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Abstract. In 1984 Boshernitzan proved an upper bound on the number of ergodic measures for a
minimal subshift of linear block growth and asked if it could be lowered without further assump-
tions on the shift. We answer this question, showing that Boshernitzan’s bound is sharp. We further
prove that the same bound holds for the, a priori, larger set of nonatomic generic measures, and that
this bound remains valid even if one drops the assumption of minimality. Applying these results
to interval exchange transformations, we give an upper bound on the number of nonatomic generic
measures of a minimal IET, answering a question recently posed by Chaika and Masur.
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1. Introduction

Let (X, o) be a subshift, meaning that X C A%, where A is a finite alphabet, and X is a
closed set that is invariant under the left shift o : AZ — A”. A classic problem is to find
conditions that imply (X, o) is uniquely ergodic or, more generally, has a finite number
of ergodic measures. In the 1980’s, Boshernitzan [1] showed that the complexity of the
subshift can be used to obtain such a result. More precisely, if Px(n) is the number of
words of length n which occur in any x € X, he showed that if (X, o) is minimal and
limsup,,_, ., Px(n)/n < 3, then it is uniquely ergodic (see also related results in [3]).
More generally, Boshernitzan showed that if

P
lim inf 2X )

n— 00 n

<k, ey

then there are at most £ — 1 ergodic measures. Some motivation for studying this problem
is generalizing the well-known bound on the number of ergodic measures for an interval
exchange transformation (IET), that had been previously proven, independently, by Katok
and Veech. Boshernitzan’s Theorem applies to a much broader class of dynamical systems
than the interval exchange transformations, but the bound he obtains is weaker than that
of Katok and Veech in the case of an IET.
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Boshernitzan asked in [1], and then again in [2], whether his bound could be lowered
in this more general setting. One of our main results answers Boshernitzan’s question:
for the class of minimal subshifts whose complexity function satisfies (1), Boshernitzan’s
bound is a sharp bound for the number of nonatomic ergodic measures. Our technique
also shows that the bound is more general than originally stated: the same bound remains
valid (and sharp) even without the assumption of minimality and even if one seeks to
bound the (a priori, larger) set of nonatomic generic measures.

The particular case of minimal interval exchange transformations has been well stud-
ied (for example Katok [10], Keane [12], and Veech [14]). A minimal k-interval exchange
transformation (k-IET) has a natural symbolic cover, its natural coding, and this subshift
satisfies the hypothesis of Boshernitzan’s Theorem. As an application, this shows that a
minimal k-IET (see Section 4 for the definition) has at most k — 1 ergodic measures. The
optimal bound of |k/2]| was proven, independently, by Katok [10] and Veech [14]. In a
recent paper, Chaika and Masur [4] studied the broader class of generic measures for an
IET and asked whether there are bounds on the number of such measures. An interesting
facet of this problem is that although several quite different proofs of the bound given by
Katok and Veech for the number of ergodic measures exist in the literature, they all use
ergodicity in an essential way.

If X is a compact metric space, 5 the Borel o -algebra, & a Borel probability measure
on B,and T: X — X a measurable map preserving the measure u, then a point x € X is
a generic point for the measure u if for every continuous function f: X — R,

1 N—1
Jim ;0 f(T"x) = / fdpu.

The measure p is generic if it has a generic point. Thus, by the Pointwise Ergodic The-
orem, if the measure p is ergodic then almost every point is generic. However, a generic
measure need not be ergodic. Chaika and Masur [4] constructed a 6-interval exchange
transformation that has a generic, but not ergodic, measure. They asked if there is a bound
on the number of generic measures for a k-IET. We show:

Theorem 1.1. If (X, o) is a subshift and there exists k € N such that

P
lim inf 2 X

n— 00 n

<k,

then (X, o) has at most k — 1 distinct, nonatomic, generic measures.

In particular, this applies to interval exchange transformations by passing to the natural
cover. Theorem 1.1 generalizes Boshernitzan’s Theorem [1] in two ways: there is no
assumption of minimality and our bound holds for the more general class of generic
measures. We also give an analogous bound for lim sup (note the technical assumption is
vacuous for minimal subshifts that are not uniquely ergodic).

Theorem 1.2. Suppose (X, o) is a subshift and there exists k € N such that

. Px(n)
lim sup

n—00 n

< k.
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If (X, o) has a generic measure | and a generic point x,, for which the orbit closure
{okx,: k € Z}

is not uniquely ergodic, then (X, o) has at most k — 2 distinct, nonatomic, generic mea-
sures.

Recently Damron and Fickenscher [5] proved a related result, showing that any minimal
shift (X, o) whose complexity function satisfies Py (n) = kn + ¢ for some constant c,
k > 4 and all n sufficiently large has at most k — 2 ergodic measures.

Moreover, we show that these theorems are sharp, even if X is assumed to be minimal
and the measures are required to be ergodic.

Theorem 1.3. Suppose d > 1 is an integer. There exists a minimal subshift (X, o) which
has exactly d ergodic measures, zero nonergodic generic measures, and which satisfies

.. . Px(n) Py (n)
lim inf = =

n— 00 n

d, limsup

n—oo

d+1.

We include several other examples in Section 5, showing other senses in which Theo-
rems 1.1 and 1.2 can be said to be sharp.
As an application of Theorem 1.1, we answer Chaika and Masur’s question:

Theorem 1.4. For k > 2, a minimal k-interval exchange transformation has at most
k — 2 generic measures.

For k = 2, a minimal 2-interval exchange is an ergodic rotation, which is uniquely er-
godic. For k = 3 and 4, Theorem 1.4 is a sharp upper bound, but we do not know if it
is sharp for k > 5. In particular, we do not know if we can improve the symbolic re-
sult of Theorem 1.1 for systems that arise as the natural coding of an interval exchange
transformation. Similarly, we would like to know if the conclusion of Theorem 1.4 can
be strengthened to replace k — 2 by [k/2]. We also do not know if there can be a second
generic measure in the example of Chaika and Masur, nor if a 6-interval exchange with
three ergodic measures can also have a generic (and obviously nonergodic) measure.

2. Background and notation

If A is a finite alphabet, a word w in the alphabet is a concatenation of letters in .4 and the
length |w| of the word is the number (finite or infinite) of letters. A word w = wy - - - wy
occurs in a word u = uy ---uy if there is some m € {1,...,k — £} such that w; =
Upm, - .., Wg = Up+g, and we refer to w as a subword of u. The analogous definitions hold
for a finite word w occurring as a subword of an infinite word u.

A language L is a set of (finite) words such that if w € £, then any subword is also
contained in L. The language determined by a word (finite or infinite) is the collection
of all finite subwords of the word. We let £, denote all the words in the language £ of
length n. If w € L, we write [w] for the cylinder set determined by w, meaning that

[w] = {u € L: the first [w| symbols of u agree with w}.



358 Van Cyr, Bryna Kra

We assume that the alphabet A is endowed with the discrete topology and if x € AZ,
we use x(n) to denote the value of x at n € Z. The space A% is a compact metric space
when endowed with the product topology (and a compatible metric).

A subshift (X, o) is a closed subset X C A” that is invariant under the left shift
o: A% — AZ defined by (0x)(n) = x(n + 1). If £ is the language of the system X,
meaning the set of all finite subwords that arise for any x € X, we write £ = L(X),
and we write £,, = L,(X) for the words of length n. We define the complexity function
Px: X — Nby

Px(n) = |L£,(X)].

