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The fungal skin disease, chytridiomycosis (caused by Batrachochytrium dendrobatidis
and B. salamandrivorans), has caused amphibian declines and extinctions globally
since its emergence. Characterizing the host immune response to chytridiomycosis
has been a focus of study with the aim of disease mitigation. However, many
aspects of the innate and adaptive arms of this response are still poorly understood,
likely due to the wide range of species’ responses to infection. In this paper we
provide an overview of expected immunological responses (with inference based on
amphibian and mammalian immunology), together with a synthesis of current knowledge
about these responses for the amphibian-chytridiomycosis system. We structure our
review around four key immune stages: (1) the naive immunocompetent state, (2)
immune defenses that are always present (constitutive defenses), (3) mechanisms
for recognition of a pathogen threat and innate immune defenses, and (4) adaptive
immune responses. We also evaluate the current hot topics of immunosuppression
and immunopathology in chytridiomycosis, and discuss their respective roles in
pathogenesis. Our synthesis reveals that susceptibility to chytridiomycosis is likely to
be multifactorial. Susceptible amphibians appear to have ineffective constitutive and
innate defenses, and a late-stage response characterized by immunopathology and
Bd-induced suppression of lymphocyte responses. Overall, we identify substantial
gaps in current knowledge, particularly concerning the entire innate immune response
(mechanisms of initial pathogen detection and possible immunoevasion by Bd, degree
of activation and efficacy of the innate immune response, the unexpected absence of
innate leukocyte infiltration, and the cause and role of late-stage immunopathology in
pathogenesis). There are also gaps concerning most of the adaptive immune system
(the relative importance of B and T cell responses for pathogen clearance, the capacity
and extent of immunological memory, and specific mechanisms of pathogen-induced
immunosuppression). Improving our capacity for amphibian immunological research will
require selection of an appropriate Bd-susceptible model species, the development of
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taxon-specific affinity reagents and cell lines for functional assays, and the application of a
suite of conventional and emerging immunological methods. Despite current knowledge
gaps, immunological research remains a promising avenue for amphibian conservation

management.

Keywords: chytridiomycosis, immune, innate, adaptive, frogs, declines, amphibian, Batrachochytrium

dendrobatidis

INTRODUCTION

Two decades have passed since the discovery and
characterization of the devastating amphibian skin disease,
chytridiomycosis, caused by two unusual fungal species that
likely originated in Asia (1, 2). Batrachochytrium dendrobatidis
(hereafter Bd) was first detected in the 1990s and is now
widespread globally (3, 4), whereas B. salamandrivorans (Bsal)
primarily affects salamanders (5) and was recently described
after arriving in Europe in 2010. Chytridiomycosis is reported
to affect >350 amphibian species and has had a dramatic
worldwide impact on amphibian biodiversity, having caused
the decline and possible extinction of greater than 200 species
(6, 7). Chytridiomycosis has thus been the subject of intense
study, with research focused on understanding fungal virulence,
pathogenesis, immunology, treatment, and epidemiology
[reviewed in (8-11)]. A central aim of this research has been
finding ways to mitigate disease in the field to reduce or prevent
further species declines and extinctions (12, 13).

The evolution of resistance and/or tolerance to infection
is a key long-term goal for managing in situ amphibian
populations in regions where Bd is now enzootic (14), and
immunological research is central to this goal. A recent study
demonstrated that the fungus can maintain high virulence
post-emergence (15), which may be a result of its broad
host range (where fungal persistence may not be affected
by the loss of highly susceptible host species). However,
many amphibian species are recovering in the wild (10), and
some have increased survival rates consistent with improved
immunity (16). A study comparing skin secretion inhibitory
activity against Bd pre- and post- emergence suggests that the
evolution of natural immunity may be occurring in some species
in situ (15). Several studies have made progress uncovering
other putative mechanisms for improved immunity, including
directional selection of major histocompatibility complex (MHC)
alleles (17-21). Unfortunately, many endangered frog species
appear to be running out of time. Without sufficient genetic,
phenotypic, or behavioral evolution of the host, many susceptible
populations remain threatened by chytridiomycosis and are
experiencing ongoing declines, sometimes decades post-initial
chytridiomycosis outbreaks (10, 22-24). Other susceptible
species may persist despite chytridiomycosis-associated mortality
due to high reproductive capacity. However, compensatory
recruitment may be reducing selection pressure for the
evolution of immunity (25), and these populations remain
highly vulnerable to other threats (26). Furthermore, animals
repatriated from captivity continue to succumb to disease in the
field (27, 28).

While the amphibian immune response to chytridiomycosis
has been the subject of some research to date, many aspects
remain poorly understood, likely owing to the complexity of
the system and the vast range in species’ responses to infection.
Indeed, Bd and Bsal are the main fungi from their phylum
found to cause disease in vertebrates, and the observed host
immune response to these pathogens appears to depart from
an expected “normal” immune response to an intracellular
or fungal pathogen. Previous reviews [e.g., (11, 29-31) have
covered (1) components of innate immune defenses such as
secretion of skin antimicrobial peptides, and maintenance of
symbiotic skin bacteria and their antifungal metabolites (29,
32), and (2) adaptive immune components such as MHC allele
selection, antibody production, and lymphocyte responses (33,
34). However, the field is overdue for an update that incorporates
the results of recent transcriptomic and immunogenetic studies,
as well as to provide a more thorough overview of the role
of key immune components. Concerning the innate arm of
the immune system, virtually nothing is known about the
role of pattern recognition receptors (PRRs), complement,
cytokines and chemokines, macrophages and dendritic cells,
other phagocytes, and natural Kkiller cells. For the adaptive
arm of the immune system, besides the possible inhibition
of lymphocyte proliferation response by Bd and importance
of antibodies in the skin of infected frogs, very little is
known about B and T cell responses, immunological memory
and antigen detection. Improving our capacity for amphibian
immunological research and our understanding of the host
immune response to chytridiomycosis may result in numerous
applied benefits. These may include: (1) identifying targets
for further research, treatment, and marker-assisted evolution,
(2) identifying immunologic management strategies including
environmental manipulation, vaccine design, selective breeding,
genetic engineering and pathogen virulence attenuation, and (3)
predicting species at continued risk of decline and implementing
timely mitigation measures.

In this review, we present an integrated synthesis of current
understanding of the amphibian host immune response to
chytridiomycosis within the classical scaffold of innate and
adaptive immunological mechanisms [reviewed in (35)]. We
have targeted this review for amphibian chytridiomycosis
researchers, but we expect it will also be of interest for researchers
in the broader fields of fungal immunology and amphibian
conservation. We focus specifically on host mechanisms;
predominantly in response to Bd [host responses to Bsal are
likely similar but are currently poorly understood; reviewed in
(11)]. We do not attempt to review the vast range of factors
contributing to variations in susceptibility to infection between
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individuals and species. For a broad introductory overview of
chytridiomycosis, see Box 1. For convenience, we provide a
glossary of terms and abbreviations in Box 2. Throughout this
review, where amphibian-specific immune knowledge is lacking,
we instead refer to the better characterized immune system of
mammals. Please see Box3 for a brief comparison between
amphibian and mammalian immune systems. We also focus
primarily on post-metamorphic and adult amphibians (especially
anurans) because larval amphibians (tadpoles) usually survive Bd
infections that localize to their keratinized mouthparts (see Box 4
for a brief overview of tadpole vs. post-metamorphic immune
systems). We start by outlining several key (non-mutually
exclusive) immune stages: (1) the naive immunocompetent
state, (2) immune defenses that are always present (constitutive
defenses), (3) mechanisms for pathogen recognition and
induction of innate immune defenses, and (4) adaptive immune
defenses. For each stage, we briefly describe the expected
immune response to an invading infectious organism such as
Bd (see Figure 1), then compare it with current knowledge of
chytridiomycosis, highlighting research gaps. We then examine
and discuss evidence for the role of immunosuppression
and immunopathology in chytridiomycosis. We conclude by
suggesting future research directions that will contribute to
improving mitigation strategies for chytridiomycosis.

THE IMMUNOCOMPETENT UNINFECTED
STATE

Normal uninfected integument of an immunocompetent
amphibian host consists of epidermal and deeper dermal layers
(Figure 1A). The epidermis constitutes an immediate innate

Box 1 | Amphibian chytridiomycosis—pathogens, infection and disease
basics.

e The Chytridiomycota are a phylum of microscopic predominantly
saprobic fungi with a biphasic life-cycle consisting of motile flagellated
zoospores and reproductive zoosporangium (36). Two species within
the Chytridiomycota have been well characterized and shown to
parasitise vertebrate hosts (Batrachochytrium dendrobatidis (Bd) and B.
salamandrivorans (Bsal)). These species both infect amphibians causing
the disease chytridiomycosis (3-5). The pathogens replicate intracellularly
within the deeper cell layers of the host epidermis. In tryptone-gelatin
hydrolysate-lactose (TGhL) broth medium at 22°C, Bd takes 4-5 days to
mature from zoospore to mature zoosporangium (37-39).

