Generating Evolving Property Graphs with
Attribute-Aware Preferential Attachment

Amir Aghasadeghi
Drexel University
Philadelphia, PA
aa3657@drexel.edu

ABSTRACT

In recent years there has been significant interest in evolution-
ary analysis of large-scale networks. Researchers study network
evolution rate and mechanisms, the impact of specific events on
evolution, and spatial and spatio-temporal patterns. To support
data scientists who are studying network evolution, there is a need
to develop scalable and generalizable systems. Tangible systems
progress in turn depends on the availability of standardized datasets
on which performance can be tested.

In this work, we make progress towards a data generator for
evolving property graphs, which represent evolution of graph topol-
ogy, and of vertex and edge attributes. We propose an attribute-
based model of preferential attachment, and instantiate this model
on a co-authorship network derived from DBLP, with attributes
representing publication venues of the authors. We show that this
attribute-based model predicts which edges are created more ac-
curately than a structure-only model. Finally, we demonstrate that
synthetic graphs are indeed useful for evaluating performance of
evolving graph query primitives.

ACM Reference Format:

Amir Aghasadeghi and Julia Stoyanovich. 2018. Generating Evolving Prop-
erty Graphs with Attribute-Aware Preferential Attachment. In DBTest’18:
Workshop on Testing Database Systems , June 15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3209950.3209954

1 INTRODUCTION

Graphs are used to represent a plethora of phenomena, including
the Web, social networks, biological pathways, transportation net-
works, and semantic knowledge bases. Considerable research and
engineering effort is being devoted to developing effective and effi-
cient graph representations and analytics. The phenomena that are
represented by graphs can change over time. Consequently, many
interesting questions about graphs, and about the networks they
represent, are related to their evolution rather than to their static
state. Researchers study graph evolution rate and mechanisms,
(e.g., [1, 8]), the impact of specific events on evolution (e.g., [7]),
and spatial and spatio-temporal patterns (e.g., [15]). Some areas

*This work was supported in part by NSF Grant No. 1750179.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DBTest’18, June 15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5826-2/18/06...$15.00
https://doi.org/10.1145/3209950.3209954

Julia Stoyanovich*
Drexel University
Philadelphia, PA
stoyanovich@drexel.edu

where evolving graphs are being studied are social network analy-
sis [12, 16, 17, 26], biological networks [4, 5, 27] and the Web [7, 23].

To support data scientists who are studying graph evolution,
there is a need to develop scalable and generalizable systems. Tan-
gible systems progress in turn depends on the availability of stan-
dardized datasets on which performance can be tested. In this work,
we make progress towards a data generator for evolving property
graphs [22]. Such graphs represent evolution of (1) graph topology
and (2) of vertex and edge attributes. Our ultimate goal is to develop
a flexible and principled graph generation method that can be used
to simulate both dimensions of graph evolution. With this method
in hand, we can generate synthetic graphs with different properties,
such as size, density, clustering coefficient, or degree distribution,
and judiciously evaluate performance of graph analysis primitives
with respect to these properties. In this paper, we focus on an im-
portant aspect of this challenging task, and propose a preferential
attachment model that uses both graph structure and information
derived from vertex attributes.

Our model is based on the observation that the likelihood that a
pair of vertices will form a connection may depend on the values of
their attributes. For example, it is conceivable that two individuals
are more likely to become friends if they speak the same language
or live in close geographic proximity of each other. It is also conceiv-
able that two individuals are less likely to become friends if they
are members of opposing political parties. In general, information
derived from attributes may increase, decrease, or have no impact
on the likelihood that a pair of vertices will form a connection. The
impact of attributes on this likelihood can be learned by observing
past evolution, and incorporated into the model.

Related work. We leverage a rich body of work on generative
models for graphs [1, 2, 11, 14, 17, 19, 28, 29]. Such models were
used to simulate network evolution in different domains, including
computer networks and the Web [11, 29], citation graphs [19], and
social networks [17]. Notably, this work focuses solely on network
structure, and did not account for vertex and edge attributes. As we
will show in this paper, complementing structural information with
information based on attribute evolution, helps reconstruct network
structure more accurately, and is therefore potentially more useful
for testing performance of query workloads over evolving graphs.

