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Learning Mixtures of Sparse Linear Regressions

Using Sparse Graph Codes

Dong Yin , Ramtin Pedarsani , Yudong Chen, and Kannan Ramchandran, Fellow, IEEE

Abstract— In this paper, we consider the mixture of sparse

linear regressions model. Let β(1), . . . , β(L)
∈ Cn be L unknown

sparse parameter vectors with a total of K non-zero ele-
ments. Noisy linear measurements are obtained in the form

yi = xH
i

β(`i ) + wi , each of which is generated randomly from
one of the sparse vectors with the label `i unknown. The goal is
to estimate the parameter vectors efficiently with low sample and
computational costs. This problem presents significant challenges
as one needs to simultaneously solve the demixing problem of
recovering the labels `i as well as the estimation problem of

recovering the sparse vectors β(`). Our solution to the problem
leverages the connection between modern coding theory and
statistical inference. We introduce a new algorithm, Mixed-
Coloring, which samples the mixture strategically using query
vectors x i constructed based on ideas from sparse graph codes.
Our novel code design allows for both efficient demixing and
parameter estimation. To find K non-zero elements, it is clear
that we need at least 2(K) measurements, and thus the time
complexity is at least 2(K). In the noiseless setting, for a constant
number of sparse parameter vectors, our algorithm achieves the
order-optimal sample and time complexities of 2(K). In the
presence of Gaussian noise,1 for the problem with two parameter
vectors (i.e., L = 2), we show that the Robust Mixed-Coloring
algorithm achieves near-optimal 2(K polylog(n)) sample and
time complexities. When K = O(nα) for some constant α ∈ (0, 1)
(i.e., K is sublinear in n), we can achieve sample and time
complexities both sublinear in the ambient dimension. In one
of our experiments, to recover a mixture of two regressions with
dimension n = 500 and sparsity K = 50, our algorithm is more
than 300 times faster than EM algorithm, with about one third
of its sample cost.

Index Terms— Mixture of linear regressions, coding theory,
sparse-graph codes.
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1The proposed algorithm works even when the noise is non-Gaussian in

nature, but the guarantees on sample and time complexities are difficult to
obtain.

I. INTRODUCTION

M
IXTURE and latent variable models, such as Gaussian

mixtures and subspace clustering, are expressive, flex-

ible, and widely used in a broad range of problems includ-

ing background modeling [1], speaker identification [2] and

recommender systems [3]. However, parameter estimation

in mixture models is notoriously difficult due to the non-

convexity of the likelihood functions and the existence of

local optima. In particular, it often requires a large sample

size and many re-initializations of the algorithms to achieve

an acceptable accuracy.

Our goal is to develop provably fast and efficient algorithms

for mixture models—with sample and time complexities sub-

linear in the problem’s ambient dimension when the parameter

vectors of interest are sparse—by leveraging the underlying

low-dimensional structures.

In this paper we focus on a powerful class of models called

mixtures of linear regressions [4]. We consider the sparse

setting with a query-based algorithmic framework. In partic-

ular, we assume that each query-measurement pair (xi , yi ) is

generated from a sparse linear model chosen randomly from

L possible models:2

yi = xH
i β(`) + wi with probability q`, for ` ∈ [L], (1)

where wi is noise. Here, the probability q` > 0 is also called

the mixture weight of β(`), and they satisfy
�L

`=1 q` = 1. The

total number of non-zero elements in the parameter vectors

{β(`) ∈ C
n, ` ∈ [L]} is assumed to be K . The goal is to

estimate the β(`)’s, without knowing which β(`) generates

each query-measurement pair. We also note that when L = 1,

we recover the compressive sensing problem that has been

extensively studied in recent years [5], [6].

A mixture of regressions provides a flexible model for var-

ious heterogeneous settings where the regression coefficients

differ for different subsets of observations. This model has

been applied to a broad range of tasks including medicine

measurement design [7], behavioral health care [8] and music

perception modeling [9]. Here, we study the problem when the

query vectors xi can be designed by the user; in Section I-B

we discuss several practical applications that motivate the

study of this query-based setting. Our results show that by

appropriately exploiting this design freedom, one can achieve

significant reduction in the sample and computational costs.

2We use xH
i to denote the conjugate transpose of xi . In this paper, for any

positive integer N , [N ] denotes the set {1, 2, . . . , N}.
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To recover K unknown non-zero elements, the number of

linear measurements needed scales at least as 2(K ). The

corresponding time complexity is also at least 2(K ), which

is the time needed to write down K numbers as the solution.

We introduce a new algorithm, called the Mixed-Coloring

algorithm, that matches these sublinear sample and time

complexity lower bounds. The design of query vectors and

decoding algorithm leverages ideas from sparse graph codes

such as low-density parity-check (LDPC) codes [10]. For any

L = 2(1), our algorithm recovers the parameter vectors with

optimal 2(K ) sample and time complexities in the noiseless

setting, both in theory and empirically. In the noisy setting,

for compressive sensing problems (i.e., L = 1), it is known

from an information-theoretic point of view that the optimal

sample complexity is 2(K log(n/K )) [11], [12]. In this work,

we show that when the noise is Gaussian distributed, L = 2,

and the non-zero elements take value in a finite quantized set,

the Robust Mixed-Coloring algorithm has 2(K polylog(n))

sample and time complexities. Since our problem is harder

than compressive sensing, the sample and time complexities

of our algorithm are optimal up to polylogarithmic factors.

When K = O(nα) for some α ∈ (0, 1), the sample and

time complexities are sublinear in the ambient dimension n.

In noisy setting with continuous-valued parameter vectors,

we provide experimental results and show that our algorithm

can successfully recover the best quantized approximation of

the parameter vectors, provided that the continuous-valued

parameter vectors are close to the quantized grid in `∞ norm.3

Prior literature on this problem that does not utilize the design

freedom typically have sample and time complexities that are

at least polynomial in n; we provide a survey of prior work and

a more detailed comparison in Section III. Empirically, we find

that our algorithm is orders of magnitude faster than standard

Expectation-Maximization (EM) algorithms for mixture of

regressions. For example, in one of our experiments, detailed

in Section VI, we consider recovering a mixture of two

regressions with dimension n = 500 and sparsity K = 50; our

algorithm is more than 300 times faster than EM algorithm,

with about 1/3 of its sample cost.

A. Algorithm Overview

Our Mixed-Coloring algorithm solves two problems simul-

taneously: (i) rapid demixing, namely identifying the label `i

of the vector β(`i ) that generates each measurement yi ; (ii)

efficient identification of the location and value of the non-zero

elements of the β(`)’s. The main idea is to use a divide-and-

conquer approach that iteratively reduces the original problem

into simpler ones with much sparser parameter vectors. More

specifically, we design 2(K ) sets of sparse query vectors,

with each set only associated with a subset of all the non-

zero elements. The design of the query vectors ensures that

we can first identify the sets which are associated with a single

3In Section VI, we formally define the perturbation of the continuous-valued
parameter vector β with respect to the quantized alphabet. The notion of
perturbation essentially measures the distance between the continuous-valued
parameter vector and the quantized grid in `∞ norm.

Fig. 1. Mixed-Coloring algorithm with L = 2. (a) A graph with
nodes corresponding to the non-zero elements in the two parameter vectors.
(b) Detect some non-zero elements without knowing their labels, i.e., singleton
balls, shown as shaded balls, and find pairs of singleton balls which must
have the same label, shown as the edges between shaded balls. (c) Find the
two largest connected components of the graph, and the non-zero elements
in these two components must have different labels, shown as red and blue.
Thus, we recover a fraction of the non-zero elements in each parameter vector.
(d) Recover the whole parameter vectors using iterative decoding. The non-
zero elements in the two parameter vectors are shown in blue and red,
respectively.

non-zero element (called singletons), and recover the location

and value of that element (motivated by a balls-and-bins model

that we utilize for designing our measurements, we call them

singleton balls, shown as shaded balls in Figure 1b). We further

identify the pairs of singleton balls which have the same (but

unknown) label, indicated by the edges in Figure 1b. Results

from random graph theory guarantee that, with high probabil-

ity, the L largest connected components (giant components) of

the singleton graph have different labels, and thus we recover

a fraction of the non-zero elements in each β(`), as shown

in Figure 1c. We can then iteratively enlarge the recovered

fraction with a guess-and-check method until finding all the

non-zero elements. We revisit Figure 1 when describing the

details of our algorithm in Section IV.

B. Motivation

Our problem is a natural extension of the setting of com-

pressive sensing, in which one often has full freedom of

designing query vectors in order to estimate a sparse parameter

vector. In many applications, the unknown sparse parameter

vector can be affected by latent variables, leading to a mixture

of sparse linear regressions, and these scenarios have been

observed in neuroscience [13], genetics [14], psychology [7],

etc. Here, we provide a concrete example motivated by neu-

roscience applications. In neural signal processing, sensors

are used to measure the brain activities, represented by an

unknown sparse vector β. The sensors can be modeled as

digital filters, and one can design the linear filter weights

(xi ’s) when measuring the neural signal. Multiple sensors

are usually placed in a particular area of the brain in order

to acquire enough compressed measurements. However, there
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Fig. 2. Mixture of neural signals. Sensors (modeled as digital filters) are used
to measure the brain activities, represented by an unknown sparse vector β .
One can design the linear filter weights of the sensors (xi ’s) when measuring
the neural signals. Multiple sensors are usually placed in a particular area
of the brain in order to acquire enough compressed measurements. However,
there may be more than one neuron affecting a particular area of the brain, and

different neurons may have different activities, corresponding to the β(`)’s.
In this case, we have a mixture-of-sparse-linear-regressions problem.

may be more than one neuron affecting a particular area of the

brain, as shown in Figure 2, and different neurons may have

different activities, corresponding to the β(`)’s. Consequently,

each sensor may be measuring one of several different sparse

signals. Further, if we use the sensors multiple times, a single

sensor may even obtain measurements that are generated by

different neurons, since neurons are different depths may be

active during different time periods. Thus, the problem can be

formulated as a mixture of sparse linear regressions. Variants

of this problem, such as neural spike sorting [13], have been

studied in neuroscience. While the common solution is to use

clustering algorithms on the spike signals, we believe that our

algorithm provides the potential of improving sensor design

and reducing sample and time complexities.

In addition, our work adds the intellectual value of the

power of design freedom in tackling sparse mixture prob-

lems by highlighting the significant performance gap between

algorithms that can exploit the design freedom and those

that cannot. We also believe that our ideas are applicable

more broadly for other latent-variable problems that require

experimental designs, such as survey designs in psychology

with mixed type of respondents and biology experiments with

mixed cell interior environments.

C. Organization

We summarize our main results in Section II, discuss related

works in Section III, present the details of our algorithm

in the noiseless and noisy settings in Sections IV and V,

respectively, provide experimental results in Section VI, and

make conclusions in Section VII.

II. MAIN RESULTS

In this section, we present the recovery guarantees for the

Mixed-Coloring algorithm, and provide bounds on its sample

and time complexities. We assume there are L unknown n-

dimensional parameter vectors β(1), . . . ,β(L). Each β(`) has

K` non-zero elements, i.e., |supp(β(`))| = |{ j : β
(`)
j 6= 0}| =

K`. Let K =
�L

`=1 K` be the total number of non-zero

elements. Using the query vectors {xi } ∈ Cn , the Mixed-

Coloring algorithms obtains m measurements yi , i ∈ [m]

generated independently according to the model (1), and

outputs an estimate {β̂(`)
, ` ∈ [L]} of the unknown parameter

vectors. We defer more details to Sections IV and V.

Our results are stated in the asymptotic regime where n and

K approach infinity. A constant is a quantity that does not

depend on n and K , with the associated Big-O notations O(·)
and 2(·). We assume that L is a known and fixed constant, and

the mixture weights satisfy q` = 2(1) for each ` ∈ [L] and

thus are of the same order. Similarly, the sparsity levels of the

parameter vectors are also of the same order with K` = 2(K ).

A. Guarantees for the Noiseless Setting

In the noiseless case, i.e., wi ≡ 0, we consider for generality

the complex-valued setting with β(`) ∈ Cn (our results can

be easily applied to real case). We make a mild technical

assumption, which stipulates that if any pair of parameter

vectors have overlapping support, then the elements in the

overlap are different.

Assumption 1: For each pair `1, `2 ∈ [L], `1 6= `2 and

each index j ∈ supp(β(`1)) ∩ supp(β(`2)), we have β
(`1)
j 6=

β
(`2)
j .

We need this assumption due to our element-wise recov-

ery strategy. However, this assumption is mild in practice.

In particular, in the noiseless case, if the non-zero elements are

generated from some continuous distribution, it is a measure

zero event that two elements at the same coordinate share

exactly the same value. Under the above setting, we have

the following recovery guarantees for the Mixed-Coloring

algorithm.

Theorem 1: Consider the asymptotic regime where n and

K approach infinity. Under Assumption 1, for any fixed

constant p∗ ∈ (0, 1), there exists a constant C > 0 such that

if the number of measurements is m ≥ C K , then the Mixed-

Coloring algorithm guarantees the following three properties

for each ` ∈ [L] (up to a label permutation):

1) (No false discovery) For each j ∈ supp(β(`)), β̂
(`)
j equals

either β
(`)
j or 0; for each j /∈ supp(β(`)), β̂

(`)
j = 0.

2) (Support recovery)

P
�

|supp(β̂
(`)

)| ≥ (1 − p∗)|supp(β(`))|
�

≥ 1 − O(1/K ).

