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ABSTRACT

The rapid improvement in computation capability has made convo-
lutional neural networks (CNNs) a great success in recent years on
image classification tasks, which has also prospered the develop-
ment of objection detection algorithms with significantly improved
accuracy. However, during the deployment phase, many applica-
tions demand low latency processing of one image with strict power
consumption requirement, which reduces the efficiency of GPU
and other general-purpose platform, bringing opportunities for spe-
cific acceleration hardware, e.g. FPGA, by customizing the digital
circuit specific for the inference algorithm. Therefore, this work
proposes to customize the detection algorithm, e.g. SSD, to benefit
its hardware implementation with low data precision at the cost
of marginal accuracy degradation. The proposed FPGA-based deep
learning inference accelerator is demonstrated on two Intel FPGAs
for SSD algorithm achieving up to 2.18 TOPS throughput and up to
3.3x superior energy-efficiency compared to GPU.
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1 INTRODUCTION

The recently achieved substantial improvements in speed and accu-
racy of convolutional neural networks (CNN) for image recognition
are now being demonstrated in object detection algorithms. The
Single Shot Detector (SSD) [7] algorithm uses VGG-16 [15] as the
base feature extractor to predict the bounding boxes and classi-
fication probability, and then uses additional convolution layers
at the end to predict objects from multi-scale feature maps. With
its simplified architecture, the SSD algorithm demonstrates faster
performance with higher accuracy, compared to Faster RCNN [13]
and YOLO [12]. However, it is still very difficult to directly imple-
ment SSD on mobile hardware, e.g. embedded systems and edge
devices, to achieve real-time detection with high energy efficiency,
because of (1) the large volume of data and operations, (2) the use
of complex nonlinear functions, and (3) the highly varying layer
sizes and configurations.

To achieve high throughput, high performance GPUs are often
used to accelerate the training and inference tasks of CNN, as they
can take advantage of the thousands of parallel cores, operating
at high clock frequencies at GHz level, and achieve hundreds of
GB/s memory bandwidth. However, their power consumption is
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too high (>150W) for power and energy constrained platforms.
Furthermore, GPUs are best suited for achieving high throughput
when processing large batches of images. However, for applications
that require very low latency for processing a single image, as in
autonomous driving and surveillance, the completion of detection
must be done at the speed of incoming data stream, which degrades
GPUs’ performance and energy-efficiency substantially.

On the other hand, field-programmable gate arrays (FPGAs) have
gained increasing interests and popularity to accelerate the infer-
ence tasks of CNNs, due to their (1) high degree of reconfigurability,
(2) faster development time compared to application-specific in-
tegrated circuits (ASICs) [10][14], (3) good performance, and (4)
superior energy efficiency compared to GPUs [1][17][8]. The high
performance and efficiency of an FPGA can be realized by synthesiz-
ing a circuit that is customized for a specific computation to directly
process billions of operations with the customized memory systems.
For instance, hundreds to thousands of digital signal processing
(DSP) blocks on modern FPGAs support the core CNN operations,
e.g. multiplication and addition, with high parallelism. Dedicated
data buffers between external DRAM memory and on-chip process-
ing elements (PE) can be designed to realize the preferred dataflow
by configuring tens of MByte on-chip block random access memo-
ries (BRAM) on the FPGA chip.

Directly implementing the original SSD algorithm onto an FPGA
may cause low utilization of the available computation resources
and consequently result in low performance and efficiency. To
address this issue, we tailor the SSD300 algorithm for efficient
hardware realization (henceforth referred to SSD300_HW), and
employ low precision fixed-point data with dynamic quantization
for inference. The process of customizing SSD300 is illustrated in
Figure 1, where the complex non-linear functions are removed and
varying convolution configurations are unified. These reduce the
FPGA resource cost and improve the performance. The proposed
FPGA-based deep learning inference accelerator is designed for two
Intel FPGAs — Arria 10 and Stratix 10, achieving 1.03 TOPS and
2.18 TOPS throughput for SSD300, respectively, and up to 6.3% less
power consumption and 3.3 higher energy-efficiency compared
to a high-end GPU.

