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Abstract:  19 

Songbirds represent an important model organism for elucidating molecular mechanisms that 20 

link genes with complex behaviors, in part because they have discrete vocal learning circuits that 21 

has parallels with those that mediate human speech. We found that ~10% of the genes in the 22 

avian genome were regulated by singing, and a striking regional diversity of both basal and 23 

singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning 24 

songbird. The region enriched patterns were a result of distinct combinations of region-enriched 25 

transcription factors (TF), their binding motifs and pre-singing H3K27ac enhancer activity in the 26 

regulatory regions of the associated genes. RNAi manipulations validated the role of the 27 

calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in 28 

specific song nuclei in response to singing. Thus, differential combinatorial binding of a small 29 

group of activity-regulated TFs and pre-defined epigenetic enhancer activity influences the 30 

anatomical diversity of behaviorally regulated gene networks. 31 

 32 

One Sentence Summary: 33 

Singing-induced gene expression arises in the brain through diverse, region-specific gene 34 

regulatory networks. 35 

36 
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Introduction: 37 

Songbirds offer an important in vivo model system for studying transcriptional programs 38 

regulated during behavior. This system consists of interconnected brain nuclei that control 39 

production of a learned vocal behavior (singing) with parallels to human speech (1, 2). Four key 40 

song nuclei are embedded within three regionally distinct telencephalic brain cell populations: 41 

HVC and LMAN in the nidopallium; RA in the arcopallium; and Area X in the striatum (Fig. 42 

1A; (3-6)). These nuclei are connected in a vocal motor pathway (HVC to RA) and a vocal 43 

learning pathway (LMAN and Area X; (7-13)). Human functional analogues to these avian brain 44 

regions are in the cortex (pallium) and basal ganglia (striatum) (2, 6, 14, 15). This includes song 45 

(avian) and speech (human) brain regions that have convergence of differentially expressed 46 

genes (15) suggesting that the behavioral and neuro-anatomical similarities for the production of 47 

learned vocalizations are accompanied by similarities in molecular and genetic mechanisms, 48 

such as with FoxP2 (16). 49 

The neural activity within song nuclei that underlies singing was initially shown to drive 50 

induction of two immediate early genes (IEGs), the transcription factors EGR1 and FOS (17-19). 51 

Their levels of expression correlate with the amount of singing in a motor-driven and social-52 

context–dependent manner (20-23). Subsequent studies identified an additional 33 genes 53 

regulated within song nuclei by singing (24). The identified gene products have a wide range of 54 

cellular and biological process functions (24), including from neurogenesis (25, 26) to speech 55 

(27, 28). The genes were also found to cluster in a few anatomical and short temporal patterns of 56 

expression, although this was determined manually. As a result we hypothesized that in vivo 57 

behaviorally induced gene expression may consist of anatomically and temporally diverse gene 58 

expression programs that can be regulated by networks of combinatorial transcription factor 59 

complexes or epigenetic chromatin differences (24). Two reports (29, 30) using our 60 

oligonucleotide microarrays found many more genes, 800–2,000 gene transcripts, regulated in 61 

the song nucleus Area X as a result of singing, but could not test this hypothesis since the data 62 

was from only one song nucleus, and/or one time point.  63 

 To test this hypothesis, we profiled baseline and singing-regulated gene expression across 64 

time in the four key song nuclei using our songbird gene expression microarray, which we 65 

annotated based on recently sequenced avian genomes (15, 31) and the human genome. 66 

Combined with genomic transcription factor motif analyses and chromatin immunoprecipitation 67 

sequencing (ChIP-Seq) detection of active chromatin, we find predominantly diverse networks of 68 

simultaneously activated cascades of behaviorally regulated genes across brain regions, which 69 

can be explained in part by a combination of transcription factor complexes and epigenetic 70 

regulatory activity in the genome. 71 

 72 

Results: 73 

We analyzed singing-regulated gene expression at a genomic-scale in HVC, LMAN, RA, and 74 

Area X of the zebra finch (Figs. 1, S1). To do so, we recorded moment-to-moment singing 75 

behavior of all animals over a 7-hour time course, laser micro-dissected individual song nuclei 76 

from multiple birds at each timepoint, amplified their mRNA, hybridized the resulting cDNA to 77 

our custom-designed 44K oligonucleotide microarrays (Table S1), and developed a 78 

computational approach that yielded a true positive rate >87% as verified by in situ hybridization 79 

and RT-PCR (Fig. S2; Tables S2, S3; supplementary material sections [SM] 1-7). This analysis 80 

detected 24,498 uniquely expressed transcripts among the four song nuclei in silent and/or 81 

singing animals (Table S4), of which 18,478 (75%) mapped to 9,059 ENSEMBL v60 annotated 82 
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genes of the zebra finch genome, indicating that at least 50% of the transcribed genome is 83 

expressed in the song-control circuit of an adult animal during awake behaving hours. 84 