3) (Element-wise recovery) For each j ∈ supp(β(`)),

P{β̂(`)
j = β

(`)
j } ≥ 1 − p∗ − O(1/K ).

Moreover, the computational time of the Mixed-Coloring

algorithm is 2(K ).

As we can see, to recover an arbitrarily large fraction

of the non-zero elements, our Mixed-Coloring algorithm has

order-optimal 2(K ) sample and time complexities. More

specifically, the first property ensures that Mixed-Coloring

algorithm has no false discovery: for zero elements in the

parameter vectors, our algorithm does not produce non-zero

estimates, and for non-zero elements, our algorithm outputs

either the true value or zero. The second property ensures that

the Mixed-Coloring algorithm recovers (1− p∗) fraction of the

non-zero elements with high probability. The third property

ensures that for each non-zero element, the probability that it
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TABLE I

SAMPLE COMPLEXITY OF THE MIXED-COLORING ALGORITHM

can be recovered is asymptotically at least 1 − p∗. In fact,

the recovered fraction of the non-zero elements is uniformly

distributed on the support of the parameter vectors.

The error fraction p∗ is an input parameter to algorithm,

and can be made arbitrarily close to zero by adjusting the

oversampling ratio C ≡ C(p∗, L, {q`}). By more careful

analysis, one can show that the dependence of C on p∗ is

C = O(log(1/p∗)) (see the proof of Lemma 6 in Appen-

dix A). Thus, when p∗ approaches 0, the sample and time

complexities grow slowly as log(1/p∗). Here, since we set

p∗ as a constant, we hide this dependence in the constant

C . Given the number of components L, mixture weights

{q`} and the target p∗, the value of the constant C can be

computed numerically. Table I gives some of the C values for

several p∗ and L, under the setting q` = 1/L,∀` ∈ [L].
We see that the value of C is quite modest. More details

of computing the constants in the sample complexity can be

found in Appendix B.

We can in fact boost the above guarantee to recover all the

non-zero elements, by running the Mixed-Coloring algorithm

2(log K ) times independently and aggregating the results

by majority voting. By property 2 in Theorem 1 and a

union bound argument, this procedure exactly recovers all the

parameter vectors with probability 1 − O(1/ poly(K )) with

2(K log K ) sample and time complexities.

B. Guarantees for the Noisy Setting

An extension of the previous algorithm, Robust Mixed-

Coloring, handles noise in the measurement model (1), in the

case of two parameter vectors which appear equally likely,

i.e., L = 2 and q` = 1/2, ` = 1, 2. Many interesting appli-

cations have binary latent factors: gene mutation present/not,

gender, healthy/sick individual, children/adult, etc; see also the

examples in [4], [9], and [15]. We would like to mention

that our goal is to design a query-based algorithm that can

simultaneously conduct fast demixing and robust estimation

in the presence of noise. Even if there are only two possible

parameter vectors, achieving this goal is highly non-trivial,

and we believe that our framework provides useful intellectual

insights to this problem. Extending our results to the setting

with L > 2 is an important and interesting direction, and we

leave it to future work.

The noise wi is assumed to be i.i.d. Gaussian with mean

zero and constant variance σ 2. We note that the Gaussian

noise assumption is mainly for theoretical reason. As one can

see in Subsection V-B, our algorithm uses EM algorithm as a

subroutine to estimate the component means of a mixture of

two random variables. The analysis of EM algorithm is known

to be hard due to the non-convexity of the likelihood functions.

For simplicity, in this paper we assume that the noise is

Gaussian and employ the recent convergence results on EM

algorithm for two-component Gaussian mixtures in [16]. Since

EM algorithm is widely used for non-Gaussian noise and

is shown to have good performance in many applications,

we believe that our algorithm can work well in practice even

if the noise is not Gaussian distributed.

In the noisy setting, we make an additional assumption that

the non-zero elements in the parameter vectors take value in

a finite quantized set.

Assumption 2: The non-zero elements of the parameter

vectors satisfy β
(`)
j ∈ D,∀β

(`)
j 6= 0, ` ∈ [L], where

D � {±1,±21, . . . ,±b1} ⊂ R,

The positive constants 1 and b are known to the algorithms.

Here, we note that this assumption is mild in practice.

As mentioned in Theorem 2, the quantization step size 1

can be as small as a constant multiple of the standard error

of the noise, and this quantization step size should be small

enough for most applications. In fact, for continuous-valued

parameter vectors, in the noisy setting, it is fundamental that

the non-zero elements can only be recovered up to certain

precision. Moreover, in our empirical results in Section VI,

the Robust Mixed-Coloring algorithm works even when the

assumption is violated. In this case, the algorithm produces

the best quantized approximation to the unknown parameter

vectors, provided that they are not too far off the quantized

set. We would also like to mention that it is a major challenge

to develop algorithms with sublinear complexity and provable

guarantees in noisy settings of sparse mixed regression, even

with the assumption of quantized non-zero elements. Thus,

even with this mild simplifying assumption, our work demon-

strates a significant progress. Establishing strong theoretical

guarantees for a fast recovery algorithm with sublinear sample

and time complexities for the continuous alphabet setting

remains to be an open problem..

When the quantization assumption holds, exact recovery is

possible, as guaranteed in the following theorem. The Robust

Mixed-Coloring algorithm maintains sublinear sample and

time complexities, and recovers the parameter vectors in the

presence of i.i.d. Gaussian noise.

Theorem 2: Consider the asymptotic regime where K and

n approach infinity. Suppose that the noise in the mea-

surements are i.i.d. Gaussian distributed with mean 0 and

variance σ 2, and that 1/σ ≥ 4√
3
. When L = 2 and

Assumptions 1 and 2 hold, if the number of measurements

is m = 2(K polylog(n)), then, the Robust Mixed-Coloring

algorithm guarantees the following three properties for each

` ∈ {1, 2} (up to a label permutation):

1) (No false discovery) With probability at least 1 −
O(1/ poly(n)), for each j ∈ supp(β(`)), β̂

(`)
j equals

either β
(`)
j or 0; for each j /∈ supp(β(`)), β̂

(`)
j = 0.

2) (Support recovery)

P
�

|supp(β̂
(`)

)| ≥ (1 − p∗)|supp(β(`))|
�

≥ 1 − O(1/K ).

3) (Element-wise recovery) For each j ∈ supp(β(`)),

P{β̂(`)
j = β

(`)
j } ≥ 1 − p∗ − O(1/K ).
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Moreover, the computational time of the Robust Mixed-

Coloring algorithm is 2(K polylog(n)).

We can make similar remarks as in the noiseless case:

1) with high probability, the Robust Mixed-Coloring has no

false discovery, 2) the algorithm can recover an arbitrarily

large (1 − p∗) fraction of the supports, and 3) each element

is recovered with probability asymptotically at least 1 − p∗.

As we can see, the sample and time complexities of the

Robust Mixed-Coloring algorithm are both 2(K polylog(n)),

and thus, when K = O(nα) for some α ∈ (0, 1), we can

achieve sublinear sample and time complexities in the ambient

dimension n. We also note that, Assumption 1 is still needed

in the noisy setting, i.e., the two parameter vectors differ at

overlapping support. This assumption can still be mild in the

sublinear regime where K = o(n). In particular, if the supports

of the two parameter vectors are independently drawn from

certain distributions, then the probability that the two parame-

ter vectors have overlapping supports vanishes as n approaches

infinity. As for the dependence on p∗, we again note that

when p∗ approaches 0, the sample and time complexities grow

slowly as log(1/p∗). Here, since we set p∗ as a constant,

we hide this dependence in the big-O notation.

Similar to the noiseless case, by running the Robust

Mixed-Coloring algorithm 2(log K ) times, one can

exactly recover the two parameter vectors with probability

1 − O(1/ poly(K )). In this case, the sample and time

complexities are 2(K log(K ) polylog(n)), and further, if we

assume that K = 2(nα) for some constant α, we can still

conclude that the sample and time complexities for full

recovery are 2(K polylog(n)).

III. RELATED WORK

A. Mixture of Regressions

Parameter estimation using the expectation-maximization

(EM) algorithm is studied empirically in [17]. In [18],

an `1-penalized EM algorithm is proposed for the sparse

setting. Theoretical analysis of the EM algorithm is difficult

due to non-convexity. Progress was made in[16], [19], and

[20] under stylized Gaussian settings with dense β, for which

a sample complexity of 2(n polylog(n)) is proved given a

suitable initialization of EM. The algorithm uses a grid search

initialization step to guarantee that the EM algorithm can find

the global optimal solution, with the assumption that the query

vectors are i.i.d. Gaussian distributed. The time complexity is

polynomial in n. An alternative algorithm is proposed in [15],

which achieves optimal O(n) sample complexity, but has high

computational cost due to the use of semidefinite lifting. The

algorithm in [21] makes use of tensor decomposing tech-

niques, but suffers from a high sample complexity of O(n6).

In comparison, our approach has near-optimal sample and time

complexities by utilizing the potential design freedom. The

classification version of this problem has also been studied

in [22].

B. Coding-Theoretic Methods and Group Testing

Many modern error-correcting codes such as LDPC codes

and polar codes [23] with their roots in communication

problems, exploit redundancy to achieve robustness, and use

structural design to allow for fast decoding. These proper-

ties of codes have recently found applications in statistical

problems, including graph sketching [24], sparse covariance

estimation [25], low-rank approximation [26], and discrete

inference [27]. Most related to our approach is the work

in [28]–[31], which apply sparse graph codes with peeling-

style decoding algorithms to compressive sensing and phase

retrieval problems. In our setting we need to handle a mixture

distribution, which requires more sophisticated query design

and novel demixing algorithms that go beyond the standard

peeling-style decoding.

Another line of work relevant to our scheme is designing

measurements in group testing [32] via error correcting codes

and expander graphs [33]–[36]. These results bear some simi-

larities to our algorithm as they also exploit linear sketches

of data for efficient sparsity pattern recovery. Our scheme

differs from these works since we tackle problems in real

and complex fields, whereas in group testing problems one

consideres binary OR operations. In addition, we aim to solve

the demixing problem in sparse recovery, and this is a more

challenging task that has not been studied in the context of

group testing.

C. Combinatorial and Dimension Reduction Techniques

Our results demonstrate the power of strategic query and

coding theoretic tools in mixture problems, and can be con-

sidered as efficient linear sketching of a mixture of sparse

vectors. In this sense, our work is in line with recent works

that make use of combinatorial and dimension reduction tech-

niques in high-dimensional and large scale statistical problems.

These techniques, such as locality-sensitive hashing [37],

sketching of convex optimization [38], and coding-theoretic

methods [39], allow one to design highly efficient and robust

algorithms applicable to computationally challenging datasets

without compromising statistical accuracy.

IV. MIXED-COLORING ALGORITHM FOR

NOISELESS RECOVERY

In this section, we provide details of the Mixed-Coloring

algorithm in the noiseless setting. We first provide some

primitives that serve as important ingredients in the algorithm,

and then describe the design of query vectors and decoding

algorithm in detail.

A. Primitives

The algorithm makes use of four basic primitives: summa-

tion check, indexing, guess-and-check, and peeling, which

are described below.

1) Summation Check: Suppose that we generate two query

vectors x1 and x2 independently from some continuous distri-

bution on Cn , and a third query vector of the form x1+x2. Let

y1, y2, and y3 be the corresponding measurements. We check

the sum of the measurements and in the noiseless case, if y3 =
y1 + y2, then we know that these three measurements are

generated from the same parameter vector β(`) almost surely.
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In this case we call {y1, y2} a consistent pair of measurements

as they are from the same β(`) (the third measurement y3 is

now redundant).

2) Indexing: The indexing procedure is to find the locations

and values of the non-zero elements by carefully designed

query vectors. In the noiseless case, this can be done by

suitably designed ratio tests. We sketch the idea of ratio test

here. Consider a consistent pair of measurements {y1, y2} and

corresponding query vectors {x1, x2}. We design the query

vectors such that the information of the locations of the non-

zero elements is encoded in the relative phase between y1

and y2. In particular, we generate n i.i.d. random variables

r j , j ∈ [n] uniformly distributed on the unit circle. Letting

W = ei 2π
n where i is the imaginary unit, we set the j -th entries

of x1 and x2 to be either x1, j = x2, j = 0, or x1, j = r j and

x2, j = r j W j−1. (The locations of the zeros are determined

using sparse-graph codes and discussed later.) Below is an

example of such a consistent pair of measurements and the

corresponding linear system:

�

y1

y2

�

=
�

xH
1

xH
2

�

β(1)

=
�

0 r2 r3 0 0 r6 0 0

0 r2W r3W 2 0 0 r6W 5 0 0

�

β(1).

(2)

Suppose that β(1) is 3-sparse and of the form β(1) =
[0 0 ∗ 0 ∗ 0 0 ∗]T. There is only one non-zero element, β

(1)
3 ,

that contributes to the measurements y1 and y2. In this case

the consistent measurement pair {y1, y2} is called a singleton.

A singleton can be detected by testing the integrality of the

relative phase of the ratio y1/y2. In the above example, since

y1 = r3β
(1)
3 and y2 = r3W 2β

(1)
3 , we observe that |y1| = |y2|

and the relative phase 6 (y2/y1) = 2 · 2π
8

is an integral multiple

of 2π
8

. We therefore know that with probability one, this

consistent pair is a singleton, and moreover the corresponding

non-zero element is located at the 3-rd coordinate with value

β
(1)
3 = y1/r3. In general, for a consistent measurement pair

{y1, y2}, if we observe that |y1| = |y2| and the relative phase
6 (y2/y1) = k · 2π

n
for some nonnegative integer k, then,

we know that this consistent pair is a singleton, and the

corresponding non-zero element is located at the (k + 1)-th

coordinate with value y1/rk+1. We would like to remark that

the indexing step can also be done using real-valued query

vectors.

