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Abstract

Recent work suggests that optimal spacing in learning
requires adaptive procedures (Mettler, Massey & Kellman,
2016). Here, we studied how adaptive techniques might be
further enhanced by combining active and passive learning
modes. Participants learned geography facts that were
scheduled using the ARTS (Adaptive Reaction-Time-based
Scheduling) system under four conditions involving passive
and/or active trials. Conditions included: a) Passive Only
presentations of learning items, b) Passive Initial Blocks
followed by active adaptive scheduling, c) Passive Initial
Items followed by active adaptive scheduling for each item
introduced, or d) Active Only learning with no passive
presentations. We found an advantage for combinations of
active and passive presentation (by blocks or items) over
Passive Only or Active Only presentation. Passive trials
presented in blocks at the beginning of learning showed best
performance. We discuss possible explanations for these
differences and suggest principles underlying optimal
combinations of active and passive modes in adaptive
learning.
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Introduction

A large body of research has demonstrated the importance
of the spacing effect: a boost in long-term retention that
results when recurrent learning episodes are spaced across
gaps in time (Cepeda, Pashler, Vul, Wixted & Rohrer, 2006;
Delaney, Verkoeijen & Spirgel, 2010). Spacing effects have
been shown to apply to a wide variety of learning domains
and learners, are robust to changes in learning conditions
and test durations, and have been recommended by panels
of experts seeking to improve pedagogical practice and
learning outcomes in classrooms (Dunlosky, Rawson,
Marsh, Nathan & Willingham, 2013; Pashler, Bain, Bottge,
Graesser, Koedinger, McDaniel & Metcalfe, 2007).

Recent research has shown that spacing effects can be
especially enhanced by dynamically adjusting the size of
spacing intervals during a learning session using an adaptive
algorithm, Adaptive Response-Time-based Scheduling
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(ARTS; Mettler, Massey & Kellman, 2011; Mettler &
Kellman, 2014; Mettler, Massey & Kellman, 2016). In
ARTS, spacing delays are updated to match changes in
learning strength, as learning progresses, for individual
learners and items. Evidence indicates that response time
(RT) is a useful indicator of retrieval difficulty, and thus of
an item’s current learning strength (Pyc & Rawson, 2009;
Benjamin & Bjork, 1996; Karpicke & Bauernschmidt,
2011). ARTS updates spacing by tracking underlying
learning strength using an individual’s accuracy and RT for
learning items. It produces highly efficient learning and
compares favorably with classic adaptive approaches that do
not use RT information (Atkinson, 1972; Mettler, Massey &
Kellman, 2011).

Adaptive learning techniques offer new answers to
persistent questions about the mechanisms underlying
spacing effects and optimal spacing. A longstanding issue
has been whether expanding schedules of practice, where
spacing interval sizes increase across subsequent
presentations, are better than equal interval schedules (e.g.,
Bjork & Allen, 1970; Karpicke & Roediger, 2007). Mettler,
Massey & Kellman (2016) suggested that the question of
whether predetermined equal or expanding schedules
produce better learning has no ultimate answer. In
experiments with factual learning, they first showed that
adaptive scheduling outperformed both equal and expanding
schedules. They then used a yoking procedure to show that
the advantages of adaptive learning did not derive from the
particular types or distributions of spacing intervals, but
depended crucially on interactions between learners and
items. Their data are consistent with a successful effort
hypothesis: the ideal time for a new learning trial for an item
is the longest interval at which the learner can still respond
correctly. This interval depends on underlying learning
strength for each item for a given learner, which may be
affected by many variables and changes throughout the
course of learning. Many of these effects are difficult or
impossible to predict from a priori models; thus,
predetermined spacing arrangements cannot be optimal.



Optimal spacing may be possible with adaptive systems that
use ongoing performance measures (specifically, tracking
accuracy and speed of response for individual items) to
gauge learning strength and determine spacing (Mettler,
Massey & Kellman, 2016).

Interactive learning provides information to guide spacing,
but it may have certain drawbacks, especially at the start of
learning. With interactive “test” trials from the start, the
learner must initially guess and receive feedback. There are
at least two potential drawbacks in such a situation, one
cognitive and one motivational. The cognitive issue is that
wrong answers generated by guessing may persist later in
learning. Motivationally, being tested on material one has
not learned is deflating, perhaps more so for some learner
groups (e.g., middle school students learning mathematics).
In this paper, we seek to enhance adaptive learning systems
by considering possible modifications of initial learning
trials. We examined two ways of including initial passive
learning trials in which learners are introduced to correct
information but not required to respond. We compared these
combinations to conditions in which learners received either
active or passive trials alone throughout learning.

