Integration, the VLSI Journal 62 (2018) 14-23

1 SEVIER

Contents lists available at ScienceDirect

INTEGHATION
Ll =t

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

ALAMO: FPGA acceleration of deep learning algorithms with a modularized

RTL compiler

Check for
updates

Yufei Ma®", Naveen Suda®, Yu Cao?, Sarma Vrudhula®, Jae-sun Seo?®

@ School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, USA
" School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, USA

ARTICLE INFO

ABSTRACT

Keywords:

Convolutional neural networks
FPGA

RTL

Hardware acceleration
Compiler

Deploying Convolutional Neural Networks (CNNs) on a portable system is still challenging due to the large
volume of data, the extensive amount of computation and frequent memory accesses. Although existing high-level
synthesis tools (e.g. HLS, OpenCL) for FPGAs dramatically reduce the design time, the resulting implementations
are still inefficient with respect to resource allocation for maximizing parallelism and throughput. Manual
hardware-level design (i.e., RTL) can improve the efficiency and achieve greater acceleration but that requires an
in-depth understanding of both the algorithm structure and the FPGA system architecture. This work presents a
scalable solution that achieves the flexibility and reduced design time of high-level synthesis and the near-
optimality of an RTL implementation. The proposed solution is a compiler that analyzes the algorithm struc-
ture and parameters, and automatically integrates a set of modular and scalable computing primitives to accel-
erate the operation of various deep learning algorithms on an FPGA. Integrating these modules together for end-
to-end CNN implementations, this work quantitatively analyzes the complier's design strategy to optimize the
throughput of a given CNN model under the FPGA resource constraints. The proposed RTL compiler, named
ALAMO, is demonstrated on Altera Stratix-V GXA7 FPGA for the inference tasks of AlexNet and NiN CNN models,
achieving 114.5 GOPS and 117.3 GOPS, respectively. This represents a 1.9X improvement in throughput when
compared to the OpenCL-based design. The results illustrate the promise of the automatic compiler solution for
modularized and scalable hardware acceleration of deep learning.

1. Introduction

throughput by computing batches of images together, their inference
processing time of one image is relatively high [27], which is not suitable

Convolutional Neural Networks (CNNs) have become the de facto
standard in many computer vision applications such as character recog-
nition [1], image/video classification [2-6], face detection [7], and scene
analytics [8], because of their ability to achieve accuracy close to or even
better than human-level perception. CNNs typically consist of multiple
layers of computationally intensive convolution operations followed by
memory intensive classification layers, which still challenge the
state-of-the-art computing platforms to achieve real-time performance
with high energy efficiency.

In practice, GPUs are widely used to accelerate the training tasks of
CNNs by implementing convolution as highly optimized matrix-matrix
multiplication [20]. However, their cost and power consumption
(>100W) is too high for embedded applications, where
energy-efficiency is critical. Even though GPUs can achieve very high

* Corresponding author. 660 S Mill Ave, Tempe, AZ 85281, USA.

for latency-critical applications that require real-time classification re-
sults. Instead of GPUs, various hardware accelerators have been recently
proposed based on FPGAs [9-15], SoCs [16] and ASICs [17,18] to
accelerate CNN inference processes. FPGA-based CNN accelerators in
particular, have become increasingly popular by virtue of their high
re-configurability, fast turn-around time (compared to ASICs), good
performance and better energy efficiency (compared to GPUs) [19].

Previous FPGA implementations based on high-level synthesis (HLS)
tools have achieved good flexibility, easy programmability and short
design time, but their hardware and memory utilization is inefficient and
may not allow exploitation of low-level hardware structures to achieve
higher performance and throughput [10,11,13,28].

On the other hand, previous RTL based FPGA efforts implemented
customized CNN accelerators optimized for a specific CNN model [14,31,

E-mail addresses: yufeima@asu.edu (Y. Ma), nsuda@asu.edu (N. Suda), yu.cao@asu.edu (Y. Cao), vrudhula@asu.edu (S. Vrudhula), jaesun.seo@asu.edu (J.-s. Seo).

https://doi.org/10.1016/j.v1si.2017.12.009

Received 1 August 2017; Received in revised form 30 October 2017; Accepted 15 December 2017

Available online 5 January 2018
0167-9260/© 2017 Elsevier B.V. All rights reserved.

Y. Ma et al.

32]. By this means, the fine-grained hardware level optimization can be
exploited to achieve high performance and energy efficiency. However,
the customized RTL accelerator requires long development time, e.g.
several months, which makes it difficult to catch up with the rapidly
evolving CNN algorithms and diverse applications. A generic RTL based
CNN accelerator, which is agnostic to the model configuration (i.e., the
feature maps and kernel sizes) [9,16], is another design option that in-
creases the accelerator flexibility for different CNNs at the cost of inef-
ficient hardware utilization. This approach is necessary for the ASIC
design to serve different CNN algorithms on the same hardware, but not
that important for the FPGA platform that is highly reconfigurable.
Furthermore, the rapidly changing field of deep learning algorithms and
tasks makes it even more difficult for a generic accelerator to efficiently
cater a wide range of CNN algorithms.

On the software side, machine learning researchers have been able to
efficiently develop and explore deep learning algorithms through flexible
open-source frameworks such as Caffe [20], Torch7 [21], Theano [22],
and TensorFlow [23], which run on CPUs or GPUs. These software
frameworks have simple expression and modularity, which allowed re-
searchers to efficiently explore various algorithms and network struc-
tures. Unfortunately, the hardware design community does not yet have
such a flexible modular framework for hardware implementation of CNN
and other deep learning algorithms, inevitably spreading out the hard-
ware research efforts instead of coalescing them.

In this context, there is a timely need to reform the strategy and its
implementation for mapping CNNs to physical hardware, and to support
modular and scalable hardware customization for specific applications
without sacrificing design flexibility. To this end, we propose a scalable
FPGA framework, referred to as ALAMO, that stands for Acceleration of
deep Learning Algorithms with a MOdularized RTL compiler [30].
ALAMO targets and provides an automatic means to map CNN inference
processes to efficient RTL codes that can be used for high-performance
FPGA and ASIC implementations.

This review article provides a detailed review of ALAMO compiler
from our previous conference paper [30]. It also includes new analysis
and technique proposed in our more recent publications [31,32] for
customized CNN accelerator, whose design can be applied to further
improve the performance, efficiency and flexibility of ALAMO. The main
contributions include:

(a) The proposed ALAMO RTL compiler is shown in Fig. 1. It analyzes
a given CNN model's structure and sizes, as well as the degree of
desired parallelism set by users, to generate and integrate variants
of CNN modules based on the hand coded parameterized RTL
module templates.

(b) The acceleration system generated by the compiler is validated by
implementing two deep CNNs each requiring over a billion op-
erations per input image — AlexNet [4] and Network in Network
(NiN) [5] on DE5-Net board with Altera Stratix-V FPGA, achieving
a throughput of 114.5 GOPS and 117.3 GOPS, respectively.

