
Generating Evolving Property Graphs with
Attribute-Aware Preferential Attachment

Amir Aghasadeghi
Drexel University
Philadelphia, PA

aa3657@drexel.edu

Julia Stoyanovich∗

Drexel University
Philadelphia, PA

stoyanovich@drexel.edu

ABSTRACT

In recent years there has been significant interest in evolution-

ary analysis of large-scale networks. Researchers study network

evolution rate and mechanisms, the impact of specific events on

evolution, and spatial and spatio-temporal patterns. To support

data scientists who are studying network evolution, there is a need

to develop scalable and generalizable systems. Tangible systems

progress in turn depends on the availability of standardized datasets

on which performance can be tested.

In this work, we make progress towards a data generator for

evolving property graphs, which represent evolution of graph topol-

ogy, and of vertex and edge attributes. We propose an attribute-

based model of preferential attachment, and instantiate this model

on a co-authorship network derived from DBLP, with attributes

representing publication venues of the authors. We show that this

attribute-based model predicts which edges are created more ac-

curately than a structure-only model. Finally, we demonstrate that

synthetic graphs are indeed useful for evaluating performance of

evolving graph query primitives.

ACM Reference Format:

Amir Aghasadeghi and Julia Stoyanovich. 2018. Generating Evolving Prop-

erty Graphs with Attribute-Aware Preferential Attachment. In DBTest’18:

Workshop on Testing Database Systems , June 15, 2018, Houston, TX, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3209950.3209954

1 INTRODUCTION

Graphs are used to represent a plethora of phenomena, including

the Web, social networks, biological pathways, transportation net-

works, and semantic knowledge bases. Considerable research and

engineering effort is being devoted to developing effective and effi-

cient graph representations and analytics. The phenomena that are

represented by graphs can change over time. Consequently, many

interesting questions about graphs, and about the networks they

represent, are related to their evolution rather than to their static

state. Researchers study graph evolution rate and mechanisms,

(e.g., [1, 8]), the impact of specific events on evolution (e.g., [7]),

and spatial and spatio-temporal patterns (e.g., [15]). Some areas

∗This work was supported in part by NSF Grant No. 1750179.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DBTest’18, June 15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5826-2/18/06. . . $15.00
https://doi.org/10.1145/3209950.3209954

where evolving graphs are being studied are social network analy-

sis [12, 16, 17, 26], biological networks [4, 5, 27] and the Web [7, 23].

To support data scientists who are studying graph evolution,

there is a need to develop scalable and generalizable systems. Tan-

gible systems progress in turn depends on the availability of stan-

dardized datasets on which performance can be tested. In this work,

we make progress towards a data generator for evolving property

graphs [22]. Such graphs represent evolution of (1) graph topology

and (2) of vertex and edge attributes. Our ultimate goal is to develop

a flexible and principled graph generation method that can be used

to simulate both dimensions of graph evolution. With this method

in hand, we can generate synthetic graphs with different properties,

such as size, density, clustering coefficient, or degree distribution,

and judiciously evaluate performance of graph analysis primitives

with respect to these properties. In this paper, we focus on an im-

portant aspect of this challenging task, and propose a preferential

attachment model that uses both graph structure and information

derived from vertex attributes.

Our model is based on the observation that the likelihood that a

pair of vertices will form a connection may depend on the values of

their attributes. For example, it is conceivable that two individuals

are more likely to become friends if they speak the same language

or live in close geographic proximity of each other. It is also conceiv-

able that two individuals are less likely to become friends if they

are members of opposing political parties. In general, information

derived from attributes may increase, decrease, or have no impact

on the likelihood that a pair of vertices will form a connection. The

impact of attributes on this likelihood can be learned by observing

past evolution, and incorporated into the model.

