combining pieces,
we obtain that

kY̌ − Y∗k1 ≤ k�Y − Y∗k1 + kY̌ −�Yk1

≤ (1+ 2ρ)k�Y − Y∗k1.
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