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Abstract. We show that, given a family of discs centered at a chord-arc curve,
the analytic capacity of a union of subsets of these discs (one subset in each disc) is
comparable with the sum of their analytic capacities. However, we need the discs
in question to be separated, and it is not clear whether the separation condition
is essential. We apply this result to find families {μ j } of measures in C with the
following property. If the Cauchy integral operators Cμ j from L2(μ j ) to itself are

bounded uniformly in j , then Cμ, μ =
∑

μ j , is also bounded from L2(μ) to itself.

1 Introduction

We consider two properties of families of sets and measures in the complex plane.

1.1 Almost additivity of analytic capacity. The analytic capacity
γ(F ) of a compact set F ⊂ C is defined by the equality

γ(F ) = sup | f ′(∞)|,

where the supremum is taken over all analytic functions f : C \ F → C with
| f | ≤ 1 on C \ F . Here, f ′(∞) = limz→∞ z( f (z) − f (∞)). For non-compact F ,
we set

γ(F ) = sup{γ(K ) : K compact, K ⊂ F}
[G]. For a summary of equivalent definitions, we refer the reader to [To] and [Vo].

In the celebrated paper [To1], Tolsa established the countable semiadditivity of
the analytic capacity, i.e.,

γ
(⋃

Fi

)
≤ C

∑
γ(Fi),
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where C is an absolute constant. But the inverse inequality does not hold in gen-
eral. To see this, we consider the n-th generation E1/4

n of the corner 1/4-Cantor set
constructed in the following way. Start with the unit square (0-th generation). The
j -th generation consists of 4 j squares Ej,k with side length 4− j ; each square Ej,k

contains four squares of ( j +1)-th generation, located at the corners of Ej,k, and so
on. It is known [MTV] that

γ
( 4n⋃
k=1

En,k

)
= γ(E1/4

n ) � 1/
√
n

with absolute constants of comparison; here P � Q means that cP ≤ Q ≤ CP.
Positive constants c, C, a, A (possibly with indices) are not necessarily the same
at each appearance. On the other hand,

4n∑
k=1

γ(En,k) � 4n · 4−n = 1.

Thus, “almost additivity” γ
(⋃

Fi
) � ∑

γ(Fi) of the analytic capacity does not
hold in general. During the personal conversation with the first-named author
in 2012 (Chebyshev Laboratory, St.-Petersburg), N. A. Shirokov [Sh] posed the
question on the validity of this property for the special class of sets described in
the following Theorem 1.1.

We say that � is a chord-arc curve if

(1.1) |t − s| ≤ A0|z(t) − z(s)|, A0 > 1,

where z(t) is the arc-length parametrization of �.

Theorem 1.1. Let D j be discs with centers on a chord-arc curve � such that
λDj ∩ λDk = ∅, j 	= k, for some λ > 1. Let E j ⊂ Dj be compact sets. Then there
exists a constant c = c(λ,A0) such that

(1.2) γ
(⋃

Ej

)
≥ c

∑
j

γ(Ej ).

We conclude the present subsection with a useful corollary.

Corollary 1.2. (a) Let � be the union of n chord-arc curves �i with the same
constant A0, and let D j and E j be as in Theorem 1.1. Then

γ
(⋃

Ej

)
≥ c

n

∑
j

γ(Ej ), c = c(λ,A0).

In particular, � might be a circle (n = 2).
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(b) When � is a circle, inequality (1.2) remains valid if E j ⊂ Dj , where E j are
compact sets and {Dj } is a family of λ-separated discs (that is λDj are disjoint),
λ > 1, only intersecting �, not necessarily with centers on �.

Proof. (a) Let Dj = D(x j , r j ), and let m be such that

max
1≤k≤n

{ ∑
j :x j∈�k

γ(Ej )
}
=

∑
j :x j∈�m

γ(Ej ).

Then, by Theorem 1.1,

γ
(⋃

Ej

)
≥ γ

( ⋃
j :x j∈�m

E j

)
≥ c

∑
j :x j∈�m

γ(Ej ) ≥ c
n

∑
j

γ(Ej ).

(b) It is sufficient to prove that if all discsDj intersect a semicircle T , then there
is another chord-arc curve �̃ with a constant A0 = A0(λ) containing all centers of
Dj . We may assume that there are more than one disc Dj . Fix j , and let a j , b j

be the points of intersection of T and the circle ∂(λ′Dj ), where λ′ = (1 + λ)/2
(for two discs Dj , there might be only one such a point). Replace the arc of
T with the endpoints a j and b j with two line segments x ja j and x jb j (in the
case of one point of intersection, with the only line segment). We claim that the
obtained curve is a chord-arc. Indeed, since |a j − b j | ≥ c(λ)r j , the condition
(1.1) holds with A0 = A0(λ) for any points z(t), z(s) ∈ λ′Dj and for any two points
in �̃ situated on T . If z(t) ∈ λ′Di , z(s) ∈ λ′Dj , i 	= j , then both parts of (1.1)
are comparable with |xi − x j |. To demonstrate this assertion, we notice that the
inequality |z1 − z2| > (λ − λ′)(ri + r j ), z1 ∈ λ′Di , z2 ∈ λ′Dj , implies the relations
|z1 − z2| � |xi − x j | and t − s ≤ C(ri + |ai − b j | + r j ) ≤ C ′|xi − x j |.

Similar arguments yield (1.1) when one point is situated on T . �

Open question. Does the conclusion of Theorem 1.1 hold when λ = 1?

1.2 Cauchy independence of families of measures. We use the results
in the previous subsection to investigate the property of measures described below.

We call a finite Borel measure with compact support in the complex plane a
Cauchy operator measure if the Cauchy operator Cμ is bounded from L2(μ)
to itself with norm at most 1.

The first natural question is how to interpret the “definition” of Cμ as

Cμ f (z) =
∫

f (ξ )dμ(ξ )
ξ − z

.

One way is to consider the so-called ε-truncations, defined by

Cε
μ f (z) =

∫
ε<|ξ−z|<ε−1

f (ξ )dμ(ξ )
ξ − z

.
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We now say that Cμ is bounded as an operator from L2(μ) to itself if the ε-
truncations are bounded from L2(μ) to itself uniformly in ε. Moreover, by the
norm of Cμ, we mean supε>0 ‖Cε

μ‖μ =: ‖Cμ‖μ, where ‖Cε
μ‖μ is the norm of Cε

μ

as an operator from L2(μ) to itself. We encourage the reader to look at other
interpretations in [NTrV1], [To], and [Vo].

The following important fact (which we use repeatedly) demonstrates the con-
nection between analytic capacity and boundedness of the Cauchy operator [To1,
To2, To, Vo]: for every compact set F ⊂ C,

(1.3) γ(F ) � sup{‖μ‖ : suppμ ⊂ F, μ ∈ �, ‖Cμ‖μ ≤ 1},

where � is the class of non-negative Borel measures μ such that μ(D(x, r)) ≤ r
for every disc D(x, r) := {z ∈ C : |z − x| < r}.

We call a collection {μ j } of finite positive Borel measures with compact sup-
ports C-Cauchy independent measures if a) ‖Cμ j‖μ j ≤ 1 (Cauchy operator
measures) and b) ‖Cμ‖μ ≤ C < ∞ for μ = � jμ j . We call such collection
Cauchy independent if it is C-Cauchy independent for some finite C.

The family {μ j } can be finite or infinite. Two Cauchy operator measures are
always Cauchy independent with an absolute constant C. A short proof of this
non-trivial fact is given in [NToV, Proposition 3.1]. So, a finite family is always
Cauchy independent for a sufficiently large constant C. But our main interest is in
situations in which infinite families are independent (or when C is independent of
the number of measures). The main result is the following theorem.

Theorem 1.3. Suppose that λ > 1, and measures μ j are supported on com-
pact sets E j lying in discs Dj such that λDj are disjoint. Assume also that meas-
ures μ j are extremal in the sense that ‖Cμ j‖μ j ≤ 1 and ‖μ j‖ � γ(Ej ) with ab-
solute comparison constants. Let μ =

∑
j μ j and E = ∪Ej . Then this family is

Cauchy independent if and only if for every disc B,

(1.4) μ(B) ≤ C0γ(B ∩ E).