Passive presentations in learning have been studied
previously in a variety of contexts. Recent memory studies
have compared the effectiveness of study vs. test trials
during learning (Roediger & Karpicke, 2006) and other
studies have explored the role of passive learning when the
learning task consists of category learning (Carvalho &
Goldstone, 2015), relational concept learning (McDonald &
Frank, 2016), hypothesis testing (Markant & Gureckis,
2014), and specific domains such as physical simulation
(Bramley, Gerstenberg & Tenenbaum, 2016). Research
examining the difference between passive study and active
testing has identified a powerful effect of testing trials over
study trials, such that testing trials result in greater
long-term retention (Carpenter, Pashler & Cepeda, 2009;
Halamish & Bjork, 2011; Roediger & Karpicke, 2006).

As in studies of memory, research in category learning and
perceptual learning have found that active presentations
generally contribute more to learning, however, passive
presentations sometimes play a beneficial role. Carvalho
and Goldstone (2015) found that passive presentation with
massed trials of exemplars from the same category produced
better category learning than interleaved passive trials and
also better than massed active learning trials. Active, spaced
trials, however, were as good as passive, massed trials in
one experiment, and clearly better in another. Most relevant
to the present study, Thai, Krasne & Kellman (2015) studied
learning efficiency in a perceptual-adaptive learning module
(PALM) for training interpretation of electrocardiograms
and found that an initial block of passive trials, followed by
adaptive category learning, enhanced the efficiency of
learning relative to passive only or active only conditions.

In the present work, we examined the use of passive modes
of learning in the early phases of learning for factual
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material. One goal was to understand whether and how the
spacing benefits of adaptive learning might be affected or
enhanced by initial passive experience. The second goal was
to compare two approaches to the integration of passive and
active modes. We approached these goals through
experiments and learning analytics aimed at revealing
specific interactions between passive presentations and
spacing dynamics.

One method for use of introductory passive trials is to
present one or more blocks of passive trials, with each block
containing one presentation of each learning item (as used
by Thai, Krasne & Kellman, 2015). In the Passive Initial
Block condition in the present study, two initial trial blocks
of passive trials were followed by active, adaptive learning
in ARTS. We also tested a second approach. In the Passive
Initial Item condition, the initial presentation of each
learning item was a passive trial. That trial served to
“unlock” that item for subsequent adaptive learning. The
passive trial was treated by ARTS in the same way as an
active error trial: the item was given a high priority for
reappearance as an active learning trial, recurring on
average two trials later. The dynamics of this “unlocking”
procedure resulted, after a few trials, in a mix of passive and
active trials — new items presented passively on their initial
appearance intermixed with active learning items whose
reappearance depended on learner performance. This
Passive Initial Item condition had the potential advantage of
mixing modes of learning and sustaining interest. We also
tested Active Only and Passive Only conditions as controls.
We hypothesized that one or both combinations of passive
with active, adaptive learning would produce enhancements
in learning efficiency.

Method

Participants
Participants were 120 undergraduate psychology students
who participated for course credit.

Materials

All materials were presented on a computer within a
web-based application. Participants were to identify 24
African countries on a 500 x 800-pixel map of Africa
presented on the left side of the screen. Responses were
indicated by mouse clicking on a two-column list of African
countries alphabetically organized by column then row,
presented on the right side of the screen.

Design

Each participant was assigned to one of four scheduling
conditions consisting of passive trials only, active trials
only, or one of two variations combining passive and active
trials. Passive trials consisted of a four-second presentation
of the target country highlighted on a map, accompanied
only by the correct country label. After four seconds a
continue button appeared, which participants clicked to



advance to the next trial. On active trials, the target country
was highlighted on a map and the learner selected the name
from the full set of country labels, then correct / incorrect
and response time feedback was provided while the correct
country label was highlighted. All active trials were
adaptively scheduled according to ARTS (see below).

In the Passive Only condition, countries were presented in
10 blocks of 24 passive trials. Each country appeared once
per block, in random order. In the Passive Initial Block
condition, participants first completed 2 blocks of passive
trials, as in the Passive Only condition, followed by adaptive
scheduling. In the Passive Initial Item condition, the first
presentation of each country was a passive trial followed by
a fixed spacing interval of at least one intervening trial, so
that the correct response was not still in working memory.
All trials in this condition that did not involve the first
presentation of a country were adaptively scheduled. In the
Active Only condition, all trials were adaptively scheduled.

The ARTS algorithm determined the adaptive scheduling
for active trials. After every response, ARTS calculates a
priority score for each learning item and compares scores
across items to determine which item will be presented next.
Equation 1 shows the priority score calculation.