 85 

Distinct baseline gene expression profiles define the song circuit 86 

Using a linear model we developed to identify differentially expressed transcripts in each brain 87 

region and combinations thereof (SM6), we found that of the 24,498 transcripts, ~5,167 (21%; 88 

representing 3,168 genes or approximately 17% of the genes in the avian genome (29)) were 89 

differentially expressed among song nuclei at baseline in silent animals (i.e. before singing 90 

began). These 5,167 transcripts were organized hierarchically into at least 5 major region-91 

specific clusters (Fig. 2A; Table S5) with different functional enrichments (Tables S6, S7). A 92 

striatal song nucleus (Area X) cluster was enriched with non-coding RNAs, G-protein coupled 93 

receptors and synaptic transmission proteins (Fig. 2A, turquoise cluster; Table S6). Cortical-94 

like song nuclei (HVC, LMAN, and RA) were enriched for cell-to-cell signaling membrane-95 

associated, axonal connectivity, and post-synaptic density (PSD) proteins (Fig. 2A, blue cluster; 96 

Table S6). The nidopallium song nuclei (HVC and LMAN) were further enriched for another 97 

group of cell-cell communication and neural connectivity, membrane-associated proteins (Fig. 98 

2A, yellow cluster; Table S6). The arcopallium song nucleus RA was enriched for another set 99 

of neural connectivity proteins and for proteins involved in epilepsy and Alzheimer’s (Fig. 2A, 100 

green cluster; Table S6). RA was the only pallial brain region that had a large cluster of genes 101 

with a lower level of expression, which was enriched for PSD proteins different from the cortical 102 

enrichment (Fig. 2A, brown cluster; Table S6), and LMAN was the only song nucleus that did 103 

not have a large enrichment of genes of its own. 104 

In situ hybridizations of example genes (e.g. some dopamine and glutamate receptors) 105 

revealed that most of the song nuclei expression patterns were consistent with the brain 106 

subdivisions to which they belonged (Fig. 3A-C; Table S2) (32-34). However, as seen 107 

previously (33, 35, 36), some of the song nuclei had highly differential expression from their 108 

surrounding brain divisions (i.e. FMNL1, DGKI, GPSM1 in Fig. 3A-C). The most song-nucleus–109 

specific gene was FAM40B (aka, STRIP2), a phosphatase that was restricted to cortical-like song 110 

nuclei and the primary cortical sensory populations (like auditory area L2; Fig. 3A).  111 

A dendrogram analysis separated the cortical song nuclei from the striatal, and showed a 112 

stronger relationship between HVC and LMAN of the nidopallium (Figs. 2B, 1A), consistent 113 

with the recently revised understanding of avian brain organization and homologies with 114 

mammals (5, 6, 37). These findings show that even before singing starts, the song learning nuclei 115 

have thousands of differentially expressed genes that define unique molecular functions for each 116 

(see (15) for characterization of the specializations in song nuclei). 117 

 118 

Singing activates both a core and regionally diverse patterns of genes 119 

Of the 24,498 transcripts, we found an estimated 2,740 (~11%) that were singing-regulated, up 120 

or down in time, in one or more song nuclei (Fig. 4A, B; Table S8). These transcripts mapped to 121 

1,833 genes, indicating a conservative estimate of ~10% of the transcribed avian genome that is 122 

regulated by singing behavior. Area X had the most regulated transcripts (1,162), followed by 123 

HVC (772), RA (702), and LMAN (635; Fig. 4B; sum is higher than 2,740 because of transcripts 124 

expressed in more than one song nucleus). A small number of genes (82) had singing-regulated 125 

splice variant differences (Table S9), consistent with splice variant differences at baseline 126 

among song nuclei for glutamate receptor subunits (33), which can regulate activity-dependent 127 

genes in the brain. The vast majority (96%) of the 2,740 singing-regulated transcripts were 128 
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enriched in only 1 or 2 song nuclei, and a core set of only about 97 transcripts was regulated in at 129 

least three or four (<1.0%) song nuclei; of the latter, only 20 genes were equally regulated in all 130 

four song nuclei (Fig. 4A, B; Table S8, green and yellow).  131 

 The core set of 97 transcripts were enriched for known IEGs (38), including membrane 132 

depolarization-regulated (Ca2+ responsive) genes identified in cultured hippocampal (39) and 133 

cortical neurons (40), and genes induced in the auditory pathway by hearing song (41) (Tables 134 

S10A, S7). In contrast, the brain region-specific singing-regulated genes had very little overlap 135 

with classic IEGs or a list of cell cultured-defined depolarization-induced genes (Table S10A). 136 

Rather, the striatal Area X singing-regulated genes were enriched for cytoskeletal neural 137 

connectivity and neural migration functions, and RA was enriched for mitogen-activated protein 138 

kinase pathway transcripts, which control gene expression, differentiation, and cell survival. This 139 

suggests that our in vivo analyses are useful for finding region-specific or stimulus-specific genes 140 

that may be relevant for the underlying singing behavior.  141 

Similar to the baseline expression, in situ hybridizations revealed that song nuclei 142 

expression patterns were consistent with the brain subdivisions to which they belong (Fig. 3A-C; 143 

Table S3), except that the surrounding brain areas in some birds tended to have lower 144 

expression, presumably because they sang without much other movement behavior to cause 145 

movement-induced gene expression in the surrounding regions (42). We also noted that even 146 

among the core early-response genes induced in all song nuclei, expression levels at baseline 147 

differed among song nuclei (Fig. 3D). This suggests that there is even greater diversity among 148 

the song nuclei singing-regulated genes than simply presence or absence of regulation. 149 