Infections with Bd and Bsal are restricted to keratinized epidermis of
amphibians (mouthparts of anuran tadpoles, skin of adult amphibians).
Chytridiomycosis causes a range of changes in the host epidermis
including hyperkeratosis, hyperplasia, ulceration, erosions, and necrosis
(5, 37). In severe infections, clinical signs may include lethargy, abnormal
posture, anorexia, peripheral erythema, increased skin shedding (40,
41) and mortality usually over a period of 2-6 weeks post-exposure.
Batrachochytrium salamandrivorans infects deep epidermal layers and
is more erosive and ulcerative without demonstrating a hyperplastic
response. Tadpoles infected with Bd may exhibit blunting of mouthparts
and sublethal effects on growth and development (42), but the infection is
not usually fatal until metamorphosis and widespread keratinization of the
skin (43-45).

physical defense barrier against pathogen invasion and consists
of cell layers that mature as they migrate toward the skin
surface. Epidermal layers include the basal lamina (basement
membrane), then the roughly cuboidal or columnar-shaped
proliferative cells of the stratum germinativum followed by
the stratum spinosum and the stratum granulosum, through
to the highly differentiated keratinized squamous epithelial
cells found at the surface of the skin, the stratum corneum.
These superficial cells are joined by tight junctions, which help
maintain the skin barrier (35, 72). Intermittent sloughing of
the outer layer of the epidermis, the stratum corneum, may
assist in the physical removal of skin microorganisms (73). On
the surface of this uppermost stratum sits a layer of mucus
produced by mucous glands. This mucus contains a number of
defensive molecules, including (1) lysozyme and other enzymes
produced by phagocytes and keratinocytes, (2) antimicrobial
peptides secreted via serous glands, (3) mucosal antibodies, as
well as (4) commensal symbiotic bacterial communities together
with their secreted antimicrobial compounds [reviewed in
(11, 35)]. A number of peripheral immune surveillance cells
are typically present in the epidermis, particularly epidermal
dendritic cells including putative Langerhans cells (74), which
in Xenopus spp. express high levels of MHC class II molecules
(75, 76). These various dendritic cells are likely to serve as
efficient antigen presenting cells, although this remains to
be demonstrated. Dendritic epidermal T cells (DETCs), and
gamma/delta T cells have also been described in Xenopus
spp- (76).

The highly collagenous dermis underlies the epidermis. It
consists of deeper stratum compactum and thicker and more
superficial stratum spongiosum, separated in some species by the
substantia amorpha granular calcified layer (77-79). The dermis
provides nutrition and sensory integration to the epidermis via
a network of capillaries and nerves that course through the
dermis. Serous (granular or poison) glands and mucous glands
are also present within the dermis, along with pigment-bearing
chromatophores and smooth muscle fibers. Serous glands are
often widely distributed throughout the skin and are able to
discharge their contents in response to noxious stimuli. In the
uninfected state, the repertoire of naive B and T lymphocytes
lie mainly quiescent within the spleen and blood, as well as
in other secondary lymphoid organs such as the liver and
intestine (Figure 1A). In amphibians, the spleen functions as the
primary and major secondary lymphoid organ. Naive B and T
lymphocytes each possess a unique and specific antigen receptor
combination.

EARLY NAIVE INFECTION AND
CONSTITUTIVE DEFENSES

The earliest stage of the infection process with Bd involves
the likely chemotaxis of infectious zoospores toward the skin
surface [Figure 1B, (11, 80, 81)], whereupon they encounter
mucus and any associated constitutive defenses of the skin.
We discuss these defenses in the context of chytridiomycosis
below.
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Box 2 | Abbreviations and glossary of terms.

e Adaptive immune system: the arm of the immune system mediated by B and T cells, characterized by specificity, immunological memory and recognition of
non-self antigens.

Agglutination: the combination of antibody and antigens forming an aggregate

Allele: one form of a gene at a single locus

Antibody (immunoglobulin): glycoprotein molecules capable of reacting specifically and selectively with antigens

Antigen: a substance that reacts with the products of an immune response (antibodies)

Antimicrobial peptides (AMPs): small, generally cationic and relatively hydrophobic peptides that have the capacity to damage bacterial and fungal cells
Anorexia: lack or loss of appetite for food

Anura: the Order of tailless amphibians that includes frogs and toads

Antigen presenting cell (APC): a cell that processes and presents antigen in conjunction with major histocompatibility complex molecules
Apoptosis: programmed cell death

B cell: a type of lymphocyte capable of synthesizing antibody (immunoglobulin) in response to an antigen, and possessing B cell receptors (BCR)
Cationic: positively charged ion

Caudata (or Urodela): the Order of tailed amphibians that includes salamanders and newts

Chemotaxis: directional movement of a cell in response to a substance gradient

Codominance: the full expression of both alleles in a gene pair of a heterozygote

Complement: a set of blood proteins that enhance the ability of antibodies and phagocytic cells to clear pathogens

Constitutive defenses: forms of defense that are always present, rather than induced by the presence of a stimulus

Co-stimulation: cell activation requires stimulation by both an antigen and additional molecules

Damage associated molecular patterns (DAMPs): host molecules that stimulate a non-infectious inflammatory response

Dendritic cells: cells with a branched structure that act as professional antigen-presenting cells

Dermis: the skin layer beneath the epidermis that contains blood capillaries, glands and nerve endings

Ecdysis: the process of shedding/sloughing old skin

Endocytosis: mechanism whereby substances are taken into a cells via membrane vesicles

Epibiotic: living on the surface of another organism

Epidermis: upper layers of skin containing keratinocytes

Epitope: a small area on an antigen that can combine with an antibody

Erythema: redness of the skin

Humoral: immunity based on antibodies

Hydrophobic: insoluble in water

Immunocompetent: ability to respond immunologically to a stimulus

Immunosuppressed: decreased ability to respond immunologically to a stimulus

Innate immune system: the arm of the immune system characterized by nonspecific responses not requiring previous exposure to similar antigen
Langerhans cells: phagocytic cells within the epidermis that function as antigen presenting cells

Ligand: a molecule that forms a complex with another molecule

Lymphocytes: cells principally of the adaptive immune system consisting of B and T cells

Lyse: rupture of cell membrane

Membrane attack complex (MAC): the terminal part of the complement system that comprises 5 proteins that associate together and cause damage to membranes
Macrophage: a large phagocytic cell found in tissues, derived from monocytes in blood

Mitogen-activated protein kinase (MAPK): a protein kinase specific to serine/threonine

MBL-associated serine protease (MASP)

Mannose-binding lectin (MBL): a C-type lectin that serves as a pattern recognition receptor and when engaged by pathogen molecules, activates the lectin
pathway of complement activation

Major histocompatibility complex (MHC): a chromosomal locus composing multiple genes encoding histocompatibility antigens (cell surface glycoproteins),
includes genes encoding both class | and Il molecules

Neutrophil: a type of white blood cell with phagocytic properties and a segmented nucleus

Nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)

Opsonization: coating the surface of antigens or microorganisms with opsonins to facilitate phagocytosis

Pathogen-associated molecular patterns (PAMPSs): molecular motifs broadly expressed by pathogens and not found on host tissues
Peptidoglycan recognition proteins (PGRPs): a group of pattern recognition receptors capable of recognizing peptidoglycan wall of bacteria
Phagocytosis: the uptake of particulate materials by a cell for destruction

Polymorphism: more than one allele occupies a gene’s locus within a population

Pattern recognition receptors (PRR): receptors that recognize molecular patterns of microorganisms

Rhizoids: filamentous outgrowth

Saprobic: lives on decaying organisms

Somatic hypermutation: a programmed process of mutation within the variable regions of immunoglobulin genes

Somatic recombination: alteration of DNA of a somatic cell

T cell: a type of lymphocyte that plays a central role in cell-mediated immunity, and possesses T cell receptors (TCR)
e Tumor necrosis factor alpha (TNF-a)
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Skin Sloughing Increases With
Chytridiomycosis and May Physically

Reduce Microbial Burdens

Ecdysis or skin sloughing in ectotherms can function as a
constitutive innate immune defense mechanism by physically
removing skin microbiota (73, 82). Sloughing usually occurs
soon after dark, approximately every 3 or 4 days depending
on species, and the frequency of sloughing increases with
ambient temperature (73). Abnormal sloughing is a clinical
sign of chytridiomycosis and corresponds with an increased
frequency of sloughing and the production of smaller shed
pieces (3, 83, 84). This may be the result of sporangia initiating
premature keratinization and cell death in infected epidermal
cells, in concert with hyperplasia and stimulated epidermal
turnover as observed by electron microscopy (77). Using infra-
red video recordings, Ohmer et al. (84) found that while
sloughing rate increased with infection, chytridiomycosis did
not affect sloughing behavior, duration or rhythmicity, although
diseased frogs typically did not eat the sloughed skin as they
normally would. Independent of temperature, the extent to
which increased sloughing reduces Bd infection loads varies
depending on species’ intrinsic susceptibility, and sometimes
results in clearance of infection (85). As such, Ohmer et al.
(84) hypothesized that skin sloughing may be both beneficial
and detrimental in the face of chytridiomycosis (for example, by
removing pathogens or symbiotic bacteria, and disrupting skin
homeostasis). Of interest, the most resistant species they studied,
Limnodynastes tasmaniensis, demonstrated increased sloughing
rates at lower infectious burdens, which Ohmer et al. (85)
suggested may indicate an effective induced defense response.
Increased rates of sloughing in warmer environments, induced as
an immune defense, or in association with behavioral fever (86,
87) may partly explain the improved clearance of Bd infection at
higher temperatures (88).