For a word w € L£(X), we write 1}, for the indicator function of the word w. We say
that x = (x(n))nez € X is periodic if there exists m # 0 such that x(m + n) = x(n)
for all n € Z; otherwise it is aperiodic. The point x is eventually periodic if there exist
m # 0and N € N such that x(m +n) = x(n) foralln > N.

For a system (X, o), the orbit of x € X is defined to be {c"x: n € Z}, and the system
is minimal if the orbit closure {o"x: n € Z} equals X for any x € X.

For N, m € N, define w(N, m) € Ly(X) by

w(N,m):=xm), xm+1),...,x(m+ N —1)) 2)

to be the word of length N that occurs in x starting at location m. We make use of the
following theorem (though stated differently) of Epifanio, Koskas, and Mignosi [7]:

Theorem 2.1 ([7, Theorem 2.2]). Assume x € AN is not eventually periodic and fix
M, Ny € N. Suppose that for some N > Ny, there exist M < m{ < my < N such that
wy(N,my) = wy(N, my). Then there exists K > m1 such that

(i) (Distinct Words Condition) forall K < ki < ky < K + N — Ny we have wy (N, k1)
£ w (N, ka);

(ii) (Prefix First Occurrence Condition) for all K < k < K + N — Ny there exists
M < Iy < N such that w,(Ng, k) = wy(No, ly).

For completeness, we include the proof, but it is merely a translation of the proof in [7]
using our hypotheses and emphasizing the stronger conclusion.

Proof of Theorem 2.1. Suppose that wy(N,mi) = wyx(N,m3). Then the word
wy (N + my — my, my) is periodic of period m, — m. Since x is not eventually peri-
odic, there exists N’ > N +my —m such that w, (N’, m1) is periodic of period m —mj,
while wy (N’ 41, m1) is not. Let 1 < p < my —m be the minimal period of w, (N', m1)
and define K := m| + N’ — N — p > m. By minimality of p and the fact that N > p,
if K <i<j<K+p—1then wy(N,i) # wy(N, j) (and all such words are periodic
of period p).

For contradiction, suppose there exist K <i < j < K+ N — Ny such that wy (N, i) =
wy (N, j). Since i, j cannot both be smaller than K + p, it follows that j > K + p. The
word wy (N + (j — i), 1) is periodic of period j — i and its prefix of length p + j — i
is periodic of period p. By the Fine—Wilf Theorem [9], this prefix is periodic of period
gcd(j — i, p). Since this prefix has length at least p, it follows that wy(N + (j — i), 1)
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is periodic of period gcd(j — i, p) and, in particular, is periodic of period p. Moreover,
K <i <K+ N — Npandsowx(N + (j —i),i) begins at least p spaces before N’ + 1
and ends at location

i+N+(—-D)=N+j>N+K+p)=m +N +1.

Thus the periodicity of wy(N + (j — i), i) contradicts the fact that w,(N’, m{) is not
periodic of period p, which implies that wy(N,i) # wy(N, j) forany M <i < j <
K +n— Ny.

Since w, (N’, my) is periodic of period p < n and the length Ny prefix of w; (N, i) is
a subword of w, (N’, m1), the second statement follows. ]

3. Main results

Theorems 1.1 and 1.2 follow from the following estimate:

Theorem 3.1. Let (X, o) be a subshift which has at least d > 1 distinct, nonatomic,
generic measures. Then

.. . Px(n)

lim inf

n— 00 n

>d.

If, in addition, (X, o) has a generic measure |1 and a generic point x,, whose orbit closure

{kaﬂ: k € N} is not uniquely ergodic, then

Px(n)
n

lim sup >d+ 1.

n—oo

Proof. We show that for arbitrarily small § > 0, we have

P
lim inf X

n— 00 n

> d —2ds 3)

and, under the additional hypothesis of a generic measure and associated generic point
whose orbit closure is not uniquely ergodic,

5 Px(n)
im sup

n— 00 n

>d+1—2ds. 4)

The theorem follows immediately from these estimates.

Fix § > 0, and for convenience assume that 1/5 € N. Suppose i1, . .., g are distinct,
nonatomic, generic measures for (X, o) and choose x1, ..., xs € X such that for each
1 <i <d, x; is generic for ;. Observe that if x is eventually periodic and is generic for
some measure [, then u must be the atomic measure supported on the (eventual) period
of x. Therefore, since p; is nonatomic, x; is not eventually periodic for all i. By definition
of x;, for all w € L(X) we have

1N

—1
Jim ,;o ) (T x) = i ([w)). )
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For 1 < ji < j» < d, choose words wj, j,) € L£(X) such that u; ([w¢,,j»nD) #
My ([wijp o D)- Set

& == minf|wj, (w(j,, D) — wp (wey, DI 1T < ji < jo = d}, (6

)
B = . 7
16 — 46 @)

By (5), for each 1 < i < d there exists N; € N such that for all N > N; and all
1 <ji1 < jo» <d, wehave

1 N-1

‘N D Mgy 1 (TEx) = i (wijy ) D| < B - &. (8)
k=0
Set
M := max N;. ©)]
1<i<d

Analogous to (2), for 1 <i <d and N, m € N, define
ui(N,m) := (x;(m), xi(m + 1), ..., xi(m + N — 1)) € Ly(X)
to be the word of length N that occurs in x; starting at location m.

Ifu, w € L(X) and |u| > |w|, define the frequency with which w occurs as a subword
in u to be

Ju|—|w|
1

Fu,w) = —————— > 1 (Th), 10

(- w) lul —w| +1 & (o) (772) (10)

where x € [u]. Note that this frequency does not depend on the choice of x € [u], as it
only depends on the first |u| coordinates of x. Suppose

N > - (M +max{|wg,,jl: 1 < j1 < j2 <d})

[STRIE

is fixed and define Ly := [(2—8)N | and £ := [SN]. By definition, £y —|w(j,, j»)| = M
forall wej, j,).If1 <i <d,1<j1 < j» <d,and M < L < Ly, then the frequency
with which the word wj,, j,) occurs in the subword of x; with length £y and starting
from location L is given by (recall that u; (£, L) is the word of length £ that starts at
location L in x;)

! EN=lwgjy,jpl
Fui(Cn, L), wj, j) =

L, ](Tk(TLx»))
N = w41 P W(jip) i
1 LAty —lwijyjp)]
Iy — lwgy jpl +1 ];

(T*x;)

w(jp iyl
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1 L+ZN7‘w(j1,j2)| 1
- Vg, 1T = Y g, ](Tkx~))
eN — |w(jl,j2)| +1 = W(j1,j2) l k;o W(jy, /) i
Lttn—lw(jy jy)l
— L+ &N —wgjpl +1 ) 1

Ly iy (Tx0)
v —lwgpl+ 1 LAty —lwgpl+1 = e

L 1%
N —lwgy jpl+1 L

—1
k
Ty, 1 (T X0

k=0
But by (8),
1 L+tn—lw(jy,jpl
Lwg, 1 (T5x) = pi((wgy D[ < B - &,
‘L v —lwgopl+1 & oS
and since L > M, we have
=
‘Z D Ly, o1 (T30 = pi(w ) D| < B .
k=0
Therefore
|F(ui(En, L), wijy, jn) — wi((wy, ) DI
L+KN—|U)(/'1J2)|+1.B. L B.s
T AN —wg il +1 N — wg,jnl +1

_ 2L+ Uy — lwij, ol +1 B

N = |wgjpl +1
_2L@ NI+ IBN] — [wiy, | + 1
B BN = lw ol +1

B -e.