Parameterized RTL scripts

CNN models I
ALAMO RTL [
* Net of layers compiler
* Type of layers .p t * Top-level system
+ Number and el + Conv/Pool/Norm/FC
umber an configurations
size of kernel/) modules
feature maps * Verilog code « RTL DMA controller
generation + On-chip buffers

* RTL module Data router.

Y

Parallel computing templates -
« Number of - DRAM FPGA design tools@
mltjjz?ipliers addr e.g. Quartus

| FPGA programming file |

Fig. 1. The compilation flow with the proposed ALAMO RTL compiler.

15

Integration, the VLSI Journal 62 (2018) 14-23

The rest of the paper is organized as follows. Section 2 provides a brief
overview of operations and structure of a typical CNN model. Section 3
highlights the practical challenges in FPGA implementation of large-scale
CNNs and studies the implementation of CNN acceleration modules with
limited precision. Section 4 describes the strategy to accelerate convo-
lution which dominates CNN operations. Section 5 presents the design of
scalable modules for CNN building blocks e.g. convolution, pooling,
normalization and fully-connected inner-product, generated by the
compiler. The accelerator system that integrates the scalable CNN RTL
modules is discussed in Section 6. Section 7 presents the experimental
results of ALAMO implementation of AlexNet [4] and NiN [5] models on
an FPGA and compares them with prior works. The paper is concluded in
Section 8.

2. Overview of CNN operations and structures

Convolutional neural networks typically incorporate multiple layers
of convolution, pooling/subsampling, and normalization that extract
low-level to high-level features from the input. These features can be
categorized into a finite number of output classes by the final classifi-
cation layers such as the multi-layer perceptron or fully-connected layers.

Convolution involves 3-dimensional multiply and accumulate (MAC)
operations of Ny input feature maps (or channels) with Ny convolution
kernels (or filters) of size K, x K, to compute an output pixel (or feature),
as described in Eq. (1) and illustrated in Fig. 2.

Ny K, K,

out(f,, x,y) = Z Z Zwt(f(,,ﬁ,kx,k}.) xin(fi,x + ke, y + k)

fi=0 k=0 k=0

@

where out(f,,x,y) and in(f;x,y) represent the pixel or neuron values at
(x,y) position in the feature maps f, and f;, respectively, wt(f,,f; ke ky) are
the kernel weights at position (kyk,) that are convolved with the input
feature map f; to get the output feature map f,. A special convolution
layer, named ‘cccp’, is used in NiN with K=1. Convolutions can
constitute more than 90% of the total operations for complex CNNs
models [4-6,26].

Pooling or subsampling is commonly employed after convolution to
reduce the dimensionality of the input features while preserving key
information. This is done by replacing K}, x K, input neurons with their
maximum or average value as shown in Fig. 2, depending on the model
definition.

Normalization or local response normalization (LRN) implements a
form of lateral inhibition [4] by normalizing the neuron value by a factor
depending on its neighboring features, as shown in Eq. (2).

Jo4K /2

B
1+% > in(fixy)
fi=fo—K/2

Fully-connected (FC) or inner-product layers are final classification
layers where the output features are computed as matrix-vector multi-
plications of the fully-connected weight matrix and the input feature

% Output feature maps
N,
tion: Ky i

ion

n(fy, X, y))

out(f,,x,y) =

Input
feature maps
Convolu

Kernel maps

s

"

Fig. 2. 3-D convolution and pooling with their corresponding parameters.

Y. Ma et al.

vector. Convolution and fully-connected layers are often followed by
non-linear activation functions such as tanh, sigmoid or Rectified Linear
Unit (ReLU). ReLU, defined as y = max(x,0), has become a popular choice
for the activation function, due to faster convergence in training [4] as
well as compact hardware implementation.

Structures of two representative CNN models, AlexNet and NiN, for
image classification task in the ImageNet challenge [2] are shown in
Fig. 3. They have relatively small sizes of intermediate feature results and
can be stored in the FPGA on-chip memory. The dimensions of output
feature maps (Nof x X, x Y,) are denoted on the right side of the layer
name and the kernel sizes (Nj x Ky x K,) are shown outside the box on
the left. AlexNet consists of 5 convolution layers, 2 normalization layers,
3 pooling layers, 3 fully-connected classification layers and 7 ReLU-based
activation layers. On the other hand, NiN consists of 4 convolution layers,
8 cccp layers, 4 pooling layers, and 12 activation layers. Note that, in
NiN, the fully-connected layers are replaced by the global average
pooling layer (pool4), which save a large number of weights. The eight
cccp layers with 1 x 1 convolution are employed for better local
abstraction, and there are no normalization layers.

3. Hardware design challenges

Implementing state-of-the-art CNN models on embedded platforms
with performance, power, and area constraints is a challenging task,
mainly because of the computational complexity in the convolution

layers and the memory requirements of the fully-connected layers. For
instance, AlexNet CNN [4] has over 60 million parameters and needs to

AlexNet NiN
image, 3x227x227 image, 3x224x224

3x11x11 | conv1, 96x55x55 3x11x11 | conv1, 96x54x54
norm1, 96x55x55

pool1, 96x27x27

96x1x1
9611

1313
—

ccepl, 96x54x54

1x3x3

48x5x5 | conv2, 256x27x27

normz2, 256x27x27

1x3x3 [pool2, 256x13x13 256x1x1
256x3x3 | conva, 384x13x13 256x1x1 | cccpd, 256x27x27
192x3x3 | conv4, 384x13x13 1x3x3 | pool2, 256x13x13
192x3x3 | convs, 256x13x13 256x3x3

1x3x3 [pool5, 256x6x6 384x1x1

fc6, 4096x1x1
fc7, 4096x1x1
fc8, 1000x1x1

asaxi
T
84x3<3
10201
1024x1x1
—

classification
result

classification
result

NxKxK, | layer, N,xXxY,

Fig. 3. Structures of AlexNet and NiN CNN models.

Integration, the VLSI Journal 62 (2018) 14-23

perform 1.46 billion operations on each input image. Using 32-bit
floating-point representation from the original algorithm, approximately
250 MB of memory is required to store all he weights. This exceeds the
on-chip memory capacity of present-day commercial FPGAs. Conse-
quently, these weights have to be stored in off-chip memory (e.g. DRAM)
and transferred to the FPGA during computation, making the external
memory bandwidth as a performance bottleneck, especially in the final
classification layer, where a large number of weights are required to
compute a single output neuron value.