Natural Mucosal Antibodies (Generated by
Innate-Like B Cells) May Inhibit Zoospores

Naive frogs (not previously exposed to Bd) are unlikely to express
specific mucosal antibodies that bind to and inhibit zoospores
(89). However, as occurs in other vertebrates, natural antibodies
may be present and may limit initial pathogen burdens. Natural
antibodies are polyreactive against highly conserved pathogen
epitopes. They are typically encoded by germline genes, and in
mammals, they are produced by innate-like B cells (90-92). Little
is currently known about their efficacy against Bd in amphibians.

Lysozyme and Other Defensive Enzymes
May Limit Zoospore Invasion

Lysozyme is a constitutively expressed antimicrobial enzyme
found in body fluids and mucosal linings. Lysozyme from
amphibian skin secretions has potent bactericidal activity (93,
94). Although typically considered an antibacterial enzyme,
lysozyme has also been reported to possess antifungal properties
(95, 96). Thus, amphibian lysozymes may have similar activity
against pathogens such as Bd (11, 31, 97). To date there is
little evidence for the role of lysozyme and other phagocyte-

Box 3 | The immune system of amphibians is similar to other vertebrates.

The larval and adult immune system of amphibians, in particular Xenopus
spp. (South African clawed frog), has been subject to extensive investigation
as a transitional non-mammalian model organism for comparative and
evolutionary immunology and studies of immune ontogeny (46). The adult
anuran immune system is fundamentally similar to other jawed vertebrates
(47), and responds similarly to antigenic stimulation (48). However, there are
some differences.

e Most anurans lack the lymph nodes of mammals (49), and instead rely
on the other major lymphoid organs. The spleen represents a primary
lymphoid organ (site of lymphopoiesis) and secondary lymphoid organ
(site of antigen presentation, T and B cell antigen-dependent activation
and expansion) in amphibians. The thymus and liver are also sites of
lymphopoiesis, with lymphocyte aggregations additionally occurring in the
liver, kidneys, and intestine (50).

Many amphibians produce potent antimicrobial peptides in granular
(serous) glands of the skin [reviewed in (29)].

¢ Amphibian innate immune cell types are morphologically similar to those of
mammals and include polymorphonuclear cells (neutrophils, eosinophils,
and basophils), as well as monocytes, macrophages and natural killer cells
(46).

Many innate immune genes and gene pathway homologs to other
vertebrates have been identified in Xenopus spp. (46). These include
receptors [polymorphic major histocompatibility class | and Il genes,
and toll-like receptors; (51)], cytokines (interferon-y, interleukins, tumor-
necrosis factor «), and complement [classical, alternative, and lectin
pathways; (52)].

Although many aspects are still poorly characterized in amphibians
(particularly CD4 T helper cell function), adaptive B and T cell biology is
fundamentally conserved between mammals and amphibians. However,
there are several notable differences.

e Concerning B cell response, the affinity maturation of antibody is relatively
poor (10x) in comparison with that in mammals (10,000x), which may be
related to the lack of germinal centers important for the selection of B cells
expressing antigen receptors with higher affinity (50, 53-55).

The recent characterization of dendritic cells in the spleen that perform
the additional duty of follicular dendritic cells (specialized cells critical for
antigen-specific B cell activation), further suggests a less powerful B cell
response capacity in amphibians (56, 57).

Furthermore, unlike mammalian lymphocytes, many differentiated B cells
have phagocytic capabilities (58).

The antibody responses of adult amphibians also differ slightly from
mammals and consist of IgM, IgX (mainly mucosal expression) and IgY
(induced via T-cell dependent responses); the latter two are functionally
analogous to IgA and IgG of mammals (49). Two further isotypes have
also been discovered mainly in the spleen, IgD, and IgF (59, 60). IgD is
homologous to mammal and fish IgD, although IgF does not have a known
mammalian homolog (61).

Similarly to the situation with B cells, while the CD8 T cell response is MHC
class I-restricted and critical for host resistance to viral infection (62), CD8 T
cell expansion appears to be not as extensive as in mammals (63).

Finally, a prominent immune surveillance system based on a large family of
MHC class I-like genes regulating the development and function of innate-
like T cells critical for host antimicrobial defenses has recently been unveiled
in Xenopus spp. (64-66). Similar systems are likely to exist across all
aquatic vertebrates (67), which will require full consideration in the context
of Bd host responses as well as when analyzing transcriptomics (e.g.,
issues in distinguishing classical MHC and MHC-like transcripts).

or keratinocyte-derived constitutive enzymes (e.g., antimicrobial
lectins, secretory phospholipase A;) in defense against Bd.
However, Rosenblum et al. (98) reported an increase in
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Box 4 | Comparison between tadpole and post-metamorphic amphibian
immune system.

e The immune system of tadpoles, while competent, is functionally less
well developed than the immune system of post-metamorphic and adult
amphibians.

The amphibian immune system undergoes substantial remodeling
accompanied by immunosuppression during metamorphosis, through until
about 6 months post-metamorphosis (46, 68, 69).

The immunoglobulin repertoire is typically smaller and less specific in
tadpoles, the thymus involutes and is re-formed during metamorphosis,
and the expression of MHC class | and Il molecules greatly expands
(46, 47, 70).

The combined effects of (1) immune system remodeling, and (2)
the development of keratinized epidermis across the body during
metamorphosis, may help to explain why newly metamorphosed anurans
are particularly vulnerable to chytridiomycosis (30, 43, 71).

expression of lysozyme genes in the skin of infected Xenopus
tropicalis at 21 days post exposure in a transcriptomic study.
Grogan et al. (18) similarly identified upregulation of lysozyme
C genes in the skin of Litoria verreauxii alpina throughout
infection, although the efficacy of this response for limiting Bd
infection is currently unknown.

Amphibians Produce a Range of
Antimicrobial Peptides With Activity
Against Bd, and These Likely Play a Role in

Defense

The antimicrobial peptides (AMPs) of vertebrate skin are
typically small hydrophobic cationic peptides produced by serous
glands that provide non-specific defense against pathogenic
organisms (99, 100). Clarke (99) describes four main categories
of defensive molecules including alkaloids, steroids, biogenic
amines, and other peptides and proteins. The range and
quantity of AMPs produced by amphibians is remarkable among
vertebrates and has been the target of medical studies for
decades, particularly for use in pharmaceutical applications [e.g.,
(101-103)]. The production of antimicrobial peptides can be
induced and modulated by the presence of microbial flora
(104) and chronic corticosteroid administration (105). Serous
glands release antimicrobial peptides to the skin surface at a
low continuous rate, however, mild activation of the sympathetic
nervous system (such as alarm caused by a predator cue)
is sufficient to stimulate the contraction of gland-associated
muscle fibers and the release of larger quantities of AMPs
to the skin surface (89, 106). It is unlikely that zoospore
invasion alone would be sufficient stimulus to produce this
response.

Through in vitro growth inhibition assays, many amphibian
peptides and peptide mixtures (at concentrations likely to
occur in vivo) have been found to inhibit the growth of
various pathogens including Bd as well as other fungi [reviewed
in (31, 107)]. Antimicrobial peptide defenses are considered
reliable predictors of natural resistance of amphibians to
chytridiomycosis. However, the efficacy of AMPs in defense

against Bd appears to vary substantially by species and other
factors, which may limit the value of AMP data for predicting
and mitigating amphibian declines (108-113). These factors
may include: (1) intrinsic peptide efficacy against Bd as
demonstrated in vitro, (2) concentration, number and type of
peptides produced, (3) rate and location of release to the skin
surface in response to microbial pathogens, and (4) presence
of host- and Bd-secreted proteases that may degrade AMPs
(106, 114, 115). For example, depletion of AMPs led to increased
infection probability in resistant amphibian species Xenopus
laevis (89) and Rana pipiens (116), but not in Pelophylax
esculentus and P. lessonae (117). Validation studies involving
the functional modification of key AMP molecules are still
needed to confirm these associations. Woodhams et al. (118)
found that AMP expression differed between infected and
uninfected wild-caught Litoria serrata, with infected frogs
demonstrating reduced expression. However, they did not
identify whether this was a cause or consequence of infection.
Ribas et al. (119), Rosenblum et al. (120) identified AMP
genes or precursors (including preprocareulein and cathelicidin)
via microarray studies of the spleen and skin of frogs. More
recently, comparing the anti-Bd activity of skin secretions
collected from frogs before and after Bd emergence in Panama,
Voyles et al. (15) found a significant increase in inhibitory
efficacy post-emergence, consistent with an evolutionary shift
in the host immune response. The mechanisms underlying
this change in efficacy are unknown but may involve altered
concentration and diversity of peptides or improved inhibitory
function.