Another line of work focuses on generating property graphs,
with attributes on nodes and edges [10, 25]. For example, the
LDBC Social Network Benchmark (SNB) [10] is a realistic synthetic
social network with multiple entity types such as person, post and
comment. An interesting aspect of SNB is that attributes of the
entities are used when creating relationship edges between them
(e.g., it is more likely for people from the same school to become
friends). SNB does not use a known generative model but rather

generates the power law distribution of vertex degrees directly.
Further, although SNB entities have a creation time as one their
attributes, these are generated uniformly at random.

This treatment of temporal information is problematic because,
as it was shown in [17, 19, 29], vertex and edge creation times are
not uniformly distributed in real evolving graphs. In our work, it is
our goal to leverage a known and principled generative model for
the generation of evolving property graphs such as the SNB. Specif-
ically, we focus on preferential attachment models, and study and
extend random walk [29], arguably the most fundamental model in
this class, with attribute information.

We note that another family of generative models has been pro-
posed recently, based on using a matrix operation, the Kronecker
product, to generate graphs termed “Kronecker graphs” [18]. These
graphs were used in scope of TrillionG, a scalable graph genera-
tor [24]. While the scalability of this model is appealing, it is not
immediately clear how to extend Kronecker graphs to incorporate
information about attributes, and we leave an investigation of this
model to future work.

Contributions. We start by presenting preliminaries on evolving
property graphs and on preferential attachment models (Section 2).
We then present several important contributions towards a data
generator for evolving property graphs. We propose an attribute-
aware model of preferential attachment and develop a scalable
distributed implementation of this model (Section 3). We instantiate
this model on a co-authorship network derived from DBLP, with
attributes representing publication venues of the authors (Section 4).
We then demonstrate that synthetic graphs are indeed useful for
evaluating performance of graph query primitives (Section 5). We
conclude with a discussion of future work (Section 6).

2 PRELIMINARIES

2.1 Evolving Property Graphs

The evolving graphs we generate in this work adhere to the TGraph
model, a logical model of an evolving graph proposed in [22]. A
TGraph represents evolution of graph topology and of vertex and
edge properties. TGraph extends the (non-temporal) property graph
model [3], assigning periods of validity to graph nodes, edges and
their properties.

We assume a linearly ordered discrete time domain Q7.

Definition 2.1. TGraph T is a 6-tuple (V, E, P, p, fT,)LT), where:
V is a finite set of vertices, E is a finite set of edges, and P is a
set finite set of properties; p : E — (V X V) is a total function
that maps a directed edge to its source and destination vertex;
ET . (VUE) x QT — Bis a total function that maps a vertex or an
edge and a time point to a Boolean, indicating existence of the vertex
or edge during the time point; and AT : (VUE)x Px QT — Val is
a partial function that maps a vertex or an edge, a property, and a
time point to a value of the property at that particular time point.

Definition 2.1 uses a point-based representation of time to elimi-
nate any ambiguity. For compactness, we use an interval-based rep-
resentation: time intervals over QT x QT represent the constituent
time instants. Interval-based representations do not add expressive
power to the model [9]. Following the SQL:2011 standard, we use
closed-open intervals.

TGraph is manipulated by the operators of temporal graph alge-
bra (TGA), also described in [22], in accordance with point semantics.
This semantics has two properties. The first, termed snapshot re-
ducibility, requires that the result of applying a temporal operator
to a database is equivalent to applying its non-temporal variant to
each database state [6]. The second, termed extended snapshot re-
ducibility, requires that timestamps are made available to operators
by propagating time as data. This property allows users to reference
time explicitly in predicates, but not manipulate time directly [6].
To support point semantics, TGraph must be temporally coalesced:
value-equivalent temporally-adjacent facts must be represented by
a single fact, with the corresponding period of validity. We will
showcase the usefulness of our data generator on several operators
of TGA in Section 5.

A snapshot of a TGraph T, denoted 7,(T), is a conventional (non-
temporal) property graph that represents the state of T at a specific
time instant p. Here, 7 is the time-slice operator that is commonly
used in temporal languages.

Evolving graph model restrictions. The graph generator of
Section 4 will produce valid TGraphs, but under the restriction that
graph topology is growth-only. That is, while Definition 2.1 allows
a vertex (resp. an edge) to exist during multiple non-overlapping
time periods, in this work we will restrict our attention to graphs
in which a vertex or an edge persists continuously form the time
when it was created. Further, while TGraph is a multi-graph (its
vertices and edges have identity, and multiple edges may connect a
pair of vertices), in this work we focus on graphs in which at most
one edge connects a given pair of vertices. We leave supporting
deletion events, and handling multi-graphs, to future work.