2 RELATED WORK

Recent FPGA works on hardware acceleration of CNN inference
have demonstrated throughput improvement from 62 GOPS [20]
to 1,382 GOPS [1], while also significantly improving the energy
efficiency when compared to GPU based implementations [19][3].
Efforts have been made to reduce the gap between the rapid develop-
ment of deep learning algorithms and the long design time for FPGA
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(a) Original SSD300 (b) Hardware-friendly SSD300_HW
Figure 1: Customization of SSD300 to be hardware-friendly
SSD300_HW by (1) replacing dilated convolution, (2) using
constant scale instead of normalization and (3) using uni-
form convolution stride, where the algorithm customiza-
tions are highlighted by different colors.

hardware implementation. Several FPGA-based frameworks or com-
pilers have been proposed to automatically map several different
CNN algorithms, e.g. AlexNet [6], VGG [15] and ResNet [4], onto
FPGA hardware [3, 8, 19]. To speed up the FPGA implementation,
approaches based on high-level synthesis (HLS) techniques and the
use of OpenCL, are becoming increasingly popular, due to their
easy programmablity and reduced design time [1, 16, 17, 20]. How-
ever, the conventional design methodology that relies on manual
register-transfer level (RTL) allows much finer level of optimization
of the hardware, resulting in higher performance and energy effi-
ciency [9, 11]. This is the approach adopted in the present work. In
contrast to other applications of CNNs, there have been relatively
fewer works focused on FPGA-based object detection. The most
recent examples inlcude the Xilinx Zynq FPGA [21], which has
been used to implement YOLO (GoogLeNet) and the Faster RCNN
(VGG16). The reported latency of these two designs are 744 ms and
875 ms per image respectively, and cannot be considered to be in
real-time.

3 HARDWARE ACCELERATION OF CNN ON
FPGA

More than 90% of the operations in a CNN are covolution, which is
essentially accumulation of large numbers of multiplications (MAC)
along different dimensions of the feature and kernel maps [4, 7,
15]. This provides a large design space for exploring parallelism.
Modern FPGAs provide hundreds to thousands of DSP blocks to
support hardware multiplication operations and megabytes of on-
chip memories to buffer data between the on-chip PEs and the
external memory, e.g. DRAM. The increasing scale and complexity
of CNN algorithms make the goal of maximizing the utilization
of the FGPA resources to achieve high throughput and energy
efficiency a very challenging task.

3.1 Loop Unrolling for Parallel Computations

The large number of convolution operations require full utilization
of the limited FPGA computation resources, e.g. DSP and recon-
figurable logic, to maximize the parallel MAC operations. Loop
unrolling [9, 20] is used to direct the parallelism along different
convolution loops. To reduce the complexity of hardware design,
in this work, unrolling of identical loops is applied for all the con-
volution layers to achieve a uniform mapping across PEs. As the
sizes of feature and kernel maps vary dramatically across different
convolution layers, we must unroll loops with large dimensions
to support high parallelism. Therefore, we choose to parallelize
convolution of multiple features inside one input feature map with
multiple output kernel maps, and sequentially slide within a ker-
nel window and across all the input feature maps. By this means,
the MAC unit with one multiplier followed by an accumulator, as
shown in Figure 4, is employed as a PE to perform the convolution
operation. The partial sums are accumulated within one MAC unit,
and both the input features and kernel weights are reused by multi-
ple MAC units. To implement MAC units in our design, we exploit
the built-in multipliers of the DSP blocks in the FPGA.

3.2 Loop Tiling for Memory Storage and
Transaction

Since the on-chip memory of an FPGA is typically insufficient to
store all the weights and intermediate features for large scale CNN
algorithms, loop tiling [9, 20] is applied to divide a large CNN layer
into multiple small tiles, which can be accommodated by the on-
chip buffers. However, if the tile or buffer size is too small, weights
or features may need to be read more frequently from the DRAM.
This can dramatically increase the number of DRAM accesses and
lead to higher transaction delay and energy consumption. Limited
by the external memory bandwidth, the dual buffer structure, as
shown in Figure 2, is employed in this work to overlap the external
memory transaction delay with the computation latency to improve
the overall throughput.