The Skin Microbiome May Inhibit Zoospore
Colonization, and Bioaugmentation May be
an Effective Management Strategy

Commensal microbial communities are present in the mucus
layer on amphibian skin and may provide another mechanism of
constitutive innate immunity against Bd via several mechanisms
(32, 61, 121). For example, Meyer et al. (82) reported the
cultivation of approximately 0.5-1.7 x 10° bacterial colonies
and 1.6-2.6 x 10* fungal colonies per square cm of dorsal skin
of Rhinella marina. Interestingly, detected microbial loads were
much lower on ventral skin, despite being in more frequent
contact with moist substrates than the dorsum. Many bacteria
and fungi secrete antimicrobial compounds with repellant and
growth-inhibitive properties against pathogenic microbes (122-
124). Furthermore, microbiota may also compete directly with
Bd, and may functionally change host immune responses (121).
Numerous epibiotic bacterial species isolated from amphibian
skin are growth inhibitive for Bd in vitro (125, 126). For
example, the bacterial species Janthinobacterium lividum has
shown particular promise for the anti-Bd properties of its
secreted metabolite violacein, at concentrations greater than
15uM (127). In clinical Bd exposure experiments, both frogs
(Rana muscosa) and salamanders (Plethodon cinereus) inoculated
with J. lividum did not become infected (128), whereas depletion
of bacteria resulted in high Bd infection intensities (129). This
effect also extended to soil augmentation and environmental
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FIGURE 1 | Amphibian host immunity schematic, depicting a histological section through the skin and progressive infection stages with Bd. The inference of the main
cellular components is based on mammalian immunology and an expected “normal” immune response (including the expected response to vaccination). (A) Normal
skin: Layers of uninfected frog skin epidermis including, from deepest to most superficial, the basal lamina, stratum germinativum, stratum spinosum, stratum
granulosum, stratum corneum and the superficial mucus layer. Two immune surveillance cells are illustrated within the epidermis, an immune dendritic cell
(homologous to Langerhans cell), and a dendritic epidermal T cell (dETC). Within the dermis is a capillary with the nucleated red blood cells of amphibians. An example
complement of naive B and T lymphocytes are depicted waiting quiescent in the spleen, illustrated schematically as the lower band on the figure (please note that the
spleen is a separate organ and does not lie adjacent to the dermis in living amphibians). (B) Early infection: Expected immune mechanisms upon initial exposure to
Bd, assuming constitutive defenses (such as AMPs and bacteria) are insufficient. Zoospores are illustrated penetrating the mucus layer, and early thalli with
zoosporangia developing are illustrated inside deeper host cells. In a normal immune response, pathogen recognition should lead to the infiltration of innate immune
cells, illustrated here to include macrophages and granulocytes (such as neutrophils). (C) Intermediate infection: Expected response at an intermediate stage of
infection includes the recognition of antigens by dendritic cells that then differentiate into antigen presenting cells and migrate to the spleen enabling antigen-specific
selection of lymphocytes. Simultaneously, membrane-bound immunoglobulin on naive B lymphocytes is exposed to extracellular Bd antigens (transported via the
blood circulatory and lymphatic systems). With the assistance of T helper cells, these B cells are activated to respond to infection. (D) Late infection: The late adaptive
response involves lymphocyte clonal expansion, differentiation into plasma cells and activated T cells (including cytotoxic and helper T cells), as well as the production
of antibodies by plasma cells. (E) Recovery: If the frog is cleared of infection (perhaps by topical antifungals or heat), the skin might be expected to return to normal,
however, a cohort of selected memory lymphocytes should remain. (F) Re-exposure: If the frog is then later re-exposed to Bd, the memory lymphocytes (produced
during the previous clonal expansion) are then activated and induced to replicate and differentiate, leading to a much more rapid and effective adaptive immune
response on re-exposure. This is the concept of immunization (vaccination).
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transfer of bacterial species to some amphibian hosts, thereby
inhibiting Bd infection, at least temporarily (130, 131). Despite
these promising results, outcomes in other species are mixed.
For example, inoculation of Panamanian Golden frogs (Atelopus
zeteki; extinct in the wild) with probiotic bacteria was not
associated with improved survival (132, 133).

There is some evidence for population-level correlation
between the presence of (and proportion of individuals
harboring) anti-Bd bacterial species and population declines
(134, 135), although not all studies corroborate these findings
(136). The presence of diverse bacterial communities in addition
to anti-Bd bacterial species on amphibians, and synergy (or
antagonism) between bacteria and AMPs, will affect the degree
of Bd growth inhibition as demonstrated in vitro (137-139).
Other field studies have shown that skin microbial communities
differ consistently between Bd-susceptible and resistant/tolerant
species, as well as between sites with differing infection histories
(121, 140). It is unclear from these studies whether identified
bacterial communities promote Bd tolerance or resistance, or are
the result of it (121). Further applied work should target probiotic
candidate selection and trial bioaugmentation approaches (32,
141, 142).

INNATE IMMUNE DEFENSES

If the invading Bd zoospores are not contained with constitutive
host defenses, then they encyst upon the keratinized skin surface
and attach via adhesive molecules (11, 77). Germination tubes are
then sent through one or more cell layers (143, 144), injecting
the contents of the zoospore cyst into the cytoplasm of deeper
cells of the host epidermis, including the stratum spinosum
and stratum granulosum [Figure 1B, (3)]. The intracellular
location and process of injecting zoospore contents into deeper
epidermal cells may permit Bd evasion of host immune
surveillance, as has been described with other fungal pathogens
(98, 145-147).

Pattern Recognition Receptors Detect
Common Fungal Structures and Initiate
Inflammation, Although There Is Currently
Limited Data to Assess Their Role in
Chytridiomycosis

In the absence of targeted immune evasion, an invading microbe
should prompt host recognition. Mechanisms responsible for
pathogen recognition induce innate then adaptive immune
responses in the host via antigens either secreted, expressed on
the pathogen cell surface, or processed after phagocytosis. These
antigens often contain widely recognized structural moieties
known as pathogen-associated molecular patterns (PAMPs) that
are common among different groups of microorganisms. These
PAMPs bind to host germline-encoded pattern recognition
receptors (PRRs) expressed within or on cells of the innate
immune system (macrophages, dendritic Langerhans cells)
and nonprofessional immune cells (keratinocytes, fibroblasts)
[reviewed in (35)]. In mammals, four classes of PRRs include:
(1) Toll-like receptors (TLRs) and (2) C-type lectin receptors

(CLRs) within cell membranes, (3) NOD-like receptors
(NLRs), and (4) Retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs) within the cytoplasm of host cells (148).
Binding of PAMPs by PRRs leads to an innate amplifying
inflammatory cascade that varies depending on the initial
signaling pathways involved. Binding of PRRs may induce
signaling pathways and the release of cytokines [pathways such
as nuclear factor kappa-light-chain-enhancer of activated B
cells [NFkB], and mitogen-activated protein [MAP] kinase].
Binding may also stimulate phagocytosis and destruction of
extracellular microorganisms, or cell-mediated cytotoxicity
and apoptosis of infected host cells [reviewed in (35)].
Patin et al. (149) presents an extensive review of existing
knowledge about fungal recognition in mammals via PRRs,
and lists common fungal ligands including B-glucans, zymosan,
mannose, phospholipomannan, unmethylated DNA, and
chitin.

