
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 371, Number 1, 1 January 2019, Pages 461–488
https://doi.org/10.1090/tran/7254
Article electronically published on June 20, 2018

THE SPACETIME OF A SHIFT ENDOMORPHISM

VAN CYR, JOHN FRANKS, AND BRYNA KRA

Abstract. The automorphism group of a one dimensional shift space over
a finite alphabet exhibits different types of behavior: for a large class with
positive entropy, it contains a rich collection of subgroups, while for many
shifts of zero entropy, there are strong constraints on the automorphism group.
We view this from a different perspective, considering a single automorphism
(and sometimes endomorphism) and studying the naturally associated two-
dimensional shift system. In particular, we describe the relation between non-
expansive subspaces in this two-dimensional system and dynamical properties
of an automorphism of the shift.

1. Introduction

Suppose Σ is a finite alphabet and X ⊂ ΣZ is a closed set that is invariant
under the left shift σ : ΣZ → ΣZ. The collection of automorphisms Aut(X,σ),
consisting of all homeomorphisms φ : X → X that commute with σ, forms a group
(under composition). A useful approach to understanding a countable group G is
knowing if it has subgroups which are isomorphic to (or are homomorphic images of)
simpler groups which are relatively well understood, such as matrix groups and, in
particular, lattices in classical Lie groups. While the automorphism group of a shift
is necessarily countable (as an immediate corollary of the Curtis-Hedlund-Lyndon
Theorem [13], any automorphism φ : X → X is given by a block code), there are
numerous results in the literature showing that the automorphism group of the
full shift, and more generally any mixing shift of finite type, contains isomorphic
copies of many groups: this collection includes, for example, any finite group, the
direct sum of countably many copies of Z, the free group on any finite number of
generators, and the fundamental group of any 2-manifold (see [4,13,15]). In light of
these results, it is natural to ask if there is any finitely generated (or even countable)
group which fails to embed in any such automorphism group, meaning any group of
the form Aut(X,σ). A partial answer is given in [1], where it is shown that if (X,σ)
is a subshift of finite type, then any group that embeds in the automorphism group
must be residually finite. At the other end of the complexity spectrum for (X,σ),
there has been recent work showing that Aut(X,σ) is significantly more tame for
a shift with very low complexity (see for example [6, 7, 9]).

Instead of viewing the entire group, we focus on the structure inherent in a single
automorphism φ ∈ Aut(X,σ), as studied for example in [1, 13, 15, 16]. Given an
automorphism φ, there is an obvious way to associate a Z2-shift action, which we
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call the spacetime of φ (in a slightly different setting, this is called the complete
history by Milnor [19] and is referred to as the spacetime diagram in the cellular
automata literature). We make use of a particular subset of the spacetime, dubbed
the light cone, that is closely related to the notion of causal cone discussed in [19].
We show that the light cone gives a characterization of a well studied structural
feature of a Z2-shift, namely the boundary of a component of expansive subspaces
(see [3] and [14]). In particular, in §4 we show that the edges of a light cone for φ
are always nonexpansive subspaces in its spacetime (the precise statement is given
in Theorem 4.4).

We also provide a complement to this result: for many Z2-subshifts with nonex-
pansive subspace L, the system is isomorphic to the space time of an endomorphism
φ by an isomorphism which carries L to an edge of the light cone of φ.

We then use these structural results to describe obstructions to embedding in
the automorphism group of a shift. An important concept in the study of lattices is
the idea of a distortion element, meaning an element whose powers have sublinear
growth of their minimal word length in some (and hence any) set of generators.
In §5, we introduce a notion of range distortion for automorphisms, meaning that
the range (see §2.1 for the definitions) of the associated block codes of iterates
of the automorphism grow sublinearly. An immediate observation is that if an
automorphism is distorted in Aut(X) (in the group sense), then it is also range
distorted. We also introduce a measure of nondistortion called the asymptotic
spread A(φ) of an automorphism φ and show that the topological entropies of φ
and σ satisfy the inequality

htop(φ) ≤ A(φ)htop(σ).

This recovers an inequality of Tisseur [23]; his context is more restrictive, covering
the full shift endowed with the uniform measure. We do not appeal to measure
theoretic entropy, and our statement applies to a wider class of shifts.

This inequality proves to be useful in providing obstructions to various groups
embedding in the automorphism group. These ideas are further explored in [8].

2. Background

2.1. Shift systems and endomorphisms. We assume throughout that Σ is a
finite set (which we call the alphabet) endowed with the discrete topology and
endow ΣZ with the product topology. For x ∈ ΣZ, we write x[n] ∈ Σ for the value
of x at n ∈ Z.

The left shift σ : ΣZ → ΣZ is defined by (σx)[n] = x[n + 1] and is a homeo-
morphism from ΣZ to itself. We say that (X,σ) is a subshift, or just a shift when
the context is clear, if X ⊂ ΣZ is a closed set that is invariant under the left shift
σ : ΣZ → ΣZ.
Standing assumption: Throughout this article, (X,σ) denotes a shift system,
and we assume that the alphabet Σ of X is finite and that the shift (X,σ) is
infinite, meaning that |X| = ∞.

Definition 2.1. An endomorphism of the shift (X,σ) is a continuous surjection
φ : X → X such that φ ◦ σ = σ ◦ φ. An endomorphism which is invertible is
called an automorphism. The group of all automorphisms of (X,σ) is denoted
Aut(X,σ), or simply Aut(X) when σ is clear from the context. The semigroup
of all endomorphisms of X with operation composition is denoted End(X,σ), or
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simply End(X). We also observe that End(X,σ)/⟨σ⟩, the set of cosets of the
subgroup ⟨σ⟩, is naturally a semigroup with multiplication φ⟨σ⟩ψ⟨σ⟩ defined to be
φψ⟨σ⟩.

For an interval [n, n+1, . . . , n+ k− 1] ∈ Z and x ∈ X, we let x[n, . . . , n+ k− 1]
denote the element a of Σk with aj = x[n + j] for j = 0, 1, . . . , k − 1. Define the
words Lk(X) of length k in X to be the collection of all [a1, . . . , ak] ∈ Σk such that
there exist x ∈ X and m ∈ Z with x[m + i] = ai for 1 ≤ i ≤ k. The length of a
word w ∈ L(X) is denoted by |w|. The language L(X) =

⋃∞
k=1 Lk(X) is defined to

be the collection of all finite words.
The complexity of (X,σ) is the function PX : N → N that counts the number of

words of length n in the language of X. Thus

PX(n) =
∣∣Ln(X)

∣∣.
The exponential growth rate of the complexity is the topological entropy htop of the
shift σ. Thus

htop(σ) = lim
n→∞

log(PX(n))

n
.

This is equivalent to the usual definition of topological entropy using (n, ε)-separated
sets (see, for example, [18]).

A map φ : X → X is a sliding block code if there exists R ∈ N such that for any
x, y ∈ X with x[i] = y[i] for −R ≤ i ≤ R, we have that φ(x)[0] = φ(y)[0]. The least
R such that this holds is called the range of φ.

By the Curtis-Hedlund-Lyndon Theorem [13], any endomorphism φ : X → X of
a shift (X,σ) is a sliding block code. In particular, End(X) is always countable.

Definition 2.2. Suppose that (X,σ) and (X ′,σ′) are shifts and that φ ∈ End(X,σ)
and φ′ ∈ End(X ′,σ′) are endomorphisms. We say that φ and φ′ are conjugate
endomorphisms if there is a homeomorphism h : X → X ′ such that

h ◦ σ = σ′ ◦ h and h ◦ φ = φ′ ◦ h.

A homeomorphism h satisfying these properties is a sliding block code. If φ
and φ′ both lie in Aut(X,σ), then φ and φ′ are conjugate if and only if they are
conjugate as elements of the group Aut(X,σ).

A shift X is irreducible if for all words u, v ∈ L(X), there exists w ∈ L(X) such
that uwv ∈ L(X).

Definition 2.3. A shift (X,σ) is a subshift of finite type provided it is defined by
a finite set of excluded words. In other words, there is a finite set F ⊂ L(ΣZ) such
that x ∈ X if and only if there are no n ∈ Z and k > 0 such that x[n, . . . , n+k] ∈ F .

We make use of the following proposition due to Bowen [2]. A proof can be
found in [18, Theorem 2.1.8].

Proposition 2.4. A shift (X,σ) is a shift of finite type if and only if there exists
n0 ≥ 0 such that whenever uw,wv ∈ L(X) and |w| ≥ n0, then also uwv ∈ L(X).

2.2. Higher dimensions. More generally, one can consider a multidimensional
shift X ⊂ ΣZd

for some d ≥ 1, where X is a closed set (with respect to the product
topology) that is invariant under the Zd action (Tux)(v) = x(u + v) for u ∈ Zd.
We refer to X with the Zd action as a Zd-subshift and to η ∈ X as an X-coloring
of Zd.
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We note that we have made a slight abuse of notation in passing to the multi-
dimensional setting by denoting the entries of an element x ∈ X by x(u) (where
u ∈ Zd) rather than by x[u] as we did for a one-dimensional shift. This is done
to avoid confusion with interval notation, as we frequently restrict ourselves to the
two dimensional case, writing x(i, j) rather than the possibly confusing x[i, j].

Definition 2.5. Suppose X ⊂ ΣZd
is a Zd-subshift endowed with the natural

Zd-action by translations. If S ⊂ Zd is finite and α : S → Σ, define the cylinder set

[S,α] := {η ∈ X : the restriction of η to S is α}.

The set of all cylinder sets forms a basis for the topology of X. The complexity
function for X is the map PX : {finite subsets of Zd} → N given by

PX(S) :=
∣∣{α ∈ ΣS : [S,α] ̸= ∅}

∣∣,

which counts the number of colorings of S which are restrictions of elements of X.
If α : S → Σ is the restriction of an element of X we say it extends uniquely to an
X-coloring if there is exactly one legal η ∈ X whose restriction to S is α. Similarly,
if S ⊂ T ⊂ Zd and if α : S → Σ is such that [α,S] ̸= ∅, then we say α extends
uniquely to an X-coloring of T if there is a unique β : T → Σ such that [β, T ] ̸= ∅
and the restriction of β to S is α.

Note that as in the one dimensional setting, the complexity function is translation
invariant, meaning that for any v ∈ Zd, we have

PX(S) = PX(S + v).

2.3. Expansive subspaces. An important concept in the study of higher dimen-
sional systems is the notion of an expansive subspace (see Boyle and Lind [3] in
particular). For our purposes it suffices to restrict to the case d = 2.

Definition 2.6. Suppose X ⊂ ΣZ2

is a Z2-subshift and L is a one-dimensional
subspace of R2. We consider Z2 ⊂ R2 in the standard way. For r > 0, define

L(r) = {z ∈ Z2 : d(z, L) ≤ r}.