The scale and complexity of the CNN algorithms keep increasing as
new applications emerge, and requiring ever increasing accuracy. For
example, AlexNet [4], which achieved the top classification accuracy in
ImageNet challenge 2012, has 8 layers when counting only the layers
with parameters. In comparison, GoogLeNet [6] (winner of the ImageNet
challenge in 2014) has 22 layers, and ResNet [25] (winner of the
ImageNet challenge in 2015) has 152 layers. Considering such a trend, it
would be impossible to implement all the CNN layers on an FPGA
without reusing the hardware resources. In order to efficiently share
FPGA resources, CNN layers should be implemented as scalable hardware
acceleration modules, so that the same hardware is reused by directing
the appropriate data through it. The energy cost of FPGA accelerators
mainly comes from computation, data movements and memory access.
Memory that is higher in the hierarchy (e.g. DRAM) normally consumes
greater energy per access than memory that is lower in the hierarchy (e.g.
register). This makes it essential to process data as locally as possible
while minimizing memory accesses for energy efficient design.

CNN models are typically trained with 32-bit floating point precision
in CPU/GPU based systems using an open-source machine learning
framework such as Caffe, Theano and TensorFlow. Although 32-bit
floating point precision (or 16-bit fixed point with statistical rounding
[24]) may be required during training for convergence, such a high
precision is not typically necessary during the classification phase to
achieve same accuracy levels [13,14]. Using weights with reduced pre-
cision alleviates the performance limitation due to the external memory
bandwidth bottleneck, on-chip memory footprint, and power consump-
tion for external memory transfers. Moreover, it enables the use of
fixed-point arithmetic operations, which require considerably fewer
FPGA logic resources compared to floating point operations, thus
improving the hardware efficiency.

4. Strategy to accelerate convolution
4.1. Four levels of convolution loops

Convolving feature maps with kernels is essentially a 3-D MAC
operation, which is comprised of four levels of loops as shown in the
pseudo codes in Fig. 4. Loop-1 is the inner most loop that computes the
MAC within a kernel window of dimension K, xK,,. Loop-2 iterates across
different input feature maps of dimension of Ny Loop-3 slides the kernels
within an input feature map of dimension X; x Y; and the outermost Loop-
4 generates different output feature maps with dimension of Nyy.

4.2. Convolution loop unrolling
Loop unrolling [31] directs the parallel computation of different

convolution loops as illustrated in Fig. 5, which determines the compu-
tation pattern and the data flow. If Loop-1 is unrolled, Py, x Piy pixels and

Loop-4 Across the output feature maps of N,

Loop-3 Slide within one input feature map with XX'Y
Loop-2 Across the input feature maps of N
Loop-1 MAC within a kernel window of K, X K,

Fig. 4. Pseudo codes to implement iterative convolution operations.

Y. Ma et al.

|

Pif S\' =4
Weights .
HH

Input Pixels

(a)

'.>Pof

(d -

Fig. 5. Loop unrolling: (a) unroll Loop-1; (b) unroll Loop-2; (c) unroll Loop-3;
(d) unroll Loop-4 [31].

weights from the same feature and kernel map are computed every cycle
as shown in Fig. 5(a). If Loop-2 is unrolled by a factor of Py, pixels from Py
different input feature maps are multiplied in parallel with the associated
kernel weights as shown in Fig. 5(b). If Loop-3 is unrolled, P x Py
number of pixels in the same feature map are multiplied with the iden-
tical weight as shown in Fig. 5(c). If Loop-4 is unrolled, Py adjacent
output channels are computed in parallel using the shared input pixel as
shown in Fig. 5(d).

In Ref. [30], the acceleration of convolution operations is realized by
unrolling Loop-2 and Loop-4 as illustrated by Fig. 6. The number of
parallel multipliers (N;;), which constrains the degree of acceleration (i.e.
Py x Py < Ny) and hardware resource usage (e.g. DSPs or logic ele-
ments), can be configured by users to fit the CNN accelerator into their
FPGA chip. In order to execute the maximum number of parallel multi-
plications with limited hardware resources, multipliers are shared among
all convolution layers. Since the dimensions of kernel and feature maps
could vary significantly across all the convolution layers even in one CNN
algorithm, our loop unrolling factors are dynamically adjusted for layers
with different numbers of channels to increase the computing resource
utilization. In particular, Py and Py are adjusted for each layer to make
Pis x Py close or equal to Ny,

If the multiplier number N, is larger than the number of input

Np=4 Ny=2P;=2Py=2

5

N,=4 N;=6P,=4P,=1

Input Pixels

Input Pixels

E] C
R . :3_’
%f\\, g
O// _g 3
%, | & -
<, Weights - 0 o Weights

(a) (b)

Fig. 6. Convolution acceleration strategy, (a) Ny, > Nj; unroll both Loop-2
and Loop-4, (b) N;, < Ny, only unroll Loop-2.

17

Integration, the VLSI Journal 62 (2018) 14-23

channels Ny, then Loop-2 can be fully unrolled (i.e. Piy= Ny as well as
Loop-4. This is shown in Fig. 6(a). The multiplication results are summed
up by the following adder trees with fan-in of Py, and subsequently the
pixels at the next location are fetched and computed. After the sequential
sliding within one kernel window K, x Kj, is completed, we add the bias
and compute the final output pixel value. Therefore, K, x Ky cycles are
required to compute an output pixel and in total X,Y,K,K, cycles to
compute one output feature map. With N, > Nj;, we can unroll Loop-4 to
compute Pyr= |Np/Ny| output feature maps in parallel, and we need
[No/Pof] iterations to compute the entire output feature maps of Noy.
Therefore, the total latency for one convolution layer is X, YoK Ky x [Nog/
Pyyf]. If Ny, is smaller than Ny, Loop-2 can only be partially unrolled (i.e.
Np = Py < Ny, Pos=1) as shown by Fig. 6(b). Then, the compiler simply
repeats the Ky x Ky, kernel window sliding [Njz/Py| times, and repeats the
memory read operations [Nis/Py] times to read pixels from the same (x,y)
feature map location but from the next group of input feature maps. In
this case, the total delay for one layer in the number of cycles is
XoYoKuKyNos X [Nig/Pif].

If both Loop-2 and Loop-4 are fully unrolled, P x Por= Nj x Nyf
number of parallel multiplications are required, which is greater than
8000 for all but the first the convolution layer in recent CNN models
[4-6,25,26]. This is well beyond the capability (the number of DSP
blocks and logic elements) of the most advanced present-day FPGAs.
Therefore, only Loop-2 and Loop-4 are unrolled in Ref. [30].

In order to improve the hardware utilization and throughput of the
first convolution layer, Loop-3 and Loop-4 are unrolled in Ref. [31]
instead, which can provide enough parallelism. In addition, the kernel
weight can be reused by multiple features after fetched from buffers by
unrolling Loop-3.

4.3. Sequential computation order

To obtain one final output pixel, we need to complete Loop-1 and
Loop-2. As Loop-2 is already unrolled, we sequentially compute Loop-1
first to get the output pixels and consume the partial sums as early as
possible to reduce its storage requirement. After finishing the sequential
sliding of Loop-3 that computes output pixels within the same feature
map, we can get one subset of Py output feature maps, and then iterate
this process across Loop-4 to compute all the output feature maps. To
enable the parallel read of the pixel values at the same location (x,y)
across different input feature maps, Nos output feature maps from the
previous layer are stored into Nys separate memories to be used as the
input of the current layer, and X, x Y, pixels of each feature map are
continuously stored within one memory bank.