3.3 Accelerator Architecture

The overall FPGA-based CNN inference acceleration system is
shown in Figure 2. Both the weights and features are stored in
external DRAM due to their large storage requirement. After the
acceleration starts, weights and features are loaded into the weight
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Figure 2: The overall FPGA-based CNN acceleration system,
including PE arrays of MAC units, on-chip buffers and ex-
ternal memory interface.

and input feature buffers from DRAM, respectively. The data router
is designed to reshape the data fetched from buffers and directs
them into the MAC units in a proper dataflow, and it also adapts the
dataflow to different convolution sliding strides and zero padding.
The output results of MAC units are sent to the output feature buffer
and finally written back to external memory to be used as the in-
put for the following layer. The control logic generates read/write
addresses and governs the sequential tile-by-tile and layer-by-layer
execution with varying layer sizes so that the MAC computation
units are serially reused by all the convolution layers.

4 ALGORITHM CUSTOMIZATION FOR FPGA

Unlike software (CPU-GPU) implementations, direct hardware im-
plementation normally favors performing massive numbers of lin-
ear computations in parallel, and with a uniform dataflow, as this
maximizes the utilization of the hardware resources and reduces
the complexity of the control logic. Therefore, it is necessary to tai-
lor the original software implementation to benefit their hardware
implementation, while maintaining sufficient accuracy. The modifi-
cation methods and their corresponding accuracies are shown and
summarized in Figure 1 and Table 1.

4.1 Dilated Convolution

To speed up the training and inference time in the original SSD algo-
rithm [7], the fully connected layers, e.g. fc6 and fc7, are converted
to convolution layers. In addition, the fc6 layer is implemented as
dilated convolution to expand the receptive field without loss of res-
olution or coverage [18]. However, the change of the computation
pattern in convolution makes the dataflow into the PEs significantly

different from the original convolution, which requires new data
bus and control logic in hardware.

One solution is to implement the dilated convolution as original
convolution, filling the intervals inside the kernel window with
zeros. The cost of this increases redundant computation. In SSD,
the configuration of fcé6 is kernel size = 3, dilation = 6, and zero-
pad = 6. These can be implemented as a normal convolution with
kernel size = 3 + 2 X (6 — 1) = 13, dilation = 1 and zero pad = 6. By
this means, the number of fc6 operations is dramatically increased
from 3.4 GOP to 64 GOP. This is even larger than the total number
of operations in the original SSD algorithm, i.e. 62 GOP, and is
obviously unacceptable.

Another solution is to change the dilated convolution into a nor-
mal convolution directly and make the convolution configurations
uniform with other layers. Therefore, we set fc6 to be kernel size = 3,
dilation = 1, and zero-pad = 1. This makes the output feature map
size have the same number of operations. After retraining the SSD
model, the mAP of SSD300 with the modified fc6, e.g. SSD300_1,
is 77.34% as shown in Table 1. This is even slightly better than
the original one as 77.30%. By this means, we can keep using the
existing data bus and control logic to implement fc6 without any
performance penalty.

4.2 Normalization

Since conv4_3 in SSD has a different feature scale compared to the
other layers, [7] applies the L2 normalization combined with scale
at each location in the feature map and learn the scale during back
propagation. The normalization operation of conv4_3_norm in SSD
is expressed as:

out(x, y, m) = scale(m) X input(x,y, m)

VM, input(e,y.mp? &
€[1,X],ye[1,Y],me[1,M],

where X and Y are the feature map width and height, respectively,
and M is the number of feature map channels. Computing Equa-
tion 1 requires sum of squares, square root and division operations,
which are complex in hardware and require large number of logic
resources. Instead of directly implementing hardware for these com-
putations, we can alternatively approximate this nonlinear function
by using lookup tables to store limited points of the function, which
also requires significant amount of on-chip memory and logic. Since
conv4_3_norm is only used to scale the feature values to be the
same level as other layers, we directly scale all the conv4_3 features
with a constant number during training and use the same scale
value for inference. As shown in Table 1, we have tried several
scale values, e.g. 0.01 for SSD300_2, 0.015 for SSD300_3, and 0.02 for
SSD_4, and find that 0.015 scale results in the best mAP of 77.88%
(SSD300_3), which is even better than the original 77.30%. By this
means, we can directly scale all the features of conv4_3 by a con-
stant number, which significantly simplifies the control logic and
reduces the required hardware computing resources.