3) Guess-and-Check and Peeling: After the ratio tests,

we have already found some singletons, i.e., consistent pairs

that are only associated with a single non-zero element.

Ideally, we would like to iteratively reduce the problem by

subtracting off recovered elements, in a Gaussian elimination-

like manner, and find other non-zero elements. However,

although we have recovered the locations and values of some

non-zero elements, we still do not know their labels, and

the uncertainty in the labels brings additional difficulty to

the problem. To resolve this issue, we use a guess-and-check

strategy. In the example above, suppose instead that β(1) is

4-sparse, i.e., β(1) = [0 ∗ ∗ 0 ∗ 0 0 ∗]T, in which case the

consistent pair

yi = xi,2β
(1)
2 + xi,3β

(1)
3 , i = 1, 2 (3)

is associated with two non-zero elements of β(1). Suppose that,

in a previous iteration of the algorithm we have recovered the

location and value of β
(1)
2 . At this point, we only know that

this non-zero element is located at the second coordinate, and

has value β (β = β
(1)
2 ), but we do not know that this element

belongs to the parameter vector β(1), nor do we know that

the consistent pair {y1, y2} is generated by β(1). Despite the

uncertainty in the labels, we guess that, this non-zero element

belongs to the parameter vector that generates {y1, y2}. Then

we can peel off (i.e., subtract) this recovered element by

yi ← yi − xi,2β i = 1, 2.

The updated measurement pair satisfies yi = xi,3β
(1)
3 , i = 1, 2.

Then, we can check whether our previous guess is correct,

by doing ratio test on the updated pair. In this example, since

the updated measurements are only associated with β
(1)
3 (i.e.,

this pair becomes a singleton), they can pass the ratio test.

Then, we know that the peeling step is valid, and that the

previous non-zero element at the second coordinate (with value

β) and the newly recovered element at the third coordinate

belong to the same parameter vector almost surely. If the

updated measurement pair cannot pass the ratio test, there

are two possibilities: 1) this pair is generated by some other

parameter vector, or 2) this pair is associated with more

than two non-zero elements. In this case, we keep both the

measurement pairs before and after peeling for future usage.

In general, the guess-and-check strategy and the peeling step

can be combined to detect that two non-zero elements are from

the same parameter vectors.

The continuing execution of these four primitives is made

possible by the design of the query vectors using sparse-graph

codes, which we describe next.

B. Design of Query Vectors

As illustrated in Figure 4, we construct M = 2(K ) sets of

query vectors (called bins). The query vectors in each bin are

associated with some coordinates of the parameter vectors (i.e.,

the query vectors are non-zero only on those coordinates). The

association between the coordinates and bins is determined by

a d-left regular bipartite graph with n left nodes (coordinates)

and M right nodes (bins), where each left node is connected

to d = 2(1) right nodes chosen independently uniformly at

random. Here, we note that other designs of the bipartite graph

may also be employed, such as expander graphs [40], [41].

As we see in later sections, as long as the bipartite graph

structures allow for a density evolution analysis [42], we may

be able to use such graphs. In this paper, we choose to use d-

left regular bipartite graph since it is amenable to a transparent

analysis and already achieves order-optimal sample and time

complexities in the noiseless setting. In our design, each bin

consists of three query vectors. The values of the non-zero

elements of the first two query vectors are in the form of (2),

enabling the ratio test. The third query vectors equals the sum

of the first two and is used for the summation check.
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Fig. 3. Example of query vector design with n = 5, M = 3, d = 2.
(a) Bipartite graph with biadjacency given in (4). (b) Design of query vectors
in three bins. In the i-th bin, the query vectors are r1diag(hi ), r2diag(hi ),
and r3diag(hi ).

Fig. 4. Design of query vectors in noiseless setting. We design M = 2(K )
bins, and in each bin, we design three query vectors: two for indexing and
one for summation check. Each indexing query vector is repeated R = 2(1)
times, and the verification query vector is repeated V = 2(1) times. Thus,
the total number of measurements is (2R + V )M = 2(K ).

More precisely, we first design three random vectors

r1, r2, r3 ∈ Cn , where r1 = [r1, r2, . . . , rn]T consists of

elements that are i.i.d. uniformly distributed on the unit circle

{z : |z| = 1}, and r2 is a vector with elements of r1 being

modulated by Fourier coefficients W j , j = 0, . . . , n − 1,

W = ei 2π
n , and r3 = r1 + r2. Let H ∈ {0, 1}M×n be the

biadjacency matrix of the bipartite graph, and hT
i be the i -th

row of H . Then, the query vectors of the i -th bin is r1diag(hi ),

r2diag(hi ), and r3diag(hi ). We provide a concrete example

with n = 5, M = 3, d = 2 in Figure 3. The biadjacency

matrix is given in (4).

H =

⎡

⎣

0 1 1 0 1

1 0 1 1 1

1 1 0 1 0

⎤

⎦. (4)

If the query vectors in each bin were used only once, then

we would have very few bins passing the summation check

and hence few consistent pairs. Instead, we use the first two

query vectors repeatedly for R = 2(1) times, obtaining two

sets of measurements, each of size R and called type-I and

type-II index measurements. We use the third query vector

V = 2(1) times to obtain a set of verification measurements.

We therefore have 2R+V measurements associated with each

of the M bins, hence a total of m = (2R + V )M = 2(K )

measurements, as shown in Figure 4.

Algorithm 1 Mixed-Coloring

Input: Query vectors xi , measurements yi , i ∈ [m], number

of parameter vectors L.

Output: Estimates of parameter vectors β(`), ` ∈ [L].
Find consistent pairs via summation check.

Find singleton balls via ratio test.

Construct a graph G with nodes representing all the singleton

balls.

Identify the consistent pairs that contain two singleton balls.

Add an edge between the two nodes in G.

Find L largest connected components in G. Recover a

fraction of non-zero elements in each β(`).

Iteratively find the rest of the non-zero elements in each β(`)

via peeling.

C. Decoding Algorithm

We provide an outline of the decoding algorithm in

Algorithm 1. The decoding algorithm first finds consistent

pairs (by summation check) in each bin, within which sin-

gletons are identified (by the ratio test). The ratio test also

recovers the locations and values of several non-zero elements,

some of which can then be associated with the same β(`)

by guess-and-check. Using tools from random graph theory,

we can separate part of the recovered non-zero elements

from different parameter vectors. At this point, for each β(`),

we have recovered some of its non-zero elements (including

their locations, values and labels). We iteratively conduct a

combined operation of guess-and-check and peeling, so that

we can subtract the recovered elements from the remaining

consistent pairs, until no more non-zero elements can be found.

Below we elaborate on these steps.

1) Finding Consistent Pairs: The decoding procedure starts

by finding all the consistent pairs. In each bin, we perform

summation checks on all triplets (y1, y2, y3) in which y1,

y2, and y3 are the type-I index measurement, type-II index

measurement and verification measurement, respectively. If a

triplet passes the summation check, then a consistent pair

{y1, y2} is found. Note that in each bin the number of triplets of

the above form is a constant, so this step can be done in 2(K )

time. The subsequent steps of the algorithm are based on the

consistent pairs found in this step. We also note that, since for

every `, the probability that each measurement is generated by

the parameter vector β(`) is a constant q`, the probability that

one can find a consistent pair in a particular bin is a constant.

We classify the consistent pairs into a few different types.

As we have seen, each consistent pair is only associated with

a subset of the non-zero elements of a particular parameter

vector, due to the design of the bipartite graph. As before,

a consistent pair associated with only one non-zero element

is called a singleton, and we call this non-zero element a

singleton ball. The consistent pairs associated with two non-

zero elements are called doubletons; and those associated with

more than one non-zero elements are called multitons.4 These

terminologies are useful for our following discussions.

4Doubletons are also multitons.
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2) Finding Singletons: Each non-zero element of the para-

meter vectors can be identified by its label-location-value

triplet (`, j, β
(`)
j ). We visualize these triplets (i.e., non-zero

elements) as balls, as shown in Figure 1a, and initially their

labels, locations and values are unknown.5 We run the ratio

test on the consistent pairs to identify singletons and their asso-

ciated singleton balls. The singleton balls found are illustrated

in Figure 1b as shaded balls. The ratio test also recovers the

locations and values of these singleton balls, although at this

point we do not know the label ` of the balls.

To better understand the algorithm, here we analyze the

expected number of singleton balls that belong to parameter

vector β(`). We show that a constant fraction of the non-zero

elements in β(`) can be found as singleton balls in this stage.

First, we analyze the probability Q` that a particular bin can

produce a consistent pair that is generated by β(`). According

to our probabilistic model, the measurements are generated

independently, and therefore, we have

Q` = [1 − (1 − q`)
V ][1 − (1 − q`)

R]2.

Denote by ξ
(`)
k the probability of the event that a particular

bin produces a consistent pair that is generated by β(`), and

is associated with k non-zero elements in β(`). Since each

non-zero element is associated with d bins among the M bins

independently and uniformly at random, for a consistent pair

generated by β(`), the number of non-zero elements associated

with this pair is binomial distributed with parameters K`

(recall that K` is the number of non-zero elements in β(`))

and d
M

, and we have

ξ
(`)
k = Q`

�

K`

k

��

d

M

�k �

1 − d

M

�K`−k

.

In addition, we can use Poisson distribution to approximate

the binomial distribution when λ` := K`d
M

is a constant and

K` approaches infinity, i.e., we have

ξ
(`)
k ≈ Q`

λk
`e−λ`

k! .

Let us ignore the zero elements in β(`) and consider the

bipartite graph representing the association between the K`

non-zero elements (left notes) in β(`) and the M bins (right

nodes). We know that the total number of edges in this bipartite

graph is K`d , and we denote by ρ
(`)
k the expected fraction of

the edges that are connected to a right node (bin) with degree

k. Thus, we have

ρ
(`)
k = kM

K`d
ξ

(`)
k = Q`

λk−1
` e−λ`

(k − 1)! .

We then proceed to analyze the expected fraction of the

singleton balls. Let q
(`)
s be the probability that a non-zero

element in β(`) becomes a singleton ball in a certain consistent

pair. The event is equivalent to the event that at least one of

its d associated right nodes (bins) has degree 1. Then, when

K` approaches infinity, we have asymptotically

q(`)
s = 1 − (1 − ρ

(`)
1 )d = 2(1).

5Note that the graph in Figure 1 differs from the bipartite graph that we
use to design the query vectors.

Thus, the expected number of non-zero elements in β(`) that

are found as singleton balls in this stage of the algorithm

is q
(`)
s K` = 2(K ), and this implies that we can recover a

constant fraction of the non-zero elements in each parameter

vector, without knowing their labels. We can further prove

high probability bounds for this fraction, and more details of

this analysis are relegated to Lemma 2 in Appendix A.

3) Recovering a Subset of Non-Zero Elements: The next

step is crucial: for two singleton balls and a consistent pair

associated with the locations of these two balls, we run the

guess-and-check and peeling operations to detect if these two

singleton balls indeed have the same label (or equivalently,

the two non-zero elements are in the same parameter vector).

If so, we call this consistent pair a strong doubleton (i.e.,

doubletons that contain two singleton balls that we find in the

previous stage of the algorithm), and connect these two balls

with an edge, as shown in Figure 1b. Doing so creates a graph

over the balls (i.e., non-zero elements), and each connected

component of the graph is from a single parameter vector.

Since each non-zero element is associated with a constant

number of consistent pairs (due to using a d-left regular

bipartite graph with constant d), this step can in fact be done

efficiently in 2(K ) time without enumerating all the combina-

tions of singleton ball pairs. Similar to the analysis of singleton

balls, we can analyze the number of strong doubletons. In fact,

we can show that with high probability, a constant fraction of

the consistent pairs are strong doubletons. More details are

relegated to Lemma 3 in Appendix A.

By carefully choosing the parameters6 d , M , R, and V , and

using tools from random graph theory, we can ensure that with

high probability the L largest connected components (called

giant components) correspond to the L parameter vectors, and

each of these components has size 2(K ). Then, the labels of

the balls in these components are identified. This is illustrated

in Figure 1c for L = 2, where colors represent the labels. More

details of this demixing process are provided in Lemma 4 in

Appendix A. In summary, at this point we have recovered

the labels, locations and values of a constant fraction of the

non-zero elements (i.e., balls) of each parameter vector.

4) Iterative Decoding: The decoding procedure proceeds by

identifying the labels of the remaining balls via iteratively

applying the guess-and-check and peeling primitives. The

connected components in Figure 1c are therefore expanded,

until no more changes can be made, as illustrated in Figure 1d.

We provide an example of this iterative procedure

in Figure 5. Recall that the association between the coordinates

of the parameter vectors and the bins (or consistent pairs)

is determined by a bipartite graph. Here, we only show one

consistent pair for each bin and omit the zero elements. The

non-zero elements and the consistent pairs are shown as balls

and squares, respectively, as in Figure 5a. The steps described

in the last part recover a subset of these balls, which are

shown in red and blue in Figure 5b. For simplicity, let us

call the corresponding β(`)’s red and blue parameter vectors,

6To make our main sections concise, here we omit the condition on the
design parameters d, M, R, and V in order to form giant components with
sizes 2(K ); the precise statement of this condition is relegated to Lemma 4
in Appendix A.
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Fig. 5. Iterative decoding. In each of the bipartite graph, the left nodes
(balls) denote the non-zero elements in the two parameter vectors, and the
right nodes (squares) denote the consistent pairs. The balls and consistent
pairs associated with different parameter vectors are shown in different colors.