2.2 Counting and Closing Triangles

In graph theory, a triangle is a triple of vertices (x, y, z) such that
every pair of vertices in the triple is connected by an edge.

An important primitive in preferential attachment models is
closing a triangle. A triple (x,y,z) is a possible triangle if there
exists a path x — y — z but there does not exist an edge (x, z).
We refer to the pair (x, z) as a candidate pair. If an edge (x, z) is
created, at some later time point, we will refer to this edge as a
triangle-closing edge at that time point.

In accordance with Definition 2.1, we record graph evolution at
discrete time points. When generating T, we count triangles and
possible triangles, or add triangle-closing edges, in a given snapshot
7p(T) at time p. We use p — 1 and p to denote two consecutive time
points during which some change occurred in T.

Let us denote by CPp,_; the set of candidate triangle-closing pairs
at time p — 1, and by CE,, the set of triangle-closing edges that were
added at time p. We will denote by P(2,) the probability that a
possible triangle is closed at time p, and estimate it as:

1)

ﬁ(Ap) is an estimate both because it is computed from observa-
tions, and because the number of possible (resp. actual) triangles
and the number of candidate pairs (resp. closing edges) is not the

same. For example, we may have two paths of length two connect-
ing a given pair of vertices (x - z —» yand x - w — y): two
possible triangles and a single candidate pair (x, y) that closes both.

Equation 1 estimates the over-all probability of closing a triangle.
We are also interested in estimating the probability of closing a
triangle with edge (x,y) at time p, conditioned on the pair-wise
similarity between vertices x and y at time p—1. This similarity is de-
fined with respect to the attributes of x and y, and is denoted by the
random variable S,—1. The conditional triangle closing probability
is estimated as:

[{(x.y) € CEp A sim(x,y) = Sp-1}|

(Gey) € CPyy Asim(r.g) = Sy}l 2

p(Ap | Sp-1) =

3 ATTRIBUTE-BASED PREFERENTIAL
ATTACHMENT

We now describe our proposed attribute-based preferential attach-
ment model (ABA). This model builds on random walk (RW) [29] —
a simple model that underlies most other generative models, and
on recursive search (RS) [29], which extends RW.

RW and RS are generative models that build a graph by adding
vertices, in some pre-specified order, connecting the newly-added
vertices to the graph, and closing triangles. Both RW and RS add
and connect vertices one at a time. RW then performs a random
walk on the graph: every time it visits a previously unvisited vertex,
it creates a new edge with probability g, closing a triangle. Algo-
rithm 1 gives the pseudocode of RW. RS is similar to RW, but it
follows multiple paths through the graph simultaneously during
the walking step, closing triangles with probability g.

Our algorithm, which we call attribute-based attachment (ABA),
differs from RW and RS in that a batch of vertices is added to the
graph at each iteration. Another assumption of the RW model that
we relax is that each vertex will create all of its edges in one single
iteration (immediately after it is added). This assumption holds
true in some cases (e.g., in citation graphs), but not in many others,
including collaboration graphs and social networks. In contrast to
RW and RW, ABA will attempt to close all possible triangles in the
graph at each iteration.

Another important component of ABA, which makes it attribute-
based, is that edge-creation probability q will not be uniform for
the entire graph. Rather, it will depend on the similarity between
vertices x and y for a candidate edge (x, y).

Recall our discussion of triangles, possible triangles, and estimat-
ing a triangle closing probability from Section 2.2. Figure 2 presents
these probability estimates derived from the co-authoriship graph
of DBLP, for 2006-2016. In this graph, vertices represent authors,
and undirected edges represent co-authorship. For each author, we
compute a venues attribute — a set of venues in which the author
published up to and including a given year. We compute pair-wise
similarities based on the values of the venues attribute (details
will be given in Section 4.1). Probability estimates in Figure 2 are
computed using Equation 1 for the blue line and Equation 2 for
the other lines. We observe that the probability of closing a trian-
gle with edge (x, y) at time p does depend on simp—1(x, y). When
simp-1(x,y) is below 0.25, P(AP | Sp-1 € [0.0.25]) is consistently
lower than the attribute-independent estimate P(Ap). On the other

hand, sim(x, y) > 0.25 at time p — 1 leads to a higher probability of
closing (x, y) at time p.