4.3 Convolution with Different Sliding Strides

Different sliding strides and zero padding in convolutions lead to
different dataflow of input features into the PEs. This requires dif-
ferent databus and control logic to govern the dataflow and ensure



Table 1: Experiments of SSD customization for hardware inference with mAP tested on VOC07+12 test database [2]

Model ‘ Dilated Conv. (fc6) ‘ Norm ‘ Constant Scale ‘ Different Conv. Strides ‘ mAP
SSD300 N v - v 77.30%
SSD300_1 x N - N 77.34%
SSD300_2 N x 0.01 v 77.81%
SSD300_3 v x 0.015 N 77.88%
SSD300_4 v x 0.02 v 77.19%
SSD300_5 v N . x 77.41%
SSD300_HW X X 0.015 X 77.10%

that the proper input data are continuously fed into PEs without
idle clock cycles. Therefore, the hardware design favors regular and
uniform convolution structures, e.g. VGG-16, to reduce the design
efforts and complexity as well as the required hardware resources.
In the original SSD, conv6_2 and conv7_2 use stride of 2 to scale
down the output feature map size for multi-scale detection and all
other convolution layers have stride of 1, which is not favored by
hardware design. Therefore, we change the stride of conv6_2 and
conv7_2 to be 1 and add a subsequent max pooling layer with stride
of 2 to downsample the feature map. The additional max pooling
layers reuse the existing hardware module for the previous pooling
layers, which does not add overhead to the hardware resources.
This modification adds about 0.64 GOP operations (~ 1.0% of the
total SSD operations) and does not affect the overall performance
noticeably. The accuracy of this modification is shown in Table 1
to be 77.41% as SSD300 5.

4.4 Hardware-friendly SSD300_HW

After collectively applying all the aforementioned modifications of
(1) removing dilated convolution, (2) using constant scale instead
of normalization and (3) employing uniform convolution stride,
we obtain the final hardware-friendly SSD300_HW as shown in
Table 1 with mAP of 77.10%, which is slighlty lower than the original
SSD300 by 0.20%.

5 FPGA INFERENCE WITH LIMITED
PRECISION

Although 32-bit floating point precision may be required for the
training phase, such a high precision is not necessary for infer-
ence, and thus most of the hardware inference works to date use
fixed-point data precision without significant loss of accuracy [9-
11, 14, 16, 17]. Using data with low precision reduces considerably
the requirement of on-chip memory capacity and external memory
bandwidth. It also improves the hardware efficiency and perfor-
mance by allowing the use of fixed-point arithmetic operations,
which demands significantly fewer FPGA computing resources, e.g.
logic and DSP, compared to floating-point operations.

5.1 Fixed-point Data Representation

Quantization is one of the most commonly used method to convert
floating-point represented real numbers into fixed-point format
with lower precision. The bit width of a signed fixed-point num-
ber (bit_total) is comprised of one sign bit (bit_sign), integer bits

(bit_int) and fractional bits (bit_fra) as shown by Equation 2:
bit_total = bit_sign + bit_int + bit_fra. (2)

In conventional fixed-point hardware implementation, the decimal
point is fixed, and defines the portion between the integer and
fractional bits of all the numbers. The integer bit of all the numbers
(x) is determined as:

bit_int = [logz max(|x|)] . (3)

If bit_int is larger than bit_total — 1, it causes overflow error due to
the large scale of the numbers. If bit_int is smaller than 1-bit_total,
there is underflow problem due to the small scale of the numbers,
which may lead to significant precision loss. The fixed-point integer
number X can be obtained by rounding to the nearest integer as
Equation 4:

Rounding : Xp = [x X Zbit—fm] , 4)

or truncated to the largest previous integer as Equation 5, which is
easier to implement in hardware by right shifting or discarding the
least significant bits (LSB):

Truncation : X = lx X 2b”f”’J . (5)

5.2 Dynamic Quantization

Due to the large range and variance in the data in a given CNN algo-
rithm, the conventional fixed-point representation has to increase
bit_total to solve the issue of overflow and underflow resulting in
higher usage of hardware resources, e.g. memory and logic.
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Figure 3: The range of absolute values of each convolution
layer’s kernel weights in SSD300 and their corresponding
bit_int.