We say that the line L is expansive if there exists r > 0 such that for any η ∈ X,
the restriction η|L(r) extends uniquely to an X-coloring of Z2. We call the one-
dimensional subspace L nonexpansive if it fails to be expansive.

It is also important for us to consider one-sided expansiveness for a subspace L.
To define this we need to specify a particular side of a one-dimensional subspace.
For this we require an orientation of R2 (or Z2) and an orientation of the subspace.
We use the standard orientation of R2 given by the two form ω = dx ∧ dy or
equivalently the orientation for which the standard ordered basis {(1, 0), (0, 1)} is
positively oriented.

If L is an oriented one-dimensional subspace of R2, then the orientation deter-
mines a choice of one component L+ of L \ {0} which we call the positive subset of
L. We then denote by H+(L) the open half space in R2 \L with the property that
ω(v, w) > 0 for all v ∈ L+ and w ∈ H+(L). Alternatively, H+(L) is the set of all
w ∈ R2 such that {v, w} is a positively oriented basis of R2 whenever v ∈ L+ and
w ∈ H+(L). Equivalently

H+(L) = {w ∈ R2 : ivω(w) > 0}
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THE SPACETIME OF A SHIFT ENDOMORPHISM 465

whenever v ∈ L+ and iv is the interior product. The half space H−(L) is defined
analogously or by H−(L) = −H+(L).

Definition 2.7. Suppose L is an oriented one-dimensional subspace of R2; i.e., it
has a distinguished choice of one component L+ of L \ {0} . Then L is positively
expansive if there exists r > 0 such that for every η ∈ X, the restriction η|L(r)

extends uniquely to the half space H+(L). Similarly L is negatively expansive if
the restriction η|L(r) extends uniquely to the half space H−(L).

Proposition 2.8. The oriented subspace L is positively expansive if for every η ∈
X, the restriction η|H−(L) extends uniquely to an X-coloring of Z2. Equivalently L
fails to be positively expansive if and only if there are colorings η, ν ∈ X such that
η ̸= ν, but η(i, j) = ν(i, j) for all (i, j) ∈ H−(L).

Proof. Suppose L is positively expansive and η, ν ∈ X are such that η(i, j) = ν(i, j)
for all (i, j) ∈ H−(L). Find r such that for any ξ ∈ X, ξ|L(r) extends uniquely
to the half space H+(L). Let v ∈ H−(L) be such that the functions ηv, νv ∈ X
defined by ηv(x) = η(x + v) and νv(x) = ν(x + v) have the same restriction to
L(r) ∪H−(L). Then by positive expansiveness of L, ηv and νv coincide on H+(L)
and hence on all of Z2. So ηv = νv and it follows that η = ν. In other words, the
restriction of η to H−(L) extends uniquely to an X-coloring of Z2.

Now suppose that for all η ∈ X the restriction η|H−(L) extends uniquely to
an X-coloring of Z2. We claim that L is positively expansive. For contradiction,
suppose that for all r > 0 there exist ηr, νr ∈ X such that ηr|L(r) = νr|L(r), but
there exists ar ∈ H+(L) such that ηr(ar) ̸= νr(ar). Define

Br = {(i, j) ∈ H+(L) : ηr(i, j) ̸= νr(i, j)}.

Let H be the intersection of all closed half-planes (in R2) contained in H+(L)
that contain Br. Fix some x ∈ Br. These half-planes are linearly ordered by
inclusion, all of them are contained in H+(L), and all of them contain x. Thus
their intersection is a closed half-plane (which might not have any integer points
on its boundary). Therefore we can find a closed half-plane J ⊆ H+(L), with
integer points on its boundary, that contains H and is such that for all y ∈ J ∩ Z2

there exists z ∈ H ∩ Z2 with ∥y − z∥ ≤ 1. Choose an integer vector wr ∈ R2 \ J
such that there exists vr ∈ Br ∩ Z2 satisfying ∥wr − vr∥ ≤ 2. Finally, define
ηr,wr , νr,wr ∈ X by ηr,wr (y) = ηr(y + wr) and νr,wr(y) = νr(y + wr). Note that
although vectors wr are not bounded, we shift η and ν so that wr is moved to the
origin. This shift is in the direction taking H−(L) into itself and thus preserves
orientation in R2, ensuring that the shifted functions still agree on H−(L). The
purpose of the shift is that the point at which the functions disagree now can
be bound in a bounded set. Then ηr,wr |H−(L) = νr,wr |H−(L), but there exists
tr ∈ H+(L) ∩ ([−2, 2]× [−2, 2]) such that ηr,wr (tr) ̸= νr,wr (tr). We pass to a
subsequence r1 < r2 < · · · such that tr is constant. By compactness of X, we
can pass if needed to a further subsequence along which ηrk,wrk

and νrk,wrk
both

converge; call these limiting functions η∞ and ν∞. By construction η∞(tr1) ̸=
ν∞(tr1), but η∞|H−(L) = ν∞|H−(L), a contradiction. !
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Proposition 2.9. Assume that X⊂ΣZ2
is a Z2-subshift and L is a one-dimensional

oriented subspace in the u, v-plane. Suppose there is a convex polygon P ⊂ R2 such
that:

(1) There is a finite set F ⊂ Z2 such that P is the convex hull of F .
(2) There is a unique e ∈ F that is an extreme point of P and that lies in

H+(L).
(3) For any η ∈ X, the restriction of η to F \ {e} extends uniquely to F .

Then L is positively expansive.

Proof. For contradiction, suppose not. Let η, ν ∈ X be such that η|H−(L) =
ν|H−(L), but η ̸= ν. Define B = {(i, j) ∈ H+(L) : η(i, j) ̸= ν(i, j)}. For each
b ∈ B, define d(b, L) to be the distance from b to L and let

I = inf{d(b, L) : b ∈ B}.

For each f ∈ F \ {e}, let d(f, e) be the distance between lines Le and Lf parallel
to L that pass through e and f , respectively. Since e ∈ H+(L) and f /∈ H+(L), for
all f ∈ F \ {e}, we have Le ̸= Lf . Thus

ε := min{d(f, e) : f ∈ F \ {e}} > 0.

If there exists b ∈ B such that d(b, L) = I, then define η̃, ν̃ ∈ X by η̃(x) =
η(x + b − e) and ν̃(x) = ν(x + b − e). Then η̃|H−(L) = ν̃|H−(L), but η̃(e) ̸= ν̃(e).
This contradicts the fact that the restriction of η to F \ {e} extends uniquely to an
X-coloring of F .

If for all b ∈ B we have d(b, L) > I, then there exists b ∈ B such that d(b, L)−I <
ε/2. Define η̃, ν̃ ∈ X by η̃(x) = η(x+b−e) and ν̃(x) = ν(x+b−e). Then η̃(e) ̸= ν̃(e),
but η̃|F\{e} = ν̃|F\{e}, again a contradiction. !

Examples 2.10.

(1) Suppose (X,σ) is a shift and φ = σk, k ̸= 0. If L is the line i = kj
and L+ = L ∩ {(u, v) : v > 0}, then L is neither positively or negatively
expansive, but all other lines are expansive.

(2) (Ledrappier’s three dot system [17]). With the alphabet Σ = {0, 1}, con-
sider the subset of ΣZ2

defined by

x(i, j) + x(i+ 1, j) + x(i, j + 1) = 0 (mod 2)

for all i, j ∈ Z. Other than the horizontal axis, the vertical axis, and the
reflected diagonal y = −x, every one-dimensional subspace is expansive.
None of these three subspaces is expansive, but each of them is either
positively or negatively expansive.

(3) (Algebraic examples; see [3,10] for further background). With the alphabet

Σ = {0, 1}, consider the subset of ΣZ2
defined by

x(i, j) + x(i+ 1, j + 1) + x(i− 1, j + 2) = 0 (mod 2)

for all i, j ∈ Z. It is not difficult to see that the subspaces parallel to the
sides of the triangle with vertices (0, 0), (1, 1), and (−1, 2) each fail to be
one of positively or negatively expansive (but not both). All other one-
dimensional subspaces are expansive.
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3. The spacetime of an endomorphism

3.1. φ-coding. We continue to assume that (X,σ) is an infinite shift over the finite
alphabet Σ.

Some of the results in this section overlap with results of Nasu [21], where he
studies endomorphisms of subshifts that are resolving, which roughly speaking is a
notion of being determined. While his language and terminology are different from
ours, Lemma 3.3 and Proposition 3.4 correspond to results in §6 of [21] and the
limiting objects given in Definition 3.11 and some of their properties (portions of
Proposition 3.12) are described in §9 of [21].

Definition 3.1. If φ ∈ End(X,σ) is an endomorphism we say that a subset A ⊂ Z
φ-codes (or simply codes if φ is clear from context) a subset B ⊂ Z if for any
x, y ∈ X satisfying x[a] = y[a] for all a ∈ A, it follows that φ(x)[b] = φ(y)[b] for all
b ∈ B.

We remark that if φ ∈ End(X,σ) is an endomorphism, then, as φ is determined
by a block code of some range (say R), the ray (−∞, 0] φ-codes the ray (−∞,−R].
Similarly the ray [0,∞) φ-codes the ray [R,∞). Of course, it could be the case
that (−∞, 0] φ-codes a larger ray than (−∞,−R]. This motivates the following
definition.

Definition 3.2. If φ ∈ End(X,σ) and n ≥ 0, let W+(n,φ) be the smallest element
of Z such that the ray [W+(n,φ),∞) is φn-coded by [0,∞), meaning that if x and
y agree on [0,∞), then necessarily φn(x) and φn(y) agree on [W+(n,φ),∞), and
this is the largest ray with that property. Similarly W−(n,φ) is the largest element
of Z such that the ray (−∞,W−(n,φ)] is φn-coded by (−∞, 0]. When φ is clear
from the context, we omit it from the notation and denote W+(n,φ) and W−(n,φ)
by W+(n) and W−(n), respectively.

Note that for n ≥ 1 we have W+(n,φ) = W+(1,φn) and W−(n,φ) = W−(1,φn).
These quantities have been studied in [22,23] in order to define Lyapunov exponents
for cellular automata and then used to study the speed of propagation of pertur-
bations with respect to a shift invariant measure. They use this to give bounds
on the entropy of the measure in terms of these (left and right) Lyapunov expo-
nents. We do not consider the role of an invariant measure in this article, but we
give an estimate for topological entropy closely related to a result of [23] (see our
Theorem 5.13 below).

We check that W+(n,φ) and W−(n,φ) are well-defined.

Lemma 3.3. If X is infinite, then W+(n,φ) > −∞ and W−(n,φ) < ∞.

Proof. For contradiction, suppose W+(n,φ) = −∞ so that whenever x, y ∈ X and
x[0,∞) = y[0,∞) we have φx = φy. Let R denote the range of the block code
defining φ.