Remarks. 1. In Section 3, we prove that the condition (1.4) with any disc B
is necessary for the bound ‖Cμ‖μ ≤ C without any additional assumptions on the
structure of μ. Example 5.1, given in Section 5, shows that this condition alone is
not sufficient, even if μ consists of countably many pieces μ j and each μ j gives
a bounded Cauchy operator with a uniform bound. Thus, additional conditions on
the structure of μ are needed. An example of such assumptions on μ, which seem
reasonable, is given in Theorem 1.3, where supports of μ j are located in separated
discs.
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2. In general, one cannot discard the requirement that the measures μ j in
Theorem 1.3 are extremal; see Example 5.2 in Section 5.

3. Tolsa [To1, pp. 125–129, 135–146] proved that under the conditions of
Theorem 1.3, there exists a piece of measure μ, namely, μ′ := χE ′ · μ, E ′ ⊂ E ,
such thatμ′(E) ≥ cμ(E), and ‖Cμ′‖μ′ ≤ C < ∞, where c > 0 and C are constants
depending only on the parameters in Theorem 1.3. This fact, which is far from
trivial, is used in [To1] to approach Painlevé’s conjecture. In other words, it is a
highly non-trivial problem to prove that under the assumptions of Theorem 1.3, a
“good portion” of μ generates a bounded Cauchy operator. It is remarkable that
the whole measure μ has, in fact, such a property.

As a corollary of Theorem 1.3 we derive the following independence theorem.

Theorem 1.4. Let μ j be measures supported on compacts E j lying in discs
Dj , respectively, such that λDj are disjoint (λ > 1), and let ‖Cμ j‖μ j ≤ 1. If for
each disc B,

(1.5)
∑
j

γ(B ∩ Ej ) ≤ C1γ(B ∩ E), E =
⋃

Ej ,

then the norm ‖Cμ‖μ is bounded, and the bound depends only on a comparison
constant C1 and on λ. Here, as above, μ = � jμ j .

Note that unlike Theorem 1.3, this result does not need the additional condition
that measures μ j are extremal. On the other hand, (1.5) is not necessary for the
boundedness of Cμ. For example, if μ j are the 2-dimensional Lebesgue measure
on the squares Ej , j = 1, 2, . . ., defined below in Example 5.1, the operator Cμ is
obviously bounded, but (1.5) does not hold.

Theorems 1.3 and 1.4, unlike Theorem 1.1, do not have any assumptions on the
location of discs Dj . However, condition (1.5) is not completely independent of a
geometry of discs. Theorem 1.1 states that if λ-separated discs are situated along
a chord-arc curve, then the almost additivity of the analytic capacity holds. We
prove a statement which is converse in the sense that almost additivity of analytic
capacity in the form of inequality (1.5), together with certain additional assump-
tions, implies that our discs have to “line-up” along a good (Ahlfors-David regular)
curve.

We denote byH1 the 1-dimensional Hausdorff measure. A set G ⊂ C is called
Ahlfors-David (AD)-regular if

c r ≤ H1(G ∩ B(x, r)) ≤ Cr, x ∈ G, 0 < r ≤ diamG,

for some positive constants c,C.
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Corollary 1.5. Suppose that λ-separated (λ > 1) discs Dj = D(x j , r j ) and
subsets E j ⊂ Dj are such that

(a) (1.5) holds,
(b) γ(Ej ) � r j ,
(c) the set T :=

⋃
j ∂Dj is AD-regular.

Then there exists an AD-regular curve which intersects all discs Dj .

All three assumptions (a)–(c) are required for the conclusion of Corollary 1.5;
see Proposition 5.3.

Organization of the paper. To prove Theorems 1.3, 1.4, we need only the
special case of Theorem 1.1 in which all discs Dj intersect a real line or a circle,
that is, the last assertion of Corollary 1.2. For this case, there is a short proof based
only on some classical facts in complex analysis. We give this proof in Section 2.
Theorem 1.3 is proved in Section 3, and Theorem 1.4 with Corollary 1.5 in Sec-
tion 4. In Section 5, we give the examples mentioned above. Section 6 contains the
proof of Theorem 1.1 in the full generality, which is completely different from the
proof in Section 2. The main tool of this proof is Melnikov–Menger’s curvature
of a measure. All necessary definitions are given in Section 6. In the last section,
Section 7, we formulate an open question.

2 Almost-additivity of analytic capacity: string of beads
attached to the real line

For some special sets {Ej }∞j =1, a result close to the Theorem 2.1 below was proved
(but not stated) in [NV]. Here, we use the approach via the Marcinkiewicz func-
tion; the approach in [NV] is a bit more complicated. Unlike in [NV], we do not
need any special size properties of these sets.

Theorem 2.1. Let D j be discs such that λDj ∩ λDk = ∅, j 	= k, λ > 1, and
each disc Dj has a non-empty intersection with the real line R. Let E j ⊂ Dj be
compact sets. Then there exists a constant c = c(λ) > 0 such that

γ
(⋃

Ej

)
≥ c

∑
j

γ(Ej ).

Proof. It suffices to prove the result for finite families of indices j . We first
notice that γ j := γ(Ej ) ≤ γ(Dj ) = r j , where r j is the radius of Dj . Let y j be the
center of the chord R∩Dj , and let λ′ := (1+λ)/2. For each j , we draw a horizontal
line segment Lj ⊂ λ′Dj with center at y j and with analytic capacity b(λ)γ j , where
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b(λ) =
√

λ′2 − 1/4. Thus, the length 
 j of L j satisfies 
 j = 4b(λ)γ j ≤ r j
√

λ′2 − 1.
In particular, the whole segment L j lies in λ′Dj .

Next, let f j be the function that gives the capacity of Ej . Also let ϕ j be the
function that gives the capacity of L j . Then

ϕ j (z) =
∫
L j

ϕ j (x)
x − z

dx,
∫
L j

ϕ j (x)dx = b(λ)γ j .

Positive functions ϕ j (x) have a uniform bound ‖ϕ j‖∞ ≤ A with an absolute con-
stant A. In particular, for each subset F of indices j , we have

(2.1)
∣∣∣∣Im∑

j∈F
ϕ j (z)

∣∣∣∣ ≤ A
∫
⋃

j∈F L j

|Im z|
|t − z|2 dt ≤ πA , for all z ∈ C.

Remark. It is important here that the intervals L j be situated on the real line
(or at least not far from R). For any M > 0, one can easily construct a chord-arc
curve and discs centered on it such that the left-hand side of (2.1) exceedsM . This
is the obstacle for extension of these arguments to chord-arc curves.

Our next goal is to find a family F of indices and absolute positive constants
a1, a2, such that

∑
j∈F

γ j ≥ a1
∑
j

γ j ,(2.2)

∑
j∈F

| f j (z) − b(λ)−1ϕ j (z)| ≤ a2, for all z ∈ C \ ⋃
j∈F

(Ej ∪ L j ).(2.3)

Let us finish the proof of Theorem 2.1, taking these assertions for granted (for
a short while). Let F :=

∑
j∈F f j . Combining (2.1) and (2.3), we get |ImF (z)| ≤

C1(λ), z ∈ C \ (
⋃

j∈F Ej ). Hence, the function F1 := eiF − 1 is bounded on
C\(⋃ j∈F Ej ) by a constant C(λ). Since F (∞) = 0, we have |F ′

1(∞)| = |F ′(∞)| =∑
j∈F γ j . Thus

γ

( ⋃
j∈F

Ej

)
≥ 1

C(λ)

∑
j∈F

γ j .

Combining this with (2.2), we obtain

γ

(⋃
j

E j

)
≥ γ

( ⋃
j∈F

Ej

)
≥ a3

∑
j

γ j ,

and Theorem 2.1 is proved. So we are left to chose the family F such that (2.2),
(2.3) hold.
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By the Schwartz lemma in the form we borrow from [G, p. 12–13],

(2.4) | f j (z) − b(λ)−1ϕ j (z)| ≤ Ar jγ j

dist(z,Ej ∪ L j )2
, z /∈ Ej ∪ L j .