Analysis of the behaviorally regulated gene expression across time, using unsupervised 150 

hierarchical clustering (SM8), revealed up to 20 temporal profiles (clusters) among the four song 151 

nuclei, including transient or sustained, increased or decreased, early (0.5–2 hr) or late (3–7 hr), 152 

or two peaks of expression (Fig. S3A-D; Table S8). These 20 clusters can be further grouped 153 

into four super-clusters of temporal profiles: 1) transient early increases; 2) late-response 154 

increases; 3) transient early decreases; and 3) late-response decreases (Fig. 5A-D). Only three of 155 

the temporal clusters had relatively comparable representations of genes in all brain regions, all 156 

belonging to transient early increase clusters, including the IEG 0.5–1 hr cluster (Figs. 5A, S3, 157 

tan cluster; Table S11), which contained a significant proportion (16%) of the core set of 97 158 

transcripts (p < 1E-5, hypergeometric test). For the remaining super-temporal profiles, each song 159 

nucleus had a region-enriched set of genes, except the late-response increasing pattern in LMAN 160 

(Figs. 5, S3E; Table S11).  161 

Functional enrichment analyses showed that the activity-regulated gene expression sets 162 

from previous cell culture experiments (Table S7) were highly enriched in the early transient 163 

IEG temporal cluster expressed in all song nuclei (Table S10B). All of the late-increase singing-164 

regulated clusters (Fig. 5B) also had detectable functional enrichments of genes, with Area 165 

X+HVC enriched in calcium ion binding and phosphatase proteins (blue temporal cluster); 166 

Area X late-increase genes was additionally enriched in chromosome organization, biogenesis 167 

(green), activity-dependent late-response genes identified in cultured neurons (40) (turquoise), 168 

and ribosomal proteins (black); HVC was additionally enriched in RNA-protein complexes and 169 

PSD proteins (cyan); and RA late-increase genes (salmon) was enriched in a different set of 170 

calcium ion-binding and ribosomal proteins (Table S10B; Figs. 5B). Remarkably, we did not 171 

find any functional enrichment for the remaining transiently increased or any of the decreased 172 

clusters, except genes regulated by the serum response transcription factor (SRF) in the slow 173 

decreasing cluster of RA (Table S10B; Figs. 5D, yellow). These findings show that all song 174 
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nuclei share a core set of genes with rapid transient up-regulation, but each song nucleus has its 175 

own dominant (though partly overlapping) set of other early- and late-responsive behaviorally 176 

regulated genes, suggesting cascades of gene regulation specific to each song nucleus with 177 

functions that remain to be discovered. 178 

 179 

Relationships between differential baseline and differential singing-regulated genes 180 

We next investigated how a small core set of behaviorally regulated transcription factors 181 

expressed in most brain regions could regulate a diverse set of downstream genes, with little 182 

overlap among regions. We hypothesized that the differential transcriptional state at baseline, 183 

before cell stimulation with singing, affects region-enriched singing-regulated expression (43, 184 

44). Three lines of evidence support this hypothesis. First, hypergeometric tests revealed 185 

significant overlap between subsets of transcripts from the baseline region-enriched clusters (Fig. 186 

4C, top gray box) with the singing-regulated region-enriched clusters (Fig. 4C, red lines; Table 187 

S12) and with 10 of the 20 temporal clusters (Fig. 4C, blue + black lines between two gray 188 

boxes). If a gene was expressed at higher levels in a region relative to others at baseline before 189 

singing, it was also more likely to increase in that region during singing; the converse was not 190 

true for the decreasing sets of singing-regulated genes. 191 

Second, a genome-wide binding site analysis of motifs for transcription factors (SM11 192 

(45, 46)) revealed ~100 motifs enriched in regulatory regions (e.g. directly upstream of 193 

transcription start sites) of genes in the temporal behaviorally regulated clusters (Table S13, S14; 194 

Fig. 6A, B), and these matched genomic locations also found in mammalian genomes (47, 48). 195 

With these motifs, we performed an association analysis between the region-specific and 196 

temporal clusters of genes to generate song nuclei-specific “transcription factor motif to gene 197 

cluster networks” (Fig. 6C, simplified network; Fig. S4, detailed network; Table S15, edge list; 198 

statistical significance tested with Euclidean distance to randomly generated networks (SM11-199 

12)). Consistent with the core IEG cluster findings, we found that binding sites for 5 early-200 

activated transcription factors (EATFs: MEF2, SRF, NFKB, CREB, and CaRF) that are 201 

constitutively expressed at baseline and activated in response to neural activity (38, 49, 50), were 202 

significantly over-represented in the singing-regulated cluster of IEGs expressed in most song 203 

nuclei (Figs. 6C, S4, S5A). In turn, the binding motifs of the singing-regulated AP-1 (bound by a 204 