Based on this result, we incorporate pair-wise similarities into
the edge selection process of ABA: instead of using q = f’(Ap) for
all edges, we use different probabilities based on sim(x, y).

Graph generator restrictions. We do not study the vertex ad-
dition mechanism in this paper, and focus on the edge creation
probabilities during the walking step. Rather than connecting a
new vertex to a random vertex in the existing graph, we take as
input the set of new vertices together with their edges in the snap-
shot in which these edges first appeared, and then perform the
walking step on the created graph. We also do not model attribute
evolution in this work. As another input we take the value of the
evolving attribute based on which we compute similarity. We start
our generative models from the original graph snapshot in the year
2005 and from that we generate the rest of the snapshots.

Algorithm 1 Random Walk

Require: Set of vertices V', edge creation probability g.
1: initialize G(V = V’.getVertex(), E = 0)
2: while x = V’.getVertex() do

3: Ve—x
4y = V.selectRandomElement()
550 E e« (x,y)

{Generate a random number between 0 and 1.}
6. while (g < U(0,1)) do
7: z = G.selectRandomNeighbor(y)
{A neighbor of y is reachable from y by an outgoing edge.
Close the triangle (x,y,z).}
8: E « (x,2)
9: y=z
10: end while
11: end while

4 DATA GENERATION

Experimental Setup. For all experiments, we used a 16-slave in-
house Open Stack cloud. Each of our nodes has four cores and 30
GB of RAM. GNU/Linux Ubuntu 14.04, Spark v2.01. stand alone
cluster, and Hadoop2.6were used. We ran our experiments using
Portal, a Spark-based system for querying evolving property graphs
[21, 22] and GraphX [13]. Reported running times are averages of
three runs. Because of Spark lazy evaluation, we use a materialize
operation at the end of our timed experiments.

4.1 Data Gathering

For this research, we needed an evolving graph of a reasonable
size (not too small) with specific characteristics: the graph must
have attributes at least on the vertices, and it must have temporal
information for vertices, edges and attributes. We generated such a
dataset from DBLP [20]. Using the DBLP XML dump file we created
a growth-only collaboration TGraph (per Section 2.1), with authors
as vertices and with undirected co-authorship edges. Frequency
of change in this graph is 1 year, and so periods of validity of
vertices, edges and attribute values are at least one year. Note that
1-year temporal resolution is not an intrinsic restriction either of

10°
-~ vertices -+ closing triangles
edges -« possible triangles
108 J
€ 107 4
=]
o
(9
° W
105 J

2006 2008 2010 2012 2014 2016
year

Figure 1: Number of vertices, edges, closing triangles, and
possible closing triangles in DBLP, over time. Note logarith-
mic scale on the y-axis.

the TGraph model or of the attribute-based attachment generative
model, but rather is a property of the dataset with which we work.

An author vertex is valid from the year of the author’s first
publication and until 2016 (the end of the life-span of the TGraph).
A collaboration edge between a pair of authors is valid from the
year when the authors first published together and until 2016. Each
author vertex has an evolving attribute called venues that represents
the set of venues where the author has published papers, up to an
including the given year.

Our dataset contains 12 yearly snapshots, from 2005 through
2016. We use the initial snapshot, 2005, for estimation only, and
start predicting edges from 2006. Table 1 shows dataset statistics.

Table 1: DBLP Statistics

Time Span 2006- 2016
Number of Authors 1.3M
Number of Collaborations | 10M
Number of Venues 1.6K
Number of Keywords 742K

As discussed in Section 3, our graph generation model and many
other studied generation models (those based on preferential attach-
ment) use triangle closing as their main method of edge creation.
We introduced possible triangles and triangle-closing edges in Sec-
tion 2.2. Figure 1 shows the number of vertices, number of edges,
number of possible triangles and number of closing triangles for
each snapshot of DBLP (note that the y-axis is in logarithmic scale).
The number of possible triangles is an order of magnitude larger
than the other statistics.

