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Abstract. In 1984 Boshernitzan proved an upper bound on the number of ergodic measures for a
minimal subshift of linear block growth and asked if it could be lowered without further assump-
tions on the shift. We answer this question, showing that Boshernitzan’s bound is sharp. We further
prove that the same bound holds for the, a priori, larger set of nonatomic generic measures, and that
this bound remains valid even if one drops the assumption of minimality. Applying these results
to interval exchange transformations, we give an upper bound on the number of nonatomic generic
measures of a minimal IET, answering a question recently posed by Chaika and Masur.
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1. Introduction

Let (X, σ ) be a subshift, meaning that X ⊂ AZ, where A is a finite alphabet, and X is a
closed set that is invariant under the left shift σ : AZ

→ AZ. A classic problem is to find
conditions that imply (X, σ ) is uniquely ergodic or, more generally, has a finite number
of ergodic measures. In the 1980’s, Boshernitzan [1] showed that the complexity of the
subshift can be used to obtain such a result. More precisely, if PX(n) is the number of
words of length n which occur in any x ∈ X, he showed that if (X, σ ) is minimal and
lim supn→∞ PX(n)/n < 3, then it is uniquely ergodic (see also related results in [3]).
More generally, Boshernitzan showed that if

lim inf
n→∞

PX(n)

n
< k, (1)

then there are at most k−1 ergodic measures. Some motivation for studying this problem
is generalizing the well-known bound on the number of ergodic measures for an interval
exchange transformation (IET), that had been previously proven, independently, by Katok
and Veech. Boshernitzan’s Theorem applies to a much broader class of dynamical systems
than the interval exchange transformations, but the bound he obtains is weaker than that
of Katok and Veech in the case of an IET.
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Boshernitzan asked in [1], and then again in [2], whether his bound could be lowered
in this more general setting. One of our main results answers Boshernitzan’s question:
for the class of minimal subshifts whose complexity function satisfies (1), Boshernitzan’s
bound is a sharp bound for the number of nonatomic ergodic measures. Our technique
also shows that the bound is more general than originally stated: the same bound remains
valid (and sharp) even without the assumption of minimality and even if one seeks to
bound the (a priori, larger) set of nonatomic generic measures.

The particular case of minimal interval exchange transformations has been well stud-
ied (for example Katok [10], Keane [12], and Veech [14]). A minimal k-interval exchange
transformation (k-IET) has a natural symbolic cover, its natural coding, and this subshift
satisfies the hypothesis of Boshernitzan’s Theorem. As an application, this shows that a
minimal k-IET (see Section 4 for the definition) has at most k − 1 ergodic measures. The
optimal bound of bk/2c was proven, independently, by Katok [10] and Veech [14]. In a
recent paper, Chaika and Masur [4] studied the broader class of generic measures for an
IET and asked whether there are bounds on the number of such measures. An interesting
facet of this problem is that although several quite different proofs of the bound given by
Katok and Veech for the number of ergodic measures exist in the literature, they all use
ergodicity in an essential way.

If X is a compact metric space, B the Borel σ -algebra, µ a Borel probability measure
on B, and T : X→ X a measurable map preserving the measure µ, then a point x ∈ X is
a generic point for the measure µ if for every continuous function f : X→ R,

lim
N→∞

1
N

N−1∑
n=0

f (T nx) =

∫
f dµ.

The measure µ is generic if it has a generic point. Thus, by the Pointwise Ergodic The-
orem, if the measure µ is ergodic then almost every point is generic. However, a generic
measure need not be ergodic. Chaika and Masur [4] constructed a 6-interval exchange
transformation that has a generic, but not ergodic, measure. They asked if there is a bound
on the number of generic measures for a k-IET. We show:

Theorem 1.1. If (X, σ ) is a subshift and there exists k ∈ N such that

lim inf
n→∞

PX(n)

n
< k,

then (X, σ ) has at most k − 1 distinct, nonatomic, generic measures.

In particular, this applies to interval exchange transformations by passing to the natural
cover. Theorem 1.1 generalizes Boshernitzan’s Theorem [1] in two ways: there is no
assumption of minimality and our bound holds for the more general class of generic
measures. We also give an analogous bound for lim sup (note the technical assumption is
vacuous for minimal subshifts that are not uniquely ergodic).

Theorem 1.2. Suppose (X, σ ) is a subshift and there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k.
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If (X, σ ) has a generic measure µ and a generic point xµ for which the orbit closure

{σ kxµ : k ∈ Z}

is not uniquely ergodic, then (X, σ ) has at most k − 2 distinct, nonatomic, generic mea-
sures.

Recently Damron and Fickenscher [5] proved a related result, showing that any minimal
shift (X, σ ) whose complexity function satisfies PX(n) = kn + c for some constant c,
k ≥ 4 and all n sufficiently large has at most k − 2 ergodic measures.

Moreover, we show that these theorems are sharp, even ifX is assumed to be minimal
and the measures are required to be ergodic.

Theorem 1.3. Suppose d > 1 is an integer. There exists a minimal subshift (X, σ ) which
has exactly d ergodic measures, zero nonergodic generic measures, and which satisfies

lim inf
n→∞

PX(n)

n
= d, lim sup

n→∞

PX(n)

n
= d + 1.

We include several other examples in Section 5, showing other senses in which Theo-
rems 1.1 and 1.2 can be said to be sharp.