By definition (7) that B = 163746’ for all sufficiently large N this inequality implies

|F(ui(€n, L), wjy, i) — mi(wg, DI < /2. (11

By (6), for all sufficiently large N and all L1, Lo e {M, M +1,..., [ (2 —5§)N]} we see
that if 1 < iy < ip < d, then the frequency with which w;, ;,) occurs in u; (L5, L1)
is different than its frequency in u;, (€, L2). Therefore u; (€n, L1) # ui,(£y, L2). For
1 <i < d define

Wi(N) :={u;(Uny,L): M <L <[2—=38)N]} C Loy (X).
We have shown that for all sufficiently large N, if 1 <i; < iy < d, then

Wi, (N) N Wi, (N) = 0. (12)
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Fix i with 1 <i < d and fix N sufficiently large such that (12) holds. If the words
ui(N, M), u;(N, M+ 1),...,u;(N,[(1=8)N]) 13)
are all distinct, then the set
S; :={w € Ly(X): all subwords of w of length £ are elements of W;(N)}  (14)

contains at least [ (1 — §)N| — M elements. If, on the other hand, the words in (13) are
not all distinct, then there exist M < L1 < Ly < |[(1 — §)N] such that u;(N, L) =
u;(N, Ly). In this case, by Theorem 2.1 there exists K € N such that

(i) (Distinct Words Condition) forall K < k; < ky; < K+N—£y wehaveu; (N, ki) #
ui(N, kz);

(i) (Prefix First Occurrence Condition) for all K < k < K 4+ N — £y there exists
Iy <Ily < Nsuchthatu; Uy, k) =u; Uy, ;).

Thus in this case, the set
Ti :={w € Ly (X): the leftmost subword w of length £ lies in W;(N)} (15)

contains at least N — £ elements.

By (12), §;;, N'S;, = ¥ whenever iy # i» (and both sets are defined). A similar
statement holds when comparing any S;, to 7;, for any i, or when comparing 7;, to 7j,.
Thus for each 1 < i < d, we have associated either the set S; or the set 7; and

Px(N)>d-min{N — €y, [(1 = 8§)N| — M} =d - min{N — |SN], |(1 — §)N| — M}.

Therefore,
Px(N) - d-min{N — |6N], [(1 =8)N| — M}
N = N ’
which is larger than d — 2d§ for all sufficiently large N, thus establishing (3).

To prove (4) , suppose that there exists | < i < d such that the orbit closure of x;
is not uniquely ergodic. Then for any fixed (and sufficiently large) N € N, there exist
infinitely many L € N such that u; ({y, L) ¢ W;(N).Fix N € N.

If the words

ui(N M), u;(N, M+ 1), ...,u;(N, [(1 =6)N])

are all distinct, then we define S; as in (14). In this case, choose the smallest L > M for
which u; ({y, L) ¢ W;(N); clearly L > L. Then each of the words

ui(N,L =N +LEN),ui(N,L =N +L€y+1),...,ui(N,L —Ly)

has the property that its leftmost subword of length £, is an element of W;(N), and
these words are pairwise distinct (in u; (N, L — N + £ + j) the leftmost occurrence of a
subword of length € that is not in W; (N) begins at location L — £y — j). These N — £y
words of length N do not lie in &;, and are not contained in any S; or 7; for any j # i
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(as defined in (15)), since their leftmost subword of length £ is in W;. Therefore by the
bound on the size of S; following (14),

Px(N) >d -min{N — ¢y, (1 = 6)N] — M}
=d -min{N — [N, [(1 =§)N|] — M} + (N —£n),
and so in this case,
Px(N) - d-min{N — |8N], |[(1 =6)N| — M} n N — L(SNJ.
N N N
If N is sufficiently large, this is larger than d + 1 — 2d4.

Thus we are left with showing that there are infinitely many N € N for which the
words

wi(N, M), u;(N,.M+1),...,u;(N, [(1=8)N]) (16)

are all distinct. Fix some N € N and assume that these words are not all distinct. As
before,let L1, Lo € {M, M+1, ..., [(1-=8)N]}with L{ < Ly besuchthatu;(N, L) =
u;(N, Ly). Let p be the minimal period of the word u; (N + L, — L1, L1) and let K be the
largest integer for which u; (K, L) is periodic with period p (note that K is finite since
x; is not eventually periodic). Then the words

ui (K, M), u; (K, M+ 1),...,u;(K, (1 -6)K]) a7

are all distinct: if j > L{ — M then the word u; (K, M + j) begins with a word that is
periodic of period p and has length exactly K — L — j (so no two words of this form
can coincide), and if j < L1 — M then u; (K, M + j) either begins with a word of length
K — L + j that is periodic of period p, or has a prefix of length at most L followed
by a word of length at least K — L1 > N that is periodic of period p (which occurs in a
different location for each such j). Therefore, for each N € N there exists K > N such
that the words in (17) are all distinct, and in particular there are infinitely many N such
that the words in (16) are distinct. This establishes (4). m]

As immediate corollaries of Theorem 3.1, we have the theorems stated in the introduction:

Corollary (Theorem 1.1). If (X, o) is a subshift and there exists k € N such that

P
lim inf X

n—00 n

< k,

then (X, o) has at most k — 1 distinct, nonatomic, generic measures.

Corollary (Theorem 1.2). If (X, o) is a subshift and there exists k € N such that

. Px(n)
lim sup

n—o00 n

< k,

and if (X, o) has a generic measure y and a generic point x,, whose orbit closure is not
uniquely ergodic, then (X, o) has at most k — 2 distinct, nonatomic, generic measures.
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In Section 5, we show that both of these corollaries are sharp. In particular, the linear
growth rate in Theorem 1.1 is optimal, in the sense that a superlinear growth rate does not
suffice to show that the set of ergodic measures is finite, and the technical condition of
Theorem 1.2 (and in Theorem 3.1) on the existence of a point whose orbit closure is not
uniquely ergodic cannot be dropped.

4. The natural coding of an IET

Let k£ > 1 be an integer and m be a permutation of {1,...,k}. Let I = [0, A) be an
interval and choose 0 = Ag < A1 < - -+ < A = A. The interval exchange transformation
T:[0,x) — [0,2) is defined to be the map that is an isometry on each subinterval
[Ai—1, A;) fori =1, ..., k and rearranges the order of these subintervals according to the
permutation . Without loss of generality, we can assume that k is the smallest number of
subintervals needed to define the transformation 7' (otherwise we can join two consecutive
subintervals into a single one). We refer to this interval exchange transformation as a k-
IET or just an IET when k is clear from the context.

Given an interval exchange transformation, there is a natural coding by an associated
dynamical system. For x € I, definex = (x,) € {1, ..., k}N by setting

x, =i ifandonlyif T"x € [Ai_1, Aj).

The language of x is the set of all finite words that appear, and the natural coding of the
interval exchange transformation is the symbolic system, endowed with the shift, that has
the same language as x. The natural symbolic cover of an interval exchange transforma-
tion is the subshift that codes every x € I, meaning it is the symbolic system, endowed
with the shift, whose language consists of all finite words that arise in the orbit of any
x € 1. While the image of the interval [0, A) under this coding is invariant under the
shift, it is not necessarily closed, and so we take its orbit closure to produce a semicon-
jugacy from the coding to the interval exchange. For further details, see [11, Chapter 15,
Section 5].

If a point does not lie in the orbit of one of the endpoints of the subintervals defining
the IET, then it has a unique preimage under the semiconjugacy, and otherwise it has at
most two preimages corresponding to the coding of iterates.