Closing triangles based on similarity. Our main assumption in
this paper is that edge creation between more similar vertices is
more probable. We studied this assumption by calculating Jaccard
similarities on the venues attribute among the candidate pairs in
each snapshot of the graph, and using these to estimate the condi-
tional probability of closing a triangle. We grouped similarity values
in three buckets [0, 0.25), [0.25, 0.5), [0.5, 1]. Figure 2 shows closing

0.10

- any sim
_] sim = [0,0.25)
g 5 0.08 -+ sim = [0.25,0.50)
=&

- sim > 0.50

0.06 -
0.02 ’\K‘\'—"\o——*—-o—_‘_._.__q

0.00

Venues S
probabil

2006 2008 2010 2012 2014 2016

Figure 2: Triangle-closing probabilities in DBLP: any sim is
per Equation 1, other series are per Equation 2.

triangle probabilities for each of these buckets (per Equation 2). We
also calculated unconditional triangle closing probability according
to equation 1 (“any sim” in Figure 2). Based on this experiments, we
find that higher similarity between a pair of vertices in a candidate
pair yields a higher probability for a triangle to be closed.

4.2 Graph Generation

We now describe how we instantiate the graph generation pro-
cess proposed in Section 3 on DBLP. In the generation process, we
calculated average triangle closing probability for each similarity
value range (bucket). Using those average probabilities, we per-
form the walking step of the Attribute-based Attachment (ABA)
model. In addition to estimating probabilities from DBLP based on
venues, we also computed reduced probabilities by dividing venues
probabilities by four (we call this “Reduced Venues”), and studied
the effect of this change on graph characteristics. We also gener-
ate a structure-only evolving graph (computing edge probabilities
irrespective of vertex similarity), and use it in our comparison.

Figure 3 shows the number of edges for our different generated
graphs. In this figure, “DBLP” shows the number of edges in the
original dataset, and “Input” is the number of initial edges added to
the graph when vertices are added. Since the number of vertices is
the same in all graphs, we found the number of edges more infor-
mative than graph density. As expected, “Structure” and “Venues”
models follow the same trend as the original DBLP, while “Reduced
Venues” produces fewer edges. Note also that “Structure” approxi-
mates the total number of edges more closely than “Venues” until
2014. However, as we will show next, “Venues” is more accurate in
deciding which edges to create.

Indeed, it turns out that the attribute-based model preserves the
attribute similarity distribution better. To show this, we calculated
the conditional triangle closing probability using venues similar-
ity and structure similarity, and compare these to the real graph.
Figure 4 shows the result — the mean square error (MSE) for those
probabilities between the original graph and the generated model
in each generated snapshot. We calculated MSE by comparing each
similarity bucket probability of DBLP with the generated model,
and averaging the error among all buckets for each snapshot. As
can be seen, while the structure-only model works fairly well to re-
construct original probabilities, the attribute-based model preserves
the original distribution better than the structure-only model — its
error is consistently lower.

125M1 o |nput
10.0M- DBLP

n —=— Structure

% 7.5M{ —— Venues

()

£ s50M/ Reduced Venues
2.5M+

0.0M ; v " : ; "
2006 2008 2010 2012 2014 2016

year

Figure 3: Number of edges for different generation models.

Finally, we find that the running time of our graph generator
is reasonable: it takes 301 seconds in total to generate the graph
using only the graph structure, 1028 seconds with venue-based
similarity, and 928 seconds with reduced venue-based similarity.
The bottleneck is computing pair-wise similarities between vertices
in all candidate pairs, and so the structure-only variant is fastest
because it does not perform this computation. As expected, venue-
based similarity takes longer than its reduced variant, because fewer
candidate pairs of vertices are considered.

5 EVALUATING QUERY PERFORMANCE

In this section we demonstrate that the graphs we generated in
Section 4.2 are indeed useful for testing performance of evolving
graph query primitives. The primitives we compute also allow us to
investigate other interesting characteristics of the generated graph:
average degree and clustering coefficient.

To compute average degree and clustering coefficient over time
we used the Portal System [21]. We follow two goals in this ex-
periment: first, to see how the generate models differ from the real
graph, and second, to compare the execution time of each test on
our different models.

Listing 1: Portal query for average vertex degree.