Here, elements a, b, c, d and consistent pairs 1, 2 are associated with β(1),

and elements u, v , w, z and consistent pairs 3, 4 are associated with β(2).
If a ball is peeled off, the edges connected to it are shown in dashed lines.
(a) The connection between balls and consistent pairs. (b) Using the giant
component method, we find balls a and b are in the same color (i.e., in the
same parameter vector), and balls u and v are in the other color. (c) Using the
guess-and-check approach, we peel a and b from their connected pairs and
recover c via ratio rest; similarly, we peel u and v from their connected pairs
and recover w. (d) Continue the process. Peel c and w from their associated
pairs and recover all the non-zero elements.

respectively. If a consistent pair is generated by the red (blue)

parameter vector, we say that this consistent pair is red (blue).

Now consider the consistent pair 1, which is associated with

the coordinates that the balls a, b and c are located. Although

we do not know whether this pair is red or blue, we can guess

that this pair is blue, and peel the blue balls a and b off from

consistent pair 1. Since this consistent pair is indeed blue,

the updated measurements can pass the ratio test, and thus

we can recover the label, location and value of the non-zero

element represented by blue ball c. Similarly, by guessing that

the consistent pair 3 is red and peeling off the recovered red

ball v from the consistent pair 3, we can recover red ball w,

as illustrated in Figure 5c. We continue this process iteratively,

guessing the color of the consistent pairs and peeling off balls

recovered in the previous iterations to recover more balls. For

example, we peel off balls b and c from the measurement pair

2 to recover ball d , and ball w from pair 4 to recover ball z,

resulting in Figure 5d.

D. Choice of Design Parameters

We have completed the description of the Mixed-Coloring

algorithm for the noiseless case. The algorithm involves sev-

eral design parameters including d , R, V , and M . We need

to choose these parameters properly in order to guarantee

successful decoding. The precise conditions that these parame-

ters need to satisfy are somewhat technical, and they are rel-

egated to Lemmas 4 and 6 in Appendix A. More specifically,

Lemma 4 provides the condition that the L giant components

in Figure 1c correspond to the L parameter vectors, and each

of these components has size 2(K ); and Lemma 6 provides

the condition that the iterative decoding process can find an

arbitrarily large fraction of the non-zero elements, and the

analysis is based on density evolution from modern coding

theory [43]. In addition, Lemma 7 in Appendix A provides

high probability bound on the recovered fraction of non-

zero elements. For concrete settings, the optimal choices of

these parameters can actually be computed numerically via the

density evolution analysis. In particular, for any upper bound

p∗ ∈ (0, 1) of the error fraction, we can find the proper values

of d , R, V , and M for which the peeling process is guaranteed

to proceed successfully and recover all but a fraction p∗ of the

non-zero elements. As examples, in Table II we list the optimal

values of the design parameters for L = 2, 3 or 4 parameter

vectors with equal probability (mixing weights), i.e., q` = 1
L

.

The details of these numerical computations are provided in

Appendix B.

V. ROBUST MIXED-COLORING ALGORITHM

FOR NOISY RECOVERY

The key idea of Robust Mixed-Coloring algorithm is to turn

the noisy problem to a noiseless one. We keep the overall

structure of the Robust Mixed-Coloring algorithm the same as

its noiseless counterpart. We still use a balls-and-bins model

to design the query vectors. In particular, we keep using

a d-left regular bipartite graph to represent the association

between coordinates and bins (sets of measurements), and the

algorithm still proceeds as shown in Algorithm 1. However,

the steps in Mixed-Coloring algorithm that rely on the fact that

there is no noise in the measurements should be robustified.

In particular, in the presence of noise, the ratio test method for

indexing (finding the location and value of non-zero elements)

and the summation check for finding consistent measurements

(measurements that are generated by the same parameter

vector) need to be modified. To this end, we use a new design

of query vectors, and employ an EM-based noise reduction

scheme to effectively obtain the noiseless measurements of

these query vectors. We provide more details of the Robust

Mixed-Coloring algorithm in the following.

A. Design of Query Vectors

We keep the high-level design of query vectors as in the

noiseless setting. This means that we still use a d-left regular

bipartite graph with n left nodes and M right nodes to

represent the association between the coordinates and the bins.

However, we change the design of query vectors within each

bin, and in particular, we design three types of query vectors.

The first type, called binary indexing vectors, encodes the loca-

tion information using binary representations with dlog2(n)e
bits (as opposed to using the relative phases in the noiseless

case). The second type is called verification vectors, which are

used to verify the singleton balls (or equivalently, non-zero
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TABLE II

DESIGN PARAMETERS OF MIXED-COLORING ALGORITHM

elements) found by the binary indexing vectors. We robustify

the indexing process by replacing the ratio test query vectors

with these two types of query vectors. A similar approach is

considered in [31] for compressive phase retrieval. The third

type of query vectors is used for consecutive summation check,

which finds consistent sets of measurements, and robustifies

the summation check step in the noiseless case.

We now provide details of the design. Let H denote the

biadjacency matrix of the bipartite graph. For a particular bin

(we omit the label of the bin for simplicity), let h ∈ {0, 1}n

denote the association between this bin and the coordinates.

We design P = 2(log2(n)) query vectors xi ∈ Rn , i ∈ [P]
for this bin as follows:

[x1 · · · x P ]T = [BT V T CT]Tdiag(h).

where B ∈ {0, 1}P1×n , V ∈ {1,−1}P2×n , and C ∈ ZP3×n

correspond to the three types of new query vectors, mean-

ing that they are used for binary indexing, verification, and

consecutive summation check, respectively. The matrix B

has P1 = dlog2(n)e rows, and the i -th column of B is

the binary representation of integer i − 1. The matrix V

has P2 = 2(log(n)) rows and consists of i.i.d. Rademacher

entries, i.e., the entries of V are equally likely to be either

1 or −1. The matrix C contains P3 =


P1+P2

2

�

rows, and the

rows of C are indexed by pairs ( j, k), 1 ≤ j < k ≤ P1 + P2.

Let D = [BT V T]T be a collection of the first two matrices.

The row of C indexed by ( j, k) (denoted by cT
( j,k)) is the

summation of the j -th and the k-th row of D, i.e., cT
( j,k) =

dT
j + dT

k . Here, we give a simple example with n = 4, P1 = 2,

P2 = 2, and P3 = 6 in Figure 6.

B. Decoding Algorithm

We now describe the decoding part of the Robust Mixed-

Coloring algorithm. As mentioned, we use an EM-based noise

reduction scheme to find the noiseless measurements of the

query vectors, and also conduct robustified summation check

and indexing process. Other parts of the algorithm are kept

the same. We elaborate the details in the following.

1) Noise Reduction: Due to the presence of noise, the first

step that we need to take is a noise reduction operation. More

specifically, we use each query vector N = 2(polylog(n))

times, repeatedly. According to our model, in the presence of

Gaussian noise, one can see that if xT
i β(1) = xT

i β(2), the N

measurements are i.i.d. Gaussian distributed; otherwise the N

measurements are independently distributed as a mixture of

two equally weighted Gaussian random variables. Therefore,

the problem becomes a standard estimation problem for a one

Fig. 6. Example of query vectors in noisy setting with n = 4, P1 = 2,
P2 = 2, and P3 = 6. Each row represents a query vector (in most cases
we use column vectors, but here we use row vectors for ease of description).

Here, bT
1 diag(h) and bT

2 diag(h) are used for binary indexing; vT
3 diag(h) and

vT
4 diag(h) are used for verification; and cT

(1,2)diag(h), . . . , cT
(3,4)diag(h) are

used for consecutive summation check. As we can see, the vectors c( j,k)
are summations of all the pairs in the first two sets vectors, i.e., c(1,2) =
b1 + b2, c(1,3) = b1 + v3, c(1,4) = b1 + v4, c(2,3) = b2 + v3, c(2,4) =
b2 + v4, c(3,4) = v3 + v4.

dimensional Gaussian mixture distribution. We propose an EM

algorithm with an initialization step using method of moments

to estimate the two centers of the mixture. The performance

of our proposed EM algorithm can be characterized by Theo-

rem 3, proved in Appendix E.

Theorem 3: Suppose that 1/σ ≥ 4√
3

. Then, by using N =
2(polylog(n)) measurements, the proposed EM algorithm,

with initialization via method of moments, can recover the

exact value of the two centers7 of the mixture of Gaussian

distributions with probability at least 1 − O(1/poly(n)).

In addition, we can see that since each query vector in each

bin is repeated N = 2(polylog(n)) times, and there is P =
2(log2(n)) query vectors in each bin, the total number of

measurements we get for each bin is N P = 2(polylog(n)).

Since there are 2(K ) bins, the total number of measurements

of the Robust Mixed-Coloring algorithm is 2(K polylog(n)).

2) Consecutive Summation Check: After the noise reduction

operations, for each query vector xi , i ∈ [P], we get at

most two “centers” {yi,1, yi,2} (called denoised measurements),

which correspond to the inner product of the query vector and

the parameter vectors in the noiseless case. However, we do

not know the correspondence between the denoised measure-

ments and the two parameter vectors. This means that we

can have either (yi,1, yi,2) = (xT
i β(1), xT

i β(2)) or (yi,1, yi,2) =
(xT

i β(2), xT
i β(1)). Therefore, we need to use the consecutive

7Note that in our problem, the centers take quantized values and the
quantization step is known to the decoder, so the estimation can take the
exact value of the true centers.
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Fig. 7. Consecutive summation check. In this example, we have three
indexing and verification query vectors x1, x2, x3, and two summation check
query vectors x1+x2 and x2+x3. The numbers in the center of each “cloud”
are the denoised measurements. Here, the denoised measurements that we get
for xi , i = 1, 2, 3 are (1, 5), (2, 4), and (2, 3), respectively, and the denoised
measurements for x1 + x2 and x2 + x3 are (5, 7) and (5, 6), respectively.
By matching summations, one can easily find the denoised measurements
that are generated by the same parameter vector, i.e., consistent sets. In the
figure on the right, the numbers shown with the same color are generated by
the same parameter vector.

summation check method to find the denoised measurements

which are generated by the same parameter vector.

We illustrate the consecutive summation check process

using a simple example in Figure 7. Assume that we have

three query vectors x1, x2, x3, and two summation check

query vectors x1 + x2 and x2 + x3. Suppose that the denoised

measurements that we get for xi , i = 1, 2, 3 are (y1,1, y1,2) =
(1, 5), (y2,1, y2,2) = (2, 4), and (y3,1, y3,2) = (2, 3), and

the denoised measurements for the summation check query

vectors are (y(1,2),1, y(1,2),2) = (5, 7) and (y(2,3),1, y(2,3),2) =
(5, 6). By matching summations, one can easily find that

the only possible case that we can observe these denoised

measurements is that (y1,1, y2,2, y3,1) and (y1,2, y2,1, y3,2)

are generated by the same parameter vector (we call them

consistent sets), respectively, as shown in different colors

in Figure 7. In our algorithm, we need to conduct consecutive

summation check on all the denoised indexing and verifi-

cation measurements, using the denoised summation check

measurements. We also mention that the reason that we need

summations of all the


P1+P2

2

�

pairs of the first P1 + P2 query

vectors is that we might have the two denoised measurements

taking the same value, i.e., xT
i β(1) = xT

i β(2), and then we have

to conduct summation check on two query vectors which are

not adjacent. We provide the precise procedures of consecutive

summation check in Algorithm 2.

3) Indexing: We conduct indexing process on the consistent

sets. The purpose of the indexing process is to check whether

there is a single non-zero element associated with a set of

consistent measurements (i.e., whether these measurements

form a singleton), and find the location and value of the

non-zero element. Recall that after the swapping procedures

in Algorithm 2, we obtain two consistent sets of denoised

measurements (y1,1, . . . , yP1+P2,1) and (y1,2, . . . , yP1+P2,2).

Without loss of generality, we omit the second subscript and

use (y1, . . . , yP1+P2) to denote one of the consistent set of

denoised measurements.

We check the first P1 denoised measurements, which cor-

respond to the binary indexing query vectors. We can see that

for the consistent set to be a singleton, it is necessary that all

the non-zero denoised binary indexing measurements take the

same value in D, say a1. The only possible location index

Algorithm 2 Consecutive Summation Check

Input: Denoised binary indexing and verification measure-

ments yi,`, i = 1, . . . , P1 + P2, ` = 1, 2.

Denoised summation check measurements y( j,k),`, 1 ≤ j <

k ≤ P1 + P2, ` = 1, 2.

Output: Consistent denoised indexing and verification mea-

surements yi,`, i = 1, . . . , P1 + P2, ` = 1, 2.

t ← 0

while t < P1 + P2 do

s ← arg min{i > t : yi,1 6= yi,2}
if (yt,1 + ys,2, yt,2 + ys,1) = (y(t,s),1, y(t,s),2) or (yt,1 +
ys,2, yt,2 + ys,1) = (y(t,s),2, y(t,s),1) then

swap ys,1 and ys,2

end if

t ← s

end while

j of the non-zero element satisfies the fact that integer j − 1

has binary representation { 1
a1 yi }P1

i=1 ∈ {0, 1}P1 . For instance,

in the example in Figure 6, suppose that we find a consistent

set of measurements generated by β(1), and the quantization

step size 1 = 1, i.e., the non-zero elements take integer values.