Set
Qi := λ′Di , gi :=

∑
j : j 	=i

r jγ j

D(Qj ,Qi)2
,

where D(Qi,Qj ) := dist(Qi,Qj ).

Remark. Although we do not need this, for the sake of explanation, let us
define a function g =

∑
g jχQj∩R. This function is often called aMarcinkiewicz

function. The main trick with Marcinkiewicz functions is to integrate them with
respect to a suitable measure. We integrate it with respect to Lebesgue measure on
R.

The important point is that we can estimate
∑

i giγi . In fact,∑
i

giγi =
∑
i

γi
∑
j : j 	=i

r jγ j

D(Qj ,Qi)2
=
∑
j

r jγ j

∑
i: i 	= j

γi
D(Qi,Qj )2

≤ ∑
j

r jγ j

∑
i: i 	= j

ri
D(Qi,Qj )2

≤ A0

∑
j

r jγ j r
−1
j = A0

∑
j

γ j .

In the last estimate, we used

∑
i: i 	= j

ri
D(Qi,Qj )2

≤ A1

∫
t:|t−y j |≥r j

1
|t − y j |2 dt ≤ 2A1

r j
, A1 = A1(λ),

which follows from the facts that the length of R ∩ Qj exceeds c(λ)r j and
D(Qi,Qj ) ≥ c′(λ)|t − y j |, t ∈ R ∩ Qi . Now we apply Tchebychev’s inequal-
ity. Setting

I∗ := {i : gi > 10A0}, I∗ := {i : gi ≤ 10A0},
we see immediately that

(2.5)
∑
j∈I∗

γ j ≥ 9
10

∑
j

γ j .

Obviously, by (2.4), for every index i,∑
j : j 	=i

| f j (z) − b(λ)−1ϕ j (z)| ≤ Agi, z ∈ Qi .

This estimate and the choice of I∗ imply that∑
j : j 	=i, j∈I∗

| f j (z)− b(λ)−1ϕ j (z)| ≤ C(λ)gi ≤ 10A0A, for all i ∈ I∗, for all z ∈ Qi .
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But all functions | fi |, |ϕi | are bounded on C \ (Ei ∪ Li) by 1. Therefore, the last
inequality implies the estimate

(2.6)
∑
j : j∈I∗

| f j (z) − b(λ)−1ϕ j (z)| ≤ 10A0A + b(λ)−1 + 1 =: a2

for all z ∈ Qi \ (Ei ∪ Li), for all i ∈ I∗. The function
∑

j∈I∗( f j − b(λ)−1ϕ j ) is
analytic on C \ ⋃

i∈I∗(Ei ∪ Li) and vanishes at ∞. Therefore, (2.6) implies (2.3),
with F := I∗. Assertion (2.2) is proved in (2.5), and the proof of Theorem 2.1 is
completed. �

Corollary 2.2. The conclusion of Theorem 2.1 remains true if discs Dj inter-
sect a circle instead of the real line.

Proof. It suffices to consider the unit circle. There are at most K discs Dj of
radius r j ≥ 1/30 intersecting the unit circle �, where K is an absolute constant.
Hence, we may assume that r j < 1/30 for each j . Moreover, as in Corollary 1.2,
we may restrict ourself to discs intersecting the left semicircle T . Let h(z) := i 1+z1−z

be the conformal mapping of � onto the real line. Let E be a compact subset of
G0 := {z : dist(z,T ) < 1/10}, and E := h(E). We prove that

(2.7) γ(E) � γ(E)

with absolute constants of comparison. This relation is a consequence of the gen-
eral result by Tolsa [To3] about stability of the analytic capacity under bilipschitz
maps, but we prefer a direct elementary proof (which possibly is not new) with-
out using Tolsa’s very difficult result. Pick a holomorphic function f such that
| f (z)| < 1 on C \ E . Define the sets

G := {z : dist(z,T ) < 1/5}, G := h(G), G0 := h(G0),

and the function F (w) := f (g(w))g′(w), where g(w) = w−i
w+i is the inverse of h.

Clearly, |F (w)| ≤ C1 as w ∈ G\E, and the length of ∂G does not exceed C2, where
C1,C2 are absolute constants. Fix w ∈ G0 \E, and let L0 be a closed curve in G0 \E
that encloses E but not w and is oriented in such a way that w is “on the left”. If
∂G is oriented in the same way, by Cauchy’s formula,

F (w) =
1
2πi

∫
∂G

F (ξ )
ξ − w

dξ +
1
2πi

∫
L0

F (ξ )
ξ − w

dξ =: F1(w) + F2(w).

Since |ξ −w| exceeds an absolute constant for ξ ∈ ∂G, |F1(w)| < C, as w ∈ G0 \E.
But F is bounded on this domain as well. Hence, F2(w) is bounded on G0 \ E and
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holomorphic on C \ E. By the maximum principle, F2(w) is holomorphic and
bounded on C \E by an absolute constant. Let L be a contour in G \E inclosing E.
Since F1(w) is holomorphic on G, we have

∫
L F1(w) dw = 0. Hence,∫

L
F2(w) dw =

∫
L
F (w) dw =

∫
L
f (g(w)) dg(w) =

∫
g(L)

f (z) dz,

and γ(E) ≤ Cγ(E). Similar arguments yield the inverse inequality, if we start
with the compact E (we may assume that E ⊂ G0). Therefore, (2.7) is proved.
Corollary 2.2 is a direct consequence of (2.7) and Theorem 2.1. �

3 Proof of Theorem 1.3

3.1 Necessity of the condition (1.4). Suppose that ‖Cμ‖μ ≤ C < ∞ and
suppμ ⊂ E . One can easily see that ‖Cμ|B‖μ|B ≤ C < ∞ for every disc B.
Moreover, boundedness of Cμ implies that αμ ∈ � with α depending only on C;
see, for example, [Da]. Thus, the measure cμ|B, c = c(C) > 0, participates in the
right-hand side of (1.3) with F = B ∩ E , and we get (1.4).

3.2 Sufficiency of the condition (1.4). The following result, although not
formulated explicitly, was proved in [NToV]; see the last three pages of [NToV,
Section 3].

Theorem 3.1. Suppose that {Dj } are discs in the plane and the dilated discs
λDj , λ > 1, are disjoint. Let ν, σ be positive measures supported in

⋃
j D j such

that c1ν(Dj ) ≤ σ(Dj ) ≤ c2ν(Dj ), 0 < c1 < c2 < ∞. Suppose also that the Cauchy
operators Cσ j , σ j = σ|Dj , are uniformly bounded. If ν is a Cauchy operator
measure, then ασ is also a Cauchy operator measure with a constant α depending
only on c1, c2, and λ.

We need some preliminary constructions and notations. Here is an easy lemma,
whose proof is omitted.

Lemma 3.2. For every circle T and disc B,

γ(T ∩ B) � H1(T ∩ B)

with absolute constants of comparison.

Now we define new sets L j . We need a number N = N (λ), which is defined as
follows. Recall that λ > 1 and λ′ = (1 + λ)/2. Let a disc D of radius r be given,
and let Aλ := min(1, λ′ − 1)/1000. Fix an integer n, and place n circles of radius
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Aλr in λ′D tangent to ∂(λ′D) and whose centers are vertices of a regular n-gon.
Denote by L(n) the union of these n circles and the circle of the same radius Aλr
which is concentric to D. Define N to be the minimal integer n such that
(a) every (open) disc that intersects both D and C \ λD contains at least one

circle from L(n) (we can easily see that such a finite N = N (λ) exists), and
(b) all N + 1 circles constituting L(N ) are pairwise disjoint.
Set L = L(N ). Clearly, the properties (a) with n = N and (b) remain valid (with

the same N ) if we reduce the radii of circles in L. Since γ(circle) � H1(circle),
we have the following obvious lemma.

Lemma 3.3. For the set L defined above with any radius of circles constitut-
ing L, γ(L) � H1(L), where the comparison constants can depend only on N .

For each Dj , let L j be the union of N +1 circles lying in λ′Dj , whose positions
are described above and whose radii are defined by the equality

(3.1) H1(L j ) = Aλ(N + 1)γ(Ej ).