Example | bit_total | bit_sign | bit_int | bit frac | _~e& | Fixed-point
number integer
Input Pixel 16 1 13 2 6789.625 27158
Weight 8 1 -2 9 0.203125 104
Output Pixel 16 1 12 3 1379.142 11033
Right shift by 8 bit
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Figure 4: The design of one MAC unit with dynamic quanti-
zation for convolution and FC operations, where the multi-
plier is implemented by DSP and the adder is implemented
by logic.

To overcome this problem, we employ the dynamic quantiza-
tion method [1, 9, 11, 14] to use fixed-point representation within
one layer and vary the decimal point across different layers. This
exploits the characteristic that the range of data in one layer is
much smaller than the range across all the layers as shown by Fig-
ure 3. By this means, all the weights or all the features of one
layer share the same exponent, e.g. bit_fra, and have at most
bit_total — 1 bits of significand, whereas in a floating-point rep-
resentation each number has its own exponent and fixed bits of
significand. The constraint on the bit_int is relaxed to be any inte-
ger number, which allows for a wide range of values. For example,
if the maximum absolute value of the weights in one layer is 567819
and bit_total = 8, then bit_int = 13 according to Equation 3 and
bit_fra = 8 — 1 — 13 = —6. For one weight in this layer, e.g.
X = 2345.62519 = 100100101001.1013, its corresponding fixed point
number after truncation is X7 = 3619 = 1001002 by Equation 5,
where we have 6 bit significand with the rest LSB discarded.

5.3 Dynamic Quantization on Hardware

In Intel Arria 10 and Stratix 10 FPGAs, there are limited number of
DSP blocks to implement multipliers for convolution operations.
One DSP block can support either one single-precision floating-
point multiplier or two 18-bit X 18-bit fixed-point multipliers. Based
on this, fixed-point arithmetic can potentially achieve at least twice
the throughput compared to floating-point arithmetic by more effi-
ciently utilizing the available DSP resources [1]. Moreover, lower
precision also benefits the memory transactions to reduce the mem-
ory access delay and energy cost.

The design of the MAC units to compute convolution and fully-
connected layers are shown in Figure 4 with an example to illustrate
dynamic quantization. The inputs, weights and outputs are assumed
to have bit_total = 16, 8, and 16 and bit_fra =2, 9, and 3, respec-
tively, as listed in the table inside Figure 4, where the multiplier
has 24 (=16+8) bit of outputs and the adder has 27 bit of outputs
with 3 redundant bit for accumulation. Since the data range of
weights and features in one layer could be quite different, we set

independent exponents or bit_fra for weights and features. The
different bit_fra of inputs and outputs is caused by the different
feature value ranges between different layers, or the decimal point
is floated across different layers. In order to fit the 27 bit MAC
output into the same number of bits as the 16 bit input, the 27 bit
output must be truncated or right shifted. The number of bit to
be right shifted (bit_right) is determined by the bit_fra of input,
weight and output:

bit_right =

bitffrainput + bitffrawel-ght - bitffraoutput.

(6)

In the example inside Figure 4, the MAC output 2,824,432 needs to
be right shifted by 8 (= 2 + 9 — 3) bits or discarding the 8 LSB to be
11032, which is different from 11033 in the table because of the error
caused by truncation and limited precision. Since different layers
may have different bit_right, a multiplexer is needed at the end to
choose different truncated outputs with different bit_right, which
is the only hardware overhead caused by dynamic quantization
compared to the static fixed point design. For the inference phase,
the weights are pre-trained so that we can calculate bit_fra and
bit_int of each layer off-line before execution as shown in Figure 3.
Then, all the weights are dynamically quantized by rounding to be
fixed point integer numbers as in Equation 4 and stored in external
DRAM to be used by the hardware CNN accelerator. The ranges
of feature values are obtained from testing the overall dataset, and
then bit_fraand bit_int of each layer are calculated. By this means,
the bit_right of each layer is calculated by Equation 6 to control
the multiplexer inside the MAC unit.