//load data

val g = GraphLoader.buildVE(data, -1, -1, range)

//compute degree per vertex

val degs = g.aggregateMessages[Int](sendMsg = (et =>

Iterator((et.dstld, 1), (et.srcld,1))), (a,b) => atb, 0,
— TripletFields.None)

//compute one vertex per rg with sum of degrees and
< count of vertices

val rgs = degs.vmap((vid, intv, attr) => (attr._2, 1),
— (0,0))

.createAttributeNodes((a, b) => (a._1+b._1, a._2+b.
— _2))((vid,attr) => 1L)

val result = rgs.vmap((vid, intv, attr) => (attr._1 /
— attr._2.toDouble), 0.0)

result.vertices

Figure 5 shows the running time of the average degree query over
time on each generated model, and the values of average degree

0.10
—e— Structure Venues

0.081

0.06 1

mse

0.04

0.02 1

0.00 — : : . . :
2006 2008 2010 2012 2014 2016

year

Figure 4: Mean Square Error (MSE) between probabilities of
DBLP (ground truth), and graphs generated using structure
only and venue-based similarity.

over time for all models. As expected, the TGraph generated using
venue similarity and the structure only TGraph yield result similar
to DBLP, but the reduced probability TGraph has lower average
degree. The execution times for different models are similar, which
can be explained by the fact that all models use same set of vertices
and have a relatively similar number of edges.

We also calculated the average clustering coefficient over time.
Figure 6 shown the execution time and actual average values of
the clustering coefficient over time for our graphs. As can be seen,
the model that is less dense (“Reduced Venues”) has a higher clus-
tering coefficient. This is because graphs that are less dense have
fewer candidate pairs (the denominators of Equations 1 and 2 are
comparatively lower).

Listing 2: Portal query for clustering coefficient distribution.

//load data

val g = GraphLoader.buildHG(data, -1, -1, range)

//compute clustering coefficient per vertex

val coeff = g.clusteringCoefficient()

//compute one vertex per rg per clustering
— coefficient range

//i.e., 0-0.1, 0.1-0.2, etc.

val distro = coeff.vmap((vid, intv, attr) => (math.
— floor(attr._2%10)/10, 1),

(0.90,0)).createAttributeNodes((a,b) => (a._1, a._2 +
— b._2))((vid,attr) => (attr._1%*10).tolLong)

distro.vertices

6 CONCLUSIONS AND FUTURE WORK

In this paper we presented a data generator for evolving property
graphs, which represent evolution of graph topology, and of vertex
and edge attributes. We proposed an attribute-based model of pref-
erential attachment and instantiated this model on a co-authorship
dataset derived from DBLP, with attributes representing publication
venues. We demonstrated that synthetic graphs are indeed useful
for evaluating performance of graph query primitives.

Much follow-up work remains. We will investigate automatic
methods for attaching new nodes to the graph, and for modeling

—e— Structure —— Reduced Venues

Venues —&— DBLP

0 80 1

(O]

jS

= 40

(0]

g

o 151

[J]

©

2 10

© -

2006 2008 2010 2012 2014 2016
year
Figure 5: Execution time and average degree.
—e— Structure —+— Reduced Venues
Venues —— DBLP

v

(0]

£

-

S

o

(&}

o 0.251

=

)

B 0.201

35

©

2006 2008 2010 2012 2014 2016
year

Figure 6: Execution time and clustering coeflicient.

attribute value evolution. We will study how parameters of the
generator can be adjusted in a principled way to influence charac-
teristics of the resulting graphs, including size, degree distribution,
density, and clustering coefficient. Finally, we will work on defining
a workload of evolving graph query and analysis primitives.

REFERENCES

[1] Charu Aggarwal and Karthik Subbian. 2014. Evolutionary network analysis: A
survey. ACM Computing Surveys (CSUR) 47, 1 (2014), 10.

[2] Réka Albert and Albert-Laszl6 Barabasi. 2002. Statistical mechanics of complex
networks. Reviews of modern physics 74, 1 (2002), 47.

[3] Renzo Angles, Marcelo Arenas, Pablo Barcel6, Aidan Hogan, Juan L. Reutter,

and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5 (2017), 68:1-68:40. https://doi.org/10.1145/

3104031

Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. 2009. An event-based

framework for characterizing the evolutionary behavior of interaction graphs.

TKDD 3, 4 (2009). https://doi.org/10.1145/1631162.1631164

i~
st

[5] Antje Beyer, Peter Thomason, Xinzhong Li, James Scott, and Jasmin Fisher. 2010.