Then, in particular,H1(one circle) = 1
N+1H

1(L j ) = Aλγ(Ej ) ≤ Aλr j , since γ(Ej ) ≤
γ(Dj ) = r j . Hence, the properties (a) with n = N , D = Dj , and (b) hold for every
L j . Moreover, (3.1) and Lemma 3.3 imply the relation γ(L j ) � γ(Ej ).

We need the following lemma.

Lemma 3.4. Fix an index j . Let B be a disc such that at least one circle from
Lj lies inside B. Then γ(L j ) � γ(L j ∩ B) with constants depending only on λ. In
particular, this is true if D j ⊂ B, or if B intersects D j and C \ λDj .

Proof. Indeed, by the semiadditivity of γ,

γ(L j ) ≤ A(N + 1)γ(central circle) ≤ A(N + 1)γ(L j ∩ B)

.

�

Lemma 3.5. For every disc B,

γ
( ⋃

j :Dj⊂B

L j

)
� γ

( ⋃
j :Dj⊂B

L j ∩ B
)
.

with constants depending only on λ.

Proof. By the semiadditivity of γ,

γ
( ⋃
Dj⊂B

L j

)
≤ A

(
γ
( ⋃

λ′Dj⊂B

L j

)
+ γ

( ⋃
Dj⊂B, λ′Dj 	⊂B

L j

))
.
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The first term is the same as γ(
⋃

λ′Dj⊂B L j ∩ B). For the second term, we notice
that L j ∩ B ⊂ λ′Dj . Since the discs λ

λ′ λ
′Dj are pairwise disjoint, we may apply

Corollary 2.2 with the new dilation constant λnew := λ/λ′. Thus,

γ
( ⋃
Dj⊂B, λ′Dj 	⊂B

L j ∩ B
)

≥ c
∑

Dj⊂B, λ′Dj 	⊂B

γ(L j ∩ B)

≥ c1
∑

Dj⊂B, λ′Dj 	⊂B

γ(L j ) ≥ c2γ
( ⋃

Dj⊂B, λ′Dj 	⊂B

L j

)
,

which finishes the proof. In the second inequality, we have used Lemma 3.4. �

Lemma 3.6. Suppose that a disc B intersects more than one Dj . Then

γ
(⋃

J

L j

)
� γ

(⋃
J

L j ∩ B
)
, J = J(B) := { j : Dj ∩ ∂B 	= ∅},

with comparison constants depending only on λ.

Proof. Here again we use Corollary 2.2. Since B intersects more than one
Dj , it cannot be contained in λDj , j ∈ J. Thus, it contains at least one circle from
L j for each j ∈ J (this follows from the choice of N ). Call this circle Cj . Then
apply Corollary 2.2 to Dj with dilation constant λ to get the estimate

γ
(⋃

J

L j ∩ B
)

≥ c
∑
J

γ(L j ∩ B) ≥ ∑
J

γ(Cj ) ≥ c1
∑
J

γ(L j ) ≥ c2γ
(⋃

J

L j

)
,

which finishes the proof. �
Finally, we need the following notation. For a disc B, let

Fj (B) =

⎧⎨
⎩Ej , Dj ⊂ B

∅, Dj 	⊂ B.
, F (B) =

⋃
Fj (B).

Remark. In what follows, a disc B is free to change. The constants in further
inequalities do not depend on B. In the sequel, we write Fj for Fj (B) and F for
F (B).

Our next goal is to prove that under assumptions of Theorem 1.3,

γ
(⋃

L j ∩ B
)

≥ c
∑

γ(L j ∩ B)

with a universal constant c (universal means that c does not depend on the disc B).
We need the following two lemmas.

We fix a small positive absolute constant ε. How small will be clear from what
follows.
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Lemma 3.7 (The first case). Suppose that γ(F ) ≤ εγ(E ∩ B). Then there
exists a constant c, that can depend only on N , ε, and other universal constants,
such that

γ
(⋃

L j ∩ B
)

≥ c
∑

γ(L j ∩ B).

Proof. Suppose that B intersects only one λDj . Then the
⋃

and the
∑

have
only one term, and there is nothing to prove. So, we can assume that B intersects
at least two of λDj ’s. Notice also that by this assumption, by the fact that λDi

are pairwise disjoint and by the choice of N , if B intersects Dj , then at least one
circle from L j lies inside B. Let J be as in Lemma 3.6. Using Lemma 3.4 and
Corollary 2.2, we get

(3.2)
∑
J

γ(L j ) ≤ A1

∑
J

γ(L j ∩ B) ≤ A2γ
(⋃

J

L j ∩ B
)
.

On the other hand, by the assumption of Theorem 1.3,

(3.3)
∑
Dj⊂B

γ(L j ) ≤ C
∑
Dj⊂B

γ(Ej ) ≤ C ′ ∑
Dj⊂B

μ j (Dj ) ≤ C ′μ(B) ≤ C ′C0γ(E ∩ B).

Also, for some absolute constant A,

γ(E ∩ B) ≤ A
(

γ(F ) + γ
(⋃

J

Ej ∩ B
))

≤ εAγ(E ∩ B) + Aγ
(⋃

J

Ej ∩ B
)
.

Thus, if ε is small enough (notice that the smallness depends only on A), we have

(3.4) γ(E ∩ B) ≤ Cγ
(⋃

J

Ej ∩ B
)
.

Therefore, combining (3.3), (3.4), and (3.2), we obtain∑
Dj⊂B

γ(L j ) ≤ Cγ
(⋃

J

Ej ∩ B
)

≤ C1

∑
J

γ(Ej ∩ B)

≤ C2

∑
J

γ(L j ) ≤ C3γ
(⋃

J

L j ∩ B
)
.

(3.5)

We now combine (3.2) and (3.5) to get
(3.6)

γ
(⋃

L j ∩ B
)

≥ γ
(⋃

J

L j ∩ B
)

≥ c
∑
Dj⊂B

γ(L j ) + c
∑
J

γ(L j ) = c
∑

Dj∩B 	=∅
γ(L j ).

Obviously,

(3.7) γ
(⋃

L j ∩ B
)

≥ γ
(⋃

J1

L j ∩ B
)
, J1 := { j : Dj ∩ B = ∅, L j ∩ B 	= ∅}.
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For j ∈ J1, we again consider the new dilation constants λnew := λ/λ′ and discs
D ′

j := λ′Dj . The discs λnewD ′
j , j ∈ J1, are disjoint, and D ′

j intersects B for j ∈ J1.
By Corollary 2.2 applied to L j ∩ B playing the role of Ej , j ∈ J1, we get

(3.8) γ
(⋃

J1

L j ∩ B
)

≥ c
∑
J1

γ(L j ∩ B).

The combination of (3.6)–(3.8) finishes the proof. �

Lemma 3.8 (The second case). Suppose that γ(F ) ≥ εγ(E ∩ B) with ε from
the previous lemma. Then there exists a universal constant c such that

γ
(⋃

L j ∩ B
)

≥ c
∑

γ(L j ∩ B).

Proof. By Theorem 2.1, or rather Corollary 2.2, we need only prove the in-
equality

(3.9) γ
( ⋃

Dj⊂B

L j ∩ B
)

≥ c
∑
Dj⊂B

γ(L j ∩ B).

Using the assumption of our lemma as well as the conditions (1.4) and ‖μ j‖ �
γ(Ej ) of Theorem 1.3, we get

(3.10) γ(F ) ≥ εγ(E ∩ B) ≥ εcμ(B) ≥ εc
∑
Dj⊂B

μ j (B) ≥ εc′ ∑
j

γ(Fj ).

We denote by ν the measure on F participating in (1.3) for which ‖ν‖ � γ(F ).
Let dν j = χFj dν. Then Cν j is bounded on L2(ν j ) (with norm at most 1), and (1.3)
yields the estimate

‖ν j‖ ≤ Cγ(Fj ) ≤ C1γ(L j ) ≤ C2H
1(L j ) =: C2
 j .