As an application of Theorem 1.1, we answer Chaika and Masur’s question:

Theorem 1.4. For k > 2, a minimal k-interval exchange transformation has at most
k − 2 generic measures.

For k = 2, a minimal 2-interval exchange is an ergodic rotation, which is uniquely er-
godic. For k = 3 and 4, Theorem 1.4 is a sharp upper bound, but we do not know if it
is sharp for k ≥ 5. In particular, we do not know if we can improve the symbolic re-
sult of Theorem 1.1 for systems that arise as the natural coding of an interval exchange
transformation. Similarly, we would like to know if the conclusion of Theorem 1.4 can
be strengthened to replace k − 2 by [k/2]. We also do not know if there can be a second
generic measure in the example of Chaika and Masur, nor if a 6-interval exchange with
three ergodic measures can also have a generic (and obviously nonergodic) measure.

2. Background and notation

If A is a finite alphabet, a word w in the alphabet is a concatenation of letters in A and the
length |w| of the word is the number (finite or infinite) of letters. A word w = w1 · · ·w`
occurs in a word u = u1 · · · uk if there is some m ∈ {1, . . . , k − `} such that w1 =

um, . . . , w` = um+`, and we refer to w as a subword of u. The analogous definitions hold
for a finite word w occurring as a subword of an infinite word u.

A language L is a set of (finite) words such that if w ∈ L, then any subword is also
contained in L. The language determined by a word (finite or infinite) is the collection
of all finite subwords of the word. We let Ln denote all the words in the language L of
length n. If w ∈ L, we write [w] for the cylinder set determined by w, meaning that

[w] = {u ∈ L : the first |w| symbols of u agree with w}.
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We assume that the alphabet A is endowed with the discrete topology and if x ∈ AZ,
we use x(n) to denote the value of x at n ∈ Z. The space AZ is a compact metric space
when endowed with the product topology (and a compatible metric).

A subshift (X, σ ) is a closed subset X ⊂ AZ that is invariant under the left shift
σ : AZ

→ AZ defined by (σx)(n) = x(n + 1). If L is the language of the system X,
meaning the set of all finite subwords that arise for any x ∈ X, we write L = L(X),
and we write Ln = Ln(X) for the words of length n. We define the complexity function
PX : X→ N by

PX(n) = |Ln(X)|.

For a word w ∈ L(X), we write 1[w] for the indicator function of the word w. We say
that x = (x(n))n∈Z ∈ X is periodic if there exists m 6= 0 such that x(m + n) = x(n)

for all n ∈ Z; otherwise it is aperiodic. The point x is eventually periodic if there exist
m 6= 0 and N ∈ N such that x(m+ n) = x(n) for all n ≥ N .

For a system (X, σ ), the orbit of x ∈ X is defined to be {σ nx : n ∈ Z}, and the system
is minimal if the orbit closure {σ nx : n ∈ Z} equals X for any x ∈ X.

For N,m ∈ N, define w(N,m) ∈ LN (X) by

w(N,m) := (x(m), x(m+ 1), . . . , x(m+N − 1)) (2)

to be the word of length N that occurs in x starting at location m. We make use of the
following theorem (though stated differently) of Epifanio, Koskas, and Mignosi [7]:

Theorem 2.1 ([7, Theorem 2.2]). Assume x ∈ AN is not eventually periodic and fix
M,N0 ∈ N. Suppose that for some N ≥ N0, there exist M ≤ m1 < m2 ≤ N such that
wx(N,m1) = wx(N,m2). Then there exists K ≥ m1 such that

(i) (Distinct Words Condition) for all K ≤ k1 < k2 ≤ K +N −N0 we have wx(N, k1)

6= wx(N, k2);
(ii) (Prefix First Occurrence Condition) for all K ≤ k < K + N − N0 there exists

M ≤ lk ≤ N such that wx(N0, k) = wx(N0, lk).

For completeness, we include the proof, but it is merely a translation of the proof in [7]
using our hypotheses and emphasizing the stronger conclusion.

Proof of Theorem 2.1. Suppose that wx(N,m1) = wx(N,m2). Then the word
wx(N + m2 − m1, m1) is periodic of period m2 − m1. Since x is not eventually peri-
odic, there existsN ′ ≥ N+m2−m1 such that wx(N ′, m1) is periodic of periodm2−m1,
while wx(N ′+1, m1) is not. Let 1 ≤ p ≤ m2−m1 be the minimal period of wx(N ′, m1)

and define K := m1 + N
′
− N − p ≥ m1. By minimality of p and the fact that N ≥ p,

if K ≤ i < j ≤ K + p − 1 then wx(N, i) 6= wx(N, j) (and all such words are periodic
of period p).

For contradiction, suppose there existK ≤ i < j ≤ K+N−N0 such thatwx(N, i) =
wx(N, j). Since i, j cannot both be smaller than K + p, it follows that j ≥ K + p. The
word wx(N + (j − i), i) is periodic of period j − i and its prefix of length p + j − i
is periodic of period p. By the Fine–Wilf Theorem [9], this prefix is periodic of period
gcd(j − i, p). Since this prefix has length at least p, it follows that wx(N + (j − i), i)
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is periodic of period gcd(j − i, p) and, in particular, is periodic of period p. Moreover,
K ≤ i ≤ K +N −N0 and so wx(N + (j − i), i) begins at least p spaces before N ′ + 1
and ends at location

i +N + (j − i) = N + j ≥ N + (K + p) = m1 +N
′
+ 1.