Assume that we observe the denoised consistent measurements

(bT
1 diag(h)β(1), bT

2 diag(h)β(1)) = (2, 2). Then, it is possible

that this is a singleton, and β
(1)
4 = 2 is the only non-zero

element associated with these consistent measurements.

However, the procedure above is not enough to guarantee

that the consistent measurements form a singleton. We con-

tinue the example in Figure 6. Suppose that the bipartite graph

gives us h = [0 1 1 1]T. Then, when we observe measurements

(bT
1 diag(h)β(1), bT

2 diag(h)β(1)) = (2, 2), we can have either

diag(h)β(1) = [0 0 0 2]T or diag(h)β(1) = [0 2 2 0]T; and

in the latter case, this set of measurements does not form

a singleton any more. To verify that this consistent set is a

singleton, we need to use the next P2 denoised verification

measurements. Recall that for the verification query vectors,

we design a Rademacher matrix V ∈ {−1, 1}P2×n with

elements Vi, j , i ∈ [P2], j ∈ [n], and use the rows of Vdiag(h)

as query vectors. Here, we make the following claim on the

singleton verification procedure.

Lemma 1: Suppose that all the denoised binary indexing

measurements y1, . . . , yP1 take value in {0, a1}, and the

sequence { 1
a1 yi }P1

i=1 form the binary representation of integer

j − 1. Then, if the verification measurements satisfy yi =
a1Vi−P1, j for all i = P1 + 1, . . . , P1 + P2, and P2 =
2(log(n)), with probability 1 −O(1/ poly(n)), this consistent

set is indeed a singleton with the non-zero element located at

the j -th coordinate and taking value a1.

This result is a corollary of the Johnson-Lindenstrauss

Lemma [44], and we provide the proof in Appendix D. If the

denoised measurements pass the verification in Lemma 1,

we know that with high probability, the consistent set of

measurement is indeed a singleton, and we also obtain the

location and value of the non-zero element. We provide the

precise procedures of the indexing algorithm in Algorithm 3.
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Algorithm 3 Indexing Algorithm in Noisy Setting

Input: Denoised consistent binary indexing measurements yi ,

i = 1, . . . , P1.

Denoised consistent verification measurements yi,`, i = P1+
1, . . . , P1 + P2, ` = 1, 2.

Rademacher matrix V ∈ {−1, 1}P2×n for verification, quan-

tized set D.

Output: Singleton/non-singleton, singleton location j , single-

ton non-zero value β j .

if ∀ i ∈ [P1], yi ∈ {0, a1} for some a1 ∈ D then

j ← 1 +
�P1

i=1 2P1−i yi

a1
if ∀ i = P1 + 1, . . . , P1 + P2, yi = a1Vi−P1, j then

return singleton, j , β j = a1

else

return non-singleton

end if

else

return non-singleton

end if

So far, we have demonstrated how we robustify the sum-

mation check and indexing process. Once these two parts

are robustified, other parts of the algorithm, such as finding

giant components, guess-and-check, and peeling-style iterative

decoding can proceed as in the noiseless case. We relegate the

analysis of Robust Mixed-Coloring algorithm to Appendix C.

Again, there are a few design parameters in the Robust Mixed-

Coloring algorithm, and we summarize the choices of these

parameters in Table III for a particular target error fraction p∗.

Finally, we point out that extending the Robust Mixed-

Coloring algorithm to cases where L > 2 is an important

future direction. Although the summation check technique

does not provably work in the noisy setting when L > 2,

we believe that using similar but more sophisticated design,

we may still be able to obtain consistent sets of measurements.

VI. EXPERIMENTAL RESULTS

In this section, we test the sample and time complexities

of the Mixed-Coloring algorithm in both noiseless and noisy

cases to verify our theoretical results. All simulations are done

on a laptop with 2.8 GHz Intel Core i7 CPU and 16 GB

memory using Python.

We first investigate the sample complexity of Mixed-

Coloring algorithm in the noiseless case. The goal of this

experiment is to show that in numerical experiments, the num-

ber of measurements that we need to successfully recover

the parameter vectors matches the predictions of the density

evolution analysis. We use the optimal parameters (d, R, V )

from numerical calculations of the density evolution, presented

in Table II. We generate instances with different number

of measurements m by choosing different number of bins

M . Recall that m = (2R + V )M , and thus varying the

number of bins is equivalent to varying the total number of

measurements. The parameter vectors that we use have equal

sparsity, i.e., K` = 1
L

K , and the mixing weights are equal for

all the parameter vectors, i.e., q` = 1
L

. The supports of the

Fig. 8. Success probability and running time in the noiseless case. In both
(a) and (b), for L = 2, we use (d, R, V ) = (15, 3, 3), for L = 3, we use
(d, R, V ) = (15, 5, 5), and for L = 4, we use (d, R, V ) = (13, 8, 8).
We increase the number of measurements m by increasing the number of bins
M. As we can see, the total number of measurements needed for successful
recovery matches the sample complexities predicted by our theory in Table I.
In (b), for L = 2, we use m = 34.2K (i.e., M = 3.8K ); for L = 3, we use
m = 39K (i.e., M = 2.6K ); and for L = 4, we use m = 43.2K (i.e.,
M = 1.8K ).

parameter vectors are chosen uniformly at random, and the

values of the non-zero elements are generated from Gaussian

distribution. We choose a few pairs of L and K , increase

the total number of measurements, and record the empirical

success probability and running time averaged over 100 trials.

Here, we use a sufficiently small p∗ so that the success event

is equivalent to recovery of all the non-zero elements. The

results are shown in Figure 8a. The phase transition occurs at

some C = m/K that matches the values in Table I, predicted

by our theory. More specifically, when L = 2, L = 3, and

L = 4, we need about 33K , 38K , and 40K measurements for

successful recovery, respectively.

We also test the time complexity of our algorithm in

the noiseless case. We use the design parameters that can

guarantee successful recovery, as we find in the experiment on

sample complexity. More specifically, for L = 2, we choose

(d, R, V ) = (15, 3, 3), and m = 34.2K (i.e., M = 3.8K ); for

L = 3, we choose (d, R, V ) = (15, 5, 5), and m = 39K (i.e.,

M = 2.6K ); and for L = 4, we choose (d, R, V ) = (13, 8, 8),

and m = 43.2K (i.e., M = 1.8K ). As shown in Figure 8b,

the running time is linear in K and does not depend on n.

Similar experiments are performed for the noisy case using

the Robust Mixed-Coloring algorithm, under the quantization

assumption. We still focus on the case where the two parameter

vectors appear equally like and have the same sparsity. We use
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TABLE III

DESIGN PARAMETERS OF ROBUST MIXED-COLORING ALGORITHM

Fig. 9. Sample and time complexities of the Robust Mixed-Coloring
algorithm. In both (a) and (b), we choose the quantization step size 1 = 1,
the quantize alphabet D = {±1,±2, . . . ,±5}, standard deviation of noise
σ = 0.2. The design parameters are chosen as follows: left degree d = 15,
number of bins M = 3K , number of singleton verification query vectors:
0.3 log2(n). In (a), we vary the number of repetitions of each query vector N

to find the minimum number of query vectors needed for successful recovery.
In (b), we fix N = log2(n) and measure the time cost. The experiment
on time complexity is conducted in the setting where successful recovery
is guaranteed.

quantization step size 1 = 1 and the quantized alphabet D =
{±1,±2, . . . ,±5}, and the values of the non-zero elements

are chosen uniformly at random from D. Figure 9a shows the

minimum number of queries m required for 100 consecutive

successes, for different n and K . We observe that the sample

complexity is linear in K and sublinear in n. The running

time exhibits a similar behavior, as shown in Figure 9b. Both

observations agree with the prediction of our theory.

We also compare the Mixed-Coloring algorithm with a

state-of-the-art EM-style algorithm (equivalent to alternating

minimization in the noiseless setting) from [19]. These

comparisons are not entirely fair, since our algorithm is based

TABLE IV

COMPARISON OF THE MIXED-COLORING ALGORITHM (M-C) AND THE

EM-STYLE ALGORITHM (EM). MIXED-COLORING ALGORITHM IS

ADVANTAGEOUS IN TIME COMPLEXITY FOR BOTH SPARSE AND

DENSE PROBLEMS, AND IS ADVANTAGEOUS IN SAMPLE COM-
PLEXITY FOR SPARSE PROBLEMS

on carefully designed query vectors, while the algorithm

in [19] uses random design, i.e., the entries of xi ’s are i.i.d.

Gaussian. However, this is exactly where the intellectual

value of our work lies: we expose the gains available by

careful design. We consider four test cases with (L, n, K ) =
(2, 100, 20), (2, 500, 50), (2, 100, 100), (2, 500, 500), with

the first two cases being sparse problems and the last two being

relatively dense problems. We find the minimum number of

queries that leads to a 100% successful rate in 100 trials, and

the average running time. For the Mixed-Coloring algorithm,

we use d = 15, R = V = 3 and M = 3.8K . The parameters

of the EM-style algorithm are chosen as suggested in the

original paper [19]. As shown in Table IV, in both sparse

and dense problems, our Mixed-Coloring algorithm is several

orders of magnitude faster. As for the sample complexity, our

algorithm requires smaller number of samples in the sparse

cases, while in dense problems, the sample complexity of our

algorithm is within a constant factor (about 3) of that of the

alternating minimization algorithm. For the noisy setting, our

algorithm is most powerful in the high dimensional setting,

i.e., large n, due to the polylog(n) factors. However, in this

setting, it takes prohibitively long time for the state-of-the-art

algorithms such as [18] to converge, and thus, we do not

present the comparison in the noisy setting.

We further test the Robust Mixed-Coloring algorithm when

the quantization assumption is violated. For any β ∈ R,

we define D(β) = arg mina∈D |a − β|1(β 6= 0), where 1(·)
denotes the indicator function. This means that D(β) is the

element in D which is the closest one to β, when β 6= 0.

For a vector β ∈ Rn , we define D(β) = {D(β j )}n
j=1.

We define the perturbation of a vector β as Perturbation(β) =
max j∈[n] |β j − D(β j )|/1.

In this experiment, we generate sparse parameter vectors

β(`), ` ∈ [L] with a total number of K non-zero elements.



YIN et al.: LEARNING MIXTURES OF SPARSE LINEAR REGRESSIONS USING SPARSE GRAPH CODES 1443

Fig. 10. Performance of Robust Mixed-Coloring algorithm with quantization
assumption violated. We vary the number of bins M to test the empirical
probability of success, and also keep d = 5M/K . Other parameters: n =
4096, K = 50, quantization level 1 = 1, standard deviation of noise σ = 0.1,
number of singleton verification query vectors: 0.3 log2(n), and R = log2(n).

These non-zero elements are generated randomly while keep-

ing the perturbation of the parameter vectors under a certain

level by adding bounded noise to the quantized non-zero

elements. We record the probability of success for different

number of bins M and different perturbation level. Here the

success event is defined as recovery of D(β(`)) for all ` ∈ [L].
The result is shown in Figure 10. We see that the Robust

Mixed-Coloring algorithm works without the quantization

assumption as long as the perturbations are not too large.

VII. CONCLUSION

We proposed the Mixed-Coloring algorithm as a query

based learning algorithm for mixtures of sparse linear regres-

sions. Our algorithm leverages the connection between modern

coding theory and statistical inference. The design of the query

vectors and the recovery algorithm are based on ideas from

sparse graph codes. Our novel code design allows for both

efficient demixing and parameter estimation. In the noiseless

setting, for a constant number of sparse parameter vectors,

our algorithm achieves the order-optimal sample and time

complexities of 2(K ). In the presence of Gaussian noise, for

the problem with two parameter vectors (i.e., L = 2), we show

that the Robust Mixed-Coloring algorithm achieves near-

optimal 2(K polylog(n)) sample and time complexities. Our

experiments justified the theoretical results, and we observe

that the run-time of our algorithm can be orders of magnitudes

smaller than that of the state-of-the-art algorithms. In the noisy

scenario, studying the Robust Mixed-Coloring algorithm with

more than two parameter vectors and obtaining theoretical

results for the continuous alphabet case are two important

future directions.

APPENDIX A

PROOF OF THEOREM 1

A. Proof Outline

We prove Theorem 1 in this section. The proof includes two

major steps: (i) show that the expectation of the fraction of

non-zero elements which are not recovered can be arbitrarily

small; (ii) show that this fraction concentrates around its

mean with high probability. The first part mainly uses density

evolution techniques which are commonly used in coding

theory, and the second part uses Doob’s martingale argument.

B. Notation

We briefly recall the Mixed-Coloring algorithm in the

noiseless case and declare the notation that we use for the

rest of the proof.

Recall that the parameter vector β(`) has K` non-zero

elements. We call these K` non-zero elements balls in color

`. We design a d-left regular bipartite graph with n left nodes

and M right nodes, representing the n coordinates and the M

bins, respectively. We denote the i -th bin by Bi . We use the

matrix H ∈ {0, 1}M×n to represent the biadjacency matrix of

the bipartite graph, i.e., Hi, j = 1 if and only if the i -th bin

is associated with the j -th coordinate. Recall that we design

three query vectors in the form of (2), for the purpose of

ratio test. The third query vectors is the summation of the first

two and is used for summation check. We repeat the first two

query vectors R times, respectively, and get R type-I and R

type-II index measurements. We repeat the third query vector

V times and get V verification measurements. For the j -th

verification measurement of the i -th bin, we define a sub-

bin B
j
i . If we can find one type-I index measurement and one

type-II index measurement such that the summation of the two

measurements is equal to the j -th verification measurement,

we know that these three measurements are generated by the

same parameter vector, say β(`). The two index measurements

are called a consistent pair. Then, we say that the sub-bin B
j

i

has color `. We define the color set C
j
i of B

j
i . If we can

find a consistent pair corresponding to the j -th verification

measurement, we let C
j
i = {`}, otherwise C

j
i = ∅. We further

define the color set of bin Bi as Ci = ∪V
j=1C

j

i .