We call j good if Dj ⊂ B and ‖ν j‖ ≥ τ
 j . The choice of τ will be clear
from the next steps. However, we emphasize now that this choice is universal. By
(3.10), we have

εc′A−1
∑

γ(Fj ) ≤ A−1γ(F ) ≤ ‖ν‖ =
∑ ‖ν j‖ ≤ C2

∑
j is good


 j + τ
∑
Dj⊂B


 j

≤ C2

∑
j is good


 j + C3τ
∑

γ(Fj )

(in the last inequality, we have used (??)). Therefore,

(3.11)
∑

j is good, Dj⊂B


 j ≥ c
∑

γ(Fj ) ≥ c1
∑
Dj⊂B


 j .
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Actually, here is where τ is chosen. We see that it indeed depends only on universal
constants such as A and ε. Recall that Cj denotes the central circle of each L j . We
set

dσg :=
∑

j is good, Dj⊂B

χCj dH
1, dνg :=

∑
j is good, Dj⊂B

dν j .

Then for good j ,

σg(Dj ) = H1(Cj ) � H1(L j ) = 
 j � νg(Dj ).

In the last relation, the comparison constants can depend on previous universal
constants and τ. The operators Cσg|Dj are uniformly bounded. By the choice of
ν, the operator Cνg is bounded as well with norm at most 1. Thus, we may apply
Theorem 3.1 and conclude that Cσg is also bounded with a certain absolute bound
of the norm. Therefore, using (3.11), we obtain

γ
( ⋃

Dj⊂B

L j

)
≥ γ

( ⋃
j is good, Dj⊂B

L j

)
≥ c‖σg‖ ≥ c1

∑
j is good, Dj⊂B


 j ≥ c2
∑
Dj⊂B


 j .

In Lemma 3.5, we have proved that γ
(⋃

Dj⊂B L j
) � γ

(⋃
Dj⊂B L j ∩ B

)
. More-

over, for every j such that Dj ⊂ B, we have 
 j = H1(L j ) � H1(L j ∩ B) �
γ(L j ∩ B). Thus, we obtain (3.9), and Lemma 3.8 is proved. �

The Main Theorem of [NV] says the following.

Theorem 3.9. Let L ⊂ R
2 be a compact set of positive and finite Hausdorff

measure H1, and let σ = H1|L. Then Cσ is bounded if and only if there exists a
finite constant C0 such that σ(B ∩ L) ≤ C0γ(B ∩ L) for every disc B.

Starting with the main assumption of Theorem 1.4 (the inequality μ(B) ≤
C0γ(B ∩ E) for every disc B) we have proved in Lemmas 3.7 and 3.8 that the
uniform in B almost-additivity of γ holds for the union of all sets {L j∩B}. Namely,
we have proved that for all B,

(3.12) γ(B ∩ L) ≥ c1
∑
j

γ(B ∩ L j ) ≥ c2
∑
j

σ(B ∩ L j ) = c2σ(B ∩ L),

with uniform positive c2, where σ := H1|L. Hence the measure σ satisfies Theo-
rem 3.9. So the boundedness of Cauchy operator on the union of circles is ob-
tained. The measures σ|Lj and μ j are supported on λ′Dj , the discs λ

λ′ · (λ′Dj ) are
disjoint, and σ(L j ) � μ j (see (3.1)). We may apply Theorem 3.1 again to establish
the boundedness of Cμ in L2(μ).
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4 Proof of Theorem 1.4 and Corollary 1.5

Proof of Theorem 1.4. We would like to reduce the assumptions of Theo-
rem 1.4 to the conditions of Theorem 1.3. For every Ej , we choose an “extremal”
measure μ′

j , supported on Ej and such that ‖Cμ′
j
‖μ′

j
≤ 1 and

c′
1μ

′
j (Ej ) ≤ γ(Ej ) ≤ c′

2μ
′
j (Ej ), 0 < c′

1 < c′
2 < ∞

(the existence of such measures μ′
j follows from (1.3)).

Now let us consider new measures μ̃ j := μ j + μ′
j , μ̃ =

∑
j μ̃ j . We prove

that these measures satisfy all assumptions of Theorem 1.3 (up to an absolute
constant). Indeed, we have seen in Section 3.1 that the assumption ‖Cμ j‖μ j ≤ 1
implies the inequality μ j (Ej ) ≤ Cγ(Ej ). Hence, the new measures μ̃ j also satisfy
the “extremality” condition (μ j does not satisfy it in general)

c1μ̃ j (Ej ) ≤ γ(Ej ) ≤ c2μ̃ j (Ej ), 0 < c1 < c2 < ∞.

Moreover, since two Cauchy operator measures are always Cauchy independent
(see Section 1.2), ‖Cμ̃ j‖μ̃ j ≤ C. Now the relation (1.3) implies that

μ̃(B ∩ Ej ) = μ̃ j (B ∩ Ej ) ≤ Cγ(B ∩ Ej )

for every disc B. Therefore, by (1.5),

μ̃(B) =
∑

μ̃(B ∩ Ej ) ≤ C
∑

γ(B ∩ Ej ) ≤ C0γ(B ∩ E), C0 = C0(C1),

where the latter inequality is the condition (1.4) of Theorem 1.3 for μ̃.

We apply Theorem 1.3 to cμ̃ j and cμ̃ = c
∑

j μ̃ j with a sufficiently small
absolute constant c > 0 and obtain ‖Cμ̃‖μ̃ ≤ C(C1, λ). But μ =

∑
j μ j is a part of

μ̃, and hence ‖Cμ‖μ ≤ C(C1, λ). �

Proof of Corollary 1.5. Recall that above we built L j for eachDj , and each
L j contains a “central circle”. Let T′ be the union over j of central circles in L j . By
(3.1), the radii of these circles are comparable with r j . Since T is AD-regular and
the discs Dj are λ-separated, T′ is AD-regular as well (with other constants c,C).
We have proved in the previous section that the Cauchy operator Cσ, σ := H1|L, is
bounded from L2(σ) to itself. Hence, the operator Cσ′ , σ′ := H1|T′, is bounded too.
By a theorem of Mattila, Melnikov and Verdera [MMV], the set T′ is contained in
an AD-regular curve. �
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5 Examples

We have seen in Section 3 that the condition

(5.1) μ(B) ≤ C0γ(B ∩ E) for every disc B

is necessary for the boundedness of the Cauchy operator Cμ with any Borel meas-
ure μ. It is not difficult to see that this condition alone is not sufficient for the
boundedness of Cμ. Indeed, let μ1/4

n be the probability measure uniformly dis-
tributed on the set E1/4

n defined in the Introduction. Let μ1/4 be the weak limit of
some weakly convergent subsequence {μ1/4

nk }, E1/4 =
⋂
E1/4
n , E be the initial unit

square, and μ := μ1/4 +H2|E . Then μ satisfies (5.1), but Cμ is unbounded; see,
for example, [MT, MTV]. We demonstrate more: in general, the condition (5.1)
is not sufficient for the boundedness even if μ consists of countably many pieces
and each piece gives a bounded Cauchy operator.

Example 5.1. There exists a family of measures {μ j }∞j =0, supported on
squares Ej , with the following properties:
(a) ‖Cμ j‖μ j ≤ 1;
(b) ‖μ j‖ � γ(Ej );
(c) (c) 2Ej ∩ 2Ek = ∅, j 	= k, j, k ≥ 1;
(d) the measure μ =

∑∞
j =0 μ j satisfies (5.1);

(e) ‖Cμ‖μ = ∞.

We use an idea of David-Semmes; see [VE, Example 8.7] for a more detailed
exposition. Let N0 = 0, and let {Nk}∞k=0 be a sequence of natural numbers such
that Nk+1 − Nk → ∞ as k → ∞. Start the construction with the unit square E0

and make N1 − N0 steps of the construction of the corner 1/4-Cantor set E1/4. We
get 4N1−N0 squares with side length 4−N1 . Choose one (any) of them, denote it
by Q1, and continue the construction with only this square. The other 4N1−N0 − 1
squares are the sets Ej that have already been defined. For the chosen square Q1,
we make next N2 − N1 steps of the construction of E1/4, obtaining 4N2−N1 squares
with side length 4−N2 . Again, continue the construction for only one of them, say,
for a square Q2, and so on.

