




Zooming in on NYC Taxi Data with Portal 3

We found that there exist many popular routes, some with as many as 11
simultaneous trips during a particular month in 2016, and with only 1 or 2
passengers per car — a clear ride-sharing opportunity. Figure 1 gives an at-a-
glance view of the results of our frequent route analysis. This figure shows the
total number of trips between pairs of locations in March 2016, for 300 most
frequent such pairs. One immediate insight is that LGA participates in many
more taxi trips than JFK, despite being a much smaller airport.1 Another insight
is that the single most frequent route is between Penn Station and Grand Central
— two train stations in Midtown Manhattan.

Both findings can be explained by the lack of convenient public transporta-
tion options that connect these out-of-town transportation hubs: Unlike JFK, La
Guardia is not reachable by subway from Midtown Manhattan. It takes 2 trains
(with a connection at the very busy Times Square station) and 20 minutes to
travel between Grand Central and Penn Station by subway.

Context and contributions: While taxi data analysis is of independent
interest, the main contribution of our work is a generalizable methodology for
asking the kinds of questions we discuss in the remainder of this paper, and
many others, over large graphs that evolve over time. Our methodology is based
on using a system called Portal, which implements efficient representations and
principled analysis methods for graphs whose topology (presence or absence of
nodes and edges) and attributes of nodes and edges change over time.

Portal is available in the open source at portaldb.github.io. It is imple-
mented on top of Apache Spark and is inter-operable with other Spark libraries
like SparkSQL. Portal implements a set of algebraic operations over evolving
property graphs [6], which allow to model and interrogate changes in network
topology and in the values of vertex and edge attributes. In our experience, an-
swers to the kinds of questions we ask in this case study can be computed in
minutes for graphs with millions of edges on a cluster of modest size.

The data analysis methodology embodied by Portal and presented here is
complementary to that of TaxiViz [4], a system for visual exploration of trans-
portation data that was applied to (an earlier version of) the NYC TLC dataset.
TaxiViz supports query types in Peuquet’s spatio-temporal framework [8], inter-
rogating data along three dimensions: space (where), time (when) and objects
(what). In contrast, the representation and query mechanisms in Portal are based
on evolving graph models, rather than on spatio-temporal models. In this pa-
per, we make use of a particular aspect of this functionality — temporal and
structural zoom.

2 Materials and Methods

2.1 Data

We analyzed 12 months worth of yellow cab data, spanning July 2015 through
June 2016, that makes part of the TLC Trip Record dataset[7]. This dataset lists

1 https://en.wikipedia.org/wiki/LaGuardia_Airport



4 J. Stoyanovich et al.

pick-up and drop-off locations for each trip at 1-meter precision. In our analysis,
we consider locations at different levels of geographic granularity, zooming out to
10 meters, 100 meters and 1 kilometer spatially. In addition to pick-up and drop-
off locations, the dataset also lists the pick-up and drop-off times, the number
of passengers, and the fare amount.

We represent this dataset of time-stamped trajectories with an evolving
graph. In this graph, nodes correspond to locations, and directed edges cor-
respond to trips. Latitude and longitude of the location is stored as an attribute
of the node, while trip duration, fare and passenger count are stored as edge
attributes. We record each trip from location a to location b as a single directed
edge from a to b, and so our representation is technically a directed multi-graph,
since multiple edges can connect a given pair of nodes.

The advantage of using an evolving graph representation for TLC data is
that we can assign periods of validity to nodes and edges, and have the data
manipulation operators supported by the Portal system handle these periods
of validity implicitly. We will discuss this further when explaining our analysis
methods in Section 2.3. We assign periods of validity to nodes and edges as
follows. An edge is valid for the duration of the trip that it represents. A node
becomes valid when the first trip originates from or arrives at that node, and
persists until the last incoming or outgoing trip.

We cleaned TLC data, removing trip records that did not appear to be for-
matted properly, for which latitude or longitude was set to 0, or for which trip
duration did not appear valid, such as when arrival time was later than depar-
ture time, or when the trip took longer than 2 hours. This resulted in removing
less than 1% of all trips from our dataset.

2.2 Software and execution environment

To analyze TLC data and answer our research questions we used Portal, a system
for analysis of evolving property graphs. Portal is implemented in Scala as a
library of Apache Spark. We now give some technical background on Apache
Spark and Portal.