Little is known about PRRs and their interactions with
fungal pathogens in amphibians, although genes homologous
to mammalian PRRs are present in model amphibian genomes
(e.g., Xenopus spp.). The expression pattern and inducibility of
TLRs has been studied to some extent in Xenopus spp. and
Rana catesbeiana (51, 150). To date there is little evidence for
early upregulation of PRR-coding genes in frogs infected with
any pathogens (including Bd), although this may be the result
of a lack of early immune cell infiltration rather than a lack of
constitutive recognition by nonprofessional immune cells per se.
However, studies with detailed kinetic analysis appropriate for
examining early innate immune responses in amphibians are
currently lacking. For example, Grogan et al. (18) did not find any
evidence of differentially expressed Dectin genes (key members of
the CLR family for detecting common fungal pathogens) at any
point during infection, compared with uninfected control frogs.
However, several other putative PRRs (TLRs and NLRs) and
their downstream signaling pathways were found upregulated in
the skin of frogs during late stage infections (18, 98, 151-153).
Representatives of these pathways included mannose-associated
genes, fc receptor 5 genes, NFkB subunit genes, caspase 6, 7,
and 10 analog genes, and MyD88 pathway genes (18). These
results from across the several species studied suggest that
putative PRR-encoding genes are present and are likely activated.
Although, it is possible that the pathogen actively interferes with
these pathways, such as the inhibition of NFkB detected by
Rosenblum et al. (120). We currently lack sufficient evidence
to determine the efficacy of the early innate immune response
to Bd. The detected late gene activation of these downstream
signaling pathways may alternatively be associated with cellular
stress and trauma or secondary bacterial infections (151),
producing damage associated molecular patterns (DAMPs)
that are similarly recognized by PRRs and protease-activated
receptors (PARs) (154). These findings are consistent with
the results of Brem and Parris (155) who showed that toads
were less likely to be become infected if the epidermis was
scraped (causing erosions) prior to Bd exposure. Priming of the
innate immune system in response to trauma (Bd-associated
epidermal erosions) may contribute to amplification of the innate
response, leading to an exacerbated late-stage response. Similar
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immune priming may have applications for infection mitigation
strategies. The precise characteristics of pathogen recognition
and signaling may be further elucidated by detailed kinetic
studies.

The Alternative Complement Cascade May
be Important for Early Defense in Resistant
Individuals

The complement system constitutes a set of receptors and
soluble plasma proteins and enzymes with an important role
in defense against pathogens. Complement activation stimulates
a rapid cascade of molecular interactions triggered by bound
antibodies and PAMPs that results in formation of the membrane
attack complex (MAC) and plays a central role in innate
defense against fungal infections [reviewed in (156)]. Bound
complement components function to agglutinate extracellular
pathogens and lyse their cell membranes, as well as attract
phagocytes to the locality and enhance their phagocytosis of
pathogens via opsonization. Although considered most capable
at neutralizing extracellular pathogens, complement C3 binding
prior to pathogen intracellularization can activate autonomous
immunity within infected cells (via NFikB signaling), ultimately
leading to cell destruction via apoptosis (157). The complement
cascade may be activated via three mechanisms. The first
mechanism is the classical pathway (triggered by antigen-
antibody complexes, bacterial lipopolysaccharide, pentraxins
such as C-reactive protein [CRP] and serum amyloid, etc.).
A second mechanism is the alternative pathway (recognizes
pathogen associated patterns or PAMPs). The third mechanism
of activation is via the lectin pathway (recognizes carbohydrate
structures via mannan-binding lectin [MBL], MBL-associated
serine proteases [MASPs], and ficolins) [reviewed in (156)]. It
is noteworthy that all elements of the complement system are
well conserved across jawed vertebrates (158), such that with
Xenopus spp. antiserum, it is possible to use purified mammalian
complement to lyse amphibian red blood cells (159).

As an early and rapid defense response, examining the
extent of complement activation may be critical for assessing
the efficacy of the innate immune response. Several studies
thus far have indicated early downregulation of complement
pathway genes (98, 119, 120) in the infected skin of several
susceptible species. In contrast, Grogan et al. (18) found
that gene analogs associated with the alternative complement
pathway (venom factor 1 and complement factor B) were
upregulated from the early infection stage in a phenotypically
more resistant population of Litoria verreauxii alpina frogs, but
only upregulated at later infection stages in more susceptible
populations (18). This is consistent with studies in a variety of
species where complement pathway genes were predominantly
upregulated in late-stage infection (151-153). These findings
may indicate that the alternative complement pathway plays
an important role in defense against Bd in more resistant
individuals. However, Bd may downregulate or fail to activate
the complement cascade in susceptible individuals, at least until
the late infection stage (98). Further research on activation of the
alternative complement pathway may provide genetic markers

for resistance and opportunities for selective breeding or genetic
engineering.

There Is Limited Data to Assess Cytokine
Upregulation in the Crucial Early-Stage

Infection Period

Cytokines are endogenous inflammatory mediators and include
lymphokines (such as macrophage activating factor [MAF]),
interleukins (ILs), tumor necrosis factors (TNFs), interferons
(IFNs), transforming growth factors (TGFs), chemokines, colony
stimulating factors (CSFs), polypeptide growth factors (GFs),
and stress proteins [including heat shock proteins (HSPs)]. Pro-
inflammatory cytokines can act on adjacent cells or distant
cells via the systemic circulation to amplify the inflammatory
cascade, attract leukocytes to the site of infection, activate
pathways involved in blood coagulation, and promote tissue
repair [reviewed in (35)].

Experimental studies performed on chytridiomycosis thus
far have lacked sufficiently early time-points (i.e., 6-24h post-
exposure) and infection-targeted tissue sampling strategies to
evaluate expression of putative cytokines or their encoding genes.
However, gene expression studies sampling tissues between
3 and 8 days post exposure have reported limited evidence
for upregulation of putative cytokine-encoding genes. These
included IL-17A/F-like gene, calcineurin IL-2 inducible gene,
HSPs, TNF associated factor (TRAF) and guanylate binding
protein IFN inducible gene in spleens of X. tropicalis (98,
119), IFN and IL-associated genes in Rana spp. (120), and IL-
1B, IL-17C, and IL-17E, TNFa, IFN and IFN-induced genes,
granulocyte colony-stimulating factor, and several chemokine-
associated genes in Litoria verreauxii alpina (18). In contrast,
studies of late-stage infections demonstrated changes across
the spectrum of cytokines (numerous IFNs, ILs, TNFs, and
chemokines), with the most dramatic responses observed in skin
tissues from the most susceptible individuals (18, 151, 152). Of
particular interest, several gene expression studies on multiple
species identified significant upregulation of numerous IFN-
induced very large GTPase gene analogs throughout infection
(18, 151, 160). Interferon-induced GTPase signaling is important
for eliminating intracellular pathogens in epithelial cells via their
sequestration and destruction within inflammasomes [thought
to be especially important for defense against skin fungal
pathogens (161)], and thus could be a key mechanism of cell-
autonomous immunity in chytridiomycosis (162). From these
results, it appears that putative cytokine pathways are active
in host response to Bd, although we currently have insufficient
data to evaluate their relevance in the immediate post-exposure
period. The reported upregulated late-stage cytokine responses
may instead represent immunopathology from a dysregulated
and non-protective immune response (18, 151).

There Is Limited Evidence for Innate
Leukocyte Recruitment and Infiltration
Throughout Infection

Recruitment of leukocytes (immune effector cells) to the site of
infection is a central component of the host immune response.
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Leukocytes of the innate immune system include circulating
monocytes that differentiate into macrophages at the site of
infection, polymorphonuclear phagocytes including neutrophils,
eosinophils, and basophils, as well as natural killer cells and
mast cells. These leukocytes contribute to recruit lymphocytes at
the site of infection, amplify the inflammatory cascade, destroy
extracellular pathogens via phagocytosis, and trigger apoptosis of
damaged or infected host cells [reviewed in (35)].

The cellular immune response in chytridiomycosis appears
inconsistent and is generally mild or decreased across species
(48, 163). These studies largely compared skin and blood
of Bd-infected and uninfected control frogs. For example,
Woodhams et al. (111) found decreased circulating neutrophils
and eosinophils, and increased numbers of basophils in infected
adult Litoria chloris frogs. Davis et al. (164) and Peterson
et al. (165) found increased circulating neutrophils and fewer
eosinophils in infected Rana catesbeiana tadpoles and Litoria
caerulea adults respectively [Peterson et al. (165) also found
low circulating lymphocyte numbers [lymphopaenia]]. These
results are consistent with a classic mammalian acute stress
response [with the exception of the absence of lymphopaenia
in the former study, (166)]. Young et al. (48) found lower
circulating total white blood cell numbers in chronically
infected adult L. caerulea, with overall impairment of responses
on immune stimulation, and relatively higher neutrophil to
lymphocyte ratios in infected frogs. These variable results
may indicate that other unaccounted factors are playing a
role (such as corticosteroid levels), or that species’ responses
differ.