Let μ j , j = 0, 1, . . ., be the 2-dimensional measure uniformly distributed on
Ej such that ‖μ j‖ = c
 j , where 
 j is the side length of Ej , and the absolute
constant c is chosen in such a way that ‖Cμ j‖μ j = 1. Then properties (a), (b),
(c) are obvious. To demonstrate (d), we notice that E :=

⋃
j≥0 Ej is equal to E0,

and thus γ(B ∩ E) � diam(B ∩ E) =: d0. On the other hand, for any j ≥ 0 and
d j := diam(B ∩ Ej ), we have μ(B ∩ Ej ) ≤ c
−1

j d2
j < Cdj (the density of μ j is

equal to c/
 j ). Hence, μ(B ∩ E) < C
∑∞

j =0 d j � d0, and (d) is established.
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Finally, to prove (e), we apply the operator Cμ to the characteristic functions
χQk , k = 0, 1, . . ., obtaining

‖Cμ(χQk )‖L2(μ) = ‖Cμ|Qk (1)‖L2(μ) ≥ ‖Cμ|Qk (1)‖L2(μ|Qk).

But
‖Cμ|Qk (1)‖2L2(μ|Qk) ≥ c(Nk+1 − Nk)4

−Nk

with an absolute constant c; see [MT]. Hence, ‖Cμ‖μ ≥ c(Nk+1 − Nk) → ∞, and
(e) is proved.

Remark. The measures {μ j }∞j =1 satisfy all the assumptions of Theorem 1.3
except for (5.1). Therefore, we have to add μ0 and change the structure of μ.

Now we demonstrate that the condition ‖μ j‖ � γ(Ej ) in Theorem 1.3 is es-
sential.

Example 5.2. There exists a family of measures {μ j }∞j =1 with the following
properties:
(a) ‖Cμ j‖μ j ≤ 1;
(b) ‖μ j‖ ≤ Cγ(Ej ), where Ej = suppμ j , and Ej is either a square or a disc;
(c) 2Ej ∩ 2Ek = ∅, j 	= k;
(d) the measure μ =

∑∞
j =1 μ j satisfies (5.1);

(e) ‖Cμ‖μ = ∞.

We use the same construction as in Example 5.1, but with the following modi-
fications. 1. The initial square E0 now is not included in the collection {Ej } of
squares; thus, the squares are separated. 2. Besides the same squares Ej and
measures μ j , as in Example 5.1, we add additional discs Ẽ j and measures μ̃ j to
satisfy (5.1) (otherwise (5.1) does not hold after exclusion E0).

As before, we set N0 = 0, choose a sequence {Nk}∞k=0 of natural numbers such
that Nk+1−Nk → ∞ as k → ∞, and make N1−N0 steps of the construction of the
corner 1/4-Cantor set E1/4, starting with the unit square E0. Let En,k, k = 0, . . . , 4n,
be the squares forming the nth generation in this construction (not all of them are
included in {Ej }). In each square En,k, n = 0, . . . ,N1 − 1, k = 1, . . . , 4n, place the
disc D̃n,k concentric with En,k and with radius 
n/10 = 4−n/10. On D̃n,k, uniformly
distribute a measure μn,k with ‖μn,k‖ = 2−n · 4−n. Then for n larger than a certain
absolute n0, we automatically have ‖Cμn,k‖μn,k ≤ 1. For n ≤ n0, we might need a
small absolute positive c′ such that ‖Cc′μn,k‖c′μn,k ≤ 1. We put then μ̃n,k := c′μn,k

and achieve that ‖Cμ̃n,k‖μ̃n,k ≤ 1. After N1 − N0 steps, choose one (any) of the
squares EN1,k, and denote it by Q1. The other 4N1−N0 − 1 squares EN1,k and discs
D̃n,k, n = 0, . . . ,N1 − 1, k = 1, . . . , 4n, are the sets Ej that have already been
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defined. As before, μN1,k is the 2-dimensional measure uniformly distributed on
EN1,k such that ‖μN1,k‖ = c
N1 and ‖CμN1,k‖μN1,k = 1.

For the chosen square Q1, we continue the construction and make the next
N2−N1 steps of the construction of E1/4, obtaining squares EN2,k, k = 1, . . . , 4N2−N1

with side length 
N2 := 4−N2 and with measures μN2,k such that ‖μN2,k‖ = c
N2 .
Besides these squares, we get discs D̃n,k, n = N1, . . . ,N2 − 1, k = 1, . . . , 4n−N1

of radii 4−n/10, concentric with En,k and supporting the measures μ̃n,k, ‖μ̃n,k‖ =
c′2−n ·4−n. Again, we continue the construction for only one of these squares, and
so on.

We have to prove only (d). Fix a disc B. Suppose that D̃0,1 ⊂ B. Since
μ(B) ≤ ‖μ‖ ≤ C and γ(B ∩ E) ≥ γ(D̃0,1) = 1/10, (5.1) holds. Suppose now that
D̃0,1 	⊂ B, and that B contains at least one disc D̃n,k. Choose a maximal disc in B,
say, D̃n1,k1 . Then “the parent” En1−1,k′

1
of the square En1,k1 (that is, the square of the

previous generation containing En1,k1 ) does not lie in B; otherwise, D̃n1,k1 would
not be a maximal disc in B. Set G1 := En1−1,k′

1
∩ B. Now choose a maximal disc

D̃n2,k2 ⊂ (B \ G1) (if such a disc exists). Its “parent” En2−1,k′
2
and the set G1 are

disjoint. By the same reason as above, En2−1,k′
2
	⊂ B. Set G2 := En2−1,k′

2
∩ B, and

choose a maximal disc D̃n3,k3 ⊂ (B \ (G1 ∪ G2)) (if any). Continuing in this way,
we obtain a sequence {Gj } of sets with the following properties:
(i) 2Gi∩2Gj = ∅, i 	= j , and one may place them into λ-separated discs, λ > 1;
(ii) for each Gj ,

μ(Gj ) ≤ C
n j = C4−n j � γ(D̃n j ,k j ) ≤ γ(Gj );

(iii) all the squares ENi ,k and discs D̃n,k contained in B are contained in
⋃

j G j .
‘Also, it might be that some discs D̃n,k and squares ENi ,k intersect B and are not
contained in the sets Enj−1,k′

j
considered above. Each of these discs and squares

forms a separate set Gj := D̃n,k ∩ B or ENi ,k ∩ B. These sets are λ-separated as
well, and μ(Gj ) ≤ C diam(Gj ) ≤ C ′γ(Gj ); see Example 5.1. Moreover, all the
sets Gj satisfy the conditions of Corollary 2.2, which yields the estimate

μ(B) =
∑
j

μ(Gj ) ≤ C
∑
j

γ(Gj ) ≤ C ′γ(B ∩ E).

and the example has been established.
Now we demonstrate the sharpness of Corollary 1.5.

Proposition 5.3. The conclusion of Corollary 1.5 is incorrect, in general, if
any of the assumptions (a)–(c) is missing.

Proof. (a): the assumption (a) is missing. We may use the same sets {Ej }∞j =1
as in Example 5.1, only without the initial square E0. For Dj , we take discs con-
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taining Ej and slightly larger than Ej . A proof that (b) and (c) hold is not difficult,
and we leave it to the reader. At the same time,

(5.2) (length of any curve connecting all discs in Qk)/4
−Nk → ∞ as k → ∞

(the squares Qk are defined in the proof of Example 5.1).
(b): the assumption (b) is missing. Let Dj be the discs D̃n,k in Example 5.2,

enumerated in the non-increasing order by the radius r j . In each Dj , we place the
disc Ej concentric with Dj and of radius 4− j/20. To prove that (a) holds, fix a disc
B. For discs Ej intersecting ∂B, (1.5) holds by Corollary 2.2 (with B ∩ Ej as Ej ).
Let j0 := {min j : Ej ⊂ B}. Then

∑
j :Bj⊂B

γ(B ∩ Ej ) ≤
∞∑
j = j0

γ(Ej ) =
∞∑
j = j0

1
20

4− j

=
1
15

4− j0 =
8
3
γ(Ej0 ) ≤ 8

3
γ(B ∩ E),

and (a) holds. The proof that (c) holds is easy, and we omit it. At the same time,
(5.2) holds for discs Dj in Qk.