C. Number of Singleton Balls

In this section, we analyze the number of singleton balls in

color ` found in the first stage of the algorithm. We can show

that this number is concentrated around a constant fraction of

K` with high probability.

Lemma 2: Let K
(`)
s be the number of singleton balls in

color ` found in the first stage. Then, there exists a constant8

q
(`)
s such that for any constant δ > 0,

P{|K (`)
s − K`q(`)

s | ≤ δK`} ≥ 1 − 2 exp(−2δ2K`). (5)

Proof: We first specify some terminologies here. For a

bin Bi , we say that this bin has color ` when ` ∈ Ci . One

should notice that if there are more than one sub-bins in color

` in bin Bi , these sub-bins are identical. Therefore, we can say

that a bin Bi contains k balls in color `, when Bi has at least

one sub-bin B
j
i in color `, and the sub-bin is associated with k

non-zero elements in β(`). Equivalently, the coded parameter

vector β̃
`

i = diag(hi )β
(`) satisfies |supp(β̃

`

i )| = k, k ≥ 0.

First, we analyze the probability Q` that a particular bin Bi

has color `. According to our model, the measurements are

8Recall that in our paper, constants are defined as quantities which do not
depend on n and K .
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generated independently, therefore, we have

Q` = [1 − (1 − q`)
V ][1 − (1 − q`)

R]2.

Then, we use ξ
(`)
k to denote the probability of the event that

a particular bin contains k balls in color `. Since each ball is

associated with d bins among the M bins independently and

uniformly at random, the number of balls in color ` that a bin

contains is binomial distributed with parameters K` and d
M

,

and we have

ξ
(`)
k = Q`

�

K`

k

��

d

M

�k �

1 − d

M

�K`−k

.

In addition, we can use Poisson distribution to approximate

the binomial distribution when λ` := K`d
M

is a constant and

K` approaches infinity. In the following analysis, we use the

approximation

ξ
(`)
k ≈ Q`

λk
`e−λ`

k! .

Consider the bipartite graph representing the association

between the balls in color ` and the M bins. We know that

there are K`d edges connected to the balls in color `, and we

use ρ
(`)
k to denote the expected fraction of these K`d edges

which are connected to a bin which contains k balls in color

`, k ≥ 1. Then, we have

ρ
(`)
k = kM

K`d
ξ

(`)
k = Q`

λk−1
` e−λ`

(k − 1)! ,

and equivalently, ρ
(`)
k is also the probability that an edge,

which is chosen from the K`d edges uniformly at random,

is connected to a bin Bi containing k balls in color `.

Let q
(`)
s be the probability that a ball in color ` is a singleton

ball. The event that this ball is a singleton ball is equivalent to

the event that at least one of its d associated bins contains one

ball with color `. Then, when K` approaches infinity, we have

q(`)
s = 1 − (1 − ρ

(`)
1 )d ,

and this is because in the limit K` → ∞, the correlations

between the d edges connected to a ball become negligible;

this technique is often used in the theoretical analysis of

density evolution in coding theory, and we use this type of

asymptotic argument several times in the proofs. Let K
(`)
s

be the number of singleton balls in color `, then we have

E[K
(`)
s ] = K`q

(`)
s . Using the asymptotic argument and by

Hoeffding’s inequality, we also have for any constant δ > 0,

P{|K (`)
s − K`q(`)

s | ≤ δK`} ≥ 1 − 2 exp(−2δ2K`),

and this means that the number of singleton balls in color `

is highly concentrated around K`q
(`)
s . �

D. Initial Fractions

We construct the graph G` whose nodes correspond to the

singleton balls in color ` found in the previous stage, and

analyze the number of edges in G`, which is equal to the

number of strong doubletons in color `. Here, for clarification,

we emphasize that the graph G` corresponds to a sub-graph

with the same color in Figure 1, rather than the bipartite graph

that we use to design the query vectors. Then, we can show

that the number of strong doubletons is concentrated around

a constant fraction of M with high probability.

Lemma 3: Let M
(`)
s be the number of strong doubletons in

color ` found in the second stage. Then, there exists a constant

ν` > 0 such that for any constant δ > 0,

P{|M(`)
s − Mν`| ≤ δM} ≥ 1 − 2 exp(−2δ2M). (6)

Proof: We know that the expected number of doubletons

in color ` is Mξ
(`)
2 . Then, we analyze the probability that a

doubleton is a strong doubleton. Similar to the analysis in [30],

for a particular ball in color `, we let B denote the event that

this ball is in a singleton, and D denote the event that this ball

is in a doubleton. We have the conditional probability that a

ball in a doubleton is also a singleton ball:

q
(`)
d := P{B|D} = P{D

�

B}
P{D}

= 1 − P{B̄} − P{D̄} + P{B̄
�

D̄}
1 − P{D̄}

= 1 − (1 − ρ
(`)
1 )d − (1 − ρ

(`)
2 )d + (1 − ρ

(`)
1 − ρ

(`)
2 )d

1 − (1 − ρ
(`)
2 )d

.

Then we know the probability that a doubleton is a strong

doubleton is (q
(`)
d )2, and the expected number of strong

doubletons in color ` is Mξ
(`)
2 (q

(`)
d )2. Let ν` = ξ

(`)
2 (q

(`)
d )2 and

M
(`)
s be the number of edges in graph G`. The expectation

of M
(`)
s is E[M

(`)
s ] = Mν`, and according to Hoeffding’s

inequality, we have for any δ > 0

P{|M(`)
s − Mν`| ≤ δM} ≥ 1 − 2 exp(−2δ2 M),

meaning that the number of edges is highly concentrated

around Mν`. �

Then, we get the following result on the size of the giant

component of G`, using the asymptotic behavior of the Erdos-

Renyi random graphs.

Lemma 4: Let K
(`)
G be the size of the largest connected

component (giant component) of G`. If the parameters of the

Mixed-Coloring algorithm satisfy

2Mν`

K`q
(`)
s

> 1, (7)

then, for any constant δ > 0, with probability 1 − O(1/K`),

initial fraction of the balls in color ` which are recovered after

the second stage satisfies
�

�

�

�

�

K
(`)
G

K`
− ζ`q(`)

s

�

�

�

�

�

≤ δ, (8)

where the constant ζ` is the unique solution of the equation

ζ` + exp

�

−2
ζ`Mν`

K`q
(`)
s

�

= 1,

and other connected components in G` are of sizes

O(log(K`)).

Proof: This result is a direct corollary of the asymptotic

behavior of the Erdos-Renyi random graphs [45], and we only

give a brief proof here. First, we condition on the number of
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singleton balls that we find in the first stage, i.e., K
(`)
s and the

number of edges in G`, i.e., M
(`)
s . By symmetry, we know that

the M
(`)
s edges are uniformly chosen from the



K
(`)
s

2

�

possible

edges. Therefore, the graph G` is an Erdos-Renyi random

graph. According to the results on the giant component of

Erdos-Renyi random graphs, we know that if the limit

θ := lim
K

(`)
s →∞

K (`)
s

M
(`)
s



K
(`)
s

2

�

> 1,

then with probability at least 1 − O(1/K
(`)
s ), the size of

the giant component of graph G` is linear in K
(`)
s , and

other connected components have sizes O(log(K
(`)
s )). By (5)

and (6), we know that for any constant �1 > 0, there

exists a constant α1 > 0, such that, with probability at least

1 − O(exp(−α1 K`)),

K (`)
s ∈ IK = [(q(`)

s − �1)K`, (q
(`)
s + �1)K`],

and that, for any constant �2 > 0, there exists a constant α2 >

0, such that, with probability at least 1 − O(exp(−α2 M)),

M(`)
s ∈ IM = [(ν` − �2)M`, (ν` + �2)M`].

We also know that when K
(`)
s ∈ IK and M

(`)
s ∈ IM happen,

the limit θ approaches 2Mν`

K`q
(`)
s

. Let A be the event that the size

of the largest connected component (giant component) of G`,

i.e., K
(`)
G satisfies (8), and other connected components in G`

are of sizes O(log(K`)). Then, according to the aforemen-

tioned property of Erdos-Renyi random graphs, conditioned

on K
(`)
s ∈ IK and M

(`)
s ∈ IM , we have

P{A | K (`)
s ∈ IK , M(`)

s ∈ IM } ≥ 1 − O(1/K (`)
s ).

Then, we have

P{ Ā} = P{ Ā | K (`)
s ∈ IK , M(`)

s ∈ IM }
·P{K (`)

s ∈ IK , M(`)
s ∈ IM }

+ P{ Ā | K (`)
s /∈ IK or M(`)

s /∈ IM }
·P{K (`)

s /∈ IK or M(`)
s /∈ IM }

≤ O(1/K (`)
s ) + O(exp(−α1 K`)) + O(exp(−α2 M))

≤ O(1/K (`)
s ),

which completes the proof. �

E. Tree-Like Assumption

By Lemma 4, we know that we can recover a constant frac-

tion of the non-zero elements with probability 1 − O(1/K`).

Then, we study the iterative decoding process. The analysis is

based on density evolution, which is a common and powerful

technique in coding theory. Similar to the density evolution

analysis of many modern error-correcting codes [43], our

derivation of density evolution is based on a tree-like assump-

tion. Here, we state the tree-like assumption first and provide

the results on the probability that the tree-like assumption

holds.

As we have mentioned, the association between the balls

in color ` (non-zero elements in β(`)) and the bins can be

represented by a d-left regular bipartite graph. We label the

Fig. 11. Level-2 neighborhood of edge (b,B).

edges by an ordered pair of a ball b and a bin B, denoted by

e = (b,B). We define the level-C∗ neighborhood of e, denoted

by NC∗
e as the subgraph of all the edges and nodes on paths

with length less than or equal to C∗, which start from b and

the first edge of the paths are not e [30]. We have the following

results on the probability that NC∗
e is a tree, or equivalently,

cycle-free, for a constant C∗.

Lemma 5 [30] : For a fixed constant C∗, N2C∗
e is a tree

with probability at least 1 − O(log(K`)
C∗

/K`).

We conduct the density evolution analysis conditioned on

the event that N2C∗
e is a tree for an edge e which is chosen

from the K`d edges uniformly at random. Then, we take

the complementary event into consideration and complete the

analysis.

F. Density Evolution

Recall that in the first iteration, we find all the singletons,

and in the second iteration, we find the strong doubletons

and form the giant component. Let p
(`)
j be the probability

that at the j th iteration of the learning algorithm, a ball in

color `, which is chosen from the K` balls uniformly at

random, is not recovered, j ≥ 2. Here, p
(`)
2 corresponds to the

probability that after the second iteration, a randomly chosen

ball in color ` is not in the giant component. According to the

previous section, we know that by choosing parameters which

satisfy (7), we have p
(`)
2 = K`−K

(`)
G

K`
= 2(1) with probability

1 −O(1/K`). Now we analyze the relationship between p
(`)
j+1

and p
(`)
j for j ≥ 2.

Consider the iterative decoding process as a message pass-

ing process. First, we know that at iteration j + 1, a ball in

color ` passes a message to a bin through an edge claiming

that it is colored, if and only if at least one of the other d − 1

neighborhood bins contains a resolvable multiton in color `.

Second, a sub-bin in color ` becomes a resolvable multiton if

and only if all the other balls in this sub-bin are colored. This

message passing process is illustrated in Figure 11. Under the

tree-like assumption, the messages passed among the balls and

bins are independent, we have

p
(`)
j+1 = (1 −

∞
�

i=2

ρ
(`)
i (1 − p

(`)
j )i−1)d−1,

which gives us

p
(`)
j+1 = (1 − Q`(e

−λ` p
(`)
j − e−λ`))d−1. (9)

As we can see, the major difference between the density

evolution of the Mixed-Coloring algorithm and the PhaseCode
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algorithm in [30] (for compressive phase retrieval via sparse-

graph codes) is that there is a constant probability Q` that a

bin has a sub-bin in color `.

Next, we show that after a constant number of iterations,

p
(`)
j can be arbitrarily small.

Lemma 6: If we choose parameters satisfying

(d − 1)Q`λ`e−λ`t > 1, (10)

then for any constant δ > 0, there exists a constant T , such

that p
(`)
T < δ.

Proof: Let f`(t) = (1 − Q`(e
−λ`t − e−λ`))d−1, then we

have p
(`)
j+1 = f`(p

(`)
j ). It is easy to see that f`(1) = 1, f`(0) >

0, and f` is a monotonically increasing function. We also have

f 0
`(t) = (d − 1)Q`λ`e−λ`t (1 − Q`(e

−λ`t − e−λ`))d−2.

We know that if there is

f 0
`(1) = (d − 1)Q`λ`e−λ`t > 1, (11)

then there exists at least one fixed point t ∈ (0, 1) such that

f`(t) = t . We use p∗
` to represent the largest fixed point of

f`(t) in (0, 1). Now we argue that the fixed point can be made

arbitrarily small by choosing proper parameters. Suppose that

for a certain set of parameters λ` and d , the fixed point is p∗
` ,

then if we keep λ` and increase d to C̃d , where C̃ > 1 is a

constant, then we can see that the new fixed point is upper

bounded by (p∗
`)

C̃ , and in this way, the fixed point can be

made an arbitrarily small constant. As shown in [30], as long

as we can choose parameters to make the fixed point p∗
` < δ/2,

then, there exists a constant number of iterations T , depending

on δ, such that p
(`)
T < δ.