Mechanistic Insights into Metabolic Disturbance during Type-2 Diabetes and
Obesity Using Qualitative Networks. T. Comp. Sys. Biology 12 (2010), 146-162.
hitps://doi.org/10.1007/978-3-642-11712-1_4

Michael H. Béhlen, Christian S. Jensen, and Richard T. Snodgrass. 2009. Temporal
Compatibility. Springer US, Boston, MA, 2936-2939. https://doi.org/10.1007/
978-0-387-39940-9_1059

Jeffrey Chan, James Bailey, and Christopher Leckie. 2008. Discovering correlated
spatio-temporal changes in evolving graphs. Knowledge and Information Systems
16, 1 (2008), 53-96. https://doi.org/10.1007/s10115-007-0117-2z

Junghoo Cho and H Garcia-Molina. 2000. The evolution of the web and
implications for an incremental crawler. VLDB °00 Proceedings of the 26th
International Conference on Very Large Data Bases (2000), 200-209. https:
//doi.org/10.1109/W1.2004.10097

Jan Chomicki. 1994. Temporal Query Languages: A Survey. In Temporal Logic, First
International Conference, ICTL *94, Bonn, Germany, July 11-14, 1994, Proceedings.
506-534. https://doi.org/10.1007/BFb0014006

Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social network
benchmark: Interactive workload. In ACM SIGMOD. ACM, 619-630.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. In ACM SIGCOMM computer communica-
tion review, Vol. 29. ACM, 251-262.

Michaela Goetz, Jure Leskovec, Mary McGlohon, and Christos Faloutsos. 2009.
Modeling Blog Dynamics. In Proceedings of the Third International Conference
on Weblogs and Social Media, ICWSM 2009, San Jose, California, USA, May 17-20,
2009. http://aaai.org/ocs/index.php/ICWSM/09/paper/view/152

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In OSDI 599-613. https://www.usenix.org/conference/
osdil4/technical-sessions/presentation/gonzalez

Pavel L Krapivsky and Sidney Redner. 2005. Network growth by copying. Physical
Review E 71, 3 (2005), 036118.

M. Lahiri and TY. Berger-Wolf. 2008. Mining Periodic Behavior in Dynamic
Social Networks. In 2008 Eighth IEEE International Conference on Data Mining.
373-382. https://doi.org/10.1109/ICDM.2008.104

Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics
of viral marketing. TWEB 1, 1 (2007). https://doi.org/10.1145/1232722.1232727
Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. 2008. Mi-
croscopic evolution of social networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 462-470.
Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos,
and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling
Networks. Journal of Machine Learning Research 11 (2010), 985-1042. https:
//doi.org/10.1145/1756006.1756039

[19] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution:

Densification and Shrinking Diameters. ACM Trans. Knowl. Discov. Data 1, 1,
Article 2 (March 2007). https://doi.org/10.1145/1217299.1217301

Michael Ley. 2009. DBLP: some lessons learned. Proceedings of the VLDB Endow-
ment 2, 2 (2009), 1493-1500.

Vera Zaychik Moffitt. 2017. Framework for Querying and Analysis of Evolving
Graphs. Ph.D. Dissertation. Drexel University.

Vera Zaychik Moffitt and Julia Stoyanovich. 2017. Temporal graph algebra. In
DBPL. 10:1-10:12. https://doi.org/10.1145/3122831.3122838

Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. 2010. Web
graph similarity for anomaly detection. J. Internet Services and Applications 1, 1
(2010), 19-30. https://doi.org/10.1007/s13174-010-0003-x

Himchan Park and Min-Soo Kim. 2017. TrillionG: A trillion-scale synthetic
graph generator using a recursive vector model. In Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 913-928.

Arnau Prat-Pérez, Joan Guisado-Gamez, Xavier Fernandez Salas, Petr Koupy,
Siegfried Depner, and Davide Basilio Bartolini. 2017. Towards a property graph
generator for benchmarking. In Proceedings of the Fifth International Workshop
on Graph Data-management Experiences & Systems. ACM, 6.

Purnamrita Sarkar, Deepayan Chakrabarti, and Michael L. Jordan. 2012. Non-
parametric Link Prediction in Dynamic Networks. In Proceedings of the 29th
International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland,
UK, June 26 - July 1, 2012. http://icml.cc/discuss/2012/828. html

Joshua M. Stuart, Eran Segal, Daphne Koller, and Stuart K. Kim. 2003. A gene-
coexpression network for global discovery of conserved genetic modules. Science
5643, 302 (2003), 249--255.

Alexei Vazquez. 2001. Disordered networks generated by recursive searches. EPL
(Europhysics Letters) 54, 4 (2001), 430.

Alexei Vazquez. 2003. Growing network with local rules: Preferential attachment,
clustering hierarchy, and degree correlations. Physical Review E 67, 5 (2003),
056104.