The cellular immune response within skin tissue appears
inconsistent from studies thus far performed. For example,
histopathology has revealed a variable mild inflammatory
response in 10-40% of skin sites, involving foci with
macrophages and few neutrophils. This mild response
is also often present near areas of ulceration suggesting
a possible association with secondary bacterial infections
(77, 151, 167, 168). No evidence of specific leukocyte-associated
gene upregulation has been reported during early infections in
gene expression studies performed thus far. However, during
late-stage infection, Rosenblum et al. (98) found a mild increase
in neutrophil-associated genes in the skin and liver of infected
Xenopus tropicalis frogs, while Ellison et al. (151) and Grogan
et al. (18) found predominantly increased expression of several
macrophage and neutrophil associated genes. Taken together,
these results indicate that an early leukocyte response is weak or
lacking with Bd infection, and furthermore, that the late-stage
response is inconsistent and likely insufficient to limit Bd
infection (and may alternatively be associated with epidermal
damage or secondary bacterial infection). This overall observed
poor inflammatory response with Bd infection could be the
result of inadequacy of innate immune activation with minimal
cytokine-mediated leukocyte recruitment toward Bd. This
could possibly be associated with immunoevasion and/or active
suppression of immune responses by Bd. However, a limited
innate immune response, particularly in late stage infections,
may also be symptomatic of an inadequate or impaired adaptive
immune response to Bd (discussed below).

ADAPTIVE IMMUNE RESPONSE

The adaptive immune system provides a more specific defense
against invading pathogens compared with the innate immune
system, although it is slower to manifest initially. Amphibian
pathogen-specific antibodies (IgY) are undetectable after initial
ranaviral infection as is the case in mammalian response to
primary infection with large DNA viruses (169). However, in
mammals, antibody responses typically improve in efficacy upon
subsequent exposures to the same pathogen [Figures 1C-F;
reviewed in (35)], and studies performed in amphibians with
Frog Virus 3 and Bd support this finding. Between two and three
exposures to a pathogen over 4-6 weeks resulted in a detectable
pathogen-specific IgY antibody response (89, 169, 170). These
antibodies were detectable at 1 week after the last exposure, and
peaked between 2 and 3 weeks. This means that the adaptive
immune response may be most critical for infections that fail
elimination by non-specific mechanisms of the innate immune
response. In comparison with mammalian immune responses,
the amphibian adaptive immune response is typically slower to
manifest, and of lesser magnitude and efficacy. The adaptive
immune system is also dependent on initial activation and co-
stimulation by receptors and mediators of the innate immune
system [reviewed in (35)]. However, as we have detailed in the
previous sections, the innate immune response to Bd-infection
appears somewhat inadequate, at least in the critical early stages
of infection (first few days post exposure), and this may reduce
the efficacy of the adaptive immune response.

Key Components of the Adaptive Immune
Response, Pathogen Specificity, and

Immunological Memory

The primary components of the adaptive immune system include
lymphocytes (T and B cells) and their respective mature effector
forms responsible for enacting pathogen-specific cell-mediated
immunity (cytotoxic or helper T cells) and humoral immunity
(antibody-secreting plasma cells) together with secreted or
membrane-bound antibodies (immunoglobulin). Unlike the
germline-encoded components of the innate immune system,
the adaptive immune system is characterized by unique
antigen receptors. T and B cell receptors are generated when
segments of immunoglobulin genes are rearranged by a unique
process called somatic recombination. This can occur via
V, D, and ] (variable, diversity, joining) mechanisms, which
require products from recombination-activating genes (RAGs).
This gives rise to millions of naive T and B cells during
the development of an individual, with numerous distinct
cell clones bearing unique surface receptors that together
constitute the unique lymphocyte receptor repertoire of the host.
Lymphocytes activated by antigen binding in combination with
co-stimulatory molecules (Figure 1C) undergo clonal expansion
and differentiation into their effector forms (Figure 1D). B cell
receptors additionally undergo further changes after activation.
This involves somatic hypermutation mediated by activation-
induced cytidine deaminase (AICDA), which is accompanied by
class switching during affinity maturation. During this clonal
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expansion process, large numbers of antigen-specific long-lived
memory lymphocytes are produced (Figure 1E), and upon re-
exposure to the pathogen or antigen, these memory lymphocytes
respond more rapidly and effectively than the initial response
(Figure 1F). Thus, not only is the adaptive immune system able
to respond in a specific way to novel pathogens, but it adapts to
those pathogens during the course of an infection. Assuming that
the individual survives initial infection, a functioning adaptive
immune response should increase in efficacy with subsequent
exposures to a pathogen (or antigen) during an individuals
lifetime (unlike the innate immune response), leading to the
concept of immunization [or vaccination; reviewed in (35)].

The Role of PRRs, MHC and Dendritic
Cells for Activation of the Adaptive

Immune Response

Initial activation of the adaptive immune system involves the
detection of pathogen-derived antigens by binding to PRRs
expressed by host cells. Antigen binding stimulates endocytosis,
degradation of the pathogen, and subsequent presentation of the
antigen peptide on the cell surface via major histocompatibility
complex (MHC) proteins. The two classes of MHC molecules,
classes I and II, are expressed differently by cells of the body,
and interact with different subsets of lymphocytes. MHC class
I molecules are expressed by most nucleated somatic cells (for
example, non-immune epithelial cells) and interact with CD8
cytotoxic T cells, leading to cytotoxicity and death of the host
cell expressing antigen with the MHC class I molecule. MHC
class I molecules are particularly important for recognition and
elimination of intracellular pathogens via cell killing. MHC
class IT molecules are mainly expressed by professional immune
cells such as dendritic cells and macrophages. These cells also
recognize pathogens, but can present the antigen via the MHC
class IT molecules at the cell surface [reviewed in (35)]. Antigen
binding then promotes differentiation of dendritic cells into
antigen presenting cells (APC), and TNF-a stimulates APC
migration to the spleen via the lymphatic or circulatory system
where they contact lymphocytes with a variety of antigen-specific
receptors (Figure 1C). MHC class II molecules bound to antigen
on the surface of APCs interact with CD4T helper cells in
the presence of other co-stimulatory molecules, and their main
function is to activate other immune effector cells (such as B cells;
Figure 1C). Co-stimulatory molecules are expressed on APCs in
response to mediators of the innate immune system (such as
TLRs and NFkB), and they are essential for the activation of the
naive CD4 T helper cells.

MHC Genes Associate With Survival and
Are Under Positive Selection, Supporting
the Rapid Evolution of Resistance or
Tolerance to Bd

The diversity of MHC proteins expressed by cells is generated
by polygeny (the presence of multiple interacting genes), allele
codominance, and gene polymorphism [reviewed in (35)].
The evolution of MHC genes has been widely demonstrated
to occur under selection by infectious diseases (171). Their

inter-generational heritability (unlike T and B cell receptors)
makes them important bridging elements between the innate
and adaptive immune systems, and potential markers for
selection of either resistance or tolerance to infection (14,
34, 172). Genes encoding MHC classes I and II molecules
have been found to be upregulated throughout Bd infection,
particularly within skin tissues (18, 34, 120, 151, 153). A
variety of studies have demonstrated associations between
characteristics of MHC alleles (allelic diversity, degree of
heterozygosity, presence of certain alleles, presence of certain
protein conformational elements) and degree of Bd susceptibility
as it differs between species, populations and individuals (17, 20,
21, 173). Furthermore, several studies have demonstrated signals
of positive selection at certain MHC loci in populations persisting
with enzootic Bd, when compared with background levels of
neutral genetic change (17, 20, 21). These findings suggest that
certain MHC genes and alleles may play an important role in
determining degree of Bd susceptibility, and that these are under
directional selection for resistance or tolerance to Bd. However,
recent recognition of the expansion of MHC class I-like genes
in Xenopus spp. and presumably other ectothermic vertebrates
[see Box 3; 64, 65] may require a revisit of some of the reported
studies, especially transcriptomics. Indeed, MHC class I-like
genes encode molecules with typical MHC primary structures but
are polygenic and not or minimally polymorphic (66).

Both Cell-Mediated and Humoral Immunity
Are Likely Important for Defense Against
Bd

When lymphocytes are activated in the presence of peptidic
antigen bound to MHC with appropriate co-stimulation,
they proliferate by clonal expansion, differentiate into their
effector type and migrate to the site of infection (Figure 1D).
CD8 T lymphocytes stimulated by MHC class I-bound antigens
differentiate into cytotoxic T cells that recognize and kill
infected host cells. This form of cell-mediated immunity is
likely to be especially important for intracellular pathogens
such as Bd, as the most efficient means to eliminate the
reproductive stage of the pathogen (zoosporangium) is to
destroy infected host cells (31). However, B cells and their
differentiated effector type (plasma cells) are likely to be similarly
important for eliminating Bd. Unlike in mammals, amphibian
B cells demonstrate phagocytic capabilities (58). B cells may
also act as antigen-presenting cells for T helper cells, and
their effector plasma cells produce antibodies (immunoglobulin,
either membrane-bound or secreted) that may be capable of
targeting and destroying extracellular pathogen stages such as
zoospores and secreted toxins, as well as killing infected host
cells. Antibodies target pathogens and kill infected host cells
via a suite of mechanisms including (1) binding specifically
with the epitope of the antigen and causing the antigens
to agglutinate, inactivating them, (2) activating the classical
complement cascade, leading to the membrane attack complex
to lyse pathogens directly, and (3) antibody-dependent cell-
mediated cytotoxicity (ADCC) involving tagging antigens for
destruction by natural killer cells or phagocytes [reviewed in
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(35)]. Thus, both cell-mediated adaptive immunity (T cell
elimination of the intracellular reproductive stage of Bd and B
cell phagocytosis) and antibody-dependent humoral immunity
[destroying zoospores and secreted products) are likely to be
important for controlling Bd burdens (31)].