Thus the periodicity of wx(N + (j − i), i) contradicts the fact that wx(N ′, m1) is not
periodic of period p, which implies that wx(N, i) 6= wx(N, j) for any M ≤ i < j ≤

K + n−N0.
Since wx(N ′, m1) is periodic of period p ≤ n and the length N0 prefix of wi(N, i) is

a subword of wx(N ′, m1), the second statement follows. ut

3. Main results

Theorems 1.1 and 1.2 follow from the following estimate:

Theorem 3.1. Let (X, σ ) be a subshift which has at least d ≥ 1 distinct, nonatomic,
generic measures. Then

lim inf
n→∞

PX(n)

n
≥ d.

If, in addition, (X, σ ) has a generic measureµ and a generic point xµ whose orbit closure
{σ kxµ : k ∈ N} is not uniquely ergodic, then

lim sup
n→∞

PX(n)

n
≥ d + 1.

Proof. We show that for arbitrarily small δ > 0, we have

lim inf
n→∞

PX(n)

n
> d − 2dδ (3)

and, under the additional hypothesis of a generic measure and associated generic point
whose orbit closure is not uniquely ergodic,

lim sup
n→∞

PX(n)

n
> d + 1− 2dδ. (4)

The theorem follows immediately from these estimates.
Fix δ > 0, and for convenience assume that 1/δ ∈ N. Supposeµ1, . . . , µd are distinct,

nonatomic, generic measures for (X, σ ) and choose x1, . . . , xd ∈ X such that for each
1 ≤ i ≤ d , xi is generic for µi . Observe that if x is eventually periodic and is generic for
some measure µ, then µ must be the atomic measure supported on the (eventual) period
of x. Therefore, since µi is nonatomic, xi is not eventually periodic for all i. By definition
of xi , for all w ∈ L(X) we have

lim
N→∞

1
N

N−1∑
k=0

1[w](T kxi) = µi([w]). (5)
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For 1 ≤ j1 < j2 ≤ d, choose words w(j1,j2) ∈ L(X) such that µj1([w(j1,j2)]) 6=

µj2([w(j1,j2)]). Set

ε := min{|µj1([w(j1,j2)])− µj2([w(j1,j2)])| : 1 ≤ j1 < j2 ≤ d}, (6)

B :=
δ

16− 4δ
. (7)

By (5), for each 1 ≤ i ≤ d there exists Ni ∈ N such that for all N ≥ Ni and all
1 ≤ j1 < j2 ≤ d, we have∣∣∣∣ 1

N

N−1∑
k=0

1[w(j1,j2)](T
kxi)− µi([w(j1,j2)])

∣∣∣∣ < B · ε. (8)

Set
M := max

1≤i≤d
Ni . (9)

Analogous to (2), for 1 ≤ i ≤ d and N,m ∈ N, define

ui(N,m) := (xi(m), xi(m+ 1), . . . , xi(m+N − 1)) ∈ LN (X)

to be the word of length N that occurs in xi starting at location m.
If u,w ∈ L(X) and |u| ≥ |w|, define the frequency with whichw occurs as a subword

in u to be

F(u,w) :=
1

|u| − |w| + 1

|u|−|w|∑
k=0

1[w](T kx), (10)

where x ∈ [u]. Note that this frequency does not depend on the choice of x ∈ [u], as it
only depends on the first |u| coordinates of x. Suppose

N ≥
1
δ
· (M +max{|w(j1,j2)| : 1 ≤ j1 < j2 ≤ d})

is fixed and defineLN := b(2−δ)Nc and `N := bδNc. By definition, `N−|w(j1,j2)| ≥ M

for all w(j1,j2). If 1 ≤ i ≤ d, 1 ≤ j1 < j2 ≤ d, and M ≤ L ≤ LN , then the frequency
with which the word w(j1,j2) occurs in the subword of xi with length `N and starting
from location L is given by (recall that ui(`N , L) is the word of length `N that starts at
location L in xi)

F(ui(`N , L),w(j1,j2)) =
1

`N − |w(j1,j2)| + 1

`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
k(T Lxi))

=
1

`N − |w(j1,j2)| + 1

L+`N−|w(j1,j2)|∑
k=L

1[w(j1,j2)](T
kxi)
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=
1

`N − |w(j1,j2)| + 1

(L+`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
kxi)−

L−1∑
k=0

1[w(j1,j2)](T
kxi)

)

=
L+ `N − |w(j1,j2)| + 1
`N − |w(j1,j2)| + 1

·
1

L+ `N − |w(j1,j2)| + 1

L+`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
kxi)

−
L

`N − |w(j1,j2)| + 1
·

1
L

L−1∑
k=0

1[w(j1,j2)](T
kxi).

But by (8),

∣∣∣∣ 1
L+ `N − |w(j1,j2)| + 1

L+`N−|w(j1,j2)|∑
k=0

1[w(j1,j2)](T
kxi)− µi([w(j1,j2)])

∣∣∣∣ < B · ε,

and since L ≥ M , we have∣∣∣∣ 1
L

L−1∑
k=0

1[w(j1,j2)](T
kxi)− µi([w(j1,j2)])

∣∣∣∣ < B · ε.