For any fixed s > 0, we claim that there exists M ∈ N such that if x, y ∈ X and
x[0,M ] = y[0,M ], then (φx)[−s,M−R] = y[−s,M−R]. For contradiction, suppose
not. Then there exist sequences (xn) and (yn) of points in X such that xn[0, n] =
yn[0, n], but (φxn)[−s, n−R] ̸= (φyn)[−s, n−R]. Since φ is a block code, observe
that (φxn)[R, n − R] = (φyn)[R, n − R]. Passing to a subsequence if necessary,
we can assume that xn+1[0, n] = xn[0, n], (φxn+1)[−s, n − R] = (φxn)[−s, n − R],
yn+1[0, n] = yn[0, n], and (φyn+1)[−s, n − R] = (φyn)[−s, n − R] for all n ∈ N.
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Let zx, zy ∈ X be such that zx[0, n] = xn[0, n], (φzx)[−s, n − R] = (φxn)[−s, n −
R], zy[0, n] = yn[0, n], and (φzy)[−s, n − R] = (φyn)[−s, n − R] for all n ∈ N.
Then zx[0,∞) = zy[0,∞), but (φzx)[−s,∞) ̸= (φzy)[−s,∞), a contradiction. This
proves the claim and shows that the integer M exists.

Taking s = R + 1, observe that if w ∈ LM+1(X), then there exists u(w) ∈
LM+2(X) such that for any x ∈ X and for any i ∈ Z such that w = x[i, i+ |w|−1],
we have u = (φx)[i− s, i + |w|]. Since φ is surjective, for any u ∈ LM+2(X) there
exists w ∈ LM+1(X) such that u = u(w). In other words, PX(M+2) ≤ PX(M+1).
But PX is nondecreasing and so PX(M + 2) = PX(M + 1). It follows inductively
that PX(M +k) = PX(M +1) for any k ∈ N. But then X is finite, a contradiction.
Therefore W+(n,φ) > −∞.

The argument that W−(1,φ) < ∞ is similar. !

By Lemma 3.3, the function Θ+
n : Σ[0,∞) → Σ[W+(n,φ),∞) defined by

Θ+
n (x[0,∞)) = φn(x)[W+(n,φ),∞)

is well-defined for all n ≥ 0, as is the analogous function

Θ−
n : Σ(−∞,0] → Σ(−∞,W−(n,φ)].

These functions are continuous.

Proposition 3.4. The functions Θ+
n and Θ−

n are continuous. In particular, there
exists k = k(n,φ) > 0 such that [0, k] φn-codes {W+(n,φ)} and [−k, 0] φn-codes
{W−(n,φ)}.

Proof. Assume Θ+
n is not continuous. Then there exist xj and y in X and r ≥

W+(n,φ) such that xj [0,mj ] = y[0,mj ], for a sequence {mj} with lim
j→∞

mj = ∞,

and such that φ(xn)[r] ̸= φ(y)[r]. By passing to a subsequence, w can assume
that there exists z ∈ X with lim

n→∞
xn = z. Clearly z[0,∞) = y[0,∞), and hence

φn(z)[W+(n,φ),∞) = φ(y)[W+(n,φ),∞). In particular, φ(z)[r] = φ(y)[r], and so
by continuity of φ we conclude that lim

n→∞
φ(xn)[r] = φ(z)[r] = φ(y)[r]. But since

φ(xn)[r] ̸= φ(y)[r], we also have that lim
n→∞

φ(xn)[r] ̸= φ(y)[r], a contradiction. Thus

Θ+
n is continuous, and a similar argument shows that Θ−

n is continuous. !
3.2. The spacetime of φ.

Definition 3.5. If φ ∈ End(X,σ) is an endomorphism, its φ-spacetime U = U(φ)
is a Z2-subshift together with a preferred ordered basis for Z2 which defines what
we call the “horizontal” and “vertical” directions. It is defined to be the closed
subset of x ∈ ΣZ2

such that for all i ∈ Z and j ≥ 0 φj(x)[i] = x(i, j).

Thus the rows of U are elements of X with row n equal to φ of row n− 1. There
is an action of Z2 on U given by having (i, j) shift i times in the horizontal direction
and j times in the vertical direction. A vertical shift by j ≥ 0 can also be viewed
as applying φj to each row of U .

It follows immediately from the definition of expansiveness (Definition 2.6) that
the horizontal axis in a spacetime U of an automorphism is always an expansive
subspace for the Z2-subshift U with the Z2-action by translations. Also if L is the
horizontal axis in the spacetime of an endomorphism and L+ is the intersection of
L with the positive horizontal axis, then H+(L) is the upper half space and L is
positively expansive.
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Note that given a spacetime U (including the preferred basis of Z2), one can
extract the shift (X,σ) by taking X to be the Σ-colorings of Z obtained by re-
stricting the colorings in U to the i-axis (j = 0). Likewise, one can extract the
endomorphism φ by using the fact that if y ∈ U and x ∈ X is given by x[i] = y[i, 0],
then φ(x)[i] = y[i, 1].

A concept somewhat more general than our notion of spacetime is defined in
Milnor [19] and referred to as the complete history of a cellular automaton. Our
context is narrower, using the spacetime to study a single endomorphism rather than
the full system. However, there are analogs in our development: Milnor defines an
m-step forward cone, which corresponds to our interval [W−(m,φ),W+(m,φ)], his
definition of a limiting forward cone corresponds to our asymptotic light cone, and
the case n0 = 0 of Theorem 3.21 corresponds to results in Milnor.

We say that spacetimes U and U ′, which share the same alphabet Σ, are spacetime
isomorphic if there is a homeomorphism h : U → U ′ such that

h(z)(i′, j′) = z(i, j),

where the isomorphism of Z2 for which (i, j) 3→ (i′, j′) is given by sending the
preferred basis of Z2 for U to the preferred basis of U ′. (Note that the assump-
tion that the spacetimes share the same alphabet is not necessary, but simplifies
our notation.) It is straightforward to check that φ,φ′ ∈ Aut(X) are conjugate
automorphisms (see Definition 2.2) if and only if their respective spacetimes are
spacetime isomorphic.

We extend Definition 3.1 of coding to a spacetime.

Definition 3.6. If U is a Z2-subshift, we say that a subset A ⊂ Z2 codes a subset
B ⊂ Z2 if for any x, y ∈ U satisfying x(i, j) = y(i, j) for all (i, j) ∈ A, it follows
that x(i′, j′) = y(i′, j′) for all (i′, j′) ∈ B. Equivalently if x and y differ at some
point of B, they also differ at some point of A.

Definition 3.7 (Light cone). The future light cone Cf (φ) of φ ∈ End(X) is
defined to be

Cf (φ) = {(i, j) ∈ Z2 : W−(j,φ) ≤ i ≤ W+(j,φ), j ≥ 0}.
The past light cone Cp(φ) of φ is defined to be Cp(φ) = −Cf (φ). The full light cone
C(φ) is defined to be Cf (φ) ∪ Cp(φ).

The rationale for this terminology is that if x ∈ X and j > 0, then a change in
the value of x(0) (and no other changes) can only cause a change in φj(x)[i], j ≥ 0,
if (i, j) lies in the future light cone of φ. Similarly if φj(y) = x, j ≥ 0, then a
change in y[i] can only affect x[0] if (i,−j) lies in the past light cone of φ.

The light cone is naturally stratified into levels: define the nth level of C(φ) to
be the set

(3.1) I(n,φ) := {i ∈ Z : (i, n) ∈ C(φ)}.
In Corollary 3.22 below, we show that if σ is a subshift of finite type and n is

large, then the horizontal interval in the light cone at level −n, i.e., I(−n,φ), is
the unique minimal interval which φn-codes {0}, provided φ has infinite order in
End(X,σ)/⟨σ⟩.

In general, it is not clear if φ ∈ Aut(X) and what the relationship, if any, is
between C(φ) and C(φ−1). However there are some restrictions given in part (5) of
Proposition 3.12.
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Remark 3.8. A comment about notation is appropriate here. We are interested in
subsets of the i, j-plane. Our convention is that i is the abscissa, or first coordinate,
and we consider the i-axis to be horizontal. Likewise j is the ordinate, or second
coordinate, and we consider the j-axis to be vertical. However some subsets of the
plane we consider are naturally described as graphs of a function i = f(j). For
example, we frequently consider lines given by an equation like i = αj, j ∈ R, and
think of α as a “slope”, even though in standard parlance it would be the reciprocal
of the slope of the line i = αj.

Our next goal is to study the asymptotic behavior of W+(j,φ) and W−(j,φ) for
a fixed φ ∈ End(X). We start by recalling Fekete’s Lemma, which is then applied
to the sequence W+(n) = W+(n,φ) for n ≥ 0, which is shown to be subadditive.

Lemma 3.9 (Fekete’s Lemma [11]). If the sequence an ∈ R, n ∈ N, is subadditive
(meaning that an + am ≥ am+n for all m,n ∈ N), then

lim
n→∞

an
n

= inf
n≥1

an
n
.

We note a simple, but useful, consequence of this: if s(n) is subadditive and

if lim
n→∞

s(n)

n
≥ 0, then s(n) ≥ 0 for all n ≥ 1, as otherwise inf

m≥1

s(m)

m
would be

negative.

Lemma 3.10. If φ,ψ ∈ End(X,σ), then W+(1,φψ) ≤ W+(1,φ) + W+(1,ψ),
and similarly W−(1,φψ) ≥ W−(1,φ) + W−(1,ψ). In particular the sequences
{W+(n,φ)} and {−W−(n,φ)}, n ≥ 0, are subadditive.

Proof. The ray [0,∞) ψ-codes [W+(1,ψ),∞) and the ray [W+(1,ψ),∞) φ-codes
[W+(1,φ) + W+(1,ψ),∞). Hence [0,∞) φψ-codes [W+(1,φ) + W+(1,ψ),∞) so
W+(1,φψ) ≤ W+(1,φ) +W+(1,ψ). This proves the first assertion.

Replacing φ by φm and ψ by φn in this inequality gives

W+(1,φn+m) ≤ W+(1,φm) +W+(1,φn).

Since for n ≥ 1 we have W+(n,φ) = W+(1,φn) we conclude that W+(m+ n,φ) ≤
W+(m,φ)+W+(n,φ), so {W+(n,φ)} is subadditive. The proof for W− is similar.

!

We now want to consider two quantities which measure the asymptotic behavior
ofW±(n,φ). These quantities (and other closely related ones) have been considered
in [22,23] in the context of measure preserving cellular automata and are referred to
there as Lyapunov exponents of the automaton. If we fix φ and abbreviateW+(n,φ)

by W+(n), then Fekete’s Lemma and Lemma 3.10 imply the limit lim
n→∞

W+(n)

n
exists.

Definition 3.11. We define

α+(φ) := lim
n→∞

W+(n)

n

and

α−(φ) := lim
n→∞

W−(n)

n
.
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Note that the limit α+(φ) is finite, since if D ≥ range(φ), then for j ≥ 0 we have
|W+(j)| ≤ Dj (and |W−(j)| ≤ Dj). As a consequence, we conclude that

(3.2) W+(n) = nα+(φ) + o(n).