Related work. We leverage a rich body of work on generative

models for graphs [1, 2, 11, 14, 17, 19, 28, 29]. Such models were

used to simulate network evolution in different domains, including

computer networks and the Web [11, 29], citation graphs [19], and

social networks [17]. Notably, this work focuses solely on network

structure, and did not account for vertex and edge attributes. As we

will show in this paper, complementing structural information with

information based on attribute evolution, helps reconstruct network

structure more accurately, and is therefore potentially more useful

for testing performance of query workloads over evolving graphs.

Another line of work focuses on generating property graphs,

with attributes on nodes and edges [10, 25]. For example, the

LDBC Social Network Benchmark (SNB) [10] is a realistic synthetic

social network with multiple entity types such as person, post and

comment. An interesting aspect of SNB is that attributes of the

entities are used when creating relationship edges between them

(e.g., it is more likely for people from the same school to become

friends). SNB does not use a known generative model but rather

generates the power law distribution of vertex degrees directly.

Further, although SNB entities have a creation time as one their

attributes, these are generated uniformly at random.

This treatment of temporal information is problematic because,

as it was shown in [17, 19, 29], vertex and edge creation times are

not uniformly distributed in real evolving graphs. In our work, it is

our goal to leverage a known and principled generative model for

the generation of evolving property graphs such as the SNB. Specif-

ically, we focus on preferential attachment models, and study and

extend random walk [29], arguably the most fundamental model in

this class, with attribute information.

We note that another family of generative models has been pro-

posed recently, based on using a matrix operation, the Kronecker

product, to generate graphs termed łKronecker graphsž [18]. These

graphs were used in scope of TrillionG, a scalable graph genera-

tor [24]. While the scalability of this model is appealing, it is not

immediately clear how to extend Kronecker graphs to incorporate

information about attributes, and we leave an investigation of this

model to future work.

Contributions. We start by presenting preliminaries on evolving

property graphs and on preferential attachment models (Section 2).

We then present several important contributions towards a data

generator for evolving property graphs. We propose an attribute-

aware model of preferential attachment and develop a scalable

distributed implementation of this model (Section 3). We instantiate

this model on a co-authorship network derived from DBLP, with

attributes representing publication venues of the authors (Section 4).

We then demonstrate that synthetic graphs are indeed useful for

evaluating performance of graph query primitives (Section 5). We

conclude with a discussion of future work (Section 6).

2 PRELIMINARIES

2.1 Evolving Property Graphs

The evolving graphs we generate in this work adhere to the TGraph

model, a logical model of an evolving graph proposed in [22]. A

TGraph represents evolution of graph topology and of vertex and

edge properties. TGraph extends the (non-temporal) property graph

model [3], assigning periods of validity to graph nodes, edges and

their properties.

We assume a linearly ordered discrete time domain Ω
T .

Definition 2.1. TGraph T is a 6-tuple (V ,E, P , ρ, ξT , λT), where:

V is a finite set of vertices, E is a finite set of edges, and P is a

set finite set of properties; ρ : E → (V × V) is a total function

that maps a directed edge to its source and destination vertex;

ξT : (V ∪ E) × Ω
T → B is a total function that maps a vertex or an

edge and a time point to a Boolean, indicating existence of the vertex

or edge during the time point; and λT : (V ∪ E) × P × ΩT → Val is

a partial function that maps a vertex or an edge, a property, and a

time point to a value of the property at that particular time point.

Definition 2.1 uses a point-based representation of time to elimi-

nate any ambiguity. For compactness, we use an interval-based rep-

resentation: time intervals over ΩT × Ω
T represent the constituent

time instants. Interval-based representations do not add expressive

power to the model [9]. Following the SQL:2011 standard, we use

closed-open intervals.

TGraph is manipulated by the operators of temporal graph alge-

bra (TGA), also described in [22], in accordance with point semantics.

This semantics has two properties. The first, termed snapshot re-

ducibility, requires that the result of applying a temporal operator

to a database is equivalent to applying its non-temporal variant to

each database state [6]. The second, termed extended snapshot re-

ducibility, requires that timestamps are made available to operators

by propagating time as data. This property allows users to reference

time explicitly in predicates, but not manipulate time directly [6].