The detection accuracies of floating-point arithmetic, dynamic
quantization and conventional fixed point arithmetic on VOC07+12
test dataset are compared in Table 2 for original SSD300 and hard-
ware friendly SSD300_HW. 16-bit precision with dynamic quantiza-
tion can provide the same level of accuracy compared with single-
precision floating-point arithmetic for both original and modified
SSD algorithms. For conventional fixed-point arithmetic, bit_int
has to be large enough to cover the wide range of data of the entire
SSD algorithm leading to fewer bit_fra and lower precision. Com-
pared with weights, features are more sensitive to precision and
require more bit width. Since 8-bit weights do not reduce the accu-
racy significantly and can save a considerable amount of logic and
memory usage, we decide to use 8-bit weights and 16-bit features
with dynamic quantization.

6 EXPERIMENTS

6.1 Experimental Setup

CPU and GPU: The baseline CPU used in the experiment is Intel
Core 17-5930K with 6 cores, and the GPU is NVIDIA GeForce GTX
1080 Ti. Their detailed specifications are listed in Table 4. The
software deep learning framework we used is Caffe [5].

FPGA: The two Intel FPGAs used in the experiment are Arria
10 GX 1150 and Stratix 10 GX 2800. The main FPGA computation
resources are DSP blocks and adaptive logic modules (ALM). The
main memory resource on FPGA chip is the block random-access
memory (BRAM) in terms of M20K with each M20K having 20
Kbit capacity. There are 1,518/5,760 DSP blocks, 427K/933K ALMs,
and 2,713/ 11,721 M20K BRAMs on the used Arria 10 and Stratix



Table 2: The accuracies of original SSD300 and hardware-
friendly SSD300_HW with different inference precisions are
compared on VOC07+12 test set, and the highlighted preci-
sion is chosen for FPGA implementation.

Weight Pixel Dynamic
Model Preci- Preci- - mAP
R . Quantization
sion sion

SSD300 FP-32 FP-32 - 77.30%

SSD300 16 16 N 77.29%

SSD300 8 16 v 77.06%

SSD300 16 8 N 59.36%

SSD300 8 8 v 58.82%

SSD300 16 16 X 75.21%

SSD300 8 16 X 74.68%
SSD300_HW FP-32 FP-32 - 77.10%
SSD300_HW 16 16 N 77.11%
SSD300 HW 8 16 N 76.94%
SSD300_ HW 6 16 N 35.12%
SSD300_HW 16 8 N 53.60%
SSD300_ HW 3 8 N 53.23%
SSD300_HW 16 16 X 74.85%
SSD300_HW 8 16 X 74.10%

10, respectively. The underlying FPGA boards for Arria 10 and
Stratix 10 are Nallatech 385A and Stratix 10 FPGA Development
Kit, respectively, and both are equipped with DDR3 DRAM with
peak memory bandwidth of 16.9 GB/s.
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Figure 5: The DSP efficiency of each convolution layer in
SSD300_HW is used to measure the match degree between
parallel computation scheme and the feature maps.

6.2 Discussion of Results

6.2.1 Parallel Computation Efficiency. To achieve better perfor-
mance with higher parallelism, we attempt to maximize the usage of
DSP blocks for the MAC operations. Each DSP supports two fixed-
point multipliers in two MAC units. Constrained by the number of
available DSP blocks, we set the number of MAC units on Arria 10
and Stratix 10 to be 3,072 (= 8 X 6 X 64) and 8,192 (= 16 X 8 X 64),
respectively. This means 8 X 6 or 16 X 8 features within the same out-
put feature map are processed in parallel and such 64 output feature

Throughput of Each Convolution Layer in SSD300_HW
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Figure 6: The throughput of each convolution layer in
SSD300_HW is constrained by the DSP efficiency and mem-
ory bandwidth.

maps are simultaneously computed. Since the feature map sizes and
output channel numbers vary significantly across different layers
in SSD, the parallel degree and shape may not perfectly match the
feature map size and dimension, which causes inefficient utilization
of DSP blocks or MAC units. Therefore, the DSP efficiency [17]
is defined to measure how well the parallel computation scheme
matches the feature maps:

# ef fective ops.

DSP .= .
_eff # actual performed ops.