(c): assumption (c) is missing. The counterexample in this case is not based
on Cantor-type constructions. Given 
 > 0, N ∈ N, N ≥ 4, consider the square
Q
 = [0, 
] × [0, 
] and points

xi =



N − 1
i, y j =




N − 1
j, i, j = 0, 1, . . . ,N − 1.

Let Ei j be the disc centered at the point (xi, y j ) of radius 
/N 2, and let E :=⋃
i, j Ei j , Di j := 2Ei j . Fix a disc B. Set EB = {⋃Ei j : Ei j ⊂ B} (EB might be

empty). If EB 	= ∅, we have∣∣∣∣
∫

d(H1|∂EB)(ξ )
ξ − z

∣∣∣∣ < C, z ∈ C.

Hence,

γ(E ∩ B) ≥ γ(EB) ≥ cH1(∂EB) = c′ ∑
Ei j⊂B

γ(Ei j ) ≥ c′′ ∑ γ(Ei j ∩ B).

If EB = ∅, (1.5) holds as well (for example, by Corollary 2.2). At the same time,
the length of any curve intersecting all discs Di j is at least C
N .

Now we construct a series of squaresQ
k with 
k = 2−k/10, Nk = k2k, centered
at points 1/k2, and the corresponding sets E(k) and discs D (k)

i j , E
(k)
i j . One may

place E(k) in λ-separated discs centered at the point 1/k2. Set E :=
⋃

k E
(k). By

Theorem 2.1,
γ(B ∩ E) ≥ c

∑
k

γ(B ∩ E(k)).
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Thus, to prove (1.5), we have to establish almost additivity of γ for each E(k)

separately, and that was done above. That (b) holds is obvious. But all the discs
D (k)

i j in E cannot be connected by an AD-regular curve. �

6 Proof of Theorem 1.1

It is known that a compact chord-arc curve is a bi-lipschitz image of a straight seg-
ment; see [Po, Chapter 7]. On the other hand analytic capacity can be only finitely
distorted by bi-lipschitz maps. This is a non-trivial result by X. Tolsa, [To3]. So if
we allow the separation constant λ > 1 to depend on the Lipschitz constant of our
chord-arc curve (so the separation of the discs is large if the constant of the curve
is large), we can obtain Theorem 1.1 directly from Theorem 2.1. However, we
want to avoid the dependence of the separation constant on the chord-arc constant.
Thus, we need another proof, which follows.

The Melnikov–Menger curvature of a positive Borel measure μ in C is
defined as

c2(μ) =
∫∫∫

1
R2(x, y, z)

dμ(x) dμ(y) dμ(z),

where R(x, y, z) is the radius of the circle passing through the points x, y, z ∈ C and
R(x, y, z) = ∞ if x, y, z are collinear (in particular, if two of them coincide). This
notion was introduced by Melnikov [M]. The following relation characterizes the
analytic capacity in terms of the curvature of a measure [To1], [To2, p. 104], [Vo],
[To]. For a compact set F ⊂ C,

(6.1) γ(F ) � sup{μ(F ) : suppμ ⊂ F, μ ∈ �, c2(μ) ≤ μ(F )},
where � is the class of measures of linear growth defined in (1.3).

Lemma 6.1 (Main Lemma). Let D j = D(x j , r j ) be discs with centers on a
chord-arc curve � such that λDj ∩ λDk = ∅, j 	= k, for some λ > 1. Let μ j be
positive measures such that
(1) suppμ j ⊂ Dj ,
(2) μ j (Dj ) =: ‖μ j‖ ≤ r j .

Then, for μ =
∑

μ j ,

(6.2) c2(μ) ≤ ∑
j

c2(μ j ) + C‖μ‖, C = C(λ,A0),

where A0 is the constant of �.

To begin, let us show that Theorem 1.1 is a direct consequence of Main Lemma
and (6.1).
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Proof of Theorem 1.1. Consider measures μ j participating in (6.1) for
F = Ej , j = 1, . . .. Then μ(D(x, r)) ≤ Cr for any disc D, where C = C(A0) and
μ =

∑
μ j . To prove this assertion, we fix a disc D = D(x, r) and divide all discs

Dj onto two groups:

D1 := {Dj : Dj ∩ D 	= ∅, r j ≤ r} and D2 := {Dj : Dj ∩ D 	= ∅, r j > r}.
Since � is chord-arc,

∑
Dj∈D1

ri ≤ Cr, C = C(A0). It is easy to see thatD2 consists
of at most six discs Dj . Hence,

μ(D) ≤ ∑
Dj∈D1

μ(Dj ) +
∑

Dj∈D2

μ(Dj ∩ D) ≤ ∑
Dj∈D1

r j + 6r < Cr.

Furthermore, Main Lemma implies the inequality c2(μ) ≤ C‖μ‖, C = C(λ,A0).
Thus, the measure cμ with an appropriate constant c depending on λ,A0, particip-
ates in (6.1) for F = E =

⋃
Ej . So, γ(E) ≥ c‖μ‖, which implies Theorem 1.1. �

Proof of Lemma 6.1. It suffices to consider a finite set of discs Dj , j =
1, . . . ,N . We assume that these discs are enumerated in increasing order by the
natural parameters of their centers.

Let � j be arcs of � such that � j ⊂ Dj and H1(� j ) = μ(Dj ). Let σ j := H1|� j

and σ :=
∑

σ j , so that σ(Dj ) = μ(Dj ). Obviously,

c2(μ) =
(∑

j

∫∫∫
D3

j

+
∫∫∫

C3\⋃ j D
3
j

)
1

R2(x, y, z)
dμ(x) dμ(y) dμ(z) =: I1 + I2.

Since I1 =
∑

j c
2(μ j ), we have only to estimate I2. Our proof is based on the

comparison of I2 and the corresponding integral with respect to σ:

Ī2 :=
∫∫∫

C3\⋃ j D
3
j

1
R2(x, y, z)

dσ(x) dσ(y) dσ(z).

Notice that

(6.3) Ī2 < c2(σ) ≤ C‖σ‖, C = C(A0).

The last inequality is a consequence of two well-known facts. The first is the
boundedness of the Cauchy operator CH1|� on chord-arc curves; see [MV, p. 330].
In particular,

‖Cε
σ1‖2L2(σ) ≤ ‖CH1|�(χ∪� j )‖2L2(H1|�) ≤ C‖χ∪� j‖2L2(H1|�) = C‖σ‖, ε > 0,

where C depends only on A0, The second fact is the connection between the
curvature of a measure and the norm of a Cauchy potential:

‖Cε
μ1‖2L2(μ) =

1
6
c2ε(μ) +O(‖μ‖)
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for any measure μ ∈ � uniformly in ε; see, for example, [To2]. Here, c2ε(μ) is the
truncated version of c2(μ) defined in the same way as c2ε(μ), but the triple integral
is taken over the set {(x, y, z) ∈ C

3 : |x − y|, |y − z|, |x − z| > ε}. This equality
with μ = cσ ∈ �, and the previous relations imply (6.3).

Obviously,

I2 =
(∫∫∫

�1

+
∫∫∫

�2

)
1

R2(x, y, z)
dμ(x) dμ(y) dμ(z) =: I2,1 + I2,2,

where

�1 := {Dj × Dk × Dl : j = k 	= l ∨ j 	= k = l ∨ j = l 	= k},
�2 := {Dj × Dk × Dl : j 	= k, k 	= l, j 	= l}.

To estimate the integral over �1, it suffices to consider the subset

�′
1 := {Dj × Dk × Dl : j 	= k = l}.