To support point semantics, TGraph must be temporally coalesced:

value-equivalent temporally-adjacent facts must be represented by

a single fact, with the corresponding period of validity. We will

showcase the usefulness of our data generator on several operators

of TGA in Section 5.

A snapshot of a TGraph T, denoted τp (T), is a conventional (non-

temporal) property graph that represents the state of T at a specific

time instant p. Here, τ is the time-slice operator that is commonly

used in temporal languages.

Evolving graph model restrictions. The graph generator of

Section 4 will produce valid TGraphs, but under the restriction that

graph topology is growth-only. That is, while Definition 2.1 allows

a vertex (resp. an edge) to exist during multiple non-overlapping

time periods, in this work we will restrict our attention to graphs

in which a vertex or an edge persists continuously form the time

when it was created. Further, while TGraph is a multi-graph (its

vertices and edges have identity, and multiple edges may connect a

pair of vertices), in this work we focus on graphs in which at most

one edge connects a given pair of vertices. We leave supporting

deletion events, and handling multi-graphs, to future work.

2.2 Counting and Closing Triangles

In graph theory, a triangle is a triple of vertices (x ,y, z) such that

every pair of vertices in the triple is connected by an edge.

An important primitive in preferential attachment models is

closing a triangle. A triple (x ,y, z) is a possible triangle if there

exists a path x → y → z but there does not exist an edge (x , z).

We refer to the pair (x , z) as a candidate pair. If an edge (x , z) is

created, at some later time point, we will refer to this edge as a

triangle-closing edge at that time point.

In accordance with Definition 2.1, we record graph evolution at

discrete time points. When generating T, we count triangles and

possible triangles, or add triangle-closing edges, in a given snapshot

τp (T) at time p. We use p − 1 and p to denote two consecutive time

points during which some change occurred in T.

Let us denote byCPp−1 the set of candidate triangle-closing pairs

at time p − 1, and byCEp the set of triangle-closing edges that were

added at time p. We will denote by P(△p) the probability that a

possible triangle is closed at time p, and estimate it as:

P̂(△p) =
|CEp |

|CPp−1 |
(1)

P̂(△p) is an estimate both because it is computed from observa-

tions, and because the number of possible (resp. actual) triangles

and the number of candidate pairs (resp. closing edges) is not the

same. For example, we may have two paths of length two connect-

ing a given pair of vertices (x → z → y and x → w → y): two

possible triangles and a single candidate pair (x ,y) that closes both.

Equation 1 estimates the over-all probability of closing a triangle.

We are also interested in estimating the probability of closing a

triangle with edge (x ,y) at time p, conditioned on the pair-wise

similarity between vertices x andy at timep−1. This similarity is de-

fined with respect to the attributes of x and y, and is denoted by the

random variable Sp−1. The conditional triangle closing probability

is estimated as:

P̂(△p | Sp−1) =
|{(x ,y) ∈ CEp ∧ sim(x ,y) = Sp−1}|

|{(x ,y) ∈ CPp−1 ∧ sim(x ,y) = Sp−1}|
(2)

3 ATTRIBUTE-BASED PREFERENTIAL

ATTACHMENT

We now describe our proposed attribute-based preferential attach-

ment model (ABA). This model builds on random walk (RW) [29] Ð

a simple model that underlies most other generative models, and

on recursive search (RS) [29], which extends RW.

RW and RS are generative models that build a graph by adding

vertices, in some pre-specified order, connecting the newly-added

vertices to the graph, and closing triangles. Both RW and RS add

and connect vertices one at a time. RW then performs a random

walk on the graph: every time it visits a previously unvisited vertex,

it creates a new edge with probability q, closing a triangle. Algo-

rithm 1 gives the pseudocode of RW. RS is similar to RW, but it

follows multiple paths through the graph simultaneously during

the walking step, closing triangles with probability q.