5. Compilation and parallel computation of scalable CNN
modules

In this section, we present the detailed designs of the key RTL module
templates customized for different types of layers, e.g. convolution,
pooling and LRN. These modules are highly parameterized and designed
to maximize the amount of parallel computation constrained by the
limited hardware resources and memory bandwidth.

The ALAMO compiler that we developed analyzes the given CNN
structure and the parameters of each layer to configure the module
templates and their connections accordingly.

5.1. Scalable convolution module (CONV)

The convolution RTL modules (CONV) that can be scaled by changing
the parameters, e.g. Ky, Ky, X;, Y;, X,, Yo, N, Ny, and Ny, of each
convolution layer, are automatically generated and configured by the
compiler based on the acceleration strategy described in Section 4.

This module mainly consists of dedicated control logic and parallel
adder trees, whereas the multipliers, which serve as the main computing
engines, are shared across all the layers as shown in Fig. 7. The input data

Y. Ma et al.

%Start Signal —|’
Input Read Addresses

Feature Control Logic
Buffers P Shared Output
= Multiplier Iteration l, Feature
Bank Buffers

Weight —p Groups of
Buffers Adder Trees|
’ Data
Bias Registers == Control
Fig. 7. Convolution acceleration module block diagram.

(i.e., the input pixels and kernel weights) for the convolution are stored in
the on-chip buffers, and the multiplier results are sent to CONV to
perform summation and accumulation. The outputs of CONV are
conveyed to Ny separate on-chip memories and will be used for the next
layer.

The control logic inside the convolution module consists of counters
that control the sliding of the convolution within the kernel window and
the feature map. Each counter is parameterized with respect to the kernel
sizes (K), feature map dimensions (X, Y) and the number of iterations
[Nof/Poys], which correspond to the sliding of Loop-1, Loop-3 and Loop-4,
respectively. For different layers, these counter parameters are adjusted
and generated by the compiler. The combination of these counters along
different dimensions generates the memory address to read the input
pixels, which is ky + k,x(X+2 x PAD) + STRIDE x x +
STRIDE x y x (X;+2 x PAD). Both k, and k, are signals generated by the
counters as they iterate from 0 to K — 1 to slide within a kernel window in
X and Y directions, and k, increases by one only when k, equals to K — 1.
Similarly, x and y iterate from O to X; — 1 and Y; — 1, respectively, for
computations within an input feature map. PAD denotes the size of zero
padding, and STRIDE is the step size by which input feature map slides.
The write address simply iterates from O to X, x Y, — 1 as the output
features are continuously stored. Between the input read and output
write operations of CONV, there are several cycles of delay caused by
memory read, MAC operation and data routing pipelined by DFFs. An
additional counter that counts the iteration number from 0 to [Nos/Pos] —
1 is used to control Loop-4 unrolling across output feature maps and
generates end signal to initialize the next layer or the transfer of data from
external memory.

Different layers may have different Nosor Njs that makes Nog/Pofor Nip/
Py not necessarily to be integers across all the convolution layers.
Therefore, some layers cannot fully utilize all the existing multipliers for
every iteration. To that end, the compiler supports the configurability of
allocating a portion of the multiplier bank for a specific CONV module,
while minimizing the number of unused multipliers.

As Loop-2 is unrolled in Ref. [30], the CONV module requires parallel
adder trees followed by an accumulator, which reads the output from
multipliers and accumulates them within one kernel window and sub-
sequently through all input feature maps as illustrated in Fig. 8(a). As the
kernel window is sequentially slid across the input pixels, the fan-in of
the adder tree equals the number of parallel computed input channels
(Py), and the number of adder trees is determined by the number of
output feature maps computed in parallel (P,). Therefore, if the convo-
lution layers have different sizes of Py, e.g. in Table 1, ALAMO must
compile various CONV modules with different adder trees and control
logic for different layers, which significantly increases the overhead of
hardware resources. In Ref. [31], only Loop-3 and Loop-4 are unrolled,
which uses MAC units to independently compute each output without
using adder trees as shown in Fig. 8(b). By this means, it is possible to
design one CONV module used for different convolution layers with
uniform unrolling factors.

The ReLU module, which follows the adder trees, checks the sign bit
of the pixel values and only retains the positive ones, while converting
the negative values to be zero.

18

Integration, the VLSI Journal 62 (2018) 14-23

Pixel1
Weight1 —
| Pixel2 —
Q
x
X | Pixeld —
Q
Pixeld
P,
of
Weight2 — Rl
g O OREl]
il
Pixel3 —
3
Pixel4 — n .EI

E!

—~
=
—

Fig. 8. Convolution arechitecture: (a) unroll Loop-2 with P and Loop-4 with
P, [30]; (b) unroll Loop-3 with Py, x Py, and unroll Loop-4 with P, [31].

Table 1
Unrolling Configurations of each layer.

AlexNet Ny Py Py # used Mult. Utilization (N,,, = 1152)
convl 3 3 96 228 25.0%

conv2 48 48 24 1152 100%

conv3 256 256 4 1024 88.9%

conv4 192 192 6 1152 100%

convS 192 192 6 1152 100%

NiN Ny Py Py # used Mult. Utilization (N, = 768)
convl 3 3 96 288 37.5%

ceepl 96 96 8 768 100%

cccp2 96 96 8 768 100%

conv2 96 96 8 768 100%

ccep3 256 256 3 768 100%

cccp4 256 256 3 768 100%

conv3 256 256 3 768 100%

ccepSs 384 384 2 768 100%

ccepb 384 384 2 768 100%

conv4 384 384 2 768 100%

ccep? 1024 512 1 512 66.7%

cccp8 1024 512 1 512 66.7%

5.2. Pooling module (POOL)

The structure of the pooling module (POOL) is similar to CONV with
its own control logic and computing engine as illustrated in Fig. 9. Two
POOL variants are designed for max-pooling (POOL-MAX) and average-
pooling (POOL-AVE). The control logic for both variants is the same,
which generates memory read/write address to scan the input feature
maps. The computing engine is either a comparator for max-pooling or an
accumulator followed by a multiplier for average-pooling. The division in
the average operation is replaced by constant coefficient multiplication.
As POOL module only requires input pixels from the previous layer, it can
be executed directly after its previous layer without accessing to external
memory. Similar to convolution, the parallel computation in pooling is
across different feature maps that uses a common read/write address

Start Signal —/
[.
Read Add .| Write Addg S
Control Logic p=—
Input Output
Feature l POOL Feature
ffi
Sl — Comparators or o || B4R = Data
Accumulators) ” —> Control

Fig. 9. Pooling module block diagram.

Y. Ma et al.

signal. Module POOL allows for a trade-off between throughput and
hardware resources by changing the number of feature maps that are
computed in parallel (N,). The latency of one pooling layer is
XoYoK? X Nog/Np.