P, = a(N, - D)[b(1 - &) Log(RT,/ ) + V] (1)

Detailed description of the ARTS algorithm can be found
in previous work (Mettler, Massey & Kellman, 2011, 2016).
In this study, the enforced delay D was set to 1 trial, the
incorrect penalty W was set to 20 and parameters a, b, r
were set to 0.1, 1.1, and 3.0 respectively. In general, the
priority score system results in an item reappearing soon
after an error; however, an enforced delay prohibits
reappearance while the answer still resides in working
memory. Spacing for correct responses is an inverse
function of log response time, such that faster responses
(indicating higher learning strength) produce lower priority
scores (resulting in longer recurrence intervals).

Procedure

Participants were shown a map of Africa featuring an
outlined country and were asked to select its name from a
list of all country names by clicking with a computer mouse.
Participants attended two sessions, separated by 1 week. In
the first session, participants initially took a pretest on all 24
items, presented in random order, without feedback. The
pretest was followed by a learning phase in one of the four
experimental conditions, which took up the majority of the
first session. Accuracy feedback followed every trial, and,
after every 10 trials, participants received block feedback
indicating their average response accuracy and speed for the
previous block of 10 trials and every previous block up to
10 prior blocks. After the learning phase, participants took a
posttest that was identical to the pretest. (Due to a
programming error, 17 participants in the Passive Initial
Item condition received their first posttest trial as a passive
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presentation, with accuracy marked as incorrect. To adjust
for this error the posttest score for those 17 participants was
scored out of 23 items.) The entire first session took no
more than 1 hour for each participant. After the posttest,
participants were instructed not to study or reflect on the
information learned and to return in 1 week to complete a
delayed posttest, which was identical to the immediate
posttest. No feedback was given on either posttest.

Participants were automatically assigned to a scheduling
condition using an algorithm designed to simultaneously
randomly assign participants to condition as well as balance
average pretest scores across conditions. Participants were
assigned to the condition for which their pretest score would
minimize the differences between average pretest scores
across conditions. The algorithm did not allow any
condition to get more than one participant ahead of any
other condition. The balancing algorithm also acted as a
filter to screen out participants deemed unsuitable for the
study, due to pretest scores with either accuracy > 35% (n=
4 participants) or average response times < 1 second, (n=1)
participant).

To ensure reduction of noise and comparability of
conditions, any learner in adaptive conditions who did not
successfully retire all 24 items was removed from our
primary analysis (n = 5 participants). Learning criteria were
enforced for the three conditions that had adaptive
scheduling. Learning criteria encompassed both speed and
accuracy and ensured that items were well learned before
removal from the active learning set. Specifically, items
were retired if correctly responded to on 4 out of the last 4
presentations with RT less than 7 seconds, similar to prior
studies (Mettler, Massey & Kellman 2016). There were no
learning criteria for the Passive Only condition and the
learning session ended after exactly 240 trials for every
participant in that condition.

Dependent Measures and Data Analysis

Because we used learning to criterion, our primary
measure was learning efficiency, defined as accuracy gain
from pretest to posttest divided by the number of trials
invested in learning. Efficiency gives a way of measuring
learning that incorporates both variations in posttest
performance and variations in the number of learning trials
required to reach the learning criteria. It may be thought of
as a rate measure, indicating performance improvement per
trial. We also examined accuracy gain and trials to criterion
separately. The number of passive trials was determined
based on pilot work to be roughly equal to the number of
trials needed to reach mastery in active conditions. In the
two conditions combining passive and active trials, all trials
were counted for trial and efficiency calculations. All
measures were assessed using standard parametric statistics,
such as ANOVA. Because we sought to compare
differences across learning conditions, we conducted
planned comparisons between pairs of conditions. All



statistical tests were two-tailed, with a 95% confidence
level, all effect sizes D are Cohen’s D, and all error bars in
graphs show +/- 1 standard error of the mean.

Results and Discussion
Primary Results

Efficiency. Learning efficiency results are shown in Figure
1, which plots efficiency at posttest and delayed posttest
separately for the 4 learning conditions. The Passive Only
condition showed lower efficiency in both posttests. The
Passive Initial Block condition appeared somewhat better
than the other conditions. Passive Initial Item and Active
Only conditions showed little difference. These observations
were confirmed by the analyses. A 4x2 mixed factorial
ANOVA on Passive/Active Scheduling Condition and Test
phase (Immediate vs. Delayed) was conducted on the
Efficiency scores. There was a significant main effect of
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Figure 1. Learning Efficiency in Posttest and Delayed
Posttest.