This describes an important asymptotic property of the right light cone boundary
function W+(n) used in the proof of Theorem 4.4 below. That theorem says that
if α+ = α+(φ), then the line i = α+j is a nonexpansive subspace of R2 for the
spacetime of φ.

Similarly, we can consider W−(n) and obtain a second nonexpansive subspace,
namely the line x = βy where

β = α−(φ) := lim
n→∞

W−(n)

n
.

As a consequence, we conclude that the left light cone boundary function satisfies

(3.3) W−(n) = nα−(φ) + o(n).

We list some elementary properties of the limits α+(φ) and α−(φ).

Proposition 3.12. If φ ∈ End(X,σ), then:

(1) For all k ∈ Z, α−(σkφ) = α−(φ) + k and α+(σkφ) = α+(φ) + k.
(2) For all m ∈ N,α+(φm) = mα+(φ) and α−(φm) = mα−(φ).
(3) If X is infinite, then α−(φ) ≤ α+(φ).
(4) If φ,ψ ∈ Aut(X,σ) are commuting endomorphisms, then

α+(φψ) ≤ α+(φ) + α+(ψ) and α−(φψ) ≥ α−(φ) + α−(ψ).

(5) If φ is an automorphism and X is infinite, then

α+(φ) + α+(φ−1) ≥ 0 and α−(φ) + α−(φ−1) ≤ 0.

Proof. Since

W+(n, (σkφ)) = W+(1,σnkφn) = W+(1,φn) + nk = W+(n,φ) + nk,

property (1) follows. Since

lim
n→∞

W+(mn,φ)

n
= m lim

n→∞

W+(mn,φ)

mn
= mα+(φ),

property (2) follows.
To show (3), we observe that it suffices to show that W+(n,φ) ≥ W−(n,φ) for

all n > 0. For the purpose of contradiction we assume that there exists n > 0 with
W−(n) > W+(n). By Proposition 3.4, Θ+

n is continuous, and so there exists R > 0
such that the interval [0, R] φn-codes the entry at W+(n). Therefore for all t ≥ 0
the interval [0, R + t] φn-codes the interval [W+(n),W+(n) + t]. Clearly R could
be replaced by any larger value and this still holds. Similarly, there exists R′ > 0
such that the interval [−R′, 0] φn-codes the entry at W−(n), and so by translating,
[0, R′] φn-codes the entry W−(n)+R′. Just as with R, the value R′ can be replaced
by any larger value, and hence we can assume that R = R′. Then the interval [0, R]
φn-codes the entry at W−(n) + R, and therefore for t ≥ 0, the interval [0, R + t]
φn-codes the interval [W−(n) +R,W−(n) +R + t].

Thus for t ≥ 0, the interval [0, R+t] φn-codes both the interval [W+(n),W+(n)+
t] and the interval [W−(n) +R,W−(n) +R+ t]. Increasing R if necessary, we can
assume that W−(n) + R ≥ W+(n). Note that for any t > W−(n) −W+(n) + R,
we have W−(n)+R < W+(n)+ t. Thus the two intervals [W+(n),W+(n)+ t] and
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[W−(n)+R,W−(n)+R+t] overlap, and their union is the interval [W+(n),W−(n)+
R + t]. Thus for any sufficiently large t, the interval [0, R + t], which has length
R + t + 1, φn-codes the interval [W+(n),W−(n) + R + t] with length W−(n) −
W+(n) +R + t+ 1, which is greater than R+ t+ 1.

This implies that

PX(R+ t+ 1) ≥ PX(R+ t+ 1 +W−(n)−W+(n)),

since every word of length R+ t+ 1+W−(n)−W+(n) is φn-determined by some
word of length R+ t+ 1. Since PX is a nondecreasing function, we have

(3.4) PX(R+ t+ 1) = PX(R+ t+ 1 +W−(n)−W+(n))

for all sufficiently large t. Choose t0 large enough such that this equation holds when
t = t0 and define tk = tk−1 +W−(n)−W+(n) for k ≥ 1. Then by equation (3.4)

PX(R+ tk−1 + 1) = PX(R+ tk−1 + 1 +W−(n)−W+(n)) = PX(R+ tk + 1).

So by induction on k,

PX(R+ tk + 1) = PX(R+ t0 + 1).

Therefore the function PX is bounded above by PX(R + t0 + 1). It follows that
for any m > 0, there are at most PX(R + t0 + 1) allowable colorings of the in-
terval [−m,m]. This contradicts our standing assumption that X is infinite and
establishes (3).

To prove (4) we note that

W+(n,φψ) = W+(1, (φψ)n) = W+(1,φnψn)

≤ W+(1,φn) +W+(1,ψn) = W+(n,φ) +W+(n,ψ).

Hence,

lim
n→∞

W+(n,φψ)

n
≤ lim

n→∞

W+(n,φ)

n
+ lim

n→∞

W+(n,ψ)

n
,

giving the inequality of item (4). The result for α− is similar.
Item (5) follows immediately from (4) if we replace ψ with φ−1, since α+(id) =

α−(id) = 0. !

Other than the restriction that α−(φ) ≤ α+(φ), any rational values can be taken
on some automorphism of the full shift.

Example 3.13. We show that given rationals r1 ≤ r2, there is a full shift (X,σ)
with an automorphism φ such that α−(φ) = r1 and α+(φ) = r2.

Suppose that r2 = p2/q2 ≥ 0. Consider X2 the Cartesian product of q2 copies
of the full two shift σ : {0, 1}Z → {0, 1}Z. Define an automorphism φ0 by having it
cyclically permuting the copies of {0, 1}Z and perform a shift on one of them. Then
φq2
0 = σ2 : X2 → X2 is the shift (indeed a full shift on an alphabet of size 2q2). Since

α+(σ2) = α−(σ2) = 1, it follows from parts (1) and (2) of Proposition 3.12 that
α+(φ0) = α−(φ0) = 1/q2. Setting φ2 = φp2

0 , we have that α+(φ2) = p2α+(φ2) =
p2/q2 = r2. Similarly α−(φ2) = r2. If r2 = −p2/q2 < 0 we can do the same
construction, defining φ0 to cyclically permute the copies of Σ2 but use the inverse
shift (instead of the shift) on one of the copies. Then φq2 = σ−1

2 : X2 → X2. In this
way we still construct φ2 with α+(φ2) = α−(φ2) = r2.

By the same argument we can construct an automorphism φ1 of (X1,σ1) such
that α+(φ1) = α−(φ1) = r1. Taking X to be the Cartesian product X1 ×X2 and
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considering the (full) shift σ = σ1×σ2 : X → X and the automorphism φ = φ1×φ2,
it is straightforward to check that α+(φ) = α+(φ2) = r2 and α−(φ) = α−(φ1) = r1.

In light of the work on Lyapunov exponents for cellular automata, it is natural
to ask for a general shift σ and φ ∈ Aut(X,σ) which conditions on φ and/or σ
suffice for the existence of a σ-invariant φ-ergodic measure µ such that α±(φ) are
Lyapunov exponents in the sense defined by [22, 23].

3.3. Two-dimensional coding.

Remark 3.14. We thank Samuel Petite for suggesting the short proof of the following
lemma (in an earlier version of this paper we had a longer proof of this lemma).

Lemma 3.15. Let ϕ ∈ End(X) and suppose that there exists K such that range(ϕn)
≤ K for infinitely many n. Then ϕ has finite order.

Proof. There are only finitely many block maps of range ≤ K, and so, by the
pigeonhole principle, there exist 0 < m < n such that ϕm = ϕn. It follows that
ϕn−m is the identity. !

Recall that the interval I(n,φ) is defined in equation (3.1) to be {i ∈ Z : (i, n) ∈
C(φ)}. Thus for n ∈ N, we have |I(−n,φ)| = W+(n,φ)−W−(n,φ)+1 is the width
of the nth level of the light cone for φ.

Lemma 3.16. Suppose φ is an endomorphism of the shift (X,σ) and n ≥ 0. If J
is any interval in Z which φn-codes {0}, then J ⊃ I(−n,φ).

Proof. If the interval J = [a, b] φn-codes {0}, then [a,∞) φn-codes [0,∞), and
so [0,∞) φn-codes [−a,∞). It follows that −a ≥ W+(n,φ), and hence a ≤
−W+(n,φ). Similarly b ≥ −W−(n,φ), and so I(−n,φ) ⊂ [a, b]. !
Lemma 3.17. Assume φ is an endomorphism of a shift of finite type (X,σ) and
suppose that

lim
n→∞

∣∣I(−n,φ)
∣∣ = +∞.

Then there is n0 such that whenever n ≥ n0, the interval I(−n,φ) φn-codes
{0}. Moreover, if σ is a full shift we can take n0 to be 0, and the hypothesis
lim
n→∞

|I(−n,φ)| = ∞ is unnecessary.

In slightly more generality, if (X,σ) is a 1-step shift of finite type, then we can
take n0 to be 0.

Proof. Suppose that φ is an endomorphism and σ is a subshift of finite type. Then
by Proposition 2.4, there exists m0 ≥ 0 such that if w is a word of length at least
m0 and if w−

1 ww
+
1 and w−

2 ww
+
2 are elements of X for some semi-infinite words w±

i ,
then both w−

1 ww
+
2 and w−

2 ww
+
1 are elements of X. Clearly m0 = 0 suffices if σ is

a full shift.
By hypothesis,

lim
n→∞

∣∣I(−n,φ)
∣∣ = lim

n→∞

∣∣W+(n,φ)−W−(n,φ)
∣∣+ 1 = +∞,

and so we can choose n0 such that the length of I(−n,φ) is greater than m0 when
n ≥ n0. Suppose n ≥ n0 and that x, y ∈ X agree on the interval I(−n,φ). We
show that φn(x)[0] = φn(y)[0]. Let

w = x[−W+(n,φ),−W−(n,φ)] = y[−W+(n,φ),−W−(n,φ)]
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and define w±
i by x(−∞,∞) = w−

1 ww
+
1 and y(−∞,∞) = w−

2 ww
+
2 . Then w−

1 ww
+
2

is an element of X satisfying x[i] = w−
1 ww

+
2 [i] for all i ≤ −W−(n,φ) and y[i] =

w−
1 ww

+
2 [i] for all i ≥ −W+(n,φ). It follows that φn(x)[0] = φn(w−

1 ww
+
2 )[0] and

that φn(y)[0] = φn(w−
1 ww

+
2 )[0]. Hence φn(x)[0] = φn(y)[0] and {0} is φn-coded by

[−W+(n,φ),−W−(n,φ)]. !

Definition 3.18. Let X be a subshift and let φ ∈ End(X,σ). Define r(n,φ) to be
the minimal width of an interval which φn-codes {0}.