FOS-JUN dimer) and EGR1 IEG transcription factors were also enriched directly upstream of 205 

the transcription start sites of many genes in our avian IEG cluster (Fig. 6A-C). EGR1 can bind 206 

to its own promoter and down-regulate itself (51), which is consistent with the transient increase 207 

and subsequent decrease of some transcripts in the IEG temporal cluster. Also over-represented 208 

in the IEG cluster was the ARNT motif, which also has the binding motif for the IEG NPAS4. 209 

Third, consistent with our region-specific clusters, some transcription factors that were 210 

differentially expressed in a region or a combination of regions at baseline had binding motifs in 211 

genes that were differentially regulated in that region(s) at baseline or during singing. For 212 

example, variants of the NFE2L1 and MAF transcription factors that dimerize and bind to the 213 

TCF11 motif (52) were higher or lower in Area X relative to the pallial song nuclei at baseline 214 

(Fig. S6) and the TCF11 binding motif was over-represented in the slow increase singing-215 

regulated cluster of genes in Area X (Figs. 6C, S4, S5B). However, there were many other cases 216 

where EATFs and other transcription factors did not exhibit differential regional baseline 217 

expression but had binding motifs enriched in clusters of singing-regulated genes specific for a 218 

song nucleus. For example, the EATF transcription factors SRF and CaRF, which are not 219 

differentially expressed at baseline (Table S5), had strong motif associations to singing-220 
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regulated genes in Area X and HVC. The MZF1 and PRRX2 transcription factors had 221 

associations with different sets of genes in Area X and RA (Figs. 6C, S4, S5B). Thus, we 222 

experimentally tested whether one of these EATFs, CaRF, regulated the predicted region-223 

specific genes. 224 

 225 

CaRF is required for regulation of both core and regional expressed sets of genes 226 

We investigated the Ca2+ responsive transcription factor CaRF because the network analyses 227 

implicated it in both the regulation of the Ca2+ responsive IEGs that are induced in most song 228 

nuclei and some that are regionally enriched in Area X and HVC (Figs. 4C, S6). Because we 229 

lacked an established zebra finch neural cell culture method to test CaRF function, we used 230 

RNAi against CaRF in cultured mouse cortical neurons and hybridized labeled cDNA to mouse 231 

oligonucleotide microarrays representing many of the same genes on our zebra finch 232 

oligonucleotide microarray (SM4). We identified a set of genes that showed decreased or 233 

increased expression after CaRF knockdown independent of membrane depolarization (Fig. 234 

S7A; Table S16), and many of these function in calcium signaling pathways (Fig. S7; Table 235 

S17; (53)). This is consistent with the proposed role of CaRF in regulating neuronal gene 236 

expression under basal neural activity (48, 54), as both a repressor and activator (48). 237 

Importantly, as predicted by our promoter motif analyses in birds, the ranked list of CaRF-238 

regulated genes showed enrichment for singing-regulated genes that had a nearby CaRF binding 239 

site (p = 0.0014 Wilcox test; Fig. 8B). This enrichment was highest in the set of genes regulated 240 

in Area X and HVC (Fig. 8B), supporting our network result (Fig. 6C). 241 

CaRF RNAi knockdown also caused genes that were normally up-regulated by 242 

membrane depolarization to be suppressed to normal baseline levels and conversely genes that 243 

were normally down-regulated by membrane depolarization to be up-regulated (Fig. 8C; Table 244 

S18). This suggests that CaRF is required to buffer activity of these gene promoters under basal 245 

conditions such that they can become stimulus-responsive upon membrane depolarization. 246 

Importantly, this same set of membrane depolarization- and CaRF-regulated genes significantly 247 

overlapped with those that had the CaRF binding site in the singing-regulated genes of the IEG 248 

(tan) cluster. They also significantly overlapped with several other clusters that were specifically 249 

upregulated in Area X and HVC (Fig. 8D, magenta and cyan clusters; Table S19; Fig. S3E). 250 

Genes that showed decreased expression preferentially in RA, but also in other song nuclei (Fig. 251 

S3, yellow) after 2–3 hours of singing (the same amount of time the cultured cells were 252 

depolarized) had even greater overlap (Figs. 8D, yellow). 253 

Overall, the findings demonstrate a requirement of the CaRF transcription factor for 254 

baseline and activity-dependent regulation of some of the very same genes for which we found 255 

CaRF binding motifs that are regulated at baseline and by singing in a region-specific manner, 256 

respectively. The calcium signaling and calcium ion binding genes tended to increase during 257 

song production and were affected in the CaRF knockdown experiments, proving evidence of 258 

consistent function across species. We next sought an explanation of how could EATFs that are 259 

not differentially expressed at baseline regulate these genes in a region specific manner. 260 

 261 

Epigenetic modifications predefine region specificity of gene regulation 262 

Although transcription factors are the ultimate regulators of gene expression, their ability to bind 263 

to sites in the genome is gated by chromatin structural changes. Chromatin regulation by 264 

acetylation of histone 3 at lysine 27 (H3K27ac) has been extensively studied and shown to be a 265 

strong indicator of active enhancers (55). We thus performed an experiment to identify active 266 
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transcriptional regulatory regions in the genomes of individual dissected song nuclei (RA and 267 