5.3. Normalization module (NORM)

Local response normalization (LRN) computes the nearby pixels
within a local region. The structure of the module NORM, shown in
Fig. 10, assumes this local region spans only the neighboring feature
maps. As both CONV and POOL are designed to output the pixels across
the adjacent feature maps in parallel, this allows the NORM module to
directly read input data from the previous layer and overlap its operation
with the previous layer's computation. If the previous layer is CONV, this
will require unrolling of Loop-4. This way the memory to store the in-
termediate pixels can also be saved. The square operations of input pixels
from adjacent feature maps are computed in parallel and the results are
shared by its nearby pixels during the sum operation. After that, the non-
linear operation is performed using a look-up table that associates the
input to a corresponding output value, which is then multiplied with the
original pixel. The NORM module generates the memory write address
signal in a similar manner to CONV module by adding its own pipeline
delay.

5.4. Inner-product module (FC)

The inner-product or fully-connected (FC) layer essentially performs
the matrix-vector multiplication, which also consists of MAC operations
as in the convolution layers. Therefore, the FC module shares the
multiplier bank with CONV modules, while having its own adders to
perform accumulation that are shared across all fully-connected layers.
The parallel MAC operations are performed to compute multiple output
pixels in parallel so that one input pixel can be shared by multiple rows of
the kernel weight matrix and no parallel adder trees are needed. As the
fully-connected layers do not share the kernel weights for different fea-
tures, the data volume of the weights is significantly larger than that of
convolution layers, even though the FC layer has much less operations.
This makes the throughput of the FC layer primarily dependent on the
transfer speed of the external memory to on-chip buffers. Due to this,
dual on-chip buffer banks are employed to temporarily store the FC
kernel weights to allow overlapping the DMA transfer operation with the
inner product computation, such that the latency of the FC layers equals
to the kernel weights transfer time.

5.5. DMA configuration module

A Direct Memory Access (DMA) engine is used to transfer data be-
tween external and on-chip memories. The Modular Scatter-Gather DMA
(mSGDMA) IP provided by Altera is used to efficiently handle small,
frequent and non-continuous data movements with preload instructions.
A custom DMA configuration module is designed to control the mSGDMA
behavior by writing the instructions with different transfer sizes, source
and destination addresses for different CONV and FC modules. It also
generates the start signal for CONV and FC upon the completion of DMA
data transactions.

Start Signal Write Address

Control Logic

CONV NOBM/l\ Foeuatt%:;
Module Buffers
Square Lookup Table .
+ Adder » (Nonlinear) * Multiplier

Fig. 10. Local response normalization module block diagram.

19

Integration, the VLSI Journal 62 (2018) 14-23

6. FPGA implementation

In this section, the top-level FPGA system architecture and the
compiler strategy to integrate the generated scalable CNN modules are
described.

6.1. System overview

The top-level FPGA-based CNN accelerator system is shown in Fig. 11.
The system includes NIOS-II, a processor IP from Altera, which is only
used to transfer the weights and input images from the on-board flash
memory to the external DDR3 SDRAM. DDR3 controller and mSGDMA
IPs from Altera's IP library are used to perform memory transfers from
external DDR3 to FPGA on-chip memory. All these standard IPs are
connected to Altera's Avalon memory mapped interface bus. After all the
kernel weights are loaded into DDR3, the DMA configuration module
present in the accelerator initializes and controls the mSGDMA and starts
the CNN acceleration process.

6.2. Integration of CNN acceleration modules

The integration of the overall acceleration system is shown in Fig. 12,
including the proper connections between the building block modules,
and the control of the data flow to sequentially perform the iterations in
each layer. Furthermore, the memory system is designed to store kernel
weights and features on external or on-chip memories, and the feature
data routers are configured to convey feature data and address signals
from different modules into feature buffers, and fetch the stored data to
the multiplier bank or directly into the corresponding modules (e.g.
POOL).

6.2.1. Controller

The layer by layer sequential computation is controlled by the start
and end signals generated by computation modules and the DMA
configuration module. If the next module requires data from DDR3, the
end signal of the current module initializes the DMA transfer, and after
the transfer is finished, a start signal from DMA configuration module is
sent to the next module. Alternatively, the end signal can directly start the
next module.

6.2.2. Weight storage

The kernel weights for both CONV and FC modules are stored in the
external DDR3 DRAM. As described in Section 5.4, the transfer of FC
kernel weights is performed in parallel with the FC MAC operations that
use kernel weights from the previous DMA transfer. On the other hand,
considering the relatively small size of convolution kernel weights, only
the necessary kernel weights of the next convolution layer are transferred

Proposed CNN Accelerator

| Al

NIOS Il Processor mSGDMA
F r

< Avalon Interface >
v vy A

Flash Controller DDR3 Controller

. ¥

On-board Flash External Memory

A4

== Control Bus
* Data Bus

On-chip
Off-chip

Fig. 11. Top-level CNN accelerator system [30].

Y. Ma et al.

]
C

Groups of Feature Buffers

Al

Feature Data Router

Al Al

Al Al Al Al
Pooling Fully-connected Convolution Normalization
[(POOL)][(FC)][(CONV) > (NORM)]
(Multiplier Bank]

A A

Feature Data Router

=~ Control Signal

* Kernel Weights

w)) Feature Data

e

|Contro||er/Sequencer| | Weight Buffers |

{ A
(DMA Configuration H mSGDMA Engine](—

Fig. 12. Integration of scalable CNN modules [30].

External
Memory Interface

to the on-chip CONV weight buffers between the executions of two
convolution layers. The capacity of CONV weight buffers only needs to be
able to cover the convolution layer that has the largest kernel size.
However, if the kernel size of one layer is still too large, the compiler is
designed to tile the execution of this layer and iterate the corresponding
DMA transfer multiple times to reduce the size of CONV weight buffers.
The CONV module is divided across Loop-4 and can be treated as
different convolution layers yet having the same Njsnumber, so that these
variant CONV modules with multiple sets of control logic could still share
and re-use the adder trees.

6.2.3. Feature buffers

After quantization to form fixed point data, the intermediate pixels of
many practical CNN models [4,5] can be fit into the on-chip block
memory (BRAM) of many middle to high end FPGAs, e.g. exceeding
4 MB. Therefore, [30] stores the pixel results only in on-chip buffers to
eliminate the external memory access. The output pixel data of each
module are stored in the feature buffers in Fig. 12, and these data are
fetched by the following layers as the input. The feature buffers are
implemented as groups of on-chip memories. Each module stores its Nos
output feature maps into Ny separate on-chip memories with the memory
depth of X, x Y,. The on-chip memories are implemented using M20K
memory blocks, which has 20 K bits capacity per block. Only when the
memory depth exceeds than the maximum depth of one M20K block, one
more M20K block will be added. This way, the on-chip memories are
stacked with shallow depth to achieve the maximum utilization of M20K
blocks. Moreover, layers that are not consecutive can also share the
memories. If the memory bandwidth requirement is high but the total
capacity demand is low, the memory logic array block (MLAB) RAMs
using logic elements are employed instead of M20K. In Ref. [30], pixel
results are only stored in on-chip RAMs, which limits the flexibility of
ALAMO to CNNs with only small volumes of intermediate results. In
Ref. [31], the pixel outputs are stored in external DRAM, and the loop
tiling technique is used to divide the entire data of one layer into multiple
tiles, which can be accommodated in the on-chip BRAMs. By this means,
the large-scale CNNs, e.g. VGG [26] and ResNet [25], can also be pro-
cessed as in Ref. [31,32], which could significantly improve the flexi-
bility of ALAMO.