Our algorithm, which we call attribute-based attachment (ABA),

differs from RW and RS in that a batch of vertices is added to the

graph at each iteration. Another assumption of the RW model that

we relax is that each vertex will create all of its edges in one single

iteration (immediately after it is added). This assumption holds

true in some cases (e.g., in citation graphs), but not in many others,

including collaboration graphs and social networks. In contrast to

RW and RW, ABA will attempt to close all possible triangles in the

graph at each iteration.

Another important component of ABA, which makes it attribute-

based, is that edge-creation probability q will not be uniform for

the entire graph. Rather, it will depend on the similarity between

vertices x and y for a candidate edge (x ,y).

Recall our discussion of triangles, possible triangles, and estimat-

ing a triangle closing probability from Section 2.2. Figure 2 presents

these probability estimates derived from the co-authoriship graph

of DBLP, for 2006-2016. In this graph, vertices represent authors,

and undirected edges represent co-authorship. For each author, we

compute a venues attribute Ð a set of venues in which the author

published up to and including a given year. We compute pair-wise

similarities based on the values of the venues attribute (details

will be given in Section 4.1). Probability estimates in Figure 2 are

computed using Equation 1 for the blue line and Equation 2 for

the other lines. We observe that the probability of closing a trian-

gle with edge (x ,y) at time p does depend on simp−1(x ,y). When

simp−1(x ,y) is below 0.25, P̂(△p | Sp−1 ∈ [0.0.25]) is consistently

lower than the attribute-independent estimate P̂(△p). On the other

hand, sim(x ,y) ≥ 0.25 at time p − 1 leads to a higher probability of

closing (x ,y) at time p.

Based on this result, we incorporate pair-wise similarities into

the edge selection process of ABA: instead of using q = P̂(△p) for

all edges, we use different probabilities based on sim(x ,y).

Graph generator restrictions. We do not study the vertex ad-

dition mechanism in this paper, and focus on the edge creation

probabilities during the walking step. Rather than connecting a

new vertex to a random vertex in the existing graph, we take as

input the set of new vertices together with their edges in the snap-

shot in which these edges first appeared, and then perform the

walking step on the created graph. We also do not model attribute

evolution in this work. As another input we take the value of the

evolving attribute based on which we compute similarity. We start

our generative models from the original graph snapshot in the year

2005 and from that we generate the rest of the snapshots.

Algorithm 1 Random Walk

Require: Set of vertices V ′, edge creation probability q.

1: initialize G(V = V ′.дetVertex(),E = ∅)

2: while x = V ′.дetVertex() do

3: V ← x

4: y = V .selectRandomElement()

5: E ← (x ,y)

{Generate a random number between 0 and 1.}

6: while (q ≤ Û (0, 1)) do

7: z = G .selectRandomNeiдhbor (y)

{A neighbor of y is reachable from y by an outgoing edge.

Close the triangle (x,y,z).}

8: E ← (x , z)

9: y = z

10: end while

11: end while

4 DATA GENERATION

Experimental Setup. For all experiments, we used a 16-slave in-

house Open Stack cloud. Each of our nodes has four cores and 30

GB of RAM. GNU/Linux Ubuntu 14.04, Spark v2.01. stand alone

cluster, and Hadoop2.6were used. We ran our experiments using

Portal, a Spark-based system for querying evolving property graphs

[21, 22] and GraphX [13]. Reported running times are averages of

three runs. Because of Spark lazy evaluation, we use a materialize

operation at the end of our timed experiments.

4.1 Data Gathering

For this research, we needed an evolving graph of a reasonable

size (not too small) with specific characteristics: the graph must

have attributes at least on the vertices, and it must have temporal

information for vertices, edges and attributes. We generated such a

dataset from DBLP [20]. Using the DBLP XML dump file we created

a growth-only collaboration TGraph (per Section 2.1), with authors

as vertices and with undirected co-authorship edges. Frequency

of change in this graph is 1 year, and so periods of validity of

vertices, edges and attribute values are at least one year. Note that

1-year temporal resolution is not an intrinsic restriction either of