If T is a minimal interval exchange transformation, then any x € [ gives rise to
the same language and it suffices to take the orbit of a single point. More generally, the
symbolic coding is not topologically conjugate to 7', as up to countably many points
may have multiple preimages (though a point can only have finitely many preimages).
However, since the points with nonunique preimage can only support an atomic measure,
it is a measure-theoretic isomorphism for any nonatomic generic measure on X.

Namely, we claim that a generic measure for an interval exchange transformation lifts
to a generic measure in the symbolic cover. A basic open set in the symbolic cover is
a cylinder set and thus corresponds to an interval or a finite union of intervals in [0, A).
Thus it suffices to check the claim for a finite interval J C [0, A). Let x € [0, 1) be a
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generic point for the measure 1. Choose continuous functions f and g on [0, 1) such that
0<f<1y<gand [gdu—e/2<u(J) <[ fdu+e/2. Then

1 N—-1
s sam- [ ra
n=0

for all sufficiently large N, and the same holds for g. Thus

<eg/2

1 N-1 1 N-1
5 2 LT = =3 8™ < 8/2+/gdu < 8+/fdu
n=0 n=0

< — 1;(T"x).
_8+Nr;) J(T"x)

Hence

< €.

1 N—1
'u(J) - ;) 1,(T"x)

Since this holds for all € > 0, for any open set J C [0, A) we have
| V=l
lim — 1;(T"x) = u(J).
Ngan; /(T"x) = p(J)

Write ¢: (X,0) — ([0, 1), T) for the factor map from the symbolic coding (X, o)
to the interval exchange ([0, A), T'). Let £(X) denote the language of the coding and let
1 be a generic measure on ([0, A), T') with generic point x. Let x* € ¢~ (x). Then for
any word w € L(X),

. 1 N-1 . . 1 N-1 .
Jim go Lp(0"x") = lim — go Lo (T"x) = (@ ([wl),

since ¢ ([w]) is a finite union of intervals. Since p is a nonatomic, generic measure, the
pullback ¢*(u([w])) = 4)*(,41,((1)_1 (¢ ([w])))) is also nonatomic, as only countably many
points in ([0, A), T') have multiple preimages and each of these only has finitely many
preimages. (In other words, the pushforward of the pullback of the measure is the measure
itself.) Thus a generic measure for the interval exchange transformation corresponds to a
generic measure in the symbolic coding.

It is well known that an IET has linear complexity (see for example [8]). We include
a proof for completeness:

Proposition 4.1. The natural coding of a minimal k-IET has complexity
Pn) < ((k—Dn+1.

If the k-1ET satisfies the infinite distinct orbits condition (IDOC), then the complexity is
exactly P(n) = (k — )n + 1.
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Proof. We proceed by induction on n. The number P (1) is the size of the alphabet, which
has size k, so for n = 1 the result is clear. Assume that P(n) < (k — 1)n + 1. If we fix a
particular word of length 7, the cylinder set defined by this word distinguishes an interval
in the exchange, and by considering the cylinder sets associated to each word of length n,
we obtain a partition of the exchange. Thus we have associated a partition Z of the ex-
change to the (k — 1)n+ 1 words of length n, and this partition has (k — 1)n + 2 endpoints.
Furthermore, these endpoints all arise as iterates of the endpoints of the original k+1 end-
points of the interval exchange. Each of the k£ + 1 original endpoints lies in some 7' (1),
where T is the exchange map and [ is one of the intervals in the partition Z. We note that
if the exchange satisfies IDOC, then the endpoints arise as distinct iterates, and each of
the original endpoints lies in the interior of some 7 (I); but without this condition there
may be overlap in the iterates and this is only an upper bound.

Thus we have M < k — 1 intervals in (7' (I));cz which cover all of the original
endpoints. These M intervals may each cover more than one of the original endpoints,
say m of them, and there are at most m 4 1 distinct ways to continue the orbit of a word
of length n. Thus in total, we have (k — 1)n + 1 — M + (k — 1) + M continuations, which
is exactly the bound P(n + 1) < (k — )(n + 1) + 1.

If the exchange satisfies IDOC, then as the endpoints arise as distinct iterates, we see
that the complexity is exactly P(n) = (k — )n + 1. ]

Combining this with Theorem 3.1, we obtain the statement of Theorem 1.4:

Corollary (Theorem 1.4). For k > 2, a minimal k-1ET has at most k — 2 generic mea-
sures.

5. Sharpness

In this section we show that the bound in Theorem 3.1 is sharp. We recall the statement
of Theorem 1.3 for convenience.

Theorem (Theorem 1.3). Let d > 1 be fixed. There exists a minimal subshift (X, o)

such that p p
iminf 22X Z g fimsup 2X)

n—00 n n—00 n

=d+1,

and X has exactly d ergodic measures.

Before we delve into the details of the construction, we outline the basic ideas involved.
The ideas of this argument were partly inspired by a construction of a minimal and non-
uniquely ergodic subshift by Quas on mathoverflow [13] (see also Denker, Grillenberger,
and Sigmund [6]).

Fixing d > 1 and the alphabet A = {I1,...,d}, we inductively construct d se-

quences of words {w{ }]?'i], cee {w'[’l}]?‘i] in £(A%). Roughly speaking, the procedure
we use constructs the words in these sequences in the following (somewhat unusual)
order: wll, wé, e, wé, wlz, w%, el wfi, wf, w%, R wfl, .... That is, we first construct
the first word in each of the sequences, then the second word in each, and so on. The

words are constructed such that:
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() Ifiy,i» € Aand j; < jo, then wl.jl' occurs as a subword of u)ljz2 syndetically,! with
gap size bounded by a constant that depends only on jj. '

(i) Forany i € Aand j € N, the frequency with which the letter i occurs in wi] (asa
percentage of the length of wiJ ) is greater than an absolute constant which is greater
than 1/2.

By taking a limit along a subsequence of {w{ }j?'il, we produce a semi-infinite word w{®,
and taking its orbit closure under the shift o and passing to the natural two-sided exten-
sion, we obtain a close;d subshift X c AZ. It follows from the construction that (X,0)
is minimal and that wlj € L(X) foralli € Aand j € N. For fixed i € A, there are ar-
bitrarily long words in £(X) for which the frequency of the letter i is at least (a constant
greater than) 1/2 and so the system (X, o) has an ergodic measure assigning the cylinder
set [i] measure greater than 1/2. Thus (X, o) has at least | A] = d ergodic measures.
By carefully choosing the lengths of the words, we further show that the system (X, o)
satisfies the desired upper and lower bounds on the complexity. Applying Theorem 3.1,
we find that (X, o) has at most d ergodic measures, and so exactly d ergodic measures.

‘We now make these ideas precise:

Proof of Theorem 1.3. Set A := {1, ..., d}. Choose a sequence k1, k3, ... of real num-
bers in (0, 1) such that

o0

[T« =172

j=1

and choose a strictly decreasing sequence 41, &2, ... of real numbers in (0, 1) such that
lim; , o 8; = 0.

Step 1 (Construction of the sequences {w{ }]?’i Lo {wé}]?’i 1): Define the word

wli=1---1234...d,
N———

[
Ny

where the length N([ll]]) € N is chosen such that N([]I]I) > K |w} |. Define

si:=wl and pli=1..-1.