Then, we investigate how the sample complexity depends

on p∗
` . First, since p∗

` is a fixed point of the iteration (9),

we have

(1 − Q`(e
−λ` p∗

` − e−λ`))d−1 = p∗
` .

Since p∗
` is usually very small, we use the approximation

e−λ` p∗
` ≈ 1, and thus we have

(1 − Q`(1 − e−λ`))d−1 ≈ p∗
` ,

which gives us d = O(log(1/p∗
`)). Further, since we keep

λ` = K`d
M

as a constant, we know that M = O(log(1/p∗
`)) as

a function of p∗
` .

�

Then, we can prove the following lemma showing that the

number of uncolored balls in color ` is concentrated around

K` p
(`)
T with high probability.

Lemma 7: Let Z` be the number of uncolored balls in

color ` after T iterations. Then for any δ > 0, there exists

constant c1, such that when conditioned on the event that

p
(`)
2 = 2(1), and K` is large enough,

�

�

�E [Z`] − K` p
(`)
T

�

�

� < K`δ/2, (12)

P

��

�

�Z` − K` p
(`)
T

�

�

� > K`δ
�

< 2 exp{−c1δ
2 K

1/(4T+1)
` }.

(13)

The proof of Lemma 7 is the same as in [30], and

uses Doob’s martingale argument and Azuma’s concentration

bound. We should also notice that the event that the tree-

like assumption does not hold is already considered in (12).

Now combining Lemmas 4, 6, and 7, we have shown that

for a specific ` ∈ [L], there exists proper parameters of

the algorithm such that after a constant number of iterations,

the Mixed-Coloring algorithm can recover an arbitrarily large

fraction of the balls in color ` with probability 1 −O(1/K`).

Since L is a constant and K` = 2(K ), the results above

implies that for an arbitrarily small constant p∗ ∈ (0, 1),

P
�

|supp(β̂
(`)

)| ≥ (1 − p∗)|supp(β(`))|
�

≥ 1 − O(1/K ).

Then, we turn to the first and the third properties in Theorem 1.

According to our ratio test scheme, as long as we have a

singleton, we find the exact location and value of the non-

zero element, and thus our algorithm has no false discovery.

As for the element-wise recovery, one can see that due to the

use of d-left regular random bipartite graph (each left node is

connected to d right nodes uniformly at random), the recovered

(1− p∗) fraction of the support is also uniformly distributed on

the support of β(`). Thus, for each j ∈ supp(β(`)), P{β̂(`)
j =

β
(`)
j | |supp(β̂

(`)
)| ≥ (1 − p∗)|supp(β(`))|} ≥ 1 − p∗. Then,

by total law of probability, we have

P{β̂(`)
j 6= β

(`)
j }

= P{β̂(`)
j 6= β

(`)
j | |supp(β̂

(`)
)| ≥ (1 − p∗)|supp(β(`))|}

·P{|supp(β̂
(`)

)| ≥ (1 − p∗)|supp(β(`))|}
+ P{β̂(`)

j 6= β
(`)
j | |supp(β̂

(`)
)| < (1 − p∗)|supp(β(`))|}

·P{|supp(β̂
(`)

)| < (1 − p∗)|supp(β(`))|}
≤ p∗ + O(1/K ). (14)

Thus, we have proved the three properties in Theorem 1.

G. Time Complexity

In this section, we analyze the time complexity of the

algorithm. First, note that there are M = 2(K ) bins and

each bin has a constant number of sub-bins. Since refin-

ing the measurements of each bin takes 2(1) operations,

the time complexity of refining measurements is 2(K ). Next,

to find all the singletons, we need to check all the colored

sub-bins, and checking each sub-bin takes 2(1) operations,

the time complexity of this stage is 2(K ). In the third stage,

we find all the strong doubletons. We know that there are

2(K ) singleton balls and for each singleton ball, there are

d bins connected to it. For each of the bins, we subtract

the measurements contributed by the singleton ball from the

refined measurements in the sub-bins, and do the ratio test

to see if it is a strong doubleton. Therefore, processing each

bin takes 2(1) operations and since d is also a constant,

the time complexity of finding strong doubletons is also 2(K ).

Then, we get the graph with 2(K ) nodes and 2(K ) edges,

corresponding to the singleton balls and strong doubletons,

respectively. Using breadth-first search algorithm, the time

complexity of finding the connected components is 2(K ).

In the last stage, we iteratively find other uncolored balls. For

each unprocessed sub-bin, since we do not know the color
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TABLE V

CONSTANTS IN THE RESULTS OF SAMPLE COMPLEXITY

of the sub-bin, there are L possible remaining measurements.

Each time when we find a new ball, we update at most

dV remaining measurements and do the ratio test. Therefore,

it takes 2(1) operations when coloring a new ball. Since there

are 2(K ) uncolored balls after finding the giant components,

the time complexity of the last stage is also 2(K ). Thus,

we have shown that the time complexity of Mixed-Coloring

algorithm is 2(K ), which completes the proof of Theorem 1.

APPENDIX B

COMPUTING THE CONSTANTS IN THE

SAMPLE COMPLEXITY

In this section, we give exact constants in the sample

complexity results. For simplicity, we assume that K` = K/L

and q` = 1/L for all ` ∈ [L]. We let c := M/K , and thus

we have λ` = K`d
M

= d
Lc

. We analyze the minimum number

of measurements that we need to reach a certain reliability

target. More precisely, we set the maximum error floor to be

p∗
max, and numerically calculate the error floor for different

values of d , c, R, and V . Then, we minimize the number

of total measurements, which is proportional to (2R + V )c

with the constraint that the error floor p∗ ≤ p∗
max. As we have

shown in previous parts, the parameters should also satisfy (7)

and (10). We know that if (7) is satisfied, when K is large

enough, there should be a giant component with size linear

in K for each color, where θ > 1 is a threshold that we can

choose. Therefore, we select optimal parameters with three

constraints, which are (10), (7), and p∗ ≤ p∗
max.

The results of the numerical calculation are shown

in Table V. In these experiments, we set p∗
max = 10−5, θ = 2,

and we fix the left degree d and choose different values of

c, R, and V to minimize the number of measurements with

the three constraints. Then we compare the optimal number of

measurements over different choices of d and find the optimal

d . As we can see, to reach the same reliability level, for

L = 2, 3, 4, the optimal number of measurements we need

is 33.39K , 37.80K , and 40.32K , respectively. The number of

measurements we need only increases slightly with L, and the

optimal d is around 13 and 15.

APPENDIX C

PROOF OF THEOREM 2

In this section, we analyze the performance of the Robust

Mixed-Coloring algorithm and prove Theorem 2. Recall that

the overall structure of the Robust Mixed-Coloring algorithm

is the same as its noiseless counterpart. Suppose that one can

always perfectly find the consistent sets of measurements, and

the correct location and value of the non-zero elements, then,

the recovery guarantee in the noisy setting will be exactly the

same as in the noiseless setting. Further, in the noisy setting,

finding the correct consistent sets of measurements, and the

correct location and value of the non-zero elements relies on

the success of two events: 1) the EM-based algorithm has to

always find the correct denoised measurements, and 2) the

verification procedure has to identify all the singletons, and

cannot misclassify other consistent sets as singletons.

We provide details below. We define error events: E1
` , as the

event that there exists one incidence that the EM algorithm

does not find the correct denoised measurements, and E2
` ,

as the event that there exists one incidence where the verifica-

tion query vectors make a misclassification between singleton

and non-singleton. According to Theorem 3, the failure proba-

bility of each EM operation is O(1/ poly(n)). According to the

proof in Appendix A-G, there are 2(K ) bin-level operations

during the algorithm, and when processing each bin, we need

2(log2(n)) EM operations, since there are 2(log2(n)) query

vectors in each bin. Therefore, the total amount of EM

operations is 2(K log2(n)). By union bound, we know that

P{E1
` } ≤ O(K log2(n)/ poly(n)) = O(1/ poly(n)). According

to Lemma 1, we know that each verification has failure

probability O(1/ poly(n)), and using a similar union bound

argument, we know that P{E2
` } ≤ O(1/ poly(n)). When

both error events E1
` and E2

` do not happen, the algorithm

always find the correct location and value of the recovered

elements, and in this case there is no false discovery. By union

bound, we know that P{E1
` ∩ E2

` } ≥ 1 − O(1/ poly(n)).

Therefore, the probability that there is no false discovery is

1 − O(1/ poly(n)), which proves the first property in the

theorem.
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Then, we turn to prove the second property. We define the

error event E` that fewer than 1 − p∗ fraction of the K`

non-zero elements of the parameter vector β(`) are recovered

by the algorithm. Suppose that none of E1
` and E2

` happens,

then, the analysis of the robustified algorithm becomes exactly

the same as in the noiseless setting. Therefore, according to

Theorem 1, we know that P{E`|E1
` ∩ E2

` } ≤ O(1/K`). Then,

we can apply total law of probability and get

P{E`} = P{E`|E1
` ∩ E2

` }P{E1
` ∩ E2

` }
+ P{E`|E1

` ∪ E2
` }P{E1

` ∪ E2
` }

≤ P{E`|E1
` ∩ E2

` } + P{E1
` ∪ E2

` }
≤ P{E`|E1

` ∩ E2
` } + P{E1

` } + P{E2
` }

= O(1/K`)

= O(1/K ),

which proves the second property in the theorem. The third

property in the theorem can be derived using the method

in (14) in the proof of Theorem 1, and we omit the details here.

Thus, we have proved the three properties in Theorem 2. The

time complexity can be analyzed using the same method as

in the noiseless case, provided in Appendix A-G. The only

difference is that, the bin-level operation takes 2(1) time

in the noiseless setting, while in the noisy setting it takes

2(polylog(n)) time. Therefore, the time complexity of the

Robust Mixed-Coloring algorithm is 2(K polylog(n)).

APPENDIX D

PROOF OF LEMMA 1

We first provide a simplified interpretation of Lemma 1.

Lemma 8: Let V ∈ {0, 1}P2×n be a Rademacher matrix

with P2 = 2(log(n)). Denote the j -th column of V by

v j . Suppose that h ∈ {0, 1}n and β ∈ Dn , where D =
{±1,±21, . . . ,±b1}. Let y = V diag(h)β . Suppose that

diag(h)β 6= a1e j for some a1 ∈ D and canonical basis

vector e j . Then, with probability 1 − O(1/ poly(n)), y 6=
a1v j .

Here, β is the parameter vector that generates the consistent

set of measurements, and h denotes the association between

the bin and the coordinates. Define β̃ = diag(h)β ∈ D
n , and

we have y = V β̃. Our goal is to justify that, when β̃ 6= a1e j ,

with high probability, y 6= a1v j .

Suppose that β̃ 6= a1e j but y = a1v j . Then we have

V (β̃ − a1e j ) = 0. According to a corollary of the Johnson-

Lindenstrauss Lemma [44] (one can also refer to [47, Sec. 4]),

we know that

P{V (β̃ − a1e j ) = 0}

≤ P{|k 1√
P2

V (β̃ − a1e j )k2
2 − kβ̃ − a1e jk2

2|

≥ 1

2
kβ̃ − a1e jk2

2}

≤ 2e−P2/24.

Therefore, we can see that by having P2 = 2(log(n)) verifica-

tion query vectors, we can guarantee that with probability at

least 1 − O(1/ poly(n)), we won’t identify β̃ as a1e j , and

this means that we won’t misclassify a non-singleton as a

singleton.

APPENDIX E

PROOF OF THEOREM 3

In this section, we provide a method to estimate the parame-

ters of a mixture of two Gaussian random variables, and give

the theoretical analysis to prove Theorem 3. This estimation

method is based on EM algorithm with method of moments

initialization.

Recall the setting of Theorem 3. Let zi ’s be i.i.d. sam-

ples of Bernoulli( 1
2
) distribution, and wi ’s be i.i.d. samples

of Gaussian distribution with mean zero and variance σ 2,

independently of zi ’s, i ∈ [N]. Suppose that random variables

yi ’s are generated in the following way:

yi = µ1(1 − zi ) + µ2zi + wi , i ∈ [N].

Then, we can consider yi as a mixture of two Gaussian random

variables with means µ1 and µ2, respectively. We assume that

σ 2 is known, and the parameters µ1 and µ2 are unknown and

take value in a finite and quantized set D = {k1 : k ∈ Z, |k| ≤
b}, for some 1 > 0. Without loss of generality, we assume

that µ1 ≤ µ2. (Note that we allow µ1 = µ2 here.) Our goal

is to get accurate estimation of µ1 and µ2.

The first step is to compute the sample mean of the first N1

samples, i.e., ȳ = 1
N1

�N1

i=1 yi . Since we know that the mean

of yi ’s takes value in the set D+ = { k
2
1 : k ∈ Z, |k| ≤ 2b},

we find the element in D+ which is the closest one to ȳ as

the estimator of the mean of yi , i.e., 1
2
(µ1 + µ2),

µ̂ = arg min
µ∈D+

|ȳ − µ|.

We have the following result on the accuracy of the estimator

µ̂.

Lemma 9: There exist universal constants c1 and c2 such

that for any δ > 0, if

N1 ≥ max{c1b2, c2
σ 2

12
} log(

1

δ
), (15)

we have µ̂ = 1
2
(µ1 + µ2) with probability at least 1 − 6δ.