Area X, which showed the largest regional differences) before and after singing, as measured by 268 

a genome-wide histone ChIP-Seq analysis of H3K27ac (SM14-15; Table S20). The active 269 

genomic regions can be searched as tracks in the UCSC browser against the zebra finch genome 270 

(56). This analysis also required that we create a more stringent selection of regional, early- and 271 

late singing-responsive genes from the respective clusters in RA and Area X (Figs. 5, S3), using 272 

principle components analyses (Fig. S8). 273 

Out of 35,958 peaks, we found 30% (10,749) enriched in Area X and 21% (7,673) 274 

enriched in RA. Under basal conditions, genes with song nuclei-specific expression patterns had 275 

nearby genomic regions that were significantly more likely to be marked by H3K27ac in that 276 

brain region (Fig. 8A, blue and red; Table S21; ~1300 genes). Conversely, genes that were 277 

expressed similarly in RA and Area X did not show a significant regional bias in the distribution 278 

of this chromatin mark (Fig. 8A, grey; Table S21; ~1100 genes examined). Interestingly, when 279 

we considered only the set of RA or Area X region-specific genes that were also upregulated by 280 

singing, we found that they were already associated with higher nearby H3K27ac in their 281 

preferred brain region prior to singing (Figs. 6B,D,E, S9A-E; Table S22). There was a strong 282 

positive correlation between differences in nearby H3K27ac at baseline and differences in 283 

singing dependent upregulation of these genes in RA and Area X (R=0.37, p=1.6E-12; Pearson 284 

correlation). Conversely late-response genes that were comparably induced by singing in both 285 

RA and Area X showed comparable H3K27ac under basal conditions (Fig. 8B, grey; Table 286 

S22). Furthermore, the early-response cluster of genes, which were expressed and induced 287 

comparably in both RA and Area X (e.g. FOS), also showed comparable H3K27ac in both brain 288 

regions at baseline (Figs. 8C, S9A, S10A). Notably, we did not find any significant difference 289 

(e.g. 0 significant peaks, FDR threshold < 0.01) in H3K27ac peaks within either song nucleus 290 

when we compared ChIP-Seq profiles obtained before and after singing (Fig. S10A). We 291 

detected a weak signal for increased H3K27ac peaks in the Area X downregulated genes (Fig. 292 

S10B). 293 

These data suggest that the regional differences in chromatin activity present before 294 

singing begins are predictive of differential singing-dependent induction of late-response genes. 295 

This hypothesis was further supported by our observation of regional H3K27ac differences at 296 

baseline for 50 genes that had equivalent basal expression in RA and Area X but region-specific 297 

upregulation upon singing (Table S22, blue and red highlights). An ingenuity pathway analysis 298 

on the Area X set of genes out of the 50 mentioned above (Table S22, blue; SM15) revealed that 299 

they were enriched for locomotion behavior (p=0.004; ARNTL, CALB1, FGF14, RCAN2, 300 

RIMS1) and movement disorder functions (p=0.004; ARNTL, CALB1, CAPZB, DIRAS2, 301 

EEF1A2, ELMO1, FGF14, MTMR2, RPSA, TMED10) consistent with the function of Area X 302 

and the surrounding striatum. There were too few RA-specific genes without baseline differential 303 

expression (10 genes) to be tested by pathway analyses. Overall, these findings indicate that 304 

region-specific epigenetic chromatin activity at or near transcription factor binding sites for 305 

transcription factors expressed in all brain regions could determine which singing or baseline 306 

differentially regulated genes are expressed in each brain region.  307 

 308 

Discussion: 309 

The magnitude of the anatomical diversity of behaviorally regulated genes and their networks in 310 

different brain regions of the same circuit was unexpected (24, 29, 30, 41). Our findings suggest 311 

this that diversity is controlled by at least two of the following mechanisms: 1) Region-enriched 312 
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transcription factors that regulate region-enriched expression of their target genes; and 2) 313 

Region-enriched epigenetic marks that determine which genes can be expressed in specific brain 314 

regions in both baseline and behaviorally regulated states. The first mechanism is consistent with 315 

the hypothesis that interactions between early transcription factors and late response genes 316 

coordinates activity-dependent gene induction associated with behavior (57), but in this case, in a 317 

region specific manner. The second, epigenetic, mechanism is only just beginning to be explored 318 

at the level of neural activity (40, 58) and has not been addressed in complex behaviors. 319 

 Given our findings and known signaling pathways from experiments in cultured cells 320 

(59) we propose the following overall mechanism (Abstract Fig. 1). Neural activity during the 321 

performance of a behavior, such as singing, causes release of neurotransmitters at the synapses 322 

between connected cells and activates post-synaptic receptors. These receptors initiate an 323 

intracellular signaling response that alters the activity, often via phosphorylation, of 324 

constitutively expressed EATFs. The activated EATFs bind or are already bound to the open 325 

chromatin of promoters or enhancers of the core IEGs enabled in all brain regions, as measured 326 

by H3K27ac, to activate their expression. The IEGs in turn, along with EATFs, bind to 327 

recognition regions of open chromatin that have already been primed in a cell type-specific 328 

manner, which leads to the induction of region-specific late-response genes. Some transcription 329 

factors are already expressed in a region-specific manner and add to the diversity of regulation of 330 