Niihy
The word sll represents the suffix of w% that starts with the beginning of wll, and pl1
denotes the prefix of w% consisting of its initial block of 1’s (the suffix and prefix termi-
nology is further clarified in the inductive construction, but note that the previous level
suffix becomes the beginning of the next level prefix). We refer to the groupings by a
length N ].[fg as a block in the word (thus p% has a single block), and the change from one

1" A word occurs v occurs syndetically in a word w with gap g if every subword of w of length g
contains a copy of v as a sub-subword.
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block to the following block as a transition (the word wé has one transition); and we refer
to words that are not entirely within one block as transition words.
Next define the word

w% :=s]1w11~~w11p112~~23~~3~~d~~d,
—— — —— S—

N—
(1 1] !
N([zli]” N(z,z) N(2,3) N(Z,d)
where the lengths N([zl]]), e, N([zl] Q) € N are chosen such that

1 1 1 1
|w11| < (51)2 : N([2?1) < (81)4 : N([Z,]d) < (81)6 : N([z)]dfl) < (31)8 : N([z’]dfz)

<< @DMTENGY < 60 NG, (18)

and N, ([21’]2) > K] |w%|. The ordering of the lengths N ([zl}k) is important, with the index k
passing from 1 to d and then down to d — 1 and continuing cycling step by step down
to 2. The choice of the lengths is used only in estimating the growth of Py (n); the exact
choices of the lengths and the estimates of (18) can be ignored for a first reading of Steps 1
and 2.

Further note that the initial portion of w% is a concatenation of the word w{ with itself
a large number of times, followed by its prefix word p}. We include p% so that the word
w% p}2 has already occurred as a subword of the concatenation w} ‘e wll, allowing us
to make the transition in w% from the block of w;’s to the block of 2’s while keeping
the possible new words as low as possible. We iterate this technique at each step of the
construction.

Next we define the word w%. To do this, we make use of two auxiliary words. Let

be the prefix of w% that includes everything through the block of 2’s and let

shi=2...23...3...d...d

1 (1 1
N(2,2) N(243) N(Z.d)

be the suffix of w% that starts with the block of 2’s. Finally, we define

1 11 11 11 11
Wi =S Wi WP SHWy -+ WypPy3---3---d---d
3 1% 1P 52W) 2P )

(11 [1]
[ [1] N, N,
Ng' NG (3.3) (3.d)

where N([31}1), AU N([3l’]d) € N are chosen such that

1 1 1 1
|w%| < (81)2 . N([3,]2) < (81)4 ' N([3’]1) < (81)6 ' N([3,]d) < (81)8 ' N([3,]d—1)
<< @DMTENGL < 60 NEY (19)
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and N([Sl,]3) > K] |u)§ |. Again, the initial block of w31 is periodic (based on the word wll),
with the period ending when its pattern dictates the next letter should be 2. The second
block is periodic (based on the word wé), begins with a block of 2’s and ends when its
pattern dictates the next collection of letters should be a block of 3’s (w% then continues
with a block of 3’s). As in the previous step, this gives two transitions in wé: first from
a periodic block of w,’s to a periodic block of w,’s, and second from a periodic block
of w,’s to a block of 3’s. The choice of the prefixes and suffixes guarantes that these
transitions introduce the smallest possible number of new words (the analysis of this
number of new words is made precise in Step 3, where we analyze the growth of the
complexity Py (n)).

We continue inductively. Let i < d be fixed and suppose we have constructed words
wll, el wil, p%, ...,p,.l, sll, ...,sil. Define the word (note that many of the words we
define are too long to fit in a single line, and the line break is arbitrary)

S ~——
0]
N(liIJJrl.l) N([ilil,Z) N([il-}—l,i) N([I]J]rl‘i+l> Niit1.a)
where N([ilj_l’l), e, N([ilil,d) € N are chosen such that
1 2 [1] 4 [1] 6 [1]
lw; [ < (6D Ny < @D Nyyy oy < @D Niiy,o
1 j 1 j 1
<60 N([iJ]rl,i—3) << (8D 'N([iJ]rl,l) < @)¥* N([iil,d)
2it4 1 2d-2 1 2 1
<@ 'N([i—}-l,d—l) < <@ 'N([ij-l,i+2) < 6*- N([iJ]rl,iH) (20)
and N([ilil’l. 4y > K |wl.1 411+ Again, the lengths are chosen to control the growth of the
complexity, and the index k in N([l.lJ]r1 1y 1s taken in a cyclical order. Also define a prefix
and a suffix of wi1 41 by

S PR 1111 11 1 11 ,
Piy1 i =splwp--wippswy---wypy--esgwi e ccw pp (A D -4 1),
—_—
[ [ il [
Nt Nit12) Nty Niit1i+n)

Si]+] =@G+D---G(+DGE+2)---(+2)---d---d,

(1 1 (1
N(i+l,i+l) N(i+1,i+2) N(H—l,d)

so that pl.1 41 18 the prefix of u)i1 4 that includes everything through the block of (i + 1)’s,

and sl.1 41 1s the suffix of wl.1 1 that begins with the block of (i + 1)’s. By induction, this

defines words w}, c w},, p}Z R p}s}, ...,s:i. .
For each i € A, it follows immediately from the construction that:

(a) Every letter in A appears in wl.l.

(b) The frequency with which the letter i occurs in wl-1 is at least k1, by choice of the

(1 and the relations in (20).

integer N; 1y ;41
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We continue to define the sequences of words inductively. Assuming that we have
already defined words wy, ..., w/, p{,..., pJ.s{,...,s;, we define

JHr g Jod oJoJ JoJ Jond JoJ
Wy = SpWy Wy Py Sy Wy Py et SgWy e Wy Pys
NI N+ N+

1,1 (1,2)

where
j j+1 j+1 j+1
|wcjj| < (8j+1)2 : N([lj)d)] < (8j+1)4 : N([l],dJI) < (3j+1)6 : N([lj’djz)

i+1 _ i+1 i+1
< &j+0° - N([il;_]a) << @M N([f,;)] < (60 N([f,Jlr)] @D

and NY T > Kjt1 |w{-H |. Define prefixes and suffixes by

(1,1
AL T JJ JHL i+
Py =Sjwyewipy, s = wyo.
—_——
Nl

(1.1

We have analogs of properties (a) and (b) for the base case of the construction: each of the
words wy, ..., w} occurs as a subword of w{“ and the frequency with which the letter
1 occurs in w!*

Uis at least H,ﬁ:ll ki, provided that the frequency with which it occurs in
w{ was at least [T/ _, k.
Continuing inductively, for i < d, we define the word (note the change in superscript

half way through)

i+1 i+1  j+1 i+1 j+1 j+1  j+1 i+1  j+1
I L I S S

Wip) =51 W 1 P11 S W 2 P2
N ([[__/:11’11) N ([i,rll,JD
s/ ]l s - wp)
b NI N

where

j+1 2 L+ 4 L+ 6 nli+1l
lwi 1< Gj+07 - Ny < @G+0)7 - Ny < Gj+107 - Ny i)

8 L+ 2% AL+
< Gj+1) 'N(ij+1,i—3) << @) 'N(i]+1,1)
242 L] 2i4d L]
< @) NG gy < G T NGy <

2d-2 Lj+11 2d [j+11
< ((Sj-ﬁ-l) : N(,'J+17i+2) < ((Sj-ﬁ-l) 'N(i/+l,i+l) (22)

and N([l.jrll]i 1) > Kj+l |wl.j_i11 |, and define prefixes and suffixes by
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pij_:—ll — S{-Hw{—i-l ]+1p{+1 ]+1wé+1 wé_HPé—H
N([[’ :ll Jl) N([[’ :1 1 12 :
sinwin "’winpsz sij;i-lwl'j-%l "'wz'j+1pij+1,
N([’]:ll% <[/f11‘1,'+.>