Therefore

|F(ui(`N , L),w(j1,j2))− µi([w(j1,j2)])|

≤
L+ `N − |w(j1,j2)| + 1
`N − |w(j1,j2)| + 1

· B · ε +
L

`N − |w(j1,j2)| + 1
· B · ε

=
2L+ `N − |w(j1,j2)| + 1
`N − |w(j1,j2)| + 1

· B · ε

≤
2b(2− δ)Nc + bδNc − |w(j1,j2)| + 1

bδNc − |w(j1,j2)| + 1
· B · ε.

By definition (7) that B = δ
16−4δ , for all sufficiently large N this inequality implies

|F(ui(`N , L),w(j1,j2))− µi([w(j1,j2)])| < ε/2. (11)

By (6), for all sufficiently large N and all L1, L2 ∈ {M,M + 1, . . . , b(2− δ)Nc} we see
that if 1 ≤ i1 < i2 ≤ d, then the frequency with which w(i1,i2) occurs in ui1(`N , L1)

is different than its frequency in ui2(`N , L2). Therefore ui1(`N , L1) 6= ui2(`N , L2). For
1 ≤ i ≤ d define

Wi(N) := {ui(`N , L) : M ≤ L ≤ b(2− δ)Nc} ⊆ L`N (X).

We have shown that for all sufficiently large N , if 1 ≤ i1 < i2 ≤ d, then

Wi1(N) ∩Wi2(N) = ∅. (12)
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Fix i with 1 ≤ i ≤ d and fix N sufficiently large such that (12) holds. If the words

ui(N,M), ui(N,M + 1), . . . , ui(N, b(1− δ)Nc) (13)

are all distinct, then the set

Si := {w ∈ LN (X) : all subwords of w of length `N are elements of Wi(N)} (14)

contains at least b(1 − δ)Nc −M elements. If, on the other hand, the words in (13) are
not all distinct, then there exist M ≤ L1 < L2 ≤ b(1 − δ)Nc such that ui(N,L1) =

ui(N,L2). In this case, by Theorem 2.1 there exists K ∈ N such that

(i) (Distinct Words Condition) for allK ≤ k1 < k2 ≤ K+N−`N we have ui(N, k1) 6=

ui(N, k2);
(ii) (Prefix First Occurrence Condition) for all K ≤ k ≤ K + N − `N there exists

`N ≤ lk ≤ N such that ui(`N , k) = ui(`N , lk).

Thus in this case, the set

Ti := {w ∈ LN (X) : the leftmost subword w of length `N lies in Wi(N)} (15)

contains at least N − `N elements.
By (12), Si1 ∩ Si2 = ∅ whenever i1 6= i2 (and both sets are defined). A similar

statement holds when comparing any Si1 to Ti2 for any i2, or when comparing Ti1 to Ti2 .
Thus for each 1 ≤ i ≤ d , we have associated either the set Si or the set Ti and

PX(N) ≥ d ·min{N − `N , b(1− δ)Nc −M} = d ·min{N − bδNc, b(1− δ)Nc −M}.

Therefore,
PX(N)

N
≥
d ·min{N − bδNc, b(1− δ)Nc −M}

N
,

which is larger than d − 2dδ for all sufficiently large N , thus establishing (3).
To prove (4) , suppose that there exists 1 ≤ i ≤ d such that the orbit closure of xi

is not uniquely ergodic. Then for any fixed (and sufficiently large) N ∈ N, there exist
infinitely many L ∈ N such that ui(`N , L) /∈Wi(N). Fix N ∈ N.

If the words

ui(N,M), ui(N,M + 1), . . . , ui(N, b(1− δ)Nc)

are all distinct, then we define Si as in (14). In this case, choose the smallest L ≥ M for
which ui(`N , L) /∈Wi(N); clearly L > LN . Then each of the words

ui(N,L−N + `N ), ui(N,L−N + `N + 1), . . . , ui(N,L− `N )

has the property that its leftmost subword of length `N is an element of Wi(N), and
these words are pairwise distinct (in ui(N,L−N + `N + j) the leftmost occurrence of a
subword of length `N that is not in Wi(N) begins at location L− `N − j ). These N − `N
words of length N do not lie in Si , and are not contained in any Sj or Tj for any j 6= i
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(as defined in (15)), since their leftmost subword of length `N is in Wi . Therefore by the
bound on the size of Si following (14),

PX(N) ≥ d ·min{N − `N , b(1− δ)Nc −M}
= d ·min{N − bδNc, b(1− δ)Nc −M} + (N − `N ),

and so in this case,

PX(N)

N
≥
d ·min{N − bδNc, b(1− δ)Nc −M}

N
+
N − bδNc

N
.

If N is sufficiently large, this is larger than d + 1− 2dδ.
Thus we are left with showing that there are infinitely many N ∈ N for which the

words
ui(N,M), ui(N,M + 1), . . . , ui(N, b(1− δ)Nc) (16)

are all distinct. Fix some N ∈ N and assume that these words are not all distinct. As
before, let L1, L2 ∈ {M,M+1, . . . , b(1−δ)Nc}with L1 < L2 be such that ui(N,L1) =

ui(N,L2). Let p be the minimal period of the word ui(N+L2−L1, L1) and letK be the
largest integer for which ui(K,L1) is periodic with period p (note that K is finite since
xi is not eventually periodic). Then the words

ui(K,M), ui(K,M + 1), . . . , ui(K, b(1− δ)Kc) (17)

are all distinct: if j > L1 −M then the word ui(K,M + j) begins with a word that is
periodic of period p and has length exactly K − L1 − j (so no two words of this form
can coincide), and if j ≤ L1 −M then ui(K,M + j) either begins with a word of length
K − L1 + j that is periodic of period p, or has a prefix of length at most L1 followed
by a word of length at least K − L1 > N that is periodic of period p (which occurs in a
different location for each such j ). Therefore, for each N ∈ N there exists K ≥ N such
that the words in (17) are all distinct, and in particular there are infinitely many N such
that the words in (16) are distinct. This establishes (4). ut