There Is Limited Evidence for an Effective

Adaptive Immune Response to Bd Infection
Although it has been suggested that herd immunity may protect
populations if > 80% of frogs are immune (or resistant, through
the effects of symbiotic bacteria) to Bd (134, 135, 174), there
is currently little evidence to suggest that herd immunity
operates in wild amphibian populations. Indeed, the existence
of a herd immunity threshold relies on infection transmission
being density-dependent, rather than frequency-dependent, as is
expected for amphibian breeding aggregations (175). Similarly,
herd immunity thresholds are unlikely to occur where the
force of infection is unaffected by the presence of resistant
individuals, as is the case for indirectly transmitted pathogens
and those with multiple host species (or life-stages) with differing
tolerance and susceptibility to Bd infection. Instead, the temporal
patterns of enzootic Bd infection appear regulated by season and
temperature rather than adaptive immunity in field populations
(22). The few laboratory studies performed to date support these
findings, suggesting limited activation of a protective adaptive
immune response to chytridiomycosis. Young et al. (48) reported
a decrease in total and IgY serum antibody responses [via
anti-sheep red blood cells [SRBC] haemagglutination assay] in
Bd-infected L. caerulea compared with uninfected frogs, while
circulating numbers of lymphocytes were greatly reduced in
infected frogs (48, 165). Results from histopathology of the skin
showed only a mild response with foci of lymphocytes associated
with regions of ulceration, or no evidence of lymphocytes (77,
163, 167, 168). In terms of gene expression results, Rosenblum
et al. (98) found no change in lymphocyte markers or MHC
genes in X. tropicalis. Results were similar in their second study
on Rana spp. (120) despite mild upregulation of MHC class
II genes in the skin during late-stage infection. Ribas et al.
(119) found that adaptive immune genes were generally down-
regulated in the spleen of X. tropicalis throughout infection. In
contrast, other studies demonstrated upregulation of numerous
adaptive immune genes associated with B and T lymphocytes,
immunoglobulins and MHC genes, particularly in skin tissues at
late stages of infection (18, 151, 160, 176). However, a countering
signal of downregulated T cell associated genes was also detected
in several studies (18, 151, 152). These conflicting results indicate
a more complex set of interactions operating within the adaptive
immune system, which may be associated with the different
temperatures at which animals were exposed or housed as well
as the timing of collection of samples. The latter finding of
downregulated T cell responses is particularly important and will
be discussed in detail in its own section below.

Immunization against Bd was suggested early on as a
management strategy for chytridiomycosis (177) given the highly
successful examples from humans and domestic animals (178).
Studies reported by Rollins-Smith et al. (31) and Ramsey

et al. (89) attempted to immunize Xenopus laevis frogs against
chytridiomycosis via an intraperitoneal injection with heat-killed
Bd. They found promising results with a high-titer pathogen-
specific IgM and IgY serum antibody response in the immunized
frogs at 14 days post final immunization. In another experiment,
Bd-binding mucosal antibodies (IgM, IgY, and IgX) were
demonstrated after repeated exposure to Bd (89). These results
are supported by the finding of upregulated immunoglobulin
genes in re-exposed Atelopus zeteki frogs, suggesting production
of memory lymphocytes (151). Furthermore, X-irradiation of
frogs to impair T cells increased Bd infection loads in X. laevis
(89). In contrast, a repeat experiment with killed-Bd injections
into the dorsal lymph sac (days 0 and 14) and peritoneum
(day 28) of X. laevis followed by splenocyte culture with Bd
showed generally weak lymphocyte proliferation in comparison
with samples cultured with phytohaemagglutinin (PHA) alone
(31). In another experiment, young boreal toads (Bufo boreas)
were immunized following a similar protocol and then exposed
to Bd, however there was no evidence for a difference in
survival between the immunized and sham-injected exposed
frogs, suggesting that the immunization had not been successful
in stimulating protective adaptive immunity in the young
toads (31). Stice and Briggs (179) immunized Rana muscosa
with formalin-killed Bd in combination with adjuvants [saline,
Freunds Complete [FCA], and Incomplete Adjuvant [FIA]] by
injection into the dorsal lymph sac and found no differences
in the proportion of frogs infected nor time to infection. A
study by Cashins et al. (180) did not detect any evidence for
a protective effect of prior infection on re-exposure in Litoria
booroolongensis. However, a study in B. boreas by Murphy et al.
(181) found that previously exposed frogs survived slightly longer
if they had a dry habitat option upon re-exposure. A study by
McMabhon et al. (182) found that multiple prior exposures to Bd
slowed the rate of progression of chytridiomycosis, although this
finding may instead be associated with repeated innate immune
priming through trauma (155). The variable results of these
studies may be associated with differing routes of immunization
or dose-rates of Bd exposure. Furthermore, these results suggest
that although the adaptive immune system may be activated
during Bd infections in some species, the capacity for a robust
and protective adaptive response appears limited, which may be
associated with Bd-induced suppression (discussed below).

HOT TOPICS: STRESS,
IMMUNOSUPPRESSION AND
IMMUNOPATHOLOGY IN
CHYTRIDIOMYCOSIS

Limited Evidence That Stress Predisposes
Hosts to Chytridiomycosis via

Corticosterone Responses

There is no evidence to suggest that immunosuppression
is necessary to predispose amphibians to chytridiomycosis
epizootics, particularly with numerous observations of disease
emergence in abundant species in undisturbed naive localities
(3, 163, 183). Furthermore, signs indicative of generalized
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immunosuppression, such as secondary bacterial infections,
appear to be largely lacking (8, 48, 88). However, stress-induced
immunosuppression may play a role particularly in the infection
of more resistant individuals and species [reviewed in (30)].
The extent to which environmental stressors and corticosterone
mediate chytridiomycosis and its effects on amphibians is
currently unclear. Environmental stressors (poor nutritional
status, high densities and exposure to predator cues) have
been putatively linked with elevated corticosterone and reduced
immune capacity in some tadpole studies (184, 185), although it
is unknown whether corticosterone is a direct mediator of these
effects. Elevations in corticosteroids have been demonstrated to
have a range of detrimental effects on the immune system of
frogs, including inhibiting the humoral response, and reducing
both numbers and viability of circulating lymphocytes [reviewed
in (30)]. Indeed, exogenous application of corticosterone was
found to increase Bd infection abundance in adult amphibians
(105, 186), but only had sublethal effects on tadpoles (187). Gabor
etal. (188) inhibited corticosterone synthesis (using metyrapone)
and found that this did not prevent Bd-associated reductions
in mass, although it did increase Bd loads. They concluded
that the adverse effects of Bd on growth were not mediated by
corticosterone.

In the field, non-invasive measures of corticosterone in
free-living populations of tadpoles revealed that corticosterone
levels correlated both with Bd infection and altitude, and that
infections with a more virulent strain of Bd (BAGPL) led to
higher corticosterone release (189, 190). Measuring urinary
corticosterone, Graham et al. (191) and Kindermann et al. (192)
similarly found higher levels in infected frogs as well as frog
populations at higher altitudes. Furthermore, Peterson et al. (165)
measured plasma corticosterone and found that diseased frogs
(showing clinical signs of chytridiomycosis) demonstrated higher
corticosterone levels than subclinically infected frogs. Thus, from
current evidence it appears that elevated corticosterone correlates
with infection in situ, and both predisposes to chytridiomycosis,
and is a result of infection. However, the link between putative
environmental stressors and elevated corticosterone is less
robust, and elevated corticosterone does not appear to mediate
the sublethal effects of chytridiomycosis (growth and mass).

Batrachochytrium dendrobatidis
Suppresses Lymphocyte Responses in
Susceptible Individuals

Throughout this review, we have synthesized the results of
numerous studies and highlighted the lack of a generally robust
and protective immune response to Bd infection. We considered
the epidemiology, general degree of inflammation, as well as
markers of the innate immune response during early infection
stages, and the adaptive immune response during late infection
stages. This observed apparent lack of immune response may be
the result of either (1) the failure of the host to recognize Bd as
a pathogen, through low inherent antigenicity (possibly due to
intracellular localization), immunoevasion, or masking antigens,
or (2) Bd-induced immunosuppression or downregulation of
key immune responses necessary for a protective immune

response (145). Both of these mechanisms may occur in parallel
in chytridiomycosis. For example, PRRs are generally not
upregulated in early infection, suggesting a possible lack of
pathogen recognition, whereas T cell responses appear actively
suppressed or inhibited, as are complement-associated pathways.