Apache Spark2 is a distributed open-source system similar to MapReduce [3],
but based on an in-memory processing approach [9]. Data in Spark is represented
by Resilient Distributed Datasets (RDDs), a distributed memory abstraction
for fault-tolerant computing. All operations on RDDs are treated as a series of
transformations on a collection of data partitions, such that any lost partition
may be recalculated based on its lineage.

Apache Spark provides a higher-level abstraction over MapReduce, making
it easier to use for data scientists and developers. It is open-source, and has
attracted a vibrant developer community. Spark includes a variety of data pro-
cessing libraries, including SparkSQL [1] — a distributed implementation of
SQL, GraphX [5] — a library for analysis of static graphs, as well as streaming
and machine learning modules, among others.

2 http://spark.apache.org/



Zooming in on NYC Taxi Data with Portal 5

Portal3 is an open source system built on Spark that implements opera-
tions of TGA, a temporal graph algebra for querying and analysis of evolving
graphs [6]. The Portal API supports a variety of operations, including snapshot
analytics like Page Rank, temporal and non-temporal variants of subgraph, bi-
nary operations that compute the intersection, union and difference of a pair of
evolving graphs, and edge creation. All operations implicitly handle temporal
information, and also allow access to time in predicates. Technically, TGA, the
algebraic graph query language implemented by Portal, adheres to point-based
temporal semantics [2]. The Portal API also exposes node and edge RDDs, and
provides convenience methods to convert them to Spark Datasets, a relational
abstraction on top of RDDs. This feature enables inter-operability between Por-
tal and SparkSQL. In this paper we use several TGA operations and do further
processing in SparkSQL.

To use Portal for our analysis, we exported TLC data into Apache Par-
quet format 4 for on-disk representation in the Hadoop Distributed File System
(HDFS)5, using separate files for nodes and edges. For this, we used converter
and loader utilities provided by Portal. All data analysis was conducted on a
16-slave in-house Open Stack cloud, using Linux Ubuntu 14.04 and Spark v2.0.
Each node has 4 cores and 16 GB of RAM. Spark Standalone cluster manager
and Hadoop 2.6 were used.

2.3 Analysis methodology

In this section we give an overview of the TGA operators that are implemented
in Portal and were used in our analysis. We refer the reader to our recent work [6]
for a full technical description of TGA.

Structural zoom. We analyzed TLC data at three levels of geographic resolution
(distance): 10 meters, 100 meters (roughly 1 NYC street block) and 1 kilometer,
using the node creation operation of TGA. This operation can be viewed as a
generalization of the SQL group by, applied to evolving graphs: it partitions
graph nodes into non-overlapping groups based on the value of a node attribute,
or on a value returned by a function that is invoked over the node. For example,
we can partition nodes that correspond to employees based on the value of the
attribute department — all employees who work in the same department are
assigned to the same group. Or we can partition nodes that represent taxi pick-
up and drop-off locations by rounding up their latitude-longitude coordinates
to three digits after the decimal point — all locations that fall within the same
100m by 100m block will be assigned to the same group.

For each group of nodes in the input, a new node is created in the output; its
validity period is computed by taking a temporal union of the periods of validity
of the corresponding input nodes.

3 http://portaldb.github.io/
4 https://parquet.apache.org/
5 https://hadoop.apache.org/



6 J. Stoyanovich et al.

Edges that were present in the input persist and keep their attributes and
their periods of validity as in the input, but are re-assigned to connect the newly
created nodes. For example, consider two taxi trips e1 and e2, both originating
in the vicinity of Penn Station at locations s1 and s2, and both terminating at
the JFK airport at locations d1 and d2. If zooming out geographically places s1
and s2 into node group s, and d1 and d2 into node group d, then edges e1 and
e2 will both point from s to d in the new graph.

Temporal zoom. We analyzed TLC data at different levels of temporal resolution:
seconds (as in the raw data), 10 minutes, and 1 month. This was done using the
temporal zoom operation of TGA, which maps validity periods of nodes and
edges of the input graph to coarser validity periods in the output.

For example, consider two taxi trips e1 and e2, and suppose that they share
the origin s and the destination d (either because s and d were literally the
same in the input dataset, or because the original locations were mapped to a
pair of common locations as a result of node creation). Suppose that e1 leaves
s at 11:01am, and e2 leaves s at 11:03am. We may want to state that e1 and
e2 both left s in the 11:01-11:10am time interval. To do so, we invoke temporal
zoom over 10-minute windows. Under default conditions, all input nodes and
edges persist in the result, but their periods of validity are adjusted (expanded)
if necessary to cover the full window. In our example, e2 will have its period of
validity adjusted to start at 11:01am.