As immediate corollaries of Theorem 3.1, we have the theorems stated in the introduction:

Corollary (Theorem 1.1). If (X, σ ) is a subshift and there exists k ∈ N such that

lim inf
n→∞

PX(n)

n
< k,

then (X, σ ) has at most k − 1 distinct, nonatomic, generic measures.

Corollary (Theorem 1.2). If (X, σ ) is a subshift and there exists k ∈ N such that

lim sup
n→∞

PX(n)

n
< k,

and if (X, σ ) has a generic measure µ and a generic point xµ whose orbit closure is not
uniquely ergodic, then (X, σ ) has at most k − 2 distinct, nonatomic, generic measures.
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In Section 5, we show that both of these corollaries are sharp. In particular, the linear
growth rate in Theorem 1.1 is optimal, in the sense that a superlinear growth rate does not
suffice to show that the set of ergodic measures is finite, and the technical condition of
Theorem 1.2 (and in Theorem 3.1) on the existence of a point whose orbit closure is not
uniquely ergodic cannot be dropped.

4. The natural coding of an IET

Let k ≥ 1 be an integer and π be a permutation of {1, . . . , k}. Let I = [0, λ) be an
interval and choose 0 = λ0 < λ1 < · · · < λk = λ. The interval exchange transformation
T : [0, λ) → [0, λ) is defined to be the map that is an isometry on each subinterval
[λi−1, λi) for i = 1, . . . , k and rearranges the order of these subintervals according to the
permutation π . Without loss of generality, we can assume that k is the smallest number of
subintervals needed to define the transformation T (otherwise we can join two consecutive
subintervals into a single one). We refer to this interval exchange transformation as a k-
IET or just an IET when k is clear from the context.

Given an interval exchange transformation, there is a natural coding by an associated
dynamical system. For x ∈ I , define x = (xn) ∈ {1, . . . , k}N by setting

xn = i if and only if T nx ∈ [λi−1, λi).

The language of x is the set of all finite words that appear, and the natural coding of the
interval exchange transformation is the symbolic system, endowed with the shift, that has
the same language as x. The natural symbolic cover of an interval exchange transforma-
tion is the subshift that codes every x ∈ I , meaning it is the symbolic system, endowed
with the shift, whose language consists of all finite words that arise in the orbit of any
x ∈ I . While the image of the interval [0, λ) under this coding is invariant under the
shift, it is not necessarily closed, and so we take its orbit closure to produce a semicon-
jugacy from the coding to the interval exchange. For further details, see [11, Chapter 15,
Section 5].

If a point does not lie in the orbit of one of the endpoints of the subintervals defining
the IET, then it has a unique preimage under the semiconjugacy, and otherwise it has at
most two preimages corresponding to the coding of iterates.

If T is a minimal interval exchange transformation, then any x ∈ I gives rise to
the same language and it suffices to take the orbit of a single point. More generally, the
symbolic coding is not topologically conjugate to T , as up to countably many points
may have multiple preimages (though a point can only have finitely many preimages).
However, since the points with nonunique preimage can only support an atomic measure,
it is a measure-theoretic isomorphism for any nonatomic generic measure on X.

Namely, we claim that a generic measure for an interval exchange transformation lifts
to a generic measure in the symbolic cover. A basic open set in the symbolic cover is
a cylinder set and thus corresponds to an interval or a finite union of intervals in [0, λ).
Thus it suffices to check the claim for a finite interval J ⊆ [0, λ). Let x ∈ [0, λ) be a
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generic point for the measure µ. Choose continuous functions f and g on [0, λ) such that
0 ≤ f ≤ 1J ≤ g and

∫
g dµ− ε/2 ≤ µ(J ) ≤

∫
f dµ+ ε/2. Then∣∣∣∣ 1

N

N−1∑
n=0

f (T nx)−

∫
f dµ

∣∣∣∣ < ε/2

for all sufficiently large N , and the same holds for g. Thus

1
N

N−1∑
n=0

1J (T nx) ≤
1
N

N−1∑
n=0

g(T nx) ≤ ε/2+
∫
g dµ ≤ ε +

∫
f dµ

≤ ε +
1
N

N−1∑
n=0

1J (T nx).

Hence ∣∣∣∣µ(J )− 1
N

N−1∑
n=0

1J (T nx)
∣∣∣∣ < ε.

Since this holds for all ε > 0, for any open set J ⊂ [0, λ) we have

lim
N→∞

1
N

N−1∑
n=0

1J (T nx) = µ(J ).