Current evidence supports a specific role for Bd-induced
immunosuppression, detected first via skin histopathology
(77) and general immune function measures (31, 48), and
corroborated via gene expression data (18, 98, 119, 120, 151,
153). Further experimental work has characterized at least one
mechanism by which this might occur, via soluble Bd-secreted
factors. Fites et al. (193) demonstrated that soluble factors
released by Bd zoosporangia inhibited proliferation and/or
caused apoptosis of T cells in vitro. For this work, they used
in vitro immune experiments involving the proliferation of
splenic lymphocytes (from X. laevis and R. pipiens) in culture.
Interestingly, they found that macrophage phagocytosis was
not similarly affected. Another study investigated apoptosis
(via TUNEL and caspase assays) and found that programmed
cell death was positively associated with infection load and
morbidity (194). They speculated that apoptosis may thus be
a pathogen virulence mechanism. In vivo studies also revealed
immune inhibition activity associated with Bd supernatants by
measuring delayed-type-hypersensitivity responses (33). Rollins-
Smith et al. (195) then went on to characterize two metabolites
(methylthioadenosine and kynurenine) produced by Bd that are
capable of inhibiting lymphocyte proliferation and survival in
vitro.

Late Stage Immunopathology
Characterizes Infections in Susceptible
Individuals

Despite relative Bd-associated immunosuppression, several gene
expression studies on a variety of amphibian species have
demonstrated that susceptible individuals express both greater
number and variety of dysregulated immune genes during
late stage infections than more resistant individuals (18, 151,
152). This negative correlation between extent of immune
response and degree of phenotypic susceptibility suggests that
susceptible individuals may mount massively dysregulated and
non-protective immune responses. This immunopathology is
likely associated with DAMPs induced late in infection as the
pathogen damages skin cells in order to release subsequent
generations of zoospores. Such a dysregulated response may
rapidly disrupt cellular homeostatic mechanisms. Indeed, recent
metabolomics findings support this hypothesis by demonstrating
the significant depletion of the “immune nutrient factor;” alpha-
ketoglutarate and its associated metabolite glutamate in severely
infected animals (196, 197). This metabolic dysregulation has
carry-on effects on numerous other aspects of cell homeostasis,
particularly cellular energy metabolism (alpha-ketoglutarate
is a key intermediate of the Krebs cycle). Furthermore, in
vitro and gene expression studies suggest massive disruption
of homeostatic mechanisms involved in epithelial stability,
water and ion transport and musculoskeletal functions in
susceptible individuals (18, 41, 98, 120, 151-153, 176). Therefore,
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immunopathology within susceptible amphibian species may
not only cause their immune responses to be ineffective at
eliminating the pathogen, but it may contribute to host morbidity
and mortality due to the extensive disruption of cellular
homeostasis and consumption of energy resources.

RECOMMENDATIONS FOR FUTURE
WORK

Despite two decades of research on chytridiomycosis, we still
have only a limited understanding of the amphibian immune
response to chytridiomycosis, and there is much to be discovered
that may assist with disease mitigation. While continued support
for existing approaches is essential, improving our capacity for
amphibian immunological research will require: (1) the selection
of an appropriate Bd-susceptible model species that could be
bred to a MHC defined inbred strain (traditional amphibian
models, Xenopus spp., are not sufficiently susceptible), (2) the
development of a suite of taxon-specific affinity reagents (such
as antibodies) for detection and imaging of pathogen-associated
or host immune molecules of interest, and (3) the isolation or
transgenic development of cell lines (including immune cells and
skin explants) for in vitro functional assays.

A suite of conventional and emerging immunological
methods from the fields of human and comparative immunology
may be adapted for further study of amphibian chytridiomycosis.
These methods enable the detection, quantification, isolation,
functional evaluation, examination of signaling pathways, and
localization of specific molecules of interest from homogenates,
subcellular compartments (via biochemical fractionation), cells
(separated by fluorescent-activated cell sorting [FACS] and
flow cytometry), blood or tissues. For example, bioassays such
as enzyme-linked immunosorbent assay (ELISA), measure the
presence of various molecules (such as antibodies or antigens)
via enzyme or ligand binding. Other bioassays may detect
the presence and quantity of specific DNA (southern blot or
qPCR), RNA (northern blot or RT-PCR), proteins (western
blot) or their post-translational modifications (eastern blot).
Flow cytometry enables the analysis of immune cells and
their products, and cell sorting for proliferation and viability
studies. Modern high-resolution imaging technologies include
light microscopy combined with flow cytometry or standard
labeling techniques with antibodies (immunohistochemistry and
immunocytochemistry) or other stains, as well as electron-
microscopy.

Several preliminary exploratory systems biology studies
have been reported in this review, for example, employing
transcriptomics for gene expression and metabolomics for
metabolite accumulation (152, 196). However, there are emerging
approaches using high-throughput technologies such as next
generation sequencing and mass spectrometry that still have
unrealized potential for the study of amphibian chytridiomycosis
(such as whole exome sequencing, proteomics, secretomics, and
fluxomics). Importantly, further research using these emerging
technologies would benefit from considering a broader temporal
range in samples from experimental animals. In particular,

experiments that compare the immune response in the very
early infection period immediately post-exposure with the
response later during infection would shed important light
on initial susceptibility and within-host pathogen recognition
and signaling dynamics. There is also potential for the
use of microfluidics for single-cell-targeted approaches. Mass
spectrometry and associated technologies [high performance
liquid chromatography (HPLC) and nuclear magnetic resonance
(NMR)] permit the high-throughput separation, identification
and quantification of molecules of interest in a mixture.
Combination techniques may permit high-dimensional data
from these high-throughput technologies, such as the single-
cell resolution of numerous cellular parameters over millions
of cells via mass cytometry. Chromosome conformation capture
may permit the identification of regulatory elements for immune
genes of interest, and transgenic technologies may enable
improved functional validation of the role of such genes and
their translated protein products. These approaches include gene
knock-in and knock-out on the pathogen and other organism
cell lines (such as host immune cells), and include gene silencing
(RNA interference), lentivectors, transposons and CRISPR/Cas9
genome editing. Indeed, some of these approaches may be used
to advance therapeutic outcomes also. For example, recombinant
Bd proteins or Bd genes introduced via vector may improve
results in immunization trials compared with techniques already
tried.

CONCLUSIONS

In summary, we have provided an overview of the major aspects
of the amphibian host immune response to chytridiomycosis, and
how they differ from an expected efficacious immune response.
Importantly, we highlighted an observed discord between
the extent and efficacy of the response to chytridiomycosis
comparing resistant and susceptible individuals. These findings
suggest that resistant individuals likely possess more effective
constitutive defenses (such as AMPs and symbiotic bacteria),
and/or may mount a more effective innate immune response
early in infection, combined with avoiding Bd-induced
immunosuppression of their adaptive responses. Conversely,
constitutive and innate defenses of individuals that succumb
to chytridiomycosis are likely limited in their overall efficacy.
Although their late-stage immune response may be characterized
by exacerbated immune gene transcription, these responses
likely constitute immunopathology, and may be ineffective
due to pathogen-suppression of lymphocyte pathways. Indeed,
severe immune dysregulation may contribute to a mortality
outcome. Hence a combination of factors likely contributes to
amphibian susceptibility to chytridiomycosis, rather than the
presence or absence of any one immune mechanism or gene.
This is particularly important when comparing potential factors
conferring resistance or tolerance between distantly related
amphibian taxa.

Our review has highlighted numerous gaps in current
knowledge, particularly concerning: (1) mechanisms of initial
pathogen detection and possible immunoevasion by Bd, (2)
degree of activation and efficacy of the innate immune response,
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(3) the unexpected absence of innate leukocyte infiltration, (4)
the relative importance of B and T cell responses for pathogen
clearance, (5) the capacity and extent of immunological
memory, (6) specific mechanisms of pathogen-induced
immunosuppression, and (7) the role of immunopathology
in pathogenesis. These aspects would benefit from further
empirical study using the techniques we have discussed above.
This also leaves us with an unanswered question for amphibian
conservation management: can we manipulate the immune
machinery of the host to improve resistance or tolerance both
within individuals (immunization), and across populations
through generations (evolution or assisted selection)? It is
important to recognize that management approaches should
be considered on two time-scales; (1) securing species in the
short-term, and (2) developing long-term sustainable solutions
(12). As we have reported earlier in this review, evidence is
emerging that evolution of resistance and tolerance may be
leading to recovery of some affected frog populations and
communities (15). There is, as yet, limited proof of concept for
strategies that might accelerate these evolutionary processes.
However, immunological research remains a promising avenue
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