J+L._ J J J J J J J J..J JoJ
Sivl =S Wi Wi Pig SipaWigo WigpPigo - SqgWy - Wy Py -

N[j+1] N[j+l] N[/H]

(i+1,i+1) (i+1,i42) (i+1,d)
Again, we point out that the words w{ ) ~; occur as subwords of wJL , and the
frequency with which the letter i 4 1 oceurs in w’j_rll is at least ]_[k 11 ki, provided that

the frequency with which it occurs in w 11 Was at least ]_[ k1 k-

By induction, we obtain sequences {w 390 FARTRS S f{w d} < | satisfying:

(a) Forany j > 2,any 1 <k < j — 2, and any iy, i, € A, the word wl].‘l occurs in each

of the words u)I]‘H, el wle by construction. Each of the words
k+2 k+2 k+2 k+2 k+2 k+2
w;, JPU Dy ST sy (23)
. k+1 wht1 k :
contains at least one of the words w, w, " and so w;, oceurs in each of these

words. Since w./ is a concatenation of the words appearing in (23), it follows that wg‘l

occurs in w syndetlcally, and the maximal gap length is at most

g o= max{lwi 2 L e Ay U{IpFT2|i 1 e AYU{Isf™2]: 1 e A) = [wh™2).

(b) For any i € .A and any j € N, the frequency with which the letter i occurs as a
subword of w; is at least Hk Lk = Tleey kx> 1/2.

We further note that given the freedom with which the lengths are chosen, we can assume
that N [l] y divides N7 i +>1 foralli, k € Aandall j € N. We make this assumption for the
remamder of the proof

Step 2 (Construction and ergodic properties of the subshift (X, 0)): Observe that w{ is
the leftmost subword of w{ 1 for all j € N, and so we can define a (one-sided) infinite
word w{® by declaring that for all j, the leftmost subword of w(® of length |w{ | is w{ .
Then for any i € A and any j € N, the word wij occurs as a subword of w{® syndetically.

Moreover, every subword of w(® occurs as a sub-subword of w{ for some j. Therefore
all subwords of w{° occur syndetically.

Let X C A% be the set of all bi-infinite sequences whose language consists only
of subwords of wi’o, meaning it is the natural extension of the closure of wj’O under o.
Since all words in £(X) occur syndetically in every element of X, (X, o) is minimal.
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Moreover, wij € L(X) foralli € Aand j € N. Therefore, for fixed i € A, there are
arbitrarily long words in £(X) for which the frequency with which the letter i occurs is
at least [ 7=, kx > 1/2. For each such word w?, if y, € [w!] and

n
|wi‘_1

1
== D By,
k=0

then any weak-* limit point v of the sequence (u,) is a o-invariant probability measure
supported on X such that v([i]) > 1/2 (such a construction of v is, for example, a standard
way to prove the Krylov—Bogolyubov Theorem). Consequently, as the ergodic measures
are the extreme points in the (convex) set of invariant probability measures on X, there
exists an ergodic measure u; supported on X for which u; ([{]) > 1/2. It follows that
wi([j]) < 1/2forall j # i, and so u; # p; for any j # i. Thus (X, o) has at least d
ergodic measures. If we can show that

Px (n)

lim inf <d+1,
n—oo
then there are at most d ergodic measures by Theorem 3.1; hence exactly d.

Thus we are left with showing that

P P
iminf 22X Z g fim sup 2X

n— 00 n n—00 n

=d+ 1.

Step 3 (Analysis of the growth rate of Px(n)): Let n > |wf| be a fixed integer. We
estimate the number of words in £, (X), which is, by definition, Py (n). By construction,

1 1 1 2 2 2 3
lwil < |wy| < -+ < |wy| < |wi] < |wy| <--- < |wy| < |wy| <---

‘We make the convention that wé = w{ +1, wi o = wj H, and so on (with the analo-
gous convention for N([z]. ]’ i) when iy > d). Therefore, there exist i; € A and j; € N such
that . .

wl'l <n < w1
With this convention, observe that

i1+1 i1+1  ji+1 ii+1_ji+1 j+1_ j+1 i1+1__j1+1
w/1+ ._ S11+ w/1+ ”_w/1+ p/1+ SJH— w/|+ '_.wél+ pé'+

i+l =5 1 1 1 % 2
N <[z] 11++ 11,]1) N ([:j 11: 11.]2>
ij11+lwijll+] ijllH ijll+] i];l+1wij11+1"'w{;1+1pil+1"‘silw£l "‘wilpil’
([iill:l].]il) N<[1jll-}-1,i1+1) N([ij;lil»d)
where
n<lwl < wl,l <<l <] <<l (24)
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1
It follows from the construction that if i, € A and j, € N are such that |w] = |wljllj__1 [,
then w % can also be written as a concatenation of words from the sets
Jitl j1+1 11+1 J1 J1 J1 ]l+1 ]l J1
{fwi L wy Wi Wi Wi g s W }—{w 11+1"“’wi1+d71}
and
Ji+l, Jr. Jitl, C o Jt. :
{pj " 1 =<i<igpU{p; i1 <i<d}U{s;” 1 <i<ig}Uls; i3 <i <d}.
Moreover, there are restrictions on the order in which these words may be concatenated
2.
in w;;

(1) Ifiy + 1 <i < i; + d, then the only words that may be concatenated with wij ! are

'1 J1 /1 J1
[ t+1w1+1

(i) The only words that may be concatenated to the right end of u);."1 ! =

S+l _ji Ji
11+1w11+1

itself and p;

1
”+)are

w T tself and pi,
Therefore, by (24), the only words of length n that appear as subwords of w;’; are those
which appear as subwords of words from the set

(w/'w!'1 i) <i <i +d}U{wJ1 ljl ljj_lw{jrl' i1 <i<iy+d}

J1
U{w11+dp11+dszl+lwu+l} (25)

with superscripts following the convention that if the subscript is larger than d, we in-
crement the superscript by 1. Since all words in £,(X) occur as subwords of w1 for
all sufficiently large j», it follows that all words in £, (X) appear as subwords of the 2d
words in the set (25).

We now analyze the words that appear in (25) by decomposing them into words of
length comparable to n. By construction, if 1 < m < d then wl.J ! 4, can be written as a
concatenation of words from the set (recall the divisibility of the lengths assumed at the
end of Step 1)

J1—1 J1—1 J1—1
11+1}UUH Sii+h— 1w11+k—1 11+k—1p11+k—1’ l]-‘rkwll-‘rk Wi\ 4k Piy+k
Uil Ll
(i1+k,ip+k—1) N ki +0)
J1—1 J1—1 J1—1 J1—1 a1 ji—1 a-1_j—1
Si k1 Wi k1 "“G1+k+11%1+k+1’-~ 2Sg—1 Wy—q - ’Ud 1 Pd 1>
Uil N
(i) +hk,i+k+1) (iy+h,d—1)
11—1 Ji—1 a=1_j—=1 _ji Jj1 Ji J1Ji Ji,, Ji 1
Sqg Wy Wy Pd R wlpl’s2w2"'w2p2""’si1wi1"'wilpil
[ ——
Ll il L] il
N(i1+k,d) N(i|+k.l> N(i1+k12) N(i|+k-i1)

(26)
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obeying the analogous rules for concatenation (wl 41 may be concatenated with itself or

any block that begins with s and any word that ends with p;.’; ! 4« may be concatenated

+2’
with a word that begins with s +k +1» again understood cyclically). In turn, the words of
length n that occur in words produced from this set are, themselves, words that occur
when words from the set