Write φ : (X, σ ) → ([0, λ), T ) for the factor map from the symbolic coding (X, σ )
to the interval exchange ([0, λ), T ). Let L(X) denote the language of the coding and let
µ be a generic measure on ([0, λ), T ) with generic point x. Let x∗ ∈ φ−1(x). Then for
any word w ∈ L(X),

lim
N→∞

1
N

N−1∑
n=0

1[w](σ nx∗) = lim
N→∞

1
N

N−1∑
n=0

1φ([w])(T nx) = µ(φ([w])),

since φ([w]) is a finite union of intervals. Since µ is a nonatomic, generic measure, the
pullback φ∗(µ([w])) = φ∗(µ(φ−1(φ([w])))) is also nonatomic, as only countably many
points in ([0, λ), T ) have multiple preimages and each of these only has finitely many
preimages. (In other words, the pushforward of the pullback of the measure is the measure
itself.) Thus a generic measure for the interval exchange transformation corresponds to a
generic measure in the symbolic coding.

It is well known that an IET has linear complexity (see for example [8]). We include
a proof for completeness:

Proposition 4.1. The natural coding of a minimal k-IET has complexity

P(n) ≤ (k − 1)n+ 1.

If the k-IET satisfies the infinite distinct orbits condition (IDOC), then the complexity is
exactly P(n) = (k − 1)n+ 1.
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Proof. We proceed by induction on n. The number P(1) is the size of the alphabet, which
has size k, so for n = 1 the result is clear. Assume that P(n) ≤ (k − 1)n+ 1. If we fix a
particular word of length n, the cylinder set defined by this word distinguishes an interval
in the exchange, and by considering the cylinder sets associated to each word of length n,
we obtain a partition of the exchange. Thus we have associated a partition I of the ex-
change to the (k−1)n+1 words of length n, and this partition has (k−1)n+2 endpoints.
Furthermore, these endpoints all arise as iterates of the endpoints of the original k+1 end-
points of the interval exchange. Each of the k + 1 original endpoints lies in some T (I),
where T is the exchange map and I is one of the intervals in the partition I. We note that
if the exchange satisfies IDOC, then the endpoints arise as distinct iterates, and each of
the original endpoints lies in the interior of some T (I); but without this condition there
may be overlap in the iterates and this is only an upper bound.

Thus we have M ≤ k − 1 intervals in (T (I ))I∈I which cover all of the original
endpoints. These M intervals may each cover more than one of the original endpoints,
say m of them, and there are at most m + 1 distinct ways to continue the orbit of a word
of length n. Thus in total, we have (k− 1)n+ 1−M + (k− 1)+M continuations, which
is exactly the bound P(n+ 1) ≤ (k − 1)(n+ 1)+ 1.

If the exchange satisfies IDOC, then as the endpoints arise as distinct iterates, we see
that the complexity is exactly P(n) = (k − 1)n+ 1. ut

Combining this with Theorem 3.1, we obtain the statement of Theorem 1.4:

Corollary (Theorem 1.4). For k > 2, a minimal k-IET has at most k − 2 generic mea-
sures.

5. Sharpness

In this section we show that the bound in Theorem 3.1 is sharp. We recall the statement
of Theorem 1.3 for convenience.

Theorem (Theorem 1.3). Let d > 1 be fixed. There exists a minimal subshift (X, σ )
such that

lim inf
n→∞

PX(n)

n
= d, lim sup

n→∞

PX(n)

n
= d + 1,

and X has exactly d ergodic measures.

Before we delve into the details of the construction, we outline the basic ideas involved.
The ideas of this argument were partly inspired by a construction of a minimal and non-
uniquely ergodic subshift by Quas on mathoverflow [13] (see also Denker, Grillenberger,
and Sigmund [6]).

Fixing d > 1 and the alphabet A = {1, . . . , d}, we inductively construct d se-
quences of words {wj1}

∞

j=1, . . . , {w
j
d}
∞

j=1 in L(AZ). Roughly speaking, the procedure
we use constructs the words in these sequences in the following (somewhat unusual)
order: w1

1, w
1
2, . . . , w

1
d , w

2
1, w

2
2, . . . , w

2
d , w

3
1, w

3
2, . . . , w

3
d , . . . . That is, we first construct

the first word in each of the sequences, then the second word in each, and so on. The
words are constructed such that:
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(i) If i1, i2 ∈ A and j1 < j2, then wj1
i1

occurs as a subword of wj2
i2

syndetically,1 with
gap size bounded by a constant that depends only on j1.

(ii) For any i ∈ A and j ∈ N, the frequency with which the letter i occurs in wji (as a
percentage of the length of wji ) is greater than an absolute constant which is greater
than 1/2.

By taking a limit along a subsequence of {wj1}
∞

j=1, we produce a semi-infinite word w∞1 ,
and taking its orbit closure under the shift σ and passing to the natural two-sided exten-
sion, we obtain a closed subshift X ⊂ AZ. It follows from the construction that (X, σ )
is minimal and that wji ∈ L(X) for all i ∈ A and j ∈ N. For fixed i ∈ A, there are ar-
bitrarily long words in L(X) for which the frequency of the letter i is at least (a constant
greater than) 1/2 and so the system (X, σ ) has an ergodic measure assigning the cylinder
set [i] measure greater than 1/2. Thus (X, σ ) has at least |A| = d ergodic measures.
By carefully choosing the lengths of the words, we further show that the system (X, σ )

satisfies the desired upper and lower bounds on the complexity. Applying Theorem 3.1,
we find that (X, σ ) has at most d ergodic measures, and so exactly d ergodic measures.