Condition (F(3,116) = 5.95, p=.001, np2:.133) a significant
main effect of Test phase (F(1,116)=320.9, p<.001,
n,’=.73), and no significant Condition by Test phase
interaction (F(3,116)=0.17, p=914, np22.004). Paired
comparisons revealed reliable differences between
conditions at immediate test (Passive Only vs. Passive
Initial Block, 1(58)=5.28, p<.001, D=1.40; Passive Only vs.
Passive Initial Item, t(58)=2.14, p=.036, D=0.58; Passive
Initial Block vs. Passive Initial Item, t(58)=2.24, p=.029,
D=0.58; Passive Only vs. Active Only, t(58)=3.17, p=.002,
D=0.86). Passive Initial Block vs. Active Only did not reach
significance  (t(58)=1.40, p=.165, D=0.364). Other
differences between conditions at immediate test were not
significant (ps>.165). Paired comparisons at delayed
posttest showed significant differences between Passive
Only and Passive Initial Block, t(58)=4.01, p<.001, D=1.04,
and Passive Only vs. Active Only, t(58)=2.51, p=.015,
D=0.65). There was a marginally significant difference
between Passive Only and Passive Initial Item (1(58)=2.00,
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p=-050, D=0.52). The remaining comparisons did not reach
significance: Passive Initial Block vs. Active Only
t(58)=1.17, p=247, D=0.30), Passive Initial Block vs.
Passive Initial Item (1(58)=1.65, p=.102, D=0.429), and
Passive Initial Item vs. Active Only (1(58)=0.46, p=.65,
D=0.119).

Accuracy Change. Accuracy change score measured
posttest minus pretest accuracy at immediate and delayed
posttest. Pretest accuracies were comparable across
conditions (Passive Only, M: 0.07, SD: 0.04; Passive Initial
Block, M: 0.07, SD: 0.07; Passive Initial Item, M: 0.07, SD:
0.08; Active Only: M:0.06, SD: 0.06; F(3,116)=0.80,
p=299). A 4x2 mixed factorial ANOVA on Passive/Active
Scheduling Condition and Test phase (Immediate vs.
Delayed) was conducted on the Accuracy change score. The
ANOVA found no significant main effect of Condition
(F(3,116)=1.87, p=.138, np2:.046), a significant main effect
of test (F(1,116)=269.33, p<.001, np2:.693) and no
significant  interaction = of  Condition by  Test
(F(3,116)=0.609, p=.611, np2:.015). None of the paired
comparisons between conditions at immediate or delayed
test showed reliable differences, except for a marginally
significant difference at delayed posttest between Passive
Only vs. Passive Initial Block (t(58)=1.97, p=.053, D=0.53).

Trials. Trials taken to reach learning criteria or the end of
the session are shown in Figure 2. A between subjects
ANOVA was conducted on Trials comparing the conditions.
There was a reliable effect of condition (F(3,116)=3.94,
p=.010, 1,>=.092). Paired comparisons showed a significant
difference between Passive Only and Passive Initial Block
(1(58)=5.50, p<.001, D=2.01) and between Passive Initial
Block and Passive Initial Item (t(58)=2.49, p=.016, D=0.66).
There was a marginally significant difference between
Passive Initial Block and Active Only (t(58)=1.75, p=.09,
D=0.46). No other comparisons were significant (ps>.125).
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Figure 2. Learning trials by Scheduling Condition.

Learning Analytics

We carried out more detailed analyses to understand the
impact initial trials had on learning performance. As
mentioned, a grounding hypothesis of the ARTS system,
and a key to optimal spacing, is the successful effort
hypothesis:  extending recurrence intervals improves
learning benefits, so long as the learner can still respond



successfully (c.f., Pyc & Rawson, 2009). This hypothesis
predicts that effective adaptive learning regimens should
minimize what we call “snaps” — occasions where the
learner fails to answer correctly as the retention interval is
stretched. From data in purely active, adaptive learning, we
noticed an interesting pattern: After missing an item and
successfully answering it on its next appearance, learners
had a relatively low proportion of accurate responding on
the next appearance of that item. Moreover, this pattern of a
sequential error and correct response (designated ‘0,17)
occurred often: 1673 times in the data we examined. This
frequency includes many occasions at the start of learning
where the first trial in active learning requires a guess and
produces an error.