Additionally, we can specify node and edge quantifiers of the form exists

(this is the default), always and most, which determine under what conditions
a node or an edge should be included in the temporal window. With exists, a
node or an edge is included into the window, and its validity period is adjusted,
if it existed at some point during the window, even if for only one time instant.
With always, we only include nodes and edges that existed throughout the entire
window (and so an adjustment of their validity periods is unnecessary). Finally,
with most, presence during more than half of the temporal window is required.

Different levels of temporal resolution were considered for different analysis
tasks, as we will discuss in detail later in this section.

Aggregate messages. Another TGA operation that was used in our analysis is
aggregate messages. This operation computes the value of an attribute at a node
based on information that is available at its incoming or outgoing edges, and at
its immediate neighbors (nodes reachable by one edge, in either direction). For
example, we can use aggregate messages to compute the in-degree or the out-
degree of a node, allowing us to quantify the number of incoming and outgoing
trips for a particular location, the total cost of such trips, or their average dura-
tion. As with other operations, time is handled implicitly. That is, the number
of incoming edges will likely differ for a given node depending on the time period
(e.g., there were 35 trips out of JFK during 11:01-11:10am, and 27 trips during
11:11-11:20am), and change in this value over time is computed and handled
implicitly by the system.



Zooming in on NYC Taxi Data with Portal 7

Putting it all together: implementation of the data analysis tasks. As part of
our analysis, we used node creation, temporal zoom and aggregate messages to
accomplish two tasks that correspond to our research questions. We summarize
these tasks here, and present results in Section 3.

Hotspots. We analyzed the size and the degree distribution of the TLC
graph: number of nodes, number of edges, and the distribution of node in-degrees
(number of incoming trips) and out-degrees (number of outgoing trips). We
computed these at 10-meter, 100-meter and 1000-meter geographic resolution,
with respect to the entire graph and to its monthly subsets, as follows:

1. Load the cleaned TLC dataset at 10-meter resolution.
2. Zoom out temporally to twelve 1-month windows (for per-month statistics),

or to a single 12-month window (for full-graph statistics).
3. Keep original location nodes (at 10-meters), or create coarser nodes at 100-

meter and 1000-meter resolution.
4. Use aggregate messages to compute in-degree and out-degree of each node

in each temporal window.
5. Identify hotspots: top-k nodes by in-degree and out-degree.

Hotspot analysis took between 15 and 30 minutes to execute end-to-end on
a year worth of TLC data, using a cluster of modest size (see Section 2.2).

Popular routes. We analyzed the frequency with which multiple trips orig-
inate from the same location at the same time, and arrive at the same location.
We computed these at 100-meter and 1000-meter geographic resolution, and at
10-minute temporal resolution. At 100-meter geographic resolution, two loca-
tions are considered the same if they fall (approximately) within one NYC city
block, or about 1 minute walking distance — a reasonable distance to walk to a
shared ride or to a bus. Analysis at 1000-meter resolution was done to get a sense
of the general per-neighborhood trends of taxi utilization, with high utilization
pointing to lack of availability of convenient public transportation options.

Our choice of 10-minute temporal resolution means that a passenger would
wait at most 10 minutes, and on average 5 minutes, for a shared ride or for a bus
— a reasonable waiting time if it leads to significant cost savings. This analysis
was conducted as follows:

1. Load the cleaned TLC dataset at 10-meter resolution.
2. Zoom out temporally to 10-minute windows. The effect of this operation is

that all trips that start (have their pick-up time) within a given 10-minute
window will have their pick-up time adjusted to the beginning to the window.

3. Execute a SQL group-by query that computes, for a pair of locations source
and dest, and for a trip start time start, the number of originating trips,
the total number of passengers, total cost of all trips, and combined trip
duration. This step is done by instantiating a Spark Dataset from the Edge
RDD of the evolving graph, and passing the result to SparkSQL to compute
the result, using the following SQL query:







10 J. Stoyanovich et al.

between 4793 and 5734 for 1000-meter resolution; is lowest in June and July,
and highest in March for 10 and 100 meters, and in December for 1000 meters.
Month-to-month variability in the number of trips follows a similar trend as the
monthly variability in the number of distinct locations.