For x ∈ Dj = D(x j , r j ), y, z ∈ Dk, j 	= k, we have

2R(x, y, z) ≥ |x − y| ≥ c(r j + r j+1 + · · · + rk), c = c(λ,A0)

(here, we assume that j < k; the case k < j is analogous). Then

∫∫∫
�′

1

1
R2(x, y, z)

dμ(x) dμ(y) dμ(z) ≤ C
[ N−1∑

j =1

‖μ j‖
N∑

k= j+1

‖μk‖2
(r j + r j+1 + · · · + rk)2

+
N−1∑
j =1

‖μN+1− j‖
N∑

k= j+1

‖μN+1−k‖2
(rN+1− j + r j+1 + · · · + rN+1−k)2

=: C[SN,1 + SN,2].

Estimates for both terms on the right-hand side are the same. We estimate SN,1

using the induction with respect to N .
Base case: N = 2. In this case,

SN,1 = ‖μ1‖ · ‖μ2‖2
(r1 + r2)2

≤ ‖μ1‖ ≤ ‖μ1‖ + ‖μ2‖.
Induction: suppose that the inequality

(6.4) SN,1 =
N−1∑
j =1

‖μ j‖
N∑

k= j+1

‖μk‖2
(r j + · · · + rk)2

≤ ‖μ1‖ + · · · + ‖μN‖

holds for some N ≥ 2. For N + 1 discs, we have

SN+1,1 = SN,1 +
N∑
j =1

‖μ j‖ ‖μN+1‖2
(r j + · · · + rN+1)2

≤ SN,1 + ‖μN+1‖2
N∑
j =1

r j
(r j + · · · + rN+1)2

.
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The last sum is dominated by the integral∫ ∞

0

dt
(rN+1 + t)2

=
1

rN+1
.

Hence,
SN+1,1 ≤ SN,1 + ‖μN+1‖2/rN+1 ≤ ‖μ1‖ + · · · + ‖μN+1‖.

Thus, (6.4) holds, and we have estimated the triple integral over �1.
By symmetry,∫∫∫

�2

1
R2(x, y, z)

dμ(x) dμ(y) dμ(z) = 6
∫∫∫

�′
2

1
R2(x, y, z)

dμ(x) dμ(y) dμ(z),

where �′
2 := {Dj ×Dk ×Dl : j < k < l}. Moreover, we may restrict ourselves to

integration over

�′
2,1 := {Dj × Dk × Dl : j < k < l, r j + · · · + rk ≥ 1

2 (r j + · · · + rl)}.
Indeed, if

(6.5)
∫∫∫

�′
2,1

1
R2(x, y, z)

dμ(x) dμ(y) dμ(z) ≤ C‖μ‖

with C = C(λ,A0), then using the inverse parametrization of �, we get the same
estimate for the triple integral over

�′
2,2 := {Dj × Dk × Dl : j < k < l, rk + · · · + rl ≥ 1

2 (r j + · · · + rl)}
where the discs are enumerated as before. Since

∫∫∫
�′

2
≤ ∫∫∫

�′
2,1
+
∫∫∫

�′
2,2
, (6.4)

and (6.5) imply (6.2). It remains to prove (6.5).
Fix indices j, k, l. For any triples (x, y, z), (x′, y′, z′) ∈ Dj × Dk × Dl , the sine

of the angle between the intervals (y, z) and (y′, z′) does not exceed

C
rk + rl

rk + · · · + rl
, C = C(λ,A0).

For the angle between the intervals (x, z) and (x′, z′), we have C rj+rl
r j+···+rl . Denote

by α, α′ the angles at z, z′ of the triangles x, y, z and x′, y′, z′, respectively. Since
sin(α + β + γ) ≤ sinα + sinβ + sin γ as α, β, γ ∈ [0, π], we get the estimate

sinα < sinα′ + C
rk + rl

rk + · · · + rl
+ C

r j + rl
r j + · · · + rl

.

Hence,

1
R(x, y, z)

=
2 sinα

|x − y| <
C

|x′ − y′|
[
2 sinα′ +

rk + rl
rk + · · · + rl

+
r j + rl

r j + · · · + rl

]
.
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Moreover, for triples in �′
2,1 with given j, l, we may consider only those k for

which r j + · · · + rk ≥ 1
2 (r j + · · · + rl) (the set of such k can be empty). Suppose

that this inequality holds for p ≤ k ≤ l − 1 with p > j . Below we use the reduced
range for k only in the sum S(2). Therefore,

∫∫∫
�′

2,1

1
R2(x, y, z)

dμ(x)dμ(y)dμ(z)≤C
[∫∫∫

�′
2,1

1
R2(x′, y′, z′)

dσ(x′)dσ(y′)dσ(z′)

+
N−2∑
j =1

‖μ j‖
N∑

l = j+2

l−1∑
k= j+1

r2k ‖μk‖ ‖μl‖
(r j + · · · + rk)2(rk + · · · + rl)2

+
N−2∑
j =1

‖μ j‖
N∑

l = j+2

l−1∑
k=p

r2l ‖μk‖ ‖μl‖
(r j + · · · + rk)2(rk + · · · + rl)2

+
N−2∑
j =1

‖μ j‖r2j
N∑

l = j+2

l−1∑
k= j+1

‖μk‖ ‖μl‖
(r j + · · · + rk)2(r j + · · · + rl)2

]

=: C[I + S(1) + S(2) + S(3)].

We estimate each of terms in the last line separately. By (6.3),

(6.6) I ≤ c2(σ) ≤ C‖σ‖.

Write S(1) as

S(1) =
N−2∑
j =1

‖μ j‖
N−1∑
k= j+1

N∑
l =k+1

r2k ‖μk‖ ‖μl‖
(r j + · · · + rk)2(rk + · · · + rl)2

.

Since the inner sum over l does not exceed

r2k ‖μk‖
(r j + · · · + rk)2

∫ ∞

rk

dx
x2

=
rk ‖μk‖

(r j + · · · + rk)2
,

we get the estimate

S(1) ≤
N−2∑
j =1

‖μ j‖
N−1∑
k= j+1

rk ‖μk‖
(r j + · · · + rk)2

≤
N−1∑
k=2

k−1∑
j =1

r j rk ‖μk‖
(r j + · · · + rk)2

≤
N−1∑
k=2

‖μk‖
k−1∑
j =1

rk

∫ ∞

rk

dx
x2

=
N−1∑
k=2

‖μk‖ < ‖μ‖ .

(6.7)

Since r j + · · · + rk ≥ 1
2 (r j + · · · + rl) in S(2), we have
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S(2) =
N−2∑
j =1

‖μ j‖
N∑

l = j+2

l−1∑
k=p

r2l ‖μk‖ ‖μl‖
(r j + · · · + rk)2(rk + · · · + rl)2

≤ 4
N−2∑
j =1

‖μ j‖
N∑

l = j+2

l−1∑
k=p

r2l ‖μk‖ ‖μl‖
(r j + · · · + rl)2(rk + · · · + rl)2

≤ 4
N−2∑
j =1

‖μ j‖
N∑

l = j+2

rl ‖μl‖
(r j + · · · + rl)2

(we estimate the sum with respect to k in the same way as above). We may deal
with the last double sum as in (6.7), or notice that this sum does not exceed

N−2∑
j =1

‖μ j‖
[
1 +

N−1∑
l = j+1

rl ‖μl‖
(r j + · · · + rl)2

]
,

and use (6.7) directly to conclude that

(6.8) S(2) < 8‖μ‖.

Finally,

(6.9) S(3) ≤
N−2∑
j =1

‖μ j‖
N∑

l = j+2

r2j ‖μl‖
(r j + · · · + rl)2r j

<
N−2∑
j =1

‖μ j‖ < ‖μ‖.

The estimates (6.6), (6.7), (6.8), and (6.9) yield (6.5). �

7 Question on almost-additivity

We make more accurate the question posed in Section 1. In Theorems 1.1 and 2.1,
discs were λ-separated, where λ > 1. But what if they are just disjoint? Namely,
let Dj be circles with centers on a chord-arc curve with constant A0 (or even on
the real line R), such that Dj ∩ Dk = ∅, j 	= k. Let Ej ⊂ Dj be arbitrary compact
sets. Is it true that there exists a constant c = c(λ,A0) > 0, such that

γ
(⋃

Ej

)
≥ c

∑
j

γ(Ej )?

We cannot either prove or construct a counter-example to this claim.
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[To1] X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190
(2003), 105–149.
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