Lemma 3.19. Suppose (X,σ) is a subshift of finite type and φ ∈ End(X,σ). Then
there is a constant C(φ) such that |I(−n,φ)| ≤ r(n,φ) ≤ |I(−n,φ)| + C(φ). If X
is a full shift we can take C(φ) = 0.

In slightly more generality, if (X,σ) is a k-step shift of finite type, then C(φ)
can be taken to be k − 1.

Proof. The first inequality follows immediately from Lemma 3.16. We prove the
second inequality by contradiction. Thus suppose that for any C, there exist infin-
itely many n ∈ N and points xC,n ̸= yC,n which agree on the interval [−W+(n,φ),
−W−(n,φ) + C] but are such that φn(xC,n)[0] ̸= φn(yC,n)[0].

Recall from Proposition 2.4 that there exists a constant n0 (depending on the
subshift X) such that if x, y ∈ X agree for n0 consecutive places, say x[i] = y[i]
for all p ≤ i < p + n0, then the Z-coloring whose restriction to (−∞, p + n0 − 1]
coincides with that of x and whose restriction to [p+ n0,∞) coincides with that of
y is an element of X.

Choose C > n0. By assumption, there exist infinitely many n ∈ N and points
xn, yn ∈ X which agree on [−W+(n,φ),−W−(n,φ)+C] but are such that φn(xn)[0]
̸= φn(yn)[0]. Let z ∈ X be the Z-coloring whose restriction to (−∞,−W−(n,φ)+C]
coincides with xn and whose restriction to [−W−(n,φ)+C+1,∞) coincides with yn.
Then since C > n0, we have that z ∈ X. Since z agrees with yn on [−W+(n,φ),∞),
it follows that (φnz)[0] = (φnyn)[0]. On the other hand, (φnz)[0] = (φnxn)[0],
since z agrees with xn on (−∞,−W−(n,φ)]. But this contradicts the fact that
(φnxn)[0] ̸= (φnyn)[0], and so C(φ) exists. !

Proposition 3.20. Suppose X is a subshift of finite type and φ ∈ End(X,σ). If

lim inf
n→∞

|I(−n,φ)| < ∞,

then φ has finite order in End(X,σ)/⟨σ⟩.

Proof. By hypothesis, there exists M such that |I(−n,φ)| < M for infinitely many
n. By Lemma 3.19, there is a constant C(φ) such that r(n,φ) < M + C(φ) for
infinitely many n. Let n1 < n2 < · · · be a subsequence along which r(ni,φ) <
M + C(φ) is constant; define this constant to be R. Then for each i = 1, 2, . . .
there is an interval [ai, bi] of length R which φni -codes {0}. Therefore the interval
[0, R] (σ−aiφni)-codes {0} for all i. It follows that σ−aiφni is a block map of range
R for all i. There are only finitely many block maps of range R, so there must exist
i1 < i2 such that σ−ai1φni1 = σ−ai2φni2 or simply

φni1 (x) = σai1−ai2φni2 (x) = σai1−ai2φni2−ni1 (φni1 (x))
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for all x ∈ X. Since φni1 is a surjection, we have

y = σai1−ai2φni2−ni1 (y)

for all y ∈ X. In other words, φni2−ni1 = σai2−ai1 . !

Theorem 3.21. Assume that φ is an endomorphism of a shift of finite type (X,σ)
and that φ has infinite order in End(X)/⟨σ⟩. Then there exists n0 such that when-
ever n ≥ n0, the interval I(−n,φ) φn-codes {0}. If σ is a full shift, we can take n0

to be 0.

Proof. If σ is a full shift, the result follows from Lemma 3.17. Otherwise, since φ
has infinite order in End(X)/⟨σ⟩, Proposition 3.20 tells us that

lim
n→∞

|I(−n,φ)| = +∞.

Thus we can apply Lemma 3.17 to conclude that I(−n,φ) φn-codes {0}. !

Corollary 3.22. If φ has infinite order in End(X)/⟨σ⟩, then for n sufficiently
large, I(−n,φ) is the unique minimal interval which φn-codes {0}.

Proof. The fact that I(−n,φ) φn-codes {0} for large n follows from Theorem 3.21.
Minimality and uniqueness follow from Lemma 3.16. !

Question 3.23. Is the hypothesis that (X,σ) is an SFT necessary in Theorem 3.21?

4. The light cone and nonexpansive subspaces

The main result of this section is Theorem 4.4: it states that the line u = α+(φ)v
in the u, v-plane is a nonexpansive subspace of R2 for the spacetime of φ. The
analogous statement holds in the other direction: the line u = α−(φ)v in the u, v-
plane is a nonexpansive subspace.

4.1. The deviation function. We begin by investigating the properties of the
function which measures the deviation of W+(n,φ) from α+(φ)n.

Definition 4.1. Suppose φ ∈ End(X,σ). For n ≥ 0 define the positive and negative
deviation functions δ+(n) = δ+(n,φ) and δ−(n) = δ−(n,φ) by δ+(n) = W+(n) −
nα+(φ) and δ−(n) = W−(n)− nα−(φ).

Lemma 4.2. Suppose δ+(n) and δ−(n) are the deviation functions associated to
φ. Then

(1) The functions δ+(n) and −δ−(n) are subadditive.

(2) The deviation functions satisfy lim
n→∞

δ+(n)

n
= 0 and lim

n→∞

δ−(n)

n
= 0.

(3) For all n ≥ 0, we have δ+(n) ≥ 0 and δ−(n) ≤ 0.

Proof. Since δ+(n) is the sum of the subadditive function W+(n) = W+(φn) and
the additive function −nα, part (1) follows. Since

lim
n→∞

δ+(n)

n
= lim

n→∞

W+(n)− nα+(φ)

n
= lim

n→∞

W+(n)

n
− α+(φ) = 0,

part (2) follows.
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To see part (3), observe that parts (1) and (2) together with Fekete’s Lemma
(Lemma 3.9) imply that

inf
n≥1

δ+(n)

n
= 0,

and so δ+(n) < 0 is impossible. The analogous results for δ−(n) are proved similarly.
!

Lemma 4.3. Let U be the φ-spacetime of (X,σ) for φ ∈ End(X) and let α = α+(φ)
and δ(n) = δ+(n,φ). Suppose that α ≥ 0 and the deviation δ(n) is unbounded for
n ≥ 0. Then there exist two sequences {xm}m≥1 and {ym}m≥1 in U such that

(1) xm(i, j) = ym(i, j) for all (i, j) with −m ≤ j ≤ 0 and i ≥ αj,
(2) xm(i, j) = ym(i, j) for all (i, j) with j ≥ 0 and i ≥ (α+ 1

m )j,
(3) xm(−1, 0) ̸= ym(−1, 0) for all m ∈ N.

The analogous result for α−(φ) and δ−(n,φ) also holds.

Proof. For notational simplicity, denote W+(n) by W (n), so δ(n) = W (n)− nα.
We define a piecewise linear F (t) from the set {t ∈ Z : t ≥ −m} to Z and show

that W (t) ≤ F (t) for all t ≥ −m. We then use this to define xm, ym satisfying the
three properties.

Given m ∈ N and using the facts that lim
k→∞

W (k)

k
= α and lim

k→∞

δ(k)

k
= 0, we

can choose n0 = n0(m) > m such that

δ(k)

k
<

1

m
for all k > n0. For the moment as m is fixed we suppress the dependence of n0 on
m. By hypothesis, δ(k) is unbounded above, and so we can also choose n0 so that

(4.1) δ(n0) > δ(j) for all 0 ≤ j < n0.

Define a line i = L(j) in the i, j-plane by

L(j) =
1

m
(j − n0) + δ(n0).

We claim that the set of j with δ(j) ≥ L(j) is finite. By Lemma 4.2,

lim
j→∞

δ(j)

j − n0
= lim

j→∞

δ(j)

j
= 0,

and so for sufficiently large j,

δ(j) ≤ 1

m
(j − n0) <

1

m
(j − n0) + δ(n0) = L(j),

since δ(n0) ≥ 0 (by Lemma 4.2). This proves the claim.
Let J be the finite set {j : δ(j) ≥ L(j), j ≥ 0} and let S = {(δ(j), j) : j ∈ J}.

Note that S ̸= ∅ since (δ(n0), n0) ∈ S.
Let t0 = t0(m) ∈ N be the value of j with j ≥ n0 for which δ(j) − L(j) is

maximal. Then (δ(t0), t0) ∈ S. Since, for the moment, m is fixed, we suppress the
m and simply write t0 for t0(m).

Suppose now that j ∈ [n0, t0]. Then since δ(t0)− L(t0) ≥ δ(j)− L(j), it follows
that δ(t0) ≥ δ(j) + L(t0) − L(j) ≥ δ(j) since j ∈ [n0, t0] and L is monotonic
increasing. Thus we have

(4.2) δ(t0) ≥ δ(j) for all j ∈ [n0, t0].
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Let αm = α+
1

m
and consider the two lines

i = K(j), where K(j) = α(j − t0) +W (t0)

and

i = L(j), where L(j) = αm(j − t0) +W (t0).

Both lines pass through (W (t0), t0).
Define

(4.3) F (j) =

{
K(j) if 0 ≤ j ≤ t0,

L(j) if j ≥ t0.

We claim that for all j ≥ 0,

W (j) ≤ F (j).

We prove this claim by considering two separate ranges of values for j, first
j ≥ t0, then 0 ≤ j ≤ t0.

In the range j ≥ t0, by the choice of t0 we have that δ(j)−L(j) ≤ δ(t0)− L(t0)
if j ∈ J . But the same inequality holds for j /∈ J since then δ(j) − L(j) < 0 and
δ(t0)− L(t0) ≥ 0. Thus δ(j) ≤ L(j) + δ(t0)− L(t0) for all j ≥ t0. Therefore

W (j) = δ(j) + αj

≤ L(j) + δ(t0)− L(t0) + αj

=
1

m
(j − n0)−

1

m
(t0 − n0) + δ(t0) + αj

=
1

m
(j − t0) + δ(t0) + αt0 + α(j − t0)

= αm(j − t0) + δ(t0) + αt0

= αm(j − t0) +W (t0)

= L(j).

This proves the claim for the first range, i.e.,

(4.4) W (j) ≤ L(j) for j ≥ t0.

Next we consider the range 0 ≤ j ≤ t0. Note if j ≤ n0, then W (j) = δ(j) +
αj ≤ δ(n0) + αj by equation (4.1), so W (j) ≤ δ(t0) + αj since δ(t0) ≥ δ(n0)
by equation (4.2). But if j ∈ [n0, t0], then W (j) = δ(j) + αj ≤ δ(t0) + αj by
equation (4.2). So we conclude that W (j) ≤ δ(t0) + αj for all 0 ≤ j ≤ t0.