Figures 3, 4 and 5 present the distribution of node in-degrees (number of
arriving trips) and out-degrees (number of originating trips) for the top-300 such
nodes, for different geographic resolutions. We observe that the distributions are
power law, and that they are steeper for coarser resolution levels, as expected.
Even for finer geographic granularity, locations with the highest in-degree and
out-degree are responsible for a very significant proportion of the edges. At
10-meter resolution, the top-5 locations by out-degree carry 434,540 edges, or
about 0.3% of all edges. At 100-meter resolution, which corresponds to 1 NYC
city block and is perhaps more intuitively meaningful, the top-5 locations have
combined out-degree of 3,291,470, or 2.5% of all edges. At 1000-meter resolution,
the top-5 locations by out-degree are responsible for originating 36,038,808 trips,
27% of all taxi trips in NYC!

What are the hotspots in NYC taxi data? Penn Station appears at the top-5
as both an origin and a destination at all resolution levels. In fact, for 10-meter
resolution, 3 of the 5 most frequent destinations are in the immediate vicinity of
Penn Station. Penn Station also appears as one of the top-5 origins at 10-meter
resolution, along with JFK (once) and LGA (three times) airports. The same
locations appear as hotspots at 100-meter resolution, although in a different pro-
portion. Top-5 origins at 1000-meter resolution include Penn Station, Midtown
East, Rockefeller Center, Bryant Park / New York Public Library, and the Port
Authority But Terminal. Top-5 destinations are the same, but Port Authority
is replaced by the Flatiron district.

Interestingly, JFK and LGA airports no longer appear among the top-5 at
1000-meter resolution. This can be explained by the fact that Manhattan is
dense, and while few individual city blocks receive as much taxi traffic as an
outer-borough airport, they do jointly carry more traffic. While this finding is
not altogether surprising, it argues for the need to consider evolving graphs such
as the one we are studying in this paper at different resolution levels.

Popular routes. We analyzed the frequency with which multiple trips orig-
inate from the same location at the same time, and arrive at the same location.
This analysis was done at 100-meter and 1000-meter resolution, and trips were
considered to start simultaneously if they started within the same 10-minute
window. This analysis was done over one month worth of data, for March 2016.

A route is a pair of locations that serve as the origin and the destination of
a taxi trip. In our analysis in the remainder of this section, we removed routes
in which origin and destination correspond to the same geographic location (by
latitude and longitude, at the appropriate level of geographic resolution).

Figure 1 visualizes this data at 100-meter resolution on a map of NYC, while
Figure 6 zooms in on Midtown Manhattan, the area with the highest number
of frequent routes. In these visualizations, red lines correspond to the highest







Zooming in on NYC Taxi Data with Portal 13

implementing these use cases, in terms of performance, was dealing with the
high evolution rate in our dataset, since every taxi ride is technically an evo-
lution event. We had to carefully chose the level of temporal granularity that
is both appropriate for our data analysis scenario and is possible to compute
within a reasonable amount of time.

References

1. M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages
1383–1394, 2015.

2. M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Temporal Statement Modifiers.
ACM Transactions on Database Systems, 25(4):407–456, 2000.

3. J. Dean and S. Ghemawat. MapReduce: Simplied Data Processing on Large Clus-
ters. Proceedings of 6th Symposium on Operating Systems Design and Implementa-

tion, pages 137–149, 2004.
4. N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual exploration of big

spatio-temporal urban data: A study of new york city taxi trips. IEEE Trans. Vis.

Comput. Graph., 19(12):2149–2158, 2013.
5. J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

GraphX: Graph processing in a distributed dataflow framework. In 11th USENIX

Symposium on Operating Systems Design and Implementation, OSDI ’14, Broom-

field, CO, USA, October 6-8, 2014., pages 599–613, 2014.
6. V. Z. Moffitt and J. Stoyanovich. Temporal graph algebra. In Proceedings of The

16th International Symposium on Database Programming Languages, DBPL 2017,

Munich, Germany, September 1, 2017, pages 10:1–10:12, 2017.
7. NYC Taxi and Limousine Commission. TLC trip record data, 2018. http://www.

nyc.gov/html/tlc/html/about/trip_record_data.shtml.
8. D. Peuquet. It‘s about time: A conceptual framework for the representation of

temporal dynamics in geographic information systems. Annals of the Association

of American Geographers, 84(3):441–461, 1994.
9. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX Symposium on

Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,

April 25-27, 2012, pages 15–28, 2012.