We now make these ideas precise:

Proof of Theorem 1.3. Set A := {1, . . . , d}. Choose a sequence κ1, κ2, . . . of real num-
bers in (0, 1) such that

∞∏
j=1

κj > 1/2,

and choose a strictly decreasing sequence δ1, δ2, . . . of real numbers in (0, 1) such that
limj→∞ δj = 0.

Step 1 (Construction of the sequences {wj1}
∞

j=1, . . . , {w
j
d}
∞

j=1): Define the word

w1
1 := 1 · · · 1︸ ︷︷ ︸

N
[1]
(1,1)

234 · · · d,

where the length N [1](1,1) ∈ N is chosen such that N [1](1,1) > κ1|w
1
1|. Define

s1
1 := w

1
1 and p1

1 := 1 · · · 1︸ ︷︷ ︸
N
[1]
(1,1)

.

The word s1
1 represents the suffix of w1

1 that starts with the beginning of w1
1 , and p1

1
denotes the prefix of w1

1 consisting of its initial block of 1’s (the suffix and prefix termi-
nology is further clarified in the inductive construction, but note that the previous level
suffix becomes the beginning of the next level prefix). We refer to the groupings by a
length N [n]j,k as a block in the word (thus p1

1 has a single block), and the change from one

1 A word occurs v occurs syndetically in a word w with gap g if every subword of w of length g
contains a copy of v as a sub-subword.
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block to the following block as a transition (the word w1
2 has one transition); and we refer

to words that are not entirely within one block as transition words.
Next define the word

w1
2 := s

1
1w

1
1 · · ·w

1
1p

1
1︸ ︷︷ ︸

N
[1]
(2,1)

2 · · · 2︸ ︷︷ ︸
N
[1]
(2,2)

3 · · · 3︸ ︷︷ ︸
N
[1]
(2,3)

· · · d · · · d︸ ︷︷ ︸
N
[1]
(2,d)

,

where the lengths N [1](2,1), . . . , N
[1]
(2,d) ∈ N are chosen such that

|w1
1| < (δ1)

2
·N
[1]
(2,1) < (δ1)

4
·N
[1]
(2,d) < (δ1)

6
·N
[1]
(2,d−1) < (δ1)

8
·N
[1]
(2,d−2)

< · · · < (δ1)
2d−2
·N
[1]
(2,3) < (δ1)

2d
·N
[1]
(2,2) (18)

and N [1](2,2) > κ1|w
1
2|. The ordering of the lengths N [1](2,k) is important, with the index k

passing from 1 to d and then down to d − 1 and continuing cycling step by step down
to 2. The choice of the lengths is used only in estimating the growth of PX(n); the exact
choices of the lengths and the estimates of (18) can be ignored for a first reading of Steps 1
and 2.

Further note that the initial portion of w1
2 is a concatenation of the word w1

1 with itself
a large number of times, followed by its prefix word p1

1 . We include p1
1 so that the word

w1
1p

1
12 has already occurred as a subword of the concatenation w1

1 · · ·w
1
1 , allowing us

to make the transition in w1
2 from the block of w1

1’s to the block of 2’s while keeping
the possible new words as low as possible. We iterate this technique at each step of the
construction.

Next we define the word w1
3 . To do this, we make use of two auxiliary words. Let

p1
2 := s

1
1w

1
1 · · ·w

1
1p

1
1︸ ︷︷ ︸

N
[1]
(2,1)

2 · · · 2︸ ︷︷ ︸
N
[1]
(2,2)

be the prefix of w1
2 that includes everything through the block of 2’s and let

s1
2 := 2 · · · 2︸ ︷︷ ︸

N
[1]
(2,2)

3 · · · 3︸ ︷︷ ︸
N
[1]
(2,3)

· · · d · · · d︸ ︷︷ ︸
N
[1]
(2,d)

be the suffix of w1
2 that starts with the block of 2’s. Finally, we define

w1
3 := s

1
1w

1
1 · · ·w

1
1p

1
1︸ ︷︷ ︸

N
[1]
(3,1)

s1
2w

1
2 · · ·w

1
2p

1
2︸ ︷︷ ︸

N
[1]
(3,2)

3 · · · 3︸ ︷︷ ︸
N
[1]
(3,3)

· · · d · · · d︸ ︷︷ ︸
N
[1]
(3,d)

,

where N [1](3,1), . . . , N
[1]
(3,d) ∈ N are chosen such that

|w1
2| < (δ1)

2
·N
[1]
(3,2) < (δ1)

4
·N
[1]
(3,1) < (δ1)

6
·N
[1]
(3,d) < (δ1)

8
·N
[1]
(3,d−1)

< · · · < (δ1)
2d−2
·N
[1]
(3,4) < (δ1)

2d
·N
[1]
(3,3) (19)
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and N [1](3,3) > κ1|w
1
3|. Again, the initial block of w1

3 is periodic (based on the word w1
1),

with the period ending when its pattern dictates the next letter should be 2. The second
block is periodic (based on the word w1

2), begins with a block of 2’s and ends when its
pattern dictates the next collection of letters should be a block of 3’s (w1

3 then continues
with a block of 3’s). As in the previous step, this gives two transitions in w1

3: first from
a periodic block of w1

1’s to a periodic block of w1
2’s, and second from a periodic block

of w1
2’s to a block of 3’s. The choice of the prefixes and suffixes guarantes that these

transitions introduce the smallest possible number of new words (the analysis of this
number of new words is made precise in Step 3, where we analyze the growth of the
complexity PX(n)).