In the present study, we examined the frequency of 0,1
sequences and accuracy of subsequent responses, in an
attempt to understand the benefits of initial passive trials.
We discovered that the proportion of success after 0,1 trials
varied with condition, with higher success rates in the
combined passive-active conditions than in Active Only.
Statistical analyses revealed a significant difference between
the Passive Initial Block (M=0.68, SD=0.17) and Active
Only (M=0.56 , SD=0.14) conditions (t(52) = 3.16, p=.003,
D=0.86) and a marginally significant difference between the
Passive Initial Item (M=0.63, SD=0.18) and Active Only
conditions: t(57)=1.86, p=.068, D=0.486). The difference
between Passive Initial Block and Passive Initial Item
conditions was not significant (t(51)=1.163, p=.25).

A second finding was that the use of initial passive trials
vastly reduced the frequency of 0,1 sequences: Compared to
the 1673 occurrences in the Active Only condition, there
were 1158 in the Passive Initial Item condition, and 631 in
the Passive Initial Block condition. We also examined
occurrences relative to the initial active trial in each
condition, shown in Figure 3. Trials 1 & 2 reflect initial
active trials in the Active Only condition — likely due to
initial guessing. In trials 2 & 3, 0,1’s appear in the Passive
Initial Ttem condition at a lower rate than Active Only. In
trials 3 & 4, the occurrences of 0,1 sequences are lowest in
the Passive Initial Block condition. The rate of occurrences
remains lowest in the Passive Initial Block condition for all
remaining trials in the learning session suggesting that the
advantages of initial passive presentations extend into the
learning session.

General Discussion

We tested combinations of passive and active learning in
adaptive learning to see whether and how the addition of
passive presentations early in learning can enhance learning
efficiency. Consistent with prior work, all three conditions
with active adaptive scheduling were better than passive
only presentations. A combination of active and passive
trials did enhance learning: presenting two blocks of passive
presentations prior to all active learning was (numerically)
the fastest method of learning, and exceeded other
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Figure 3. ‘0,1’ Sequences by Condition and Trial.

conditions in terms of the rate of deleterious trial sequences.

Learning analytics were used to probe the source of this
effect. We found that in active learning, 0,1 sequences for
an item (an error, followed by a correct response) occurred
frequently and were often followed by an error on the next
occurrence of that item. This pattern is suboptimal, as
efficiency benefits in adaptive learning may derive largely
from keeping learning as nearly errorless as possible
(Mettler, Massey & Kellman, 2016).

Our analyses indicated three findings regarding 0,1
sequences. First, the need for initial guessing in a purely
active, adaptive condition contributes to the high frequency
of 0,1 sequences, and this guessing can be reduced or
eliminated by initial passive presentations. Second, initial
passive trials reduced the number of 0,1 sequences far more
than would be expected by eliminating initial guessing
alone. This was especially true in the best condition,
Passive Initial Block, in which 0,1 sequences were almost
1/2 as frequent as in the Active Only condition, not
including initial guessing. The third finding was that the
success rates after 0,1 sequences were higher in both
combined conditions than in the Active Only condition.

Initial passive learning reduces later errors in learning,
leading to more efficient mastery in an adaptive framework.
What accounts for the benefits? We mentioned two
possibilities at the outset. Besides producing errors on initial
trials, early incorrect guesses may persist in learning and
lead to later errors. A related idea is that unduly strong
associations between cues and incorrect guesses can impede
later recall (Knight, Ball, Brewer, DeWitt, & Marsh, 2012).
Another is that motivation may be affected by having to
guess. We add here a third possibility: Some work in
problem solving indicates that having to solve problems
before getting a foothold in learning may add cognitive load
that impedes the learning itself (Paas & Merrienboer, 1994).
Passive exposure may cushion learners from deleterious
features of initial active learning, such as cognitive effort. It
is also possible that adaptive spacing parameters, such as
parameters that decide the general relationship between RTs
and spacing interval size, may have positively interacted
with learners who had received initial passive presentations.
Passive presentations may provide learners with enough



initial learning strength to deliver more accurate indications
of learning strength to adaptive scheduling routines.

Our current findings are limited in several ways. Most
prominently, we tested particular implementations of
passive learning, including using two blocks in the Passive
Initial Block condition. We do not know whether a single
block (one presentation of each item) would suffice to attain
benefits, or if more passive trials, or a different schedule of
passive items, would be beneficial. Finally, it is possible
that our findings are somewhat unique to the learning
material used, although Thai, Krasne & Kellman (2015)
found similar advantages of initial passive blocks in
adaptive  perceptual  learning  (classification  of
electrocardiograms).

Adaptive learning frameworks that leverage learner
performance to arrange spacing and sequencing in learning
provide substantial benefits to learning. The present results
indicate that the benefits are further enhanced by combining
active responding with passive modes of learning, especially
at the start of learning. Fully understanding the mechanisms
underlying these benefits, their range of applicability, and
how to optimize them in adaptive learning, pose important
questions for further research.
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