6.2.4. Data router

The feature data router, implemented by groups of multi-level mul-
tiplexers, differentiates the read/write signals from two adjacent mod-
ules into the feature buffers by the start signal of the latter module. The
multiplier bank in the CNN accelerator, which is the main computing
resource, is shared among all CONV and FC modules. Another feature
data router is used to select the feature buffer output data of different

20

Integration, the VLSI Journal 62 (2018) 14-23

computing modules to the shared multipliers or POOL modules, and then
the output results of the multipliers are allocated to corresponding CONV
and FC modules. As many signals are merged and distributed by the
feature data router, signal congestion and timing failure could occur.
Therefore, the data paths in the router are pipelined, where the number
of pipeline stages is parametrized, to reduce the combinational logic
critical path and complete timing closure.

7. Experimental results
7.1. Experimental setup

The proposed ALAMO RTL compiler [30] is demonstrated by imple-
menting AlexNet and NiN CNN models on a DE5-Net board with two 4 GB
DDR3 DRAMs as the external memory and Altera Stratix-V GXA7 FPGA,
which consists of 622 K logic elements, 256 DSP blocks and 2560 M20K
RAMSs. First, the compiler analyzes the connection and dimensions of all
the layers in the AlexNet and NiN CNNs with the number of multipliers
(Np) to generate and configure the parameterized CNN computing
modules and integrates them as discussed in Section 6. The entire CNN
acceleration system is synthesized by Altera Quartus tool and then
downloaded to the FPGA. After that, the weights and input images, which
are stored initially in the on-board flash memory, are transferred to the
external DDR3 memory and starts the acceleration process. After going
through the layered computations, the final outputs of the CNN (i.e., the
sorted top-5 predictions) are read from the output of the on-chip memory
and compared against the validation data to verify the functionality of
the accelerator.

7.2. Parallelism configurations

The configurations for various amounts of unrolling are listed in
Table 1 for all the convolution layers in AlexNet and NiN, respectively. As
described in Section 4.2, we first unroll the computation of Py input
channels, and if there are extra multipliers, Py output channels are
further unrolled. Since the number of input and output channels vary
significantly across different layers, Py and P, are dynamically adjusted
to make the number of used multipliers (Py x Poy) close or equal to the
number of existing multiplier (Np,,). As Stratix-V GXA7 has only 256 DSP
blocks, which can be implemented as 512 18-bit x 18-bit multipliers, to
achieve higher throughput with more parallel MAC operations, multi-
pliers are implemented not only by DSP blocks (Fig. 15) but also by logic
elements (Fig. 14). By this means, our Ny, can be set to be > 512. As NiN
has more convolution layers than AlexNet, more logic elements are
demanded for different CONV modules. Therefore, the number of mul-
tipliers in NiN (N;, = 768) must be decreased compared to that of AlexNet
(N, = 1152) so that the accelerator can be fit into to the FPGA chip at the
cost of less parallelism. Since convl has only three input channels,
notably limiting the multiplier utilization and parallel degree, we plan to
unroll other loops as in Ref. [31], to improve the throughput of conv1.

7.3. Detailed experimental results

7.3.1. Performance

The timing breakdown of different CNN layers of AlexNet and NiN
models is shown in Fig. 13. The DMA_CONV delay shown in Fig. 13
corresponds to the convolution weight transfer time, whereas the FC
weight transfer is overlapped with matrix-vector multiplication. The
DMA transfer delay is measured by counting the number of clock cycles
from real experiments and then multiplying with the clock periods. The
performance and throughput numbers are also reported in Table 3.

7.3.2. Hardware utilization

The utilization breakdown of logic elements, DSP blocks, and on-chip
RAM for both AlexNet and NiN are shown in Figs. 14-16, respectively. As
the multipliers are implemented not only by DSP blocks but also by logic

Y. Ma et al.

Integration, the VLSI Journal 62 (2018) 14-23

= CONV1 w CONV2 ~CONV3 CONV4 = CONV5 wCCCPs = DMA_CONV = POOLs wFC6&7&8
NIN 1.67
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Execution Time (ms)

Fig. 13. Timing breakdown of different layers of AlexNet and NiN [30].

Multipliers
CONV1
CONV2
CONV3

CONV4&5
FC6&7&8
NORMs
POOLs
Others

AlexNet Logic Utilization
in ALl

0
Multipliers
CONV1
CONV2+CCCP1&2
CONV3+CCCP3&4
CONV4+CCCP5&6
CCCP7&8
POOLs
MLAB RAMs
Others

5000

10000 15000 20000 25000

NIN Logic Utilization
in ALMs

0

5000 10000 15000 20000

Fig. 14. Logic utilization breakdown of AlexNet and NiN modules.

elements, a significant portion of the overall logic is consumed by the
hardware expensive multipliers as shown in Fig. 14. CONV4 and CONV5
in AlexNet with the same Ny are combined to be one module to share the
adder trees, and this occurs more frequently in NiN such as the combi-
nation of CONV2, CCCP1 and CCCP2 layers. The feature data routers,
DMA configuration module, mSGDMA engine, DDR3 controller, and
NIOS II soft processor are included in “Others” in Fig. 14. CONV_Kernel
and FC_Kernel in Fig. 16 denote the weight buffers to receive kernel
weights from external memory. As outputs from CONV1 and CONV2 in
AlexNet directly go into NORMs, there is no need to store these results.
RAMs are stacked for modules with shallow word depths (e.g. NORM1
and POOL1 in AlexNet) and reused by non-consecutive modules (e.g.
CONV1 and CCCP2 in NiN). The results of CONV4, CCCP7, and CCCP8
that have small data size but require high memory bandwidth by the next
layer in NiN are stored in MLAB RAMs (Fig. 14).