™)

The DSP efficiency of each convolution layer is shown in Figure 5.
The first several layers in SSD300 have large feature map sizes, e.g.
300 X 300 and 150 X 150, so that the parallel dimension can easily fit
into the feature maps. The layers at the end for multi-scale detection
have much smaller feature maps, e.g. 10 X 10 and 5 X 5, which leads
to considerable degradation of DSP efficiency. Fortunately, the first
several layers account for most of the total operations as shown in
Figure 5, which makes the overall DSP efficiency still high as 81.8%
on Arria 10 and 71.5% on Stratix 10. Stratix 10 has larger parallel
degrees than Arria 10, which makes it more difficult to match all
the feature maps and results in lower DSP efficiency.

Table 3: Comparison of SSD300_HW with baseline SSD300_3
on Arria 10 and Stratix 10 FPGAs

FPGA | Arria 10 GX 1150 | Stratix 10 GX 2800
Model SSD SSD SSD SSD
3003 300 HW | 300.3 300 HW
Precision 8-16 bit  8-16 bit | 8-16 bit  8-16 bit
mAP 77.45% 76.94% 77.45% 76.94%
Clock (MHz) 200 240 240 300
# MAC units 3,072 3,072 8,192 8,192
DSP Block 1,518 1,518 4,370 4,363
Logic (ALM) 220K 175K 618K 532K
BRAM (M20K) 2,586 2,581 3,862 3,844
Latency (ms) 72.2 61.4 35.2 29.1
GOPS 876 1,032 1,798 2,178




Table 4: SSD300 Inference Performance and Efficiency Comparison on Different Platforms with Batch Size = 1

Intel Core i7-5930K

NVIDIA GeForce GTX

Intel Arria 10 GX 1150

Intel Stratix 10 GX

Platform .
CPU 1080 Ti GPU FPGA 2800 FPGA
Technology 22 nm 16 nm 20 nm 14 nm
Clock Frequency 3.50 GHz 1.48 GHz 240 MHz 300 MHz
Max. Memory BW 68 GB/s 484 GB/s 16.9 GB/s 16.9 GB/s
Precision FP-32 bit FP-32 bit fixed 8-16 bit fixed 8-16 bit
mAP of SSD300 77.30% 77.30% 76.94% 76.94%
Latency/Image (ms) 3,272.2 32.58 61.45 29.11
Overall Throughput 19.5 GFLOPS 1,956 GFLOPS 1,032 GOPS 2,178 GOPS
Power (W) 140 250 40 100
Energy/Image (J) 458 8.1 2.4 2.9
Efficiency (GOP/J) 0.14 7.82 25.8 21.8

Note that we employed the SSD300 algorithm with data augmentation, which shows 77.3% mAP but GPU performance was not reported in [7]. For SSD300
without data augmentation, 46 fps was reported for Titan X GPU, but mAP was degraded to 74.3%.

6.2.2 Throughput. The throughput of each convolution layer
in SSD300_HW, which is determined by the number of MAC units,
DSP efficiency, buffer sizes, and external memory bandwidth, is
shown in Figure 6. If there is unlimited memory bandwidth, the
shape of the throughput curve in Figure 6 should match the DSP
efficiency curve in Figure 5. With limited memory bandwidth, the
memory access delay may be larger than the computation delay in
some layers, or these layers are memory-bounded. For example, the
first convolution layer (conv1_1) is memory bounded for both Arria
10 and Stratix 10. Although Stratix 10 can compute the MAC opera-
tions faster, it can only achieve the same throughput as Arria 10,
because both of them are memory bounded with the same memory
bandwidth. With higher computation speed and the same memory
bandwidth, Stratix 10 encounters memory-bounded situations more
often than Arria 10, which poses limitations on the throughput im-
provements of Stratix 10. With 8,192 MAC units operated at 300
MHz, the theoretical maximum throughput of Stratix 10 is 4,915
GOPS, which is 3.3 larger than the Arria 10 maximum throughput
of 1,474 GOPS. However, Stratix 10 achieves 2.1x enhancement of
throughput over Arria 10 due to the limited memory bandwidth
and lower DSP efficiency.