Hence in this range

W (j) ≤ δ(t0) + αj

= δ(t0) + αt0 + α(j − t0)

= W (t0) + α(j − t0) = K(j).

Thus we have

(4.5) W (j) ≤ K(j) for 0 ≤ j ≤ t0.

Hence equations (4.4) and (4.5) establish the claim, demonstrating that

(4.6) F (j) ≥ W (j) for all j ≥ 0,

Licensed to Northwestern Univ. Prepared on Sat Mar  2 15:02:01 EST 2019 for download from IP 165.124.166.188.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



478 VAN CYR, JOHN FRANKS, AND BRYNA KRA

where

F (j) =

{
K(j) if 0 ≤ j ≤ t0,

L(j) if j ≥ t0.

We now use this to define the elements xm and ym. From the definition of
W+(n,φ) (which we are denoting W (n)), we know that whenever j ≥ 0 and u, v ∈
X have the rays u[0,∞) and v[0,∞) equal, it follows that the rays φj(u)[W (j),∞) =
φj(v)[W (j),∞). Equivalently if x and y are the elements in φ-spacetime which agree
on the ray {(i, 0) ∈ Z2 : i ≥ 0}, then
(4.7) j ≥ 0 and i ≥ W (j) impliesx(i, j) = y(i, j).

Moreover for each j ≥ 0, there exist uj , vj ∈ X such that uj [0,∞) = vj [0,∞), but

φj(uj)(W (j)− 1) ̸= φj(vj)(W (j)− 1).

In particular this means that for m ∈ N there exist elements x̂m, ŷm ∈ U which
are equal on the ray {(i, 0) ∈ Z2 : i ≥ 0}, but such that

(4.8) x̂m(W (t0(m))− 1, t0(m)) ̸= ŷm(W (t0(m))− 1, t0(m)).

(Note that the dependence of t0 = t0(m) on m is now salient, so we return to
the more cumbersome notation.) We use translates of x̂m and ŷm by the vec-
tors (W (t0(m)), t0(m)) = (δ(t0(m)) + αt0(m), t0(m)) to define xm, ym ∈ U . More
precisely, define

xm(i, j) = x̂m(i+W (t0(m)), j + t0(m))

and
ym(i, j) = ŷm(i+W (t0(m)), j + t0(m)).

Note that xm and ym agree on the ray {(i, 0) ∈ Z2 : i ≥ 0}.
We proceed to check properties (1), (2), and (3) of the lemma’s conclusion.
From equation (4.8) and the definition of xm and ym we have

xm(−1, 0) = x̂m(W (t0(m))− 1, t0(m)) ̸= ŷm(W (t0(m))− 1, t0(m)) = ym(−1, 0),

and so (3) follows.
To check (1), suppose that −m ≤ j ≤ 0 and i ≥ αj. Let i′ = i + W (t0) and

j′ = j + t0 and so xm(i, j) = x̂m(i′, j′) and ym(i, j) = ŷm(i′, j′). Hence if we show
that x̂m(i′, j′) = ŷm(i′, j′), then we have that xm(i, j) = ym(i, j), which is the
statement of (1). This in turn follows from equation (4.7) if we show that j′ ≥ 0
and i′ ≥ W (j′). We proceed to do so.

Note that since −m ≤ j ≤ 0 and since, by construction, n0(m) and t0(m) satisfy
m < n0(m) < t0(m), we have

0 ≤ t0(m)−m ≤ t0(m) + j = j′.

To show i′ ≥ W (j′) observe that since i ≥ jα, it follows that i′ = i + W (t0) ≥
jα+W (t0) = (j′−t0)α+W (t0) = K(j′). Since j′ = j+t0(m) ≤ t0(m) the definition
of F (equation (4.3)) shows that K(j′) = F (j′), and we may apply equation (4.6) to
conclude that i′ ≥ W (j′). Then by equation (4.7) applied to x̂m and ŷm at (i′, j′)
we have x̂m(i′, j′) = ŷm(i′, j′), so xm(i, j) = ym(i, j). This completes the proof of
property (1).

To check (2), we assume that j ≥ 0 and i ≥ αmj. Again we let i′ = i+W (t0(m))
and j′ = j + t0(m) and so j′ ≥ t0(m). To show that xm(i, j) = ym(i, j), it suffices
to show that x̂m(i′, j′) = ŷm(i′, j′) when

j′ ≥ t0(m) and i′ ≥ αmj +W (t0(m)).
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But αmj +W (t0(m)) = αm(j′ − t0) +W (t0) = L(j′), so we have j′ ≥ t0(m) and
i′ ≥ L(j′).

Since j′ ≥ t0(m) we conclude from the definition of F (equation (4.3)) that
F (j′) = L(j′). So i′ ≥ F (j′), and hence by equation (4.6), i′ ≥ F (j′) ≥ W (j′).
Since i′ ≥ W (j′) we have xm(i′, j′) = ym(i′, j′) by equation (4.7), completing the
proof of (2).

The proof of the analogous result for α−(φ) and δ−(n,φ) is done similarly. !
4.2. Nonexpansiveness of light cone edges.

Theorem 4.4. Suppose that φ ∈ End(X,σ) and α+ = α+(φ). In the spacetime
U of φ orient the line u = α+v so that ⟨α+, 1⟩ is positive. Then this oriented line
is not a positively expansive subspace. Similarly if α− = α−(φ), the line u = α−v
(oriented so that ⟨α−, 1⟩ is positive) is not a negatively expansive subspace.

Proof. Let U be the φ-spacetime of (X,σ). Replacing φ with σkφm and using
part (1) of Proposition 3.12, without loss of generality we can assume that
α+(φ) ≥ 0.

Case 1 (Bounded deviation). As a first case we assume that the nonnegative devi-
ation function δ is bounded. Say δ(j) < D for some D > 0 and all j ∈ N. Since
δ(j) ≥ 0 and α+ ≥ 0, we have 0 ≤ W+(j,φ)− α+j = δ(j) < D.

If we have two elements x, y ∈ U satisfying x(k, 0) = y(k, 0) for k ≥ 0, then
whenever j ≥ 0 and i ≥ D + α+j, we have i > W+(j). Hence

(4.9) x(i, j) = y(i, j) for all j ≥ 0 and i ≥ D + α+j

(see equation (4.7)). Thus x and y agree in the part of the upper half space to the
right of the line i = D + α+j.

By the definition of W+(n) = W+(n,φ) for n ∈ N we may choose x̂n, ŷn ∈
U which agree on the ray {(i, 0) ∈ Z2 : i ≥ 0} such that x̂n(W+(n) − 1, n) ̸=
ŷn(W+(n)− 1, n).

We want to create new colorings by translating x̂n and ŷn by the vector
(W+(n), n). More precisely for n ≥ 0 we define xn and yn by xn(i, j) =
x̂n(i + W+(n), j + n). Note that xn(−1, 0) ̸= yn(−1, 0), since xn(−1, 0) =
x̂n(W+(n)− 1, n) ̸= ŷn(W+(n)− 1, n) = yn(−1, 0).

For all j ≥ −n and i ≥ D + α+j, we claim that

xn(i, j) = yn(i, j).

To see this define i′ = i +W+(n) and j′ = j + n, and so xn(i, j) = x̂n(i′, j′) and
yn(i, j) = ŷn(i′, j′). Then

i′ = i+W+(n)

≥ D + α+j +W+(n)

= D + α+j′ + (W+(n)− α+n)

= D + α+j′ + δ(n)

≥ D + α+j′.

Hence x̂n(i′, j′) and ŷn(i′, j′) are equal by equation (4.9) whenever i ≥ D+ α+j
and j ≥ −n (since j′ ≥ 0 when j ≥ −n). But xn(i, j) = x̂n(i′, j′) and yn(i, j) =
ŷn(i′, j′), so xn(i, j) = yn(i, j). Thus xn and yn agree at (i, j) if i ≥ D + α+j and
j ≥ −n.
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Since U is compact we can choose convergent subsequences (also denoted xn

and yn). Say limxn = x̂ and lim yn = ŷ. Then clearly x̂(−1, 0) ̸= ŷ(−1, 0) and
x̂(i, j) = ŷ(i, j) for all i > D + α+j. So x̂ and ŷ agree on the half space H+ =
{(i, j) : i > D + α+j}. This implies the oriented line u = α+v is not positively
expansive. The case of the line u = α−v is handled similarly.

Case 2 (Unbounded deviation). We consider the elements xm, ym guaranteed by
Lemma 4.3 and recall that they satisfy properties (1)-(3) of the lemma.

Since U is compact, by passing to subsequences, we can assume that both se-
quences converge in U , say to x̂ and ŷ. Clearly x̂(−1, 0) ̸= ŷ(−1, 0). We claim
the colorings x̂ and ŷ agree on the half space H+ = {(i, j) : i > αj} of Z2. It then
follows that the oriented line u = αv is not positively expansive (see Definition 2.6).

To prove the claim, note that if (i, j) ∈ H+, −m0 ≤ j ≤ 0, and m ≥ m0, then
xm(i, j) = ym(i, j). Hence the limits satisfy x̂(i, j) = ŷ(i, j) whenever (i, j) ∈ H+

and j ≤ 0. But also if j > 0 and i > αj, then for some n0 > 0 we have i ≥ (α+ 1
n0

)j,
and it follows that xm(i, j) = ym(i, j) whenever m > n0. Hence the limits satisfy
x̂(i, j) = ŷ(i, j).

The case of the line u = α−v is handled similarly. !
4.3. Expansive subspaces. We want to investigate which one-dimensional sub-
spaces in a spacetime are expansive. Since the horizontal axis in a spacetime is
always positively expansive for an endomorphism and expansive for an automor-
phism, we restrict our attention to lines in R2 = {(u, v)} given by u = mv where
m ∈ R. (We write the abscissa as a function of the ordinate for convenient com-
parison with the edges of A(φ) which are u = α+v and u = α−v.)

Proposition 4.5. Suppose L is a line in R2 given by u = mv and oriented so that
⟨m, 1⟩ is positive. Then:

(1) If m > α+(φ), then L is positively expansive.
(2) If m < α−(φ), then L is negatively expansive.

Moreover if φ is an automorphism and if m > max{α+(φ),−α−(φ−1)} or if m <
min{α−(φ),−α+(φ−1)}, then L is expansive.

Proof. We first consider (1). We show that if U is the spacetime of φ and x, y ∈ U
agree on the right side of u = mv, then they also agree on the left side. This
implies that the oriented line L is positively expansive. Since m > α+(φ), the
vector ⟨α+(φ), 1⟩ is not parallel to L and points in the direction from the right side
of L to the left side.

Let W+(n) = W+(n,φ) so

lim
n→∞

W+(n)

n
= α+(φ)

(see equation (3.11)), and hence

lim
n→∞

1

n
⟨W+(n), n⟩ = ⟨α+(φ), 1⟩.