the downstream genes. Furthermore, our data to show that brain region–specific open enhancers 331 

or promoters are already waiting in an active state, ready to do their job at a moment’s notice 332 

when the neurons fire to turn on programs of gene expression. Thus, the production of learned 333 

behavior modulates an already primed transcriptional and epigenetic network specific to 334 

different sub-regions of the circuit that controls the behavior. 335 

 This model may be an explanation for the finding that the IEG and EATF NPAS4, in 336 

response to neural activity, activates different sets of genes in cultured excitatory versus 337 

inhibitory neurons (60). Likewise, we find that common induction of IEGs across the many 338 

different kinds of neurons that comprise all song nuclei is associated with distinct programs of 339 

late-response genes, which are likely dependent at least in part on IEG regulation. However one 340 

notable difference between our data and a recent study of activity-dependent enhancers in 341 

cultured neuron preparations is that whereas membrane depolarization was found to further 342 

induce H3K27ac at enhancers near activity-regulated genes (58), we find that H3K27ac peaks in 343 

vivo in the brain are already enriched near singing-inducible genes under basal conditions and do 344 

not show further activation upon singing. It is possible that the neural networks recruited upon 345 

singing are sparse enough in the song nuclei that we were unable to detect H3K27ac changes in 346 

these cells against the background noise. An alternative possibility is that ongoing neural activity 347 

in the brain of an awake behaving animal is sufficient to keep enhancers poised in a fully active 348 

state even prior to execution of a specific behavioral task like singing. In this model, it is 349 

regulation of sequence-specific DNA binding of transcription factors that are most important for 350 

instructing the level and nature of gene expression, whereas epigenetic marks on chromatin are 351 

permissive for expression of the predetermined program.  352 

Our CaRF manipulation experiments help reveal further complexity and potential novel 353 

mechanisms of activity-dependent gene regulation in the brain. The increased activity-regulated 354 

genes that is reversed in the absence of CaRF in response to membrane depolarization, suggests 355 

that CaRF may act as a modulating transcription factor for neural activity–dependent regulation 356 

of its target genes. In this scenario, it prevents differential expression of its target genes until 357 

neural firing increases. When CaRF is removed by knockdown, it can no longer buffer the 358 



 9 

expression of these genes in the absence of activity; consequently, in the presence of activity, 359 

other factors can regulate the genes in a direction opposite of what CaRF would do. The specific 360 

mechanisms by which CaRF might achieve this function remain to be determined, but the 361 

H3K27ac enhancer activity in CaRF target genes is likely to play a role.  362 

Additional transcriptional anatomical diversity not tested in this study could possibly be 363 

generated with differential expression of neurotransmitter membrane receptors at baseline in 364 

different brain regions, which could activate different signaling pathways in those neurons 365 

during singing (2, 33). Our hypothesis does not explain the down-regulation of some gene 366 

clusters where regionally specific transcription factor motifs were not enriched in those genes, 367 

and thus their regulation would have to be explained by other mechanisms. 368 

Our findings suggest that each song nucleus has diverse molecular functions and gene 369 

networks. Consistent with their dominant roles in song production (7-13) compared to other song 370 

nuclei, HVC is specifically enriched with singing-regulated increases in PSD proteins used for 371 

cell-to-cell communication and RNA-protein complexes and RA is enriched with genes in the 372 

MAPK pathway, such as DUSP1, which is proposed to be involved in neural protection of a 373 

brain region that is highly active during behavior performance (61, 62). Consistent with their 374 

dominant roles in learning (7-13), LMAN shows greater specificity for the CREB pathway, a key 375 

transcription factor involved in learning and memory (59, 63), and Area X is more enriched with 376 

expression of neural connectivity, and chromosome organization and biogenesis genes. In 377 

addition, the large over representation of non-coding RNA genes expressed at baseline in Area X 378 

indicates that its transcriptional regulatory network may be more extensive than the pallial song 379 

nuclei. The larger overrepresentation of neural connectivity and cell signaling genes in the pallial 380 

song nuclei indicates greater focus on cell structure and communication. 381 

In terms of memory, a long-held hypothesis is that neural activity will induce an early 382 

wave of responsive genes, which in turn regulate a late wave of genes, and that the first wave 383 

would act as a molecular switch converting short-term memories into long-term memories (57, 384 

64, 65). If true, singing would be associated with continuous memory consolidation and song 385 

fine-tuning, with each nucleus having specific waves of gene regulation for their specific 386 

functions. An alternative, not mutually exclusive, proposal states that the activity-dependent 387 

waves function as a metabolic mechanism to maintain protein turnover for normal cell 388 

homeostasis due to increased protein catabolism that occurs during high activity levels (17). If 389 

true, it would be associated with continued repair of the circuit when used. Our transcription 390 

factor binding motif analysis suggests that both the early and late transcriptional responses could 391 

be driven by some of the same EATFs. This would indicate that the two waves of gene 392 

expression may not entirely depend on each other, and that they could be used for both memory 393 

and homeostasis functions. 394 

In summary, as the mechanisms that define the genome-phenotype relationship, including 395 

the diversity of gene expression patterns, begins to be understood, so will the role of individual 396 