{wll st Sl )l Sl
N ([i/lliz,i 1+2)
él—l L]ll 1 wél_lpél 1 s{l w{1 L w{1 p{l, o Sij11 wijll . wijll pijll } 27)
Ny IIJ]rZ,d) N ([rjlliz n N ([ijllJ]rZ,n )

are concatenated (with the analogous rules for concatenation). Moreover,

o .
|w |<|w”_~_3|<--~<|w£]1l |<|w{1|<-~-<|w”|<n<|w (28)

l|+2 t+l|

and

Jl] (29)

n< |w”+1| NG To.m)

forall 1 <m < d (again,ifi;+2 > d then we increment the superscript of N([ljl 12 m) by 1
and reduce the subscript by d). In particular, every word in the set (25) can be obtained
by concatenating words from the set (26), and any word of length n that occurs in a word
in (25) can also be found in a word obtained by concatenating words from (27).
Forij +2 <i <ii+d+ 1, define
e -1 j—-1 =1 _j—1_j—-1_j—1_j—1 ;j—1
gi =W Wy W i Sip1 Wi Wi Wi o

to be the bi-infinite word whose restriction to the set of nonnegative indices is the infinite
]1 1 ]1 1 ]1 1 ]1 1 . . .
il Wigg Wipg Wigg o E and. Whos§ restrlctlon to the set of negative
indices is the infinite concatenation - - - w’! " w/! " w1 1

concatenation s

(note that the dependence

. ’ . i T i l1+1
of g; on jj is suppressed in our notation). Similarly define
) — Ll gl in=t =l il
qiy+d+1 = - 11+1 1|+1w11+1p11+l i1+2 l|+2w11+2w11+2

The set of words length n that arise by concatenating words from the set (27) is pre-
cisely the set of words of length » that appear in g;, 41, i, +2. - - -, i, +d, by (29). By the
estimates in (19)—(22), we have

/' ™ < 8, - Il < 8,
forallij +1 <i < d +1i;. It follows that:

1 Ifiir+1 < i < i; +d — 1, then the number of words of ¢; of length n is at least
n+1 (since g; is aperiodic) and at most n + 23, n, as there are at most §;, n words in
each block (periodic part) of g; and at most n transition words obtained from words
that overlap the origin.
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(ii) The number of words of g;, 141 of length n is at least n + 1 and at most n + §;,n

+ |w{1‘ l.
(iii) The only new words of g;,+4 are the n + 1 transition words which appear in
J1 Jt ot i J1 0 and1 J1
w; - wy p;s; o w;i g as well as words that appear in w; w4
L]
N(i1+2,i1)
(iv) The only new words of g;,+4+1 are the n 4 1 transition words which appear in
Ji i =l =1 ji—1
Wiit1Pij1 Sij+2 Wi 42 - Wi 42
N[.i1]

(i1+2.i1+2)
Thus we are left with counting subwords of wl.jll 41 wijl1 4 that have not already appeared.
Write

JUo_ JryJdr o e e
Wi 41 = 51 Wy Wy Py S Wy LN %)

L1l il
(i1 +1,1) N(i1+l,2)

Ji, .0 -1 ji—1 =1 _ji—1 =1 ji—1 =1 _ji—1
Py .

g J
Si Wiy Wy Py S Wi Wit Py 0 Sa W Wy

11 [j1] Ll
N vLip N vrig+1) Niy+1.4)

Then by (22) and the observation that |wl.jI ! Ll < N([z]| 1—11 i+1) /8j, for all sufficiently
large ji, we have

J1 [Jj1] [j1] [j1] [j1]
lwi | <8j - Niiviiy < Niyirin/8in <8 Nivri—1 < Niy+1.,-1/ 9
i NG+, -2) (i1+1,i1—2)/ %1 1 VG 1, —3) (i1+1,i1=3)/ 1

[j1]

) [Jj1] [Jj1] . . [Jj1] )

< <8 NGy < Ngsin/8h <8 Niiiray < Nit1.ay/%0
i [Jj1] [j1] ) ) [Jj1]

<dj "N is1.a-1) < N(i1+1,d—1)/5/1 <. <$ "N +1.042)

[j1] ) . [Jj1] Ji (1] .
< NG i+ <8 N gri4n < Wil < NG inian /8-

Thus there are four possibilities:

: J1 [Jj1l .
@ w1 <n <N

(i) N}iﬁlil,il) <n< N([iJ.IJ]r},il—l) (indices taken modulo d);

i) N, =< N and there exists iy € A\ {i1, i1 + 1} such that

N([i]lljrl’iz) <n< N([iJI'J]r],iz_l) (indices taken modulo d);

(iv) NU!! <n < |w

(h+Li+D = z|+1| (by condition (29)).
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In case (i), there are no words of length n in wljl' le 41 that were not previously

counted (all blocks in its decomposition are of length larger than n). In this case
Px(n) < (d — 1)&j,n + [w'| + dn. (30)

[j1]

. . 1
In particular, since |wi1 | <6 N(11+1 i

(30) holds. This implies that

|wi]'11| ; 4 | ]1|
PX([ 5 J) = @+ don): [TJ-

.. . . . . . j— 00
This situation arises infinitely often (once for each §;), and since §; Eintad 0,

P
lim inf 2X )

n— 00 n

we are in case (i) when n = L|w |/8/]J and so

<d.

Combining this with the fact that (X, o) has at least d distinct nonatomic ergodic mea-
sures and applying Theorem 3.1, we find that

P
liminf 2X®)

n—o00 n

=d.

In particular, this implies that there are exactly d ergodic measures.
In case (ii), we have

[j1] [J1]
Niyyrin =1 <N -

andn < N ([l/ IJ]F 1 k) for all k € A\ {i1}. In this case, the only new words of length n that

1

arise in w;, +1w | arethen — N Ll transition words that arise in

11+ (1+Li1)

J1 J1 w! sTp! iyl ji—1_ji—1
si]—lwil—l.. ll—lpll—l i wl| o !1 pl] i1+1 wi]-‘rl ...wi]-f—] pi]-i-l’

L1l i1 [i1]
(1+1ip =1 N vip NG i+

where a word is a transition word if it completely contains the middle block (all other
blocks have length larger than n and so contribute no new words). Thus, in case (ii),

Px(n) < dn+2d8n+ (n— NS ) < (d + Dn +2ds;,. 31)

In case (iii),

[j1] [j1 [j1] [j1]
= NGy > 8 Nt > 8 Nt iasy > > 8 Nty 32)
and
[j1] [j1] Lj1]
n<Niiri-n < Nistn-2 < <N
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by (19)—(22). Therefore the only new words of length n that arise in w?! Ji

9. ° th P41 Wi, 4 are the
transition words that arise in

J1 J1 J1 J1 Ji, J1 J1 1
... wlz_lplz_l slz 11)[2 ... wlz plz ...