We prove Lemma 9 in Appendix E-A. In the second step,

we subtract µ̂ from the other N−N1 samples, and get centered

random variables ỹi = yi − µ̂, i = N1 +1, . . . , N . We assume

that µ̂ is the actual mean of the yi ’s, meaning that µ̂ = 1
2
(µ1+

µ2). Then, we know that if µ1 = µ2, the centered random

variables ỹi ’s are i.i.d. N (0, σ 2) distributed; otherwise ỹi ’s

are i.i.d. mixtures of two Gaussian distributions

ỹi ∼
�

N (θ∗, σ 2) with probability 1
2

N (−θ∗, σ 2) with probability 1
2
,

where θ∗ = 1
2
(µ2 − µ1) ≥ 0. Then, we make an initial

estimation of θ∗ using N2 of the N − N1 centered random

variables. Specifically, we compute

θ0 =
�
�

1
N2

�N1+N2

i=N1+1 ỹ2
i − σ 2 if 1

N2

�N1+N2

i=N1+1 ỹ2
i > σ 2

0 otherwise.

We have the following result on θ0:
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Lemma 10: Condition on the event that µ̂ = 1
2
(µ1 + µ2).

There exist universal constants c3 and c4, such that for any

δ > 0, when

N2 ≥ max{c3
σ 2

12
(1 + 4σ 2

12
), c4} log(

1

δ
), (16)

then θ0 satisfies:

(1) if µ1 = µ2, θ0 < 1
4

with probability at least 1 − 2δ;

(2) if µ1 6= µ2, |θ0 − θ∗| < θ∗
4

with probability at least 1−2δ.

We prove Lemma 10 in Appendix E-B. If θ0 < 1
4

, we claim

that µ1 = µ2, and give estimators µ̂1 = µ̂2 = µ̂. Otherwise,

we run a standard EM algorithm with the remaining N3 :=
N −(N1 + N2) samples using θ0 as an initialization to estimate

θ∗. Here, we briefly review the procedures of standard EM

algorithm for mixtures of Gaussian distributions. For t =
0, 1, 2, . . ., conduct the following two steps:

E step: compute the expected log-likelihood.

L(θ |θt ) = − 1

2N3

N
�

i=N1+N2+1

[p(ỹi |θt)(ỹi − θt )
2

+ (1 − p(ỹi |θt))(ỹi + θt )
2],

where

p(y|θt) = e
− (y−θt )

2

2σ2

�

e
− (y−θt )

2

2σ2 + e
− (y+θt )

2

2σ2

�−1

.

M step: compute

θt+1 = arg max
θ

L(θ |θt )

= 1

N3

⎡

⎣2

N
�

i=N1+N2+1

p(ỹi |θt )ỹi −
N
�

i=N1+N2+1

ỹi

⎤

⎦.

We run the EM algorithm for T iterations, and find the element

in D+ which is the closest one to θt as the estimator of the

mean of θ∗, i.e., θ̂∗ = arg minθ∈D+ |θ − θT |. Then, we output

the estimation of µ1 and µ2 by µ̂1 = µ̂− θ̂∗ and µ̂2 = µ̂+ θ̂∗.

Here, we review the results in [16] which characterizes the

performance of the EM algorithm.

Lemma 11: [16] Suppose that µ1 < µ2. Conditioned on

the event that µ̂ = 1
2
(µ1 + µ2) and the event that |θ0 − θ∗| <

θ∗
4

. Suppose that η := θ∗
σ

≥ 4√
3

. Then, there exist universal

constants c5, c6, and c7, such that when N3 ≥ c5 log( 1
δ
), for

any δ > 0, we have

|θt − θ∗| ≤ κ t |θ0 − θ∗| + c6

1 − κ
θ∗
�

θ2∗ + σ 2

�

1

N3
log(

1

δ
),

with probability at least 1 − δ, where κ ≤ exp(−c7η
2).

Then, we have the direct corollary:

Corollary 1: Under the same condition that µ̂ = 1
2
(µ1 +

µ2), |θ0 − θ∗| < θ∗
4

, and that η = θ∗
σ ≥ 4√

3
as in Theorem 3,

then, when

N3 > max{c5,
16c2

6

(1 − κ)2
b2(b212 + σ 2)} log(

1

δ
), (17)

and

T >
log(b)

log(1/κ)
, (18)

we have θ̂∗ = θ∗ with probability at least 1−δ, for any δ > 0.

We prove Corollary 1 in Appendix E-C. We have the

following theorem to characterize the performance of the

proposed estimation algorithm.

Theorem 4: If N1, N2 , N3, and T satisfy (15), (16), (17),

and (18), respectively, and 1
σ

≥ 4√
3

, then the proposed

estimation algorithm outputs correct estimations µ̂1 = µ1 and

µ̂2 = µ2 with probability at least 1 − 9δ, for any δ > 0.

Proof: Let A1 and A2 be the events that µ̂ = 1
2
(µ1 +µ2)

and that θ̂∗ = θ∗, respectively, and A be the event that µ̂1 = µ1

and µ̂2 = µ2. Then, by Lemma 9, we know that P{A1} ≥
1 − 6δ.

If µ1 = µ2, by Lemma 10, we know that P{A|A1} ≥ 1−2δ.

Then P{A} ≥ P{A|A1}P{A1} ≥ 1 − 8δ. If µ1 < µ2,

by Lemma 10, we know that P{A2|A1} ≥ 1 − 2δ, and by

Corollary 1, we know that P{A3|A2, A1} ≥ 1 − δ. Then,

P{A} ≥ P{A1}P{A2|A1}P{A3|A2, A1} ≥ 1 − 9δ. �

Then, we can derive Theorem 3 in the main paper by setting

δ = O(1/ poly(n)) and N = N1 + N2 + N3.

A. Proof of Lemma 9

First, we can see that to get an accurate estimation, it suf-

fices to have |ȳ − 1
2
(µ1 + µ2)| < 1

4
. Let N11 =

�N1

i=1 1 − zi ,

and N12 =
�N1

i=1 zi . We have

ȳ = N11

N1
µ1 + N12

N1
µ2 + 1

N1

N1
�

i=1

wi .

By Hoeffding’s inequality, we have

P

�

| N11

N1
µ1 − µ1

2
| <

1

12

�

≥ 1 − 2 exp(−12 N1

72µ2
1

)

≥ 1 − 2 exp(− N1

72B2
), (19)

and similarly

P

�

| N12

N1
µ2 − µ2

2
| <

1

12

�

≥ 1 − 2 exp(−12 N1

72µ2
2

)

≥ 1 − 2 exp(− N1

72b2
). (20)

By Chernoff’s inequality, we have

P

�

| 1

N1

N1
�

i=1

wi | <
1

12

�

≥ 1 − 2 exp(− N11
2

288σ 2
). (21)

By triangle inequality and union bound, we get

P

�

|ȳ − 1

2
(µ1 + µ2)| <

1

4

�

≥ 1 − 4 exp(− N1

72b2
) − 2 exp(− N11

2

288σ 2
),

which completes the proof.
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B. Proof of Lemma 10

Let A1 be the event that µ̂ = 1
2
(µ1 + µ2). In this lemma,

all the probabilities are conditioned on the event A1.

First, consider the case when µ1 = µ2, i.e., θ∗ = 0. Let

ỹ := 1
σ 2

�N1+N2

i=N1+1 ỹ2
i . Then, we know that ỹ is χ2 distributed

with N2 degrees of freedom. By the concentration result of

χ2 distribution, we have for any � > 0,

P

�

| 1

N2
ỹ − 1| ≥ �|A1

�

≤ 2 exp(− N2

8
min{1, �2}).

Then, we have

P

�

θ0 <
1

4
|A1

�

≥ P

�

| ỹ2

N2
− 1| <

12

16σ 2
|A1

�

≥ 1 − 2 exp(− N2

8
min{1,

12

16σ 2
}),

which implies that if

N2 ≥ 8 max{1, 16
σ 2

12
} log(

1

δ
), (22)

conditioned on A1, the probability that θ0 < 1
4

is at least

1 − 2δ.

Then, we consider the case when µ1 6= µ2. In this case,

we have θ∗ ≥ 1
2

, and we study the probability that |θ0 −θ∗| ≤
θ∗
4

. We still define ỹ := 1
σ 2

�N1+N2

i=N1+1 ỹ2
i . We can see that ỹ

has noncentral χ2 distribution with N2 degrees of freedom and

noncentrality parameter ν = N2
θ2
∗

σ 2 . According to the results

of concentrations of non-central χ2 distribution, we have for

all � > 0,

P{ỹ ≥ (N2 + ν) + 2
�

(N2 + ν)� + 2�|A1} ≤ exp(−�),

(23)

P{ỹ ≤ (N2 + ν) − 2
�

(N2 + 2ν)�|A1} ≤ exp(−�). (24)

We analyze the probability that θ0
θ∗

< 5
4
. We substitute ỹ and

ν in (23) with N2(
θ2

0

σ 2 + 1) and N2
θ2
∗

σ 2 , respectively. By some

rearrangements, we get

P

⎧

⎨

⎩

θ2
0

θ2∗
≥ 1 + 2

σ

θ2∗

�

(θ2∗ + σ 2)�

N2
+ 2σ 2�

θ2∗ N2
|A1

⎫

⎬

⎭

≤ exp(−�).

Then, we know that if N2 is large enough such that
σ
θ2∗

�

(θ2∗+σ 2)�
N2

≤ 9
64

and σ 2�
θ2∗ N2

≤ 9
64

, then we have

P

�

θ2
0

θ2
∗

≥ 25

16
|A1

�

= P

�

θ0

θ∗
≥ 5

4
|A1

�

≤ exp(−�)

By simple algebra and the fact that θ∗ ≥ 1
2

, one can see that

there exists universal constants c3 such that if N2 satisfies

N2 ≥ c3
σ 2

12
(1 + 4σ 2

12
) log(

1

δ
), (25)

then the probability that θ0
θ∗

< 5
4

conditioned on A1 is at least

1−δ. Similarly, using (24), we know that when (25) is satisfied,

we can guarantee that θ0
θ∗

> 3
4

with probability at least 1 − δ.

We can complete the proof by union bound.

C. Proof of Corollary 1

To guarantee that θ̂∗ = θ∗, we need |θT − θ∗| < 1
2

.

By Lemma 10, it suffices to guarantee two facts:

κT |θ0 − θ∗| <
1

4
,

and

c6

1 − κ
θ∗
�

θ2∗ + σ 2

�

1

N3
log(

1

δ
) <

1

4
.

Conditioning on the event that |θ0 − θ∗| < θ∗
4

and θ∗ < b1,

we know that it is sufficient to have T >
log(b)

log(1/κ)
and N3 >

16c2
6

(1−κ)2 b2(b212 + σ 2) log( 1
δ
).
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[45] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publica-
tions Math. Inst. Hung. Acad. Sci., vol. 5, no. 1, pp. 17–61, 1960.

[46] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Constructive

Approx., vol. 28, no. 3, pp. 253–263, Dec. 2008.

Dong Yin is a PhD student in Department of Electrical Engineering and
Computer Sciences at UC Berkeley, working with Prof. Kannan Ramchandran.
He is interested in information and coding theory, machine learning, and signal
processing. Before coming to Berkeley, he obtained his B.S. from Tsinghua
University in China in 2014.

Ramtin Pedarsani is an Assistant Professor in ECE Department at the
University of California, Santa Barbara. He received the B.Sc. degree in
electrical engineering from the University of Tehran, Tehran, Iran, in 2009,
the M.Sc. degree in communication systems from the Swiss Federal Institute
of Technology (EPFL), Lausanne, Switzerland, in 2011, and his Ph.D. from
the University of California, Berkeley, in 2015. His research interests include
networks, machine learning, information and coding theory, and transportation
systems. Ramtin is a recipient of the IEEE international conference on
communications (ICC) best paper award in 2014.

Yudong Chen is an Assistant Professor with the School of Opera-
tions Research and Information Engineering at Cornell University, Ithaca,
New York. He obtained his M.S. and B.S. degrees in control science and
engineering from Tsinghua University, Beijing, China, in 2008 and 2006,
respectively. He received his Ph.D. degree in electrical and computer engi-
neering in 2013 from the University of Texas at Austin. He was a postdoctoral
researcher in the Electrical Engineering and Computer Sciences Department
at the University of California, Berkeley. He has served on the senior program
committees of the Association for the Advancement of Artificial Intelligence
Conference on Artificial Intelligence as well as the International Conference
on Artificial Intelligence and Statistics. His research work lies in machine
learning, high-dimensional statistics, and optimization, with applications in
network scheduling, wireless communication, and financial systems.

Kannan Ramchandran (F’) (Ph.D.: Columbia University, 1993) is a Pro-
fessor of Electrical Engineering and Computer Sciences at UC Berkeley,
where he has been since 1999. He was on the faculty at the University
of Illinois at Urbana Champaign from 1993 to 1999, and with AT&T
Bell Labs from 1984 to 1990. He is an IEEE Fellow, and a recipient of
the 2017 IEEE Kobayashi Computers and Communications Award, which
recognizes outstanding contributions to the integration of computers and
communications. His research awards include an IEEE Information Theory
Society and Communication Society Joint Best Paper award for 2012, an IEEE
Communication Society Data Storage Best Paper award in 2010, two Best
Paper awards from the IEEE Signal Processing Society in 1993 and 1999,
an Okawa Foundation Prize for outstanding research at Berkeley in 2001,
an Outstanding Teaching Award at Berkeley in 2009, and a Hank Magnuski
Scholar award at Illinois in 1998. His research interests are at the intersection
of signal processing, coding theory, communications and networking with a
focus on theory and algorithms for large-scale distributed systems.