7.3.3. Accuracy

Aimed at accelerating the inference process, fixed point data repre-
sentation is used to reduce the FPGA hardware resource usage at the cost
of minimal accuracy loss. With less data width, the logic elements used
for multipliers, adder trees, accumulators and data buses can be reduced,
as well as the on-chip RAMs used for buffers. Consequently, the data
width can be decreased until considerable accuracy drop occurs. All the
feature values after ReLU are 10-bit unsigned binary numbers and the
kernel weights are 8-bit signed binary numbers. The multiplier outputs
are 18-bit, and the adder tree and following accumulator outputs are 25-
bit. The data width and the portion of integer and fractional bits can be
dynamically adjusted by the compiler for each layer. If one layer has
small data, more bits are allocated to fractional part while keeping the

total data width equivalent to that of the other layers. This way all the
data widths of the computing hardware, memory bandwidth and data
bus can be fully utilized. The top-1 and top-5 ImageNet accuracies of
FPGA implementation of AlexNet and NiN for the first 5K images from
ImageNet 2012 validation database are summarized in Table 2,
compared to the implementation in software with full-precision. The
accuracy degradation of the proposed modular FPGA design with fixed-
point precision is less than 1%.

7.3.4. Power

The power consumptions of the DE5-Net board including the Stratix-
V FPGA chip when running the AlexNet and NiN are measured as 19.5 W
and 19.1 W, respectively, while the initial power consumption of the
board at power on is 16.5 W. Using data activity information (*.ved)
obtained from the top-level testbench simulation on FPGA-mapped net-
lists, we analyzed the power consumption among different modules when
running AlexNet, which is shown in Fig. 17. Note that the power analysis
in Fig. 17 excludes the power of the off-chip SDRAM and other board-
level components.

7.4. Comparsion with related works

The performance of the accelerator is summarized and compared to
prior CNN accelerators in Table 3 along with the percentage of the FPGA
capacity.

7.4.1. Parallelism strategy

In Ref. [33], the accelerator architecture allows flexible dataflow and
unrolling factors to improve the computing resource utilization for
varying layer dimensions, which is realized by simplifying the PE in-
terconnections and designing a data distribution structure.

7.4.2. Automation-based accelerator

With ~3X more DSP blocks, considerable logic elements can be saved
in Ref. [14,15] and this improves the performance. As the parallelism is
exploited within a kernel window, the varying kernel sizes significantly
degrade the hardware utilization. Therefore, the more regular structure
of the VGG model [26] (compared to AlexNet and NiN) with uniform

Table 2
ImageNet accuracy comparison.

Model accuracy comparison Software (Caffe tool) FPGA implementation

CNN model Top-1 Top-5 Top-1 Top-5
AlexNet 56.78% 79.72% 55.64% 79.32%
NiN 56.14% 79.32% 55.74% 78.96%

200 250 Fig. 15. DSP block breakdown in AlexNet and NiN
160 200 L implementations.
120 DSP Blocks Utilization 160 DSP Blocks Utilization
(AlexNet) (NIN)
80 100
40 50
; B : ® :
Multipliers NORM1 NORM2 NIOS I Multipliers ~ POOL4 NIOS Il

21

Y. Ma et al.

Integration, the VLSI Journal 62 (2018) 14-23

Table 3
Comparison with previous implementations.
[11] AlexNet [14,15] VGG [29] AlexNet [13] AlexNet This work: This work:
AlexNet NiN
FPGA Virtex-7 VX485T Zynq XC7Z045 Zynq-7045 Stratix-V GXA7 Stratix-V GXA7 Stratix-V
GXA7
Design Entry C-language RTL RTL OpenCL RTL RTL
Main Technique Roofline model and loop Data quantization and Library-based Design space Modularized RTL compiler and
transform compilation tool compiler exploration loop optimization
Frequency 100 MHz 150 MHz 100 MHz 193.6 MHz 100 MHz 100 MHz
operations per 1.33 GOP 30.76 GOP 1.46 GOP 1.46 GOP 1.46 GOP 2.2 GOP
image
weights 2.33M 50.18 M 60.95 M 60.95 M 60.95 M 7.59M
Precision floating (32b) fixed (16b) fixed fixed (8-16b) fixed (8-16b) fixed (8-16b)
DSP Utilization 2240 (80%) 780 (89%) 144 (16%) 256 (100%) 256 (100%) 256 (100%)
Logic Utilization® 186 K (61%) 183K (84%) 37.8K (17%) 114K (49%) 121K (52%) 112K (48%)
BRAM Utilization” 1024 (50%) 486 (87%) - 1893 (74%) 1552 (61%) 2330 (91%)
Convolution time 21.61ms 163.42 ms ~ 20ms 19.86 ms 9.92 ms 18.75ms
FC layer time N/A 61.18 ms 4.40 ms 2.83 ms -
Convolution 61.6 GOPS 187.80 GOPS - 67.5 GOPS 134.1 GOPS 117.3 GOPS
throughput
Overall throughput N/A 136.97 GOPS ~ 73 GOPS 60.2 GOPS 114.5 GOPS 117.3 GOPS

@ Xilinx FPGAs in LUTs and Altera FPGAs in ALMs.
b Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb).

CONV_Kernel
FC_Kernel
NORM1&POOL1
NORM2&POOL2
CONV3&4

AlexNet on-chip RAM
utilization in M20K blocks

POOL5
FC6&78&8
Others
0 50 100 150 200 250 300 350 400 450 500
CONV_Kernel ; 352

e =
CONV2&CCCP4 RAM utilization
CCCP38POOL2 in M20K blocks
CONV3&CCCP8 | 384
CCCP5&POOL3 384

Others [IE

0 50 100 150 200 250 300 350 400

Fig. 16. On-chip RAM breakdown of AlexNet and NiN modules.

Power breakdown of AlexNet modules

10% 20% 30% 40% 50% 60% 0% K
=Multipliers =CONVs =FC ~ NORMs «POQOLs--=RAM = Routing

FPGA chip _gpwerb’r’e—a—kdown

o
m——————er

L BT
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
wAlexNet »DDR3 Controller mwmSGDMA /O = Others

Fig. 17. Simulation based power breakdown of FPGA chip when
running AlexNet.

kernel size K in convolution layers benefits the throughput [29]. presents
DeepBurning to automatically generate FPGA-based neural network ac-
celerators using RTL module library. Their implementations of AlexNet
and NiN on Zyng-7045 SoC device show about 20 ms and 50 ms latency,
respectively, which are about 1.6X and 2.7X worse than ours, respec-
tively [28]. presents fpgaConvNet framework to automatically map
neural networks onto FPGA based on HLS method. However, their
framework is only demonstrated using several relatively small CNN
models, e.g. LeNet-5.

7.4.3. Customized accelerator
A throughput-optimized OpenCL implementation is presented in
Ref. [13] that also uses logic elements along with DSP blocks, but the

22

number of multipliers is still much smaller than that of our RTL imple-
mentation. Our modular and scalable RTL implementation of AlexNet
outperforms the OpenCL design (on the same board with similar FPGA
utilization) by 1.9X for the overall throughput and the HLS design [11]
by > 2X for convolution layers [12]. presents a pipelined accelerator to
map different convolution layers onto different FPGA computing hard-
ware to increase the resource utilization. However, with the increased
number of CNN layers, it becomes more difficult to efficiently allocate
different resources to hundreds of layers while keeping the balance be-
tween each pipeline stage.