6.2.3 SSD300_HW vs. Baseline SSD300_3. To evaluate the effect
of tailoring SSD300 to achieve an efficient hardware implementa-
tion , e.g. SSD300_HW, we also implement SSD300_3 as in Table 1,
where dilated convolution (fc6) and different convolution strides
are unchanged. The detailed comparison results are listed in Ta-
ble 3, including resource utilization and throughput. Due to the
special dataflow of dilated convolution, dedicated control logic and
data path router are designed in SSD300_3, which need extra de-
sign time and efforts. To support convolution layers with strides
of two, additional data buses are used to feed proper data into the
PEs. Therefore, SSD300_3 implementations on Arria 10 and Stratix
10 consume about 26% and 16% more logic elements (ALMs) than
SSD300_HW, respectively, as in Table 3. Even worse, the additional
data buses tighten the critical path and decrease the operating fre-
quency leading to 1.17x and 1.21X throughput reduction compared
to SSD300_HW, on Arria 10 and Stratix 10, respectively. The com-
plex nonlinear function involved in the normalization of conv4_3

is expected to require considerably more design efforts and hard-
ware resources that may result in even lower performance. Hence
we did not continue to implement normalization for the baseline
design. The example detection results of SSD300_HW are shown
in Figure 7.

Figure 7: Example detection results of SSD300_HW.

6.2.4 FPGA vs. CPU, GPU. In Table 4, we compare our FPGA-
based inference engine with CPU and GPU platforms, for SSD300
implementation. Many latency-critical inference applications, e.g.
autonomous drive and surveillance, require the completion of de-
tection at the speed of incoming data stream. Although the high
batch size can improve the throughput by sharing the memory
transfer delay, it worsens the latency between one input image
and its detection result. Therefore, we set the batch size to be 1 for
all the platforms to achieve the minimum latency per image. The
results of CPU and GPU are based on the original SSD300 algorithm
using single-precision floating-point numbers, and the FPGA re-
sults are based on the hardware-friendly SSD300_HW as in Table 2,
which uses 8-bit weights and 16-bit features with dynamic quan-
tization to achieve the same accuracy level as software. Aided by



the customized hardware architecture specific for CNN inference
acceleration, Arria 10 achieves 53X higher performance than CPU
and Stratix 10 obtains 1.12X better throughput than GPU, even if
FPGAs suffer from lower clock frequency and much less memory
bandwidth. Due to the difficulty of directly measuring the power
of CPU, GPU and FPGA, the listed power numbers are from their
datasheet specifications for only rough estimation. Based on this,
Arria 10 and Stratix 10 FPGAs can achieve 3.3x and 2.8X better
energy-efficiency compared to GPU with 6.3% and 2.5X less power
consumption, respectively.

7 CONCLUSIONS

In this work, we presented an efficient hardware implementation of
the SSD300 object detection algorithm, tailored for an FPGA. The
proposed design, SSD300_HW, achieves this through three basic
innovations. These are: 1) replacing the dilated convolution with a
normal convolution, 2) using a constant scale instead of normaliza-
tion, and 3) using a uniform convolution sliding stride. Fixed-point
arithmetic is employed to reduce the computation resource usage,
which significantly enhances the FPGA inference performance, and
the dynamic quantization is used to remain the detection accu-
racy of floating-point representation. The proposed FPGA-based
inference engines achieve 1.03 TOPS and 2.18 TOPS throughput
for SSD300_HW on Intel Arria 10 and Stratix 10 FPGA, respec-
tively, and they also consume 6.3X and 2.5% less power and obtain
3.3% and 2.8X better energy efficiency, respectively, compared to a
high-end GPU.
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