It follows that for sufficiently large n, the vector ⟨W+(n), n⟩ is also not parallel
to L and points in the direction from the right side of L to the left side. Hence,
given any (u0, v0) ∈ Z2 on the left side of L, there exists n0 > 0 such that if
u1 = u0 −W+(n0) and v1 = v0 − n0, then (u1, v1) is on the right side of L. The
ray {(t, v1) : u1 ≤ t} in U lies entirely to the right of L and codes {(u0, v0)}.
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It follows that if x, y ∈ U agree to the right of L, then they also agree at (u0, v0).
Since (u0, v0) is an arbitrary point to the left of L, it follows that L is positively
expansive. The proof of (2) is analogous.

To show the final statement, note that the reflection R : R2 → R2 given by
R(u, v) = (u,−v) has the property that it switches the spacetimes U(φ) and U(φ−1);
i.e., it induces a map R∗ : U(φ) → U(φ−1) given by R∗(η) = η ◦R.

If L is the line i = mj, then our convention for the orientation of L was chosen
so that

L+ = {⟨u, v⟩ : ⟨u, v⟩ ∈ L and v > 0}.
Hence the convention implies that R(L+) is the set of negative vectors in R(L),
and the positive vectors in R(L) are R(L−) where L− = −L+. Note that H+(L)
consists of the vectors above the line L so R(H+(L)) is the set of vectors below
R(L) (see Definition 2.7 and the paragraph preceding it). But since R reverses the
orientation of L we have H+(R(L)) = R(H+(L)). It follows that L is positively
(resp. negatively) expansive in U(φ) if and only if R(L) is positively (resp. neg-
atively) expansive in U(φ−1); i.e., R acting on nonvertical lines preserves positive
expansiveness and negative expansiveness.

Now consider the line L given by i = mj in U(φ), and so R(L) is the line i = −mj
in U(φ−1). By part (2), if −m < α−(φ−1) (or equivalently if m > −α−(φ−1)), then
the line R(L) is negatively expansive in U(φ−1). Hencem > −α−(φ−1) implies that
L is negatively expansive in U(φ). If we also have m > α+(φ), then by part (1),
the line L is also positively expansive and thus it is, in fact, expansive. The case
that m < min{α−(φ),−α+(φ−1)} is handled similarly. !

5. Asymptotic behavior

5.1. The asymptotic light cone. The edges of the light cone C(φ) are given by
the graphs of the functions i = W+(j,φ), i = W−(j,φ). Since these functions have
nice asymptotic properties, so does the cone they determine, which motivates the
following definition.

Definition 5.1. The asymptotic light cone of φ is defined to be

A(φ) = {(u, v) ∈ R2 : α−(φ)v ≤ u ≤ α+(φ)v}.

This means that A(φ) is the cone in R2 which does not contain the i-axis and
which is bounded by the lines u = α+(φ)v and u = α−(φ)v. We view A(φ) as a
subset of R2 rather than of Z2, as we want to consider lines with irrational slope
that may lie in A(φ) but would intersect C(φ) only in {0}.

We begin by investigating the deviation of the function W+(n,φ) from the linear
function nα+(φ). Observe that the asymptotic light cone A(φ) is a subset of the
light cone C(φ), as an immediate corollary of part (3) of Lemma 4.2.

Corollary 5.2. The set of integer points in the asymptotic light cone A(φ) is a
subset of the light cone C(φ).

If φ ∈ Aut(X) it is natural to consider the relationship between C(φ) and C(φ−1)
or between A(φ) and A(φ−1). The spacetime U(φ) of φ is not the same as the
spacetime U(φ−1) of φ−1, but there is a natural identification of U(φ) with the
reflection of U(φ−1) about the horizontal axis j = 0. In general, it is not true that
A(φ−1) is the reflection of A(φ) about the u-axis (Example 2.10 is one where this
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fails). On the other hand, if (X,σ) is a subshift, there is at least one line in the
intersection of A(φ−1) with the reflection of A(φ) about the u-axis.

To see this, note that the cone A(φ−1) has edges which are the lines

(5.1) u = α+(φ−1)v and u = α−(φ−1)v,

while the cone obtained by reflecting A(φ) about the u-axis has edges given by

(5.2) u = −α−(φ)v and u = −α+(φ)v.

Hence the line u = mv lies in the intersection A(φ−1) and the reflection of A(φ)
in the line u-axis if

m ∈ [α−(φ−1),α+(φ−1)] ∩ [−α+(φ),−α−(φ)].

If these two intervals are disjoint, then either

α+(φ−1) < −α+(φ), or − α−(φ) < α−(φ−1).

Either of these inequalities contradicts part (5) of Proposition 3.12.
In a different vein, the cone A(φ) is a conjugacy invariant.

Proposition 5.3. Suppose (Xi,σi) is a shift for i = 1, 2 and φi ∈ End(Xi). Sup-
pose further that h : X1 → X2 is a topological conjugacy from σ1 to σ2. If

φ2 = h ◦ φ1 ◦ h−1,

then A(φ1) = A(φ2).

Proof. Since h is a block code, there is a constant D > 0, depending only on h, such
that for any n ∈ Z the ray [n,∞) h-codes [n+D,∞), and the ray (−∞, n] h-codes
(−∞, n−D]. It follows that W+(m,φ1) ≤ W+(m,φ2)+2D. Switching the roles of
φ1 and φ2 and considering h−1, for which there is D′ > 0 with properties analogous
to those of D, we see that W+(m,φ2) ≤ W+(m,φ1)+2D′. By the definition of α+

(see equation (3.11)),

α+(φ1) = lim
n→∞

W+(n,φ1)

n
= lim

n→∞

W+(n,φ2)

n
= α+(φ1).

The proof that α−(φ1) = α−(φ2) is similar, and thus the asymptotic light cones of
φ1 and φ2 are identical. !

5.2. A complement to Theorem 4.4. In Theorem 4.4 we showed that lines in
the spacetime of an endomorphism φ which form the boundary of its asymptotic
light cone A(φ) are nonexpansive subspaces. In this section we want to show that
in many instances, given an arbitrary Z2-subshift Y and a nonexpansive subspace
L ⊂ R2 for Y , there is a Z2-isomorphism Ψ taking the space Y to the underlying
Z2-subshift of a spacetime U of an automorphism φ ∈ Aut(X,σ) for some shift
(X,σ) such that Ψ(L) is an edge of the asymptotic light cone A(φ). In particular
this holds if Y has finitely many nonexpansive subspaces. Hence in that case every
nonexpansive subspace in Y is (up to isomorphism) an edge of an asymptotic light
cone for some automorphism.

To do this it is useful to introduce the notion of expansive ray, which incorporates
both the subspace and its orientation

By a ray in R2 we mean a set ρ ⊂ R2 such that there exists w ̸= 0 ∈ R2 with

ρ = ρ(w) = {tw : t ∈ [0,∞)}.
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The space of all rays in R2 is naturally homeomorphic to the set of unit vectors in
R2, which is the circle S1.

Definition 5.4. Let Y be a Z2-subshift. We say ρ is an expansive ray for Y if
the line L containing ρ with orientation given by L+ = ρ ∩ (L \ {0}) is positively
expansive (see Definition 2.7 and the paragraph preceding it).

The concept of expansive ray is essentially the same as that of oriented expansive
line introduced in §3.1 of [5]. We emphasize that this concept is defining one-sided
expansiveness for the line L containing ρ. Which side of L codes the other is
determined by the orientation of ρ and the orientation of Z2.

To relate this to our earlier notions of expansiveness (Definition 2.6) observe
that if L is the subspace containing ρ, then L is expansive if and only if both ρ
and −ρ are expansive rays. In this terminology, Theorem 4.4 says that the rays
ρ+(φ) := {⟨α+v, v⟩ : v ≥ 0} and ρ−(φ) := {⟨α−v, v⟩ : v ≤ 0} are nonexpansive rays.
We note that it is not in general the case that −ρ+(φ) and −ρ−(φ) are nonexpansive
rays.

The following lemma is essentially contained in [3] but differs from results there
in that we consider one-sided expansiveness. In particular note the following re-
sult implies that being positively expansive is an open condition for oriented one-
dimensional subspaces of the R2 associated to a Z2-subshift. Similarly being nega-
tively expansive is an open condition.

Lemma 5.5. If E ⊂ S1 is the set of expansive rays for a Z2-subshift Y , then E is
open.

Proof. We show that the set N of nonexpansive rays is closed. Suppose that ρn =
{twn : t ≥ 0}∞n=1 is a sequence of rays in R2 with lim

n→∞
wn = w0 ̸= 0 so that ρ0 is

the limit of the rays ρn, n ≥ 1. If the rays ρn are nonexpansive we must show that
ρ0 is nonexpansive.

Let Ln be the line containing wn with the orientation such that wn ∈ L+
n , let

H+(Ln) be the component of R2 \ Ln such that for all w′ ∈ H+(Ln) the ordered
basis {wn, w′} is positively oriented, and let H−(Ln) be the other component of
R2 \Ln. Define the linear function fn : R2 → R by fn(u) = u ·vn where vn is a unit
vector in H+(Ln) which is orthogonal to wn. Then we have the following:

• Ln = ker(fn).
• A vector u is in H+(Ln) if and only if fn(u) > 0 and in H−(Ln) if and

only if fn(u) < 0.
• lim

n→∞
fn(v0) = f0(v0) = 1.

By Proposition 2.8 we know there exist ηn, η′n ∈ Y and zn ∈ Z2 such that ηn(v) =
η′n(v) for all v ∈ H−(Ln), but ηn(zn) ̸= η′n(zn). By shifting ηn and η′n we may
assume lengths |zn| are bounded. Choosing a subsequence we may assume {zn}
is constant, say, zn = z0 ∈ Z2. Since Y is compact we may further choose sub-
sequences {ηn}∞n=1 and {η′n}∞n=1 which converge, say, to η0 and η′0 respectively.
Clearly η0(z0) ̸= η′0(z0). Now if y ∈ H−(L0) ∩ Z2, then f0(y) < 0, so fn(y) < 0 for
sufficiently large n, and hence y ∈ H−(Ln) ∩ Z2. It follows that η0(y) = η′0(y).

Since η0 and η′0 agree on H−(Ln) ∩ Z2 but disagree at z0 we conclude that
H−(Ln) ∩ Z2 does not code H+(Ln) ∩ Z2, so ρ0 is a nonexpansive ray. !
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Proposition 5.6. Suppose Y is a Z2-subshift and E is the set of expansive rays
for Y (thought of as a subset of S1). Suppose C is a component of E and ρ1, ρ2
are the endpoints of the open interval C. Then there exists a shift (X,σ) with
endomorphism φ and an isomorphism Ψ : Y → U(φ) from Y to the spacetime of
φ (thought of as a Z2-system) such that the lines L1 := span(Ψ(ρ1)) and L2 :=
span(Ψ(ρ2)) are the two edges of the asymptotic light cone A(φ) of φ.