Overall, the RTL implementation of CNN accelerator provides
considerable performance benefit over high-level synthesis based
implementations, which do not have good hardware efficiency. CNN RTL
compiler with parameterized scalable acceleration modules also allows
quick turn-around time that is comparable to high-level synthesis
methodologies.

8. Conclusions

In this paper, ALAMO RTL compiler is proposed to accelerate CNNs on
FPGA platforms, where the computing primitives could be easily
compiled from the parametrized hardware library. Representative CNN
algorithms of AlexNet and NiN have been demonstrated on an Altera
Stratix-V FPGA board, which show an end-to-end throughput of 114.5
GOPS and 117.3 GOPS, resulting in 1.9X improvement compared to an
optimized OpenCL design on the same FPGA board. Future work includes
adopting techniques in Ref. [31,32] to increase the compiler's generality
and efficiency of data and weight transfer for larger state-of-the-art CNN
models [6,25,26].

Acknowledgment

This work was in part supported by the National Science Foundation
within the Directorate for Engineering under Grants 1230401 and
1237856, the NSF I/UCRC Center for Embedded Systems through NSF
grants 1361926 and 1432348, NSF grant 1652866, and Samsung
Advanced Institute of Technology.

References

[1] Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel,
Handwritten digit recognition with a back-propagation network, in: Neural
Information Processing Systems (NIPS), 1990, pp. 396-404.

Y. Ma et al.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

O. Russakovsky, J. Deng, H. Su, J. Krause, et al., ImageNet large-scale visual
recognition challenge, in: Int. J. Computer Vision, 2015.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, Li Fei-Fei, Large-scale
video classification with convolutional neural networks, in: IEEE Conf. On
Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1725-1732.

A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: Neural Information Processing Systems (NIPS),
2012, pp. 1097-1105.

M. Lin, Q. Chen, S. Yan, Network in network, in: Int. Conf. On Learning
Representations (ICLR), 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE Conf. On
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9.

H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for
face detection, in: IEEE Conf. On Computer Vision and Pattern Recognition (CVPR),
2015, pp. 5325-5334.

C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical features for scene
labeling, in: IEEE Trans.. On Pattern Analysis and Machine Intelligence, vol. 35,
Aug. 2013, pp. 1915-1929.

C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, E. Culurciello, Hardware
accelerated convolutional neural networks for synthetic vision systems, in: IEEE Int.
Symp. On Circuits and Systems (ISCAS), 2010, pp. 257-260.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, Y. LeCun, NeuFlow: a
runtime reconfigurable dataflow processor for vision, in: Computer Vision and
Pattern Recognition Workshops, 2011, pp. 109-116.

C. Zhang, P. Li, G. Sun, J. Cong, Optimizing FPGA-based accelerator design for deep
convolutional neural networks. In ACM, in: Symp. On Field-programmable Gate
Arrays (FPGA), 2015, pp. 161-170.

C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, J. Cong, Energy-efficient CNN
implementation on a deeply pipelined FPGA cluster, in: ACM Int. Symp. On Low
Power Electronics and Design (ISLPED), 2016, pp. 326-331.

N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-S. Seo, Y. Cao,
Throughput-optimized OpenCL-based FPGA accelerator for large-scale
convolutional neural networks, in: Int. Symp. On Field-programmable Gate Arrays,
2016, pp. 16-25.

J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song,

Y. Wang, H. Yang, Going deeper with embedded FPGA platform for convolutional
neural network, in: ACM Int. Symp. On Field-programmable Gate Arrays, 2016,
pp. 26-35.

K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, H. Yang, Angel-Eye: a
complete design flow for mapping CNN onto embedded FPGA, in: IEEE Trans.
Computer-aided Design of Integrated Circuits and Systems, May 2017.

V. Gokhale, J. Jin, A. Dundar, B. Martini, E. Culurciello, A 240 G-ops/s mobile
coprocessor for deep neural networks, in: IEEE Conf. On Computer Vision and
Pattern Recognition Workshops, 2014, pp. 696-701.

23

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Integration, the VLSI Journal 62 (2018) 14-23

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,

0. Temam, DaDianNao: a machine-learning supercomputer, in: IEEE/ACM Int.
Symp. on Microarchitecture, 2014, pp. 602-622.

Y.-H. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: an energy-efficient reconfigurable
accelerator for deep convolutional neural networks, in: IEEE Int. Solid-state Circuits
Conf. (ISSCC), 2016.

A. Putnam, A.M. Caulfield, E.S. Chung, et al., A reconfigurable fabric for
accelerating large-scale datacenter services, in: Int. Symp. On Computer
Architecture (ISCA), 2014, pp. 13-24.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: Convolutional Architecture for Fast Feature Embedding, 1408,
p. 5093 arXiv.

R. Collobert, et al., Torch7: a matlab-like environment for machine learning, in: Big
Learning Workshop, NIPS, 2011.

F. Bastien, et al., Theano: new features and speed improvements, in: Deep Learning
Workshop, NIPS, 2012.

M. Abadi, et al., TensorFlow: Large-scale Machine Learning on Heterogeneous
Systems, White paper available online at: http://download.tensorflow.org/paper/
whitepaper2015.pdf.

S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learning with limited
numerical precision, in: Int. Conf. On Machine Learning, 2015, pp. 1735-1746.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
IEEE Conf. On Computer Vision and Pattern Recognition (CVPR), 2016.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, in: International Conference on Learning Representations (ICLR),
2015.

NVIDIA Corporation, GPU-based Deep Learning Inference: a Performance and
Power Analysis. White Paper.

S.I. Venieris, C. Bouganis, fpgaConvNet: A framework for mapping convolutional
neural networks on FPGAs, in: IEEE Int. Symp. Field-programmable Custom
Computing Machines (FCCM), 2016.

Y. Wang, J. Xu, Y. Han, H. Li, X. Li, DeepBurning: automatic generation of FPGA-
based learning accelerators for the Neural Network family, in: Design Automation
Conference (DAC), 2016.

Y. Ma, N. Suda, Y. Cao, J. Seo, S. Vrudhula, Scalable and modularized RTL
compilation of convolutional neural networks onto FPGA, in: IEEE Int. Conf. Field
Programmable Logic and Applications (FPL), 2016.

Y. Ma, Y. Cao, S. Vrudhula, J. Seo, Optimizing loop operation and dataflow in FPGA
acceleration of deep convolutional neural networks, in: ACM Int. Symp. On Field-
programmable Gate Arrays (FPGA), 2017.

Y. Ma, Y. Cao, S. Vrudhula, J. Seo, End-to-end scalable FPGA accelerator for deep
residual networks, in: IEEE Int. Symp. On Circuits and Systems (ISCAS), 2017.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, X. Li, FlexFlow: a flexible dataflow accelerator
architecture for convolutional neural networks, in: IEEE Int. Symp. On High
Performance Computer Architecture (HPCA), 2017.