L) Uil

(i1 +1ip—1) Ny +1.ip)
st ot it gl il el =l
i Wi, iy Piy Sip+1 Wi+1 iv+1 Pij+1 -

[71] i1

(i1+1L,i1) N(i1+l,i1+1)
That is, this word decomposes into blocks such that the first and last have length larger
than n; the transition words are those that fully contain one of the blocks of length smaller
than n. There are at most

N[j]] L1l + N[/]]

L1l [j1]
(= NG 4100 T NG o+ T NG 0+ T T N -1 (1+1,i1)

@1+

such blocks. By (32), this is at most n — N([[J;'j_lﬁiz) +ddj n. So in case (iii),

Px(n) <dn+2d8n+n—NJ'\| . +dsjn < (d+ Dn+3dsn.  (33)

Finally, in case (iv), the only new words are the transition words that occur in

=1 ji—1 a=1_j—-1 _ji—1_ ji—1 =1 _ji—1
Sttt Wit Wi Pyt Sip2 Wi - Wi Pipg2
L] L1l
(i1 +Lip+1) Nivni 2
Ji, J1 g gt gi—1 ji—1 a—-1_j—-1 _j-1_ j—1 a-1_j—1
Siy Wiy Wi Py Si Wi 7 Wi P Si2 Wi2 0 Wi 2 Pij2
L1l L1l (1]
@1+ Niiy+1,ip+1) Niiy+1.i1+2)
Ji,, i J1 . J1
Sip Wiy Wiy Py
[ S ——
Uil
(i1+1.i7)

where a word is a transition word if it completely contains any of the blocks of length

smaller than N([z]| 1_1 Lij+1)" However, by (19)-(22), we have
[j1] [j1]
8jin = 8 N1 i 41y > Nt
forall k € A\ {i; + 1}, and so there are at most n 4 d§;, n such words. Thus in case (iv),
Px(n) <dn+2déjn+n+déjn = (d+ 1)n+3dé;n. (34)
It follows from (30), (31), (33), and (34) that
P
lim sup x () <d+1,
n— o0

and therefore the lim sup is equal to d 4 1 by Theorem 3.1. O
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We end with several constructions showing various senses in which our results cannot
be improved. We first review some standard facts about Sturmian shifts. A Sturmian shift
(Y, o) is a minimal subshift of {0, 1}Z whose complexity function satisfies Py (n) = n—+1
for all n € N. Any Sturmian shift is uniquely ergodic, and for any o € (0, 1) \ Q there
exists a Sturmian shift (Yy, o) whose unique invariant probability measure u satisfies
w([0]) = «. In particular, there are uncountably many distinct Sturmian shifts.

We first show that the technical condition (that there exists a generic measure @ and
a generic point x,, such that the orbit closure of x;, is not uniquely ergodic) cannot be
dropped from the second statement in Theorem 3.1:

Proposition 5.1. For d > 1, there exists a subshift (X, o) which has precisely d ergodic
measures and zero nonergodic generic measures, and whose complexity function satisfies
Px(n) = dn +d for all n € N. This subshift has the property that every x € X is generic
for some ergodic measure and the orbit closure of any point is uniquely ergodic.

Proof. Fix d € N and fix a Sturmian shift (Y, o) on the alphabet {0, 1}. Let A :=
{01,11,02,12,...,04,1gyand for 1 < i < dletY; C AZ be the image of (Y, o)
under the 1-block code that sends O — 0; and 1 — 1;. Let

d
X = UY,‘ c AX
i=1

and observe that X is closed and o -invariant. Moreover, we have Px (n) = dn + d for all
n € N. Each subshift ¥; C X supports a unique ergodic measure, and so there are at least
d ergodic measures for (X, o). Conversely, for each x € X there exists 1 <i < d such
that x € Y;. Since Y; is uniquely ergodic, x is generic for the (unique) ergodic measure
supported on Y;. Thus there can be no other measures that have a generic point. O

Finally, we show that the assumption of linear growth in Theorem 1.1 is optimal, in the
sense that there is no analog of Theorem 1.1 with an assumption of a superlinear growth
rate and conclusion that the set of ergodic measures is finite for all subshifts whose com-
plexity function grows at most at that rate.

Proposition 5.2. Let (p,);2 | be a sequence of real numbers such that

liminf 2% = oo,

n—oo n
Then there exists a subshift (X, o) which has infinitely many nonatomic ergodic measures
and satisfies Px (n) < p, for all but finitely many n.

Proof. For each n € N, there exists a set F,, C {0, 1}"" such that |F,| = n + 1 and
L,(Yy) = Fy for uncountably many o € (0, 1). For N < n, let Xy (F;) be the set of
words of length N that arise as a subword of a word in F,. Clearly if £,(Yy) = F,
then Ly (Yy) = Xn(Fp). Let G C {0, 1} be such that G; = X (F,) for infinitely many
n € N. Inductively, we assume that we have defined G; C {0, 1} forall 1 <i < j such
that:
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(i) Forall1 < ji < jp < jwehave G, = &}, (Gj,).
(ii) There are infinitely many # for which G; | = &j_1(Fy).
‘We then choose g,- c {0, l}j such that among those n for which g,-_l = X;_1(Fy), there
are infinitely many n for which G; = X;(F,). In this way, we obtain an infinite sequence
G1,Ga, ... suchthatif 1 < j < j», then G;, = X}, (G},) and there are uncountably many
a € (0, 1) for which £}, (Yy) = Gj,.

For eachn € N, set

Ap i={a € (0,1): L,(Yy) =Gyl
Then by construction, A, is uncountable for all n € N,
Al DA D -,

and A, # A,4 for infinitely many n € N. (If not, there exist distinct 1, 2 € () Ay,
and so £, (Yy,) = L, (Yy,) for all n, contradicting the fact that the frequency with which
the letter O occurs as a subword of any word in £, (Y,) tends to «; fori = 1,2.)

‘We now construct the subshift. Find N1 € N such that p, > 2n + 2 for all n > Nj.
Choose the smallest My > Nj for which Ay, 41 # Ay, and let 1 € Ay, \ Apgy41.
Set X1 := Yy, and observe that Py, (n) = n + 1 for all n. Now find N, € N such that
Pn > 3n + 3 forall n > N,. Find the smallest M, > N, for which Ay, 11 # Ay,
and let oy € Ay, \ Amy+1. Set Xo := Yy, U Y,,. Then, by construction, oz € Ay, and
s0 Ly, (Yo,) = Ly, (Yy,), but since oy € Ay, C Apgy+1 we know that Ly, 41 (Yy,) #
L1, +1(Yy,). Consequently, Px,(n) =n+1foralln < Mj,andn+1 < Px,(n) <2n+2
foralln > M.

Now recursively suppose we have chosen integers M| < --- < M; such that for each
1 <k <iwehave p, > (k+1)n+ (k+1) for all n > M} and moreover Ay, 1 # Apy,.
Suppose further that we have chosen «y, ..., «; such that oy € Ay, \ Ay, 41 for each k.
Finally, define X; := Y,, U - .- U Y,,. Then, by construction, we have Px,(n) < kn + k
foralln < My. Find N;41 € Nsuchthat p, > (i +2)n+ (i +2) foralln > N;41, and let
M 11 be the smallest integer larger than N;4 for which Ay, # Ap, i +1. Letaiyg €
Apipy \ Amipy+1. Define Xy i= Yo U---UYy, UYy,, . Since a1 € Ay, C A,
we know that Ly (X;) = Lx(X;41) for all & < M;, and since aj+1 € Ap,4+1 We know
that Lyg,+1(X;) # Ly;+1(Xi41). Consequently, Py, ,(n) = Py, (n) foralln < M;, and
Px,.,(n) < (i +Dn+ (@ +1)foralln > M;. By construction, p, > (i + Dn+ (@ + 1)
for all n > M;. Therefore our recursive construction continues for all i € N.

Thus we obtain a sequence of subshifts X; C X C --- such that Py, (n) < p, for
alli € Nand all n > Nj. Setting

we see that £, (X) = U?il L,(X;) for all n € N. Therefore, Py (n) < p, foralln > Nj.
On the other hand, Y,;, C X for all i € N and there is an ergodic probability supported
on Yy,. Since Yy, # Yo, for all i # j by construction, X has infinitely many ergodic
measures. O
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