Note that Ψ is not a spacetime isomorphism, as the system Y is not assumed to
be a spacetime.

Proof. We consider C as an open interval (ρ1, ρ2) in the circle S1 of rays in R2.
There is a Z2-subshift isomorphism Ψ0 : Y → Y0, where Y0 is a Z2-subshift with
⟨1, 0⟩ ∈ Ψ0(C). Thus the horizontal axis with the usual orientation is a positively
expansive subspace for the Z2-subshift Y0. We may recode Y0 to Y1 by an isomor-
phism Ψ1 : Y0 → Y1 in such a way that the horizontal axis H0 in Z2 codes the
positive half space {⟨i, j⟩ ∈ Z2 : j > 0} (this follows from Lemma 3.2 in [3], where
we recode Y0 such that “symbols” in Y1 are vertically stacked arrays of symbols
from Y0 of an appropriate height). We let Ψ : Y → Y1 be the composition Ψ1 ◦Ψ0.

Let X denote the set of colorings of Z obtained by restricting elements η ∈ Y1 to
H0. We could equally well describe X as the colorings of Z obtained by restricting
elements of Y to the horizontal row H−1 := {⟨i, j⟩ ∈ Z2 : j = −1} and define
φ : X → X by φ(x) = x′ if there is η ∈ Y1 such that x = η|H0 and x′ = η|H−1 .
Then clearly φ is an endomorphism and Y1 is U(φ), the spacetime of φ.

Note that the ray ρ+(φ) := {⟨α+v, v⟩ : v ≥ 0} lies in the light cone A(φ) of φ (and
in the upper half space of R2). If m > α+(φ) and ρm is the ray ρm := {⟨mv, v⟩ : v ≥
0}, then by Proposition 4.5 ρm is an expansive ray. Since by Theorem 4.4 ρ+(φ) is
not an expansive ray, it follows that Ψ(ρ2) = ρ+(φ).

Letting ρ−(φ) := {⟨α−v, v⟩ : v ≤ 0}, a similar proof shows that Ψ(ρ1) = ρ−(φ).
Hence the lines L1 and L2 form the edges of the asymptotic light cone A(φ). !

We are not able to show which lines can arise as the edges of the asymptotic
light cone.

Question 5.7. Does there exist a subshift of finite type X and an automorphism
φ ∈ Aut(X) such that some edge of the asymptotic light cone of φ has irrational
slope? If so, what set of angles is achievable? More generally, for a subshift of finite
type X or for a general shift X, what are all of the components of the expansive
subspaces?

Hochman [14] points out that, as there are only countably many shifts of finite
type, this set must be countable (and, in particular, cannot contain all irrational
slopes). If X is not required to be a subshift of finite type, then Hochman’s re-
sults show that for the first question, the only constraint on the light cone for an
automorphism (of an infinite subshift) comes from −∞ < α− ≤ α+ < ∞.

5.3. Asymptotic spread. Let ℓ(n,φ) be the minimal length of an interval J ⊂ Z
which contains 0 and φn-codes {0}, and let L(φn) be the minimal length of an
interval J0 ⊂ Z which is symmetric about 0 and φn-codes {0}. It is straightforward
to see that both ℓ(n,φ) and L(φn) are subadditive sequences.

Definition 5.8. Define the asymptotic spread A(φ) of φ ∈ End(X) to be

(5.3) A(φ) = lim
n→∞

ℓ(n,φ)

n
.
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We say φ is range distorted if A(φ) = 0.

Note that since the sequence ℓ(n,φ) is subadditive, Fekete’s Lemma implies that
the limit in (5.3) exists.

The asymptotic spread is a measure of both the width of the asymptotic light
cone, as well as how that cone deviates from the vertical.

Remark 5.9. Since the function L(φn) is a subadditive function of n ≥ 0, by Fekete’s
Lemma, the limit

ρ(φ) = lim
n→∞

L(φn)

n
exists. Clearly L(φn) ≤ ℓ(n,φ) ≤ 2L(φn) + 1, and so

ρ(φ) ≤ A(φ) ≤ 2ρ(φ).

In particular, φ is range distorted if and only if

lim
n→∞

L(φn)

n
= 0.

Proposition 5.10. If φ ∈ Aut(X) and α+(φ) = α−(φ) = α+(φ−1) = α−(φ−1),
then the line u = α+(φ)v is the unique nonexpansive one-dimensional subspace.
In particular, if φ,φ−1 ∈ Aut(X) are both range distorted, then the vertical axis
(u = 0) is the unique nonexpansive subspace.

Proof. The first statement follows immediately from Theorem 4.4 and Proposi-
tion 4.5. The second statement follows from the first, since φ and φ−1 are both
range distorted if and only if α+(φ) = α−(φ) = α+(φ−1) = α−(φ−1) = 0. !

It was shown by M. Hochman [14] that if L is any one-dimensional subspace
of R2, then there exists a subshift XL and an automorphism φL ∈ Aut(XL) such
that L is the unique nonexpansive subspace for the spacetime of φL. Moreover, the
automorphisms φL in his examples always have infinite order (in particular, when
L is vertical, φL is range distorted and has infinite order). However, the space XL

he constructs lacks many natural properties one might assume about a subshift;
for example, it is not a subshift of finite type and it is not transitive. He asks the
following natural question.

Question 5.11 (Hochman [14, Problem 1.2]). Does every nonempty closed set of
one-dimensional subspaces of R2 arise as the nonexpansive subspaces of a Z2-action
that is transitive (or even minimal) and supports a global ergodic measure?

We do not answer this question, but recall it here as, in particular, we do not
know whether a transitive subshift can have a range distorted automorphism of
infinite order. We mention further that, in the special case that L is vertical,
Hochman shows that his example (XL,φL) is logarithmically distorted.

Proposition 5.12. If φ is an endomorphism of a subshift of finite type (X,σ),
then A(φ) is determined by the light cone of φ and is, in fact, the length of the
smallest interval containing 0,α−(φ), and α+(φ).

Proof. It follows from Lemma 3.17 that if σ is a subshift of finite type, then for all
x ∈ X and all sufficiently large n > 0, the interval [W−(n),W+(n)] is an interval
which codes φn(x)[0] and which is contained in any interval which contains 0 and
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codes φn(x)[0]. It follows that if Jn is the smallest interval containing 0,W−(n),
and W+(n), then

A(φ) = lim
n→∞

|Jn|
n

.

Hence A(φ) is the length of the smallest interval containing 0,α−(φ), and α+(φ).
!

The following result is essentially the same as Proposition 5.3 of Tisseur’s paper
[23], except that we consider an arbitrary φ ∈ Aut(X,σ) with σ an arbitrary shift,
while he considers a cellular automaton defined on the full shift and preserving
the uniform measure on that shift. Our proof is quite short and makes no use of
measure. It makes explicit the connection between the topological entropy of a shift
and the topological entropy of an automorphism of that shift.

Theorem 5.13. If φ ∈ End(X), then

htop(φ) ≤ A(φ)htop(σ),

where A(φ) is the asymptotic spread of φ. In particular, if φ is range distorted,
then htop(φ) = 0.

Proof. Let U be the spacetime of φ. For z ∈ U , let Rm,n = {(i, j) ∈ Z2 : 0 ≤ i <
m, 0 ≤ j < n} and let z|Rm,n denote the restriction of z to Rm,n. Recall that PU
denotes the two-dimensional complexity function (see Definition 2.5). Then

htop(φ) = lim
m→∞

lim
n→∞

1

n
log(PU (Rm,n)).

Since A(φ) is the length of the smallest interval containing 0,α−(φ), and α+(φ),
for a fixed m there is an interval J in Z with length A(φ)n+o(n)+m that φj-codes
the block [0,m] for all 0 ≤ j ≤ n. In other words, the interval J × {0} ⊂ U codes
Rm,n. Therefore, for any ε > 0 and m and n sufficiently large,

PU (Rm,n) ≤ PX(A(φ)n+ o(n) +m) ≤ (exp(hσ + ε))A(φ)n+m.

Hence log(PU(Rm,n)) ≤ (A(φ)n+m)(hσ + ε) and

nhtop(φ) = lim
m→∞

lim
n→∞

log(PU(Rm,n))

n
≤ lim

m→∞
lim

n→∞

(A(φ)n+m)(hσ + ε)

n
= A(φ)(hσ + ε).

Since this holds for all ε > 0, the desired inequality follows.
By definition φ is range distorted if and only if A(φ) = 0, and so the last two

assertions of the proposition are immediate. !
5.4. Distortion and inert automorphisms. Recall that if (ΣA,σ) is a subshift
of finite type, there is a dimension group representation Ψ : Aut(ΣA) → Aut(DA)
mapping automorphisms of the shift to automorphisms of its dimension group
DA (see [18], [24], and [1] for definitions). A particularly important subgroup of
Aut(ΣA) is Inert(ΣA), defined to be the kernel ofΨ. An automorphism φ ∈ Aut(ΣA)
is called inert if Ψ(φ) = Id.

There is one special case when Ψ can be thought of as a homomorphism from
Aut(ΣA) to the group of positive reals under multiplication. This occurs when ΣA

is an irreducible subshift of finite type and det(I−At) is an irreducible polynomial.
In this setting, one can associate to each φ ∈ Aut(ΣA) an element λφ = Ψ0(φ) in
(0,∞) such that Ψ0 is a homomorphism and λφ = 1 if and only if φ is inert.
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To investigate the relationship between being inert and being distorted, we quote
the following important result of Boyle and Krieger.

Theorem 5.14 (Boyle and Krieger [1, Theorem 2.17]). Suppose (ΣA,σ) is an
irreducible subshift of finite type and det(I−At) is an irreducible polynomial. Then
if φ ∈ Aut(ΣA) and m is sufficiently large, σmφ is conjugate to a subshift of finite
type and

htop(σ
mφ) = log(λφ) +mhtop(σ).

Theorem 5.15. Suppose (ΣA,σ) is an irreducible subshift of finite type such that
det(I − At) is an irreducible polynomial, and let φ ∈ Aut(ΣA). If φ and φ−1 are
range distorted, then φ is inert.

Proof. Let λφ = Ψ(φ) and note that by replacing φ with φ−1 if necessary, we can
assume that λφ ≥ 1. Suppose φ is range distorted and so α+(φ) = α−(φ) = 0; we
show that φ is inert. From parts (1) and (2) of Proposition 3.12, we conclude that
α+(σkφ) = α−(σkφ) = k. By Proposition 5.12, it follows that Aσkφ = |k|. Hence
by Theorem 5.13, we have htop(σkφ) ≤ |k|htop(σ). Combining this with the fact
from Theorem 5.14 which says for large k we have htop(σkφ) = log(λφ) + khtop(σ),
we conclude that log(λφ) ≤ 0 or λφ ≤ 1. Since we also have λφ ≥ 1, we conclude
that λφ = 1 and φ is inert. !
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