genes and pathways in learning, maintenance, and production of behavior. Performance of 397 

complex behavior involves interaction between neural activity, networks of cells, and networks 398 

of genes. Untangling the subtle differences in connected neurons, firing patterns, signaling 399 

pathways, and transcription factor activity may lead to a greater understanding of the diversity of 400 

gene expression patterns we observe here in highly interconnected cells within an intact 401 

multicellular organ. 402 

 403 
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 782 

Figure Legends: 783 

Fig. 1. Song system and laser micro-dissection. (A) Sagittal schematic of the zebra finch brain 784 

showing positions and some connections of song nuclei. Pallial, striatal, and pallidal regions are 785 

distinguished by colors. Black arrows, posterior vocal pathway involved in song production; 786 

white arrows, anterior vocal pathway involved in song learning and modulation; dashed arrows, 787 

connections between the two pathways. Smaller song nuclei of NIF, Av, and MO are not shown. 788 

(B) Song nuclei were laser-capture microdissected from males that were either silent or 789 

continuously singing for 0.5 hr, 1 hr, and for each hour thereafter, up to 7 hr, resulting in over 790 

200 total microarrays. Shown are images of 10 μm tissue sections before and after laser capture 791 

microdissection at 10X magnification. Before: Following dehydration, song nuclei fiber density 792 

appears darker than surrounding tissue. After: Song nuclei regions are selectively cut out using 793 

an infrared laser. Capture: The cut song nuclei transferred to the cap by the LCM system. For 794 

microarray analysis each of the 4 song nuclei from each animal was captured separately to 795 

individual LCM caps. Dorsal is up, anterior is right. Scale bar 2 mm.  796 

 797 

Fig. 2. Region-enriched gene expression at baseline. (A) A heatmap of hierarchically clustered 798 

expression profiles of 5,167 transcripts (rows) that are differentially expressed across regions at 799 

baseline (FDR q < 0.1; see Fig. S11 for FDR q < 0.2) in silent birds (red: increases; blue: 800 

decreases; white: no change) relative to mean Area X expression (numbers of transcripts not 801 

shown for small size clusters). Each transcript is normalized to the average value of expression in 802 

Area X. Each column is an animal replicate. Detailed results are in Table S4. (B) Average 803 

linkage hierarchical tree, generated from mean expression in each brain region, representing the 804 

molecular expression relationships between regions.  805 

 806 

Fig. 3 In situ hybridizations of baseline and singing-regulated genes. (A) Genes higher in all 807 

pallial song nuclei (RA, HVC, LMAN) relative to the striatal song nucleus (Area X) at baseline 808 

(Fig. 2A, blue clusters). (B) Genes differentially expressed just among the pallial song nuclei 809 

(green, yellow, and brown clusters) at baseline. (C) Genes higher in the striatal song nucleus 810 

relative to pallial song nuclei (turquoise cluster). (D) Core singing-regulated genes regulated in 811 

3–4 song nuclei detected by microarrays, but detected in all 4 with diverse levels by in situ 812 

hybridization, most peaking at 30 minutes. (E) Region-enriched singing-regulated genes in one 813 

http://www.ncbi.nlm.nih.gov/geo
http://www.broadinstitute.org/~pfenning/finchWig/
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or two song nuclei, with peaks of expression at later time points. Film autoradiograph images are 814 

inverted showing white as labeled mRNA expression of the gene indicated below the image. 815 

Dorsal is up, anterior is right. Scale bar 2 mm. 816 

 817 

Fig. 4. Region-enriched gene expression in response to singing. (A) A 4-way Venn diagram 818 

showing regional singing-regulated distribution of 2,740 transcripts (FDR q < 0.2). (B) Heatmap 819 

all 2,740 transcripts from the Venn diagram, hierarchically clustered independently in all four 820 

song nuclei, and then sorted by increased or decreased expression, and level of significance from 821 

highest to lowest in the linear model. Each column (170 total) is an animal replicate within a 822 

time point, and white lines separate time points. Red: increases; blue: decreases; white: no 823 

change relative to 0-hr samples for each song nucleus. Each transcript is normalized so that the 824 

maximum increase relative to non-singing birds in any region is the darkest shade of red for 825 

increasing transcripts and the maximum decrease is the darkest shade of blue for decreasing 826 

transcripts. Boxes highlight significant behaviorally regulated enrichment for each region (FDR 827 

q < 0.2 for that region). Fig. S12 shows a more stringent heat map of region-enriched expression 828 

with a similar result. (C) Relationships among clusters of transcripts from the baseline region-829 

enriched (top grey box, from Fig. 2A), singing temporal-enriched (rectangular nodes, from Fig. 830 

S3A–D), and singing region-enriched (bottom grey box, from panel B) patterns. Nodes are 831 

colored according to their cluster colors in the respective figures. Edges between two nodes 832 

correspond to significant overlap between two groups of transcripts (p < 0.001, hypergeometric 833 

test). Nodes are sorted to optimize non-crossing of edges. Detailed results are in Table S8.  834 

 835 

Fig. 5. Temporal singing-regulated patterns across time. (A) Averages of gene expression 836 

levels in four temporal clusters of transient early response increases. (B) Averages of six late-837 

response gene cluster increases. (C) Averages of four transient early response cluster decreases. 838 

(D) Averages of six late-response gene cluster decreases. The temporal profiles are normalized 839 

such that non-singing birds have a value of 0 and each gene has a maximum increase or decrease 840 

of 1. Each point represents the mean across all gene-brain region combinations for that time 841 

point. The 20 colors match the major temporal clusters in Fig. S3A-D. 842 

 843 

Fig. 6. Transcription factor binding motifs found in singing-regulated genes. (A) Location 844 

bias of the target window of several motifs relative to its nearby gene when the motif search was 845 

confined to the local promoter, i.e., 5 kb upstream and 2 kb downstream of the start of the first 846 

nucleotide of the first exon of the gene. Fold change (plotted on the log scale y-axes) is the ratio 847 

of the percentage of the motif target windows that fell within a particular position category 848 

relative to the first exon of a gene (target %) versus the percentage of windows that fall within 849 

that position category genome-wide (genome %). (B) Location bias of the motif target window 850 

relative to its nearby gene when the motif search was performed over the gene territory, i.e., half 851 

way upstream and half way downstream to the last or first exon of the nearest, non-overlapping 852 

gene. (C) Transcription factor motif-gene cluster network summarized from Fig. S4 showing 853 

relationships between enriched EATFs (gray circles) and their binding motifs in subsets of genes 854 

from the temporal singing-regulated clusters (colored rectangular nodes as in Fig. S3A–D). 855 

Edges are colored on the basis of the region specific expression of the predicted regulatory 856 

targets of the TF within each singing-regulated cluster (SM11-12). Detailed results are in Table 857 

S13 and Figure S4. 858 

 859 
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Fig. 7. RNAi knockdown illuminates CaRF binding motif relationships with singing-860 

regulated genes. (A) Heatmap of genes affected by CaRF knockdown independent of membrane 861 

depolarization in mouse cultured neurons. Rows represent the 100 transcripts most changed by 862 

CaRF RNAi knockdown (p < 0.0014, FDR q < 0.475), sorted according to the t-statistic, which 863 

takes direction of regulation into account. Each column is an independent sample (n = 3 864 

unstimulated controls, n = 3 KCl depolarized in the presence of either scrambled RNAi or CaRF 865 

RNAi knockdown virus). Color intensities (blue to red) represent the log fold change in 866 

knockdown cells relative to the mean of the scrambled control conditions. (B) Significance of the 867 

enrichment of zebra finch baseline genes (cluster colors according to Fig. 2A) with CaRF 868 

promoter motifs in the ranked list of t-values for CaRF knockdown affected genes in mouse 869 

cultured neurons. p < 0.05 (above line) is a significant association, Wilcox rank sum statistic 870 

over multiple permutations (66). (C) Similar to (A), except for genes that respond differently to 871 

KCl activity in the CaRF knockdown cells. Rows represent the 100 transcripts most changed in 872 

expression (p < 0.015, factorial test), sorted according to the t-statistic. (D) Significance of the 873 

enrichment of zebra finch singing-regulated genes (cluster colors according to Figs. 5, S3) with 874 

CaRF promoter motifs in the ranked list of t-values for genes differentially regulated by neural 875 

activity in mouse cortical neurons during CaRF knockdown versus control. p < 0.05 (above line) 876 

is a significant association, Wilcox rank sum statistic over multiple permutations (66). 877 

 878 

Fig. 8. Region-specific epigenetic signatures predefine behaviorally regulated gene 879 

expression. (A) Density plot of genes differentially expressed at baseline in RA vs. Area X and 880 

the difference in the level of nearby H3K27ac peaks in the genomes of cells in RA X vs. Area X. 881 

Each H3K27ac peak is mapped to a gene with the nearest transcription start site. For each gene, 882 

the change in all mapped H3K27ac peaks are averaged. The H3K27ac distributions for RA vs. 883 

Area X enriched genes are significantly different (p=1.5E-186, t test). (B) Similar plot as in (A) 884 

except for differentially expressed late-response singing-regulated genes. The distributions for 885 

RA and Area X are also significantly different (p=1.8E-5, t test). Note, however, there are two 886 

peaks in RA, which suggest active genomic sites in Area X in the negative peak for RA could be 887 

genes that are actively suppressed in Area X. Corresponding data can be found in Tables S21, 888 

S22. (C) H3K27ac peaks surrounding a gene induced by singing in across all brain regions, FOS; 889 

(D) H3K27ac peaks of a gene induced specifically in Area X, PTPN5. (E) H3K27ac peaks of a 890 

gene induced at low levels in RA but not detectable in Area X, BDNF. The plots show the log-891 

likelihood ratios of H3K27ac signal in pooled baseline RA and pooled baseline Area X samples 892 

versus input DNA around the genomic regions in the zebra finch. The relevant gene models from 893 

the UCSC genome browser are shown below. Peaks measure both enhancer and promoter 894 

regions. Left of the H3K27ac peaks are in-situ hybridization mRNA signal in singing animals. 895 

FOS and PTPN5 are shown in Fig. 3 and BDNF is used with permission from (37). 896 
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