We continue inductively. Let i < d be fixed and suppose we have constructed words
w1

1, . . . , w
1
i , p

1
1, . . . , p

1
i , s

1
1 , . . . , s

1
i . Define the word (note that many of the words we

define are too long to fit in a single line, and the line break is arbitrary)

w1
i+1 := s

1
1w

1
1 · · ·w

1
1p

1
1︸ ︷︷ ︸

N
[1]
(i+1,1)

s1
2w

1
2 · · ·w

1
2p

1
2︸ ︷︷ ︸

N
[1]
(i+1,2)

· · · s1
i w

1
i · · ·w

1
i p

1
i︸ ︷︷ ︸

N
[1]
(i+1,i)

(i + 1) · · · (i + 1)︸ ︷︷ ︸
N
[1]
(i+1,i+1)

· · · d · · · d︸ ︷︷ ︸
N
[1]
(i+1,d)

,

where N [1](i+1,1), . . . , N
[1]
(i+1,d) ∈ N are chosen such that

|w1
i | < (δ1)

2
·N
[1]
(i+1,i) < (δ1)

4
·N
[1]
(i+1,i−1) < (δ1)

6
·N
[1]
(i+1,i−2)

< (δ1)
8
·N
[1]
(i+1,i−3) < · · · < (δ1)

2i
·N
[1]
(i+1,1) < (δ1)

2i+2
·N
[1]
(i+1,d)

< (δ1)
2i+4
·N
[1]
(i+1,d−1) < · · · < (δ1)

2d−2
·N
[1]
(i+1,i+2) < (δ1)

2d
·N
[1]
(i+1,i+1) (20)

and N [1](i+1,i+1) > κ1|w
1
i+1|. Again, the lengths are chosen to control the growth of the

complexity, and the index k in N [1](i+1,k) is taken in a cyclical order. Also define a prefix
and a suffix of w1

i+1 by

p1
i+1 := s

1
1 1w1

1 · · ·w
1
1p

1
1︸ ︷︷ ︸

N
[1]
(i+1,1)

s1
2w

1
2 · · ·w

1
2p

1
2︸ ︷︷ ︸

N
[1]
(i+1,2)

· · · s1
i w

1
i · · ·w

1
i p

1
i︸ ︷︷ ︸

N
[1]
(i+1,i)

(i + 1) · · · (i + 1)︸ ︷︷ ︸
N
[1]
(i+1,i+1)

,

s1
i+1 := (i + 1) · · · (i + 1)︸ ︷︷ ︸

N
[1]
(i+1,i+1)

(i + 2) · · · (i + 2)︸ ︷︷ ︸
N
[1]
(i+1,i+2)

· · · d · · · d︸ ︷︷ ︸
N
[1]
(i+1,d)

,

so that p1
i+1 is the prefix of w1

i+1 that includes everything through the block of (i + 1)’s,
and s1

i+1 is the suffix of w1
i+1 that begins with the block of (i + 1)’s. By induction, this

defines words w1
1, . . . , w

1
d , p

1
1, . . . , p

1
d , s

1
1 , . . . , s

1
d .

For each i ∈ A, it follows immediately from the construction that:

(a) Every letter in A appears in w1
i .

(b) The frequency with which the letter i occurs in w1
i is at least κ1, by choice of the

integer N [1](i+1,i+1) and the relations in (20).
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We continue to define the sequences of words inductively. Assuming that we have
already defined words wj1 , . . . , w

j
d , p

j

1 , . . . , p
j
d , s

j

1 , . . . , s
j
d , we define

w
j+1
1 := s

j

1w
j

1 · · ·w
j

1p
j

1︸ ︷︷ ︸
N
[j+1]
(1,1)

s
j

2w
j

2 · · ·w
j

2p
j

2︸ ︷︷ ︸
N
[j+1]
(1,2)

· · · s
j
dw

j
d · · ·w

j
dp

j
d︸ ︷︷ ︸

N
[j+1]
(1,d)

,

where

|w
j
d | < (δj+1)

2
·N
[j+1]
(1,d) < (δj+1)

4
·N
[j+1]
(1,d−1) < (δj+1)

6
·N
[j+1]
(1,d−2)

< (δj+1)
8
·N
[j+1]
(1,d−3) < · · · < (δ1)

2d−2
·N
[j+1]
(1,2) < (δ1)

2d
·N
[j+1]
(1,1) (21)

and N [j+1]
(1,1) > κj+1|w

j+1
1 |. Define prefixes and suffixes by

p
j+1
1 := s

j

1w
j

1 · · ·w
j

1p
j

1︸ ︷︷ ︸
N
[j ]

(1,1)

, s
j+1
1 := w

j+1
1 .

We have analogs of properties (a) and (b) for the base case of the construction: each of the
words wj1 , . . . , w

j
d occurs as a subword of wj+1

1 and the frequency with which the letter
1 occurs in wj+1

1 is at least
∏j+1
k=1 κk , provided that the frequency with which it occurs in

w
j

1 was at least
∏j

k=1 κk .
Continuing inductively, for i < d , we define the word (note the change in superscript

half way through)

w
j+1
i+1 := s

j+1
1 w

j+1
1 · · ·w

j+1
1 p

j+1
1︸ ︷︷ ︸

N
[j+1]
(i+1,1)

s
j+1
2 w

j+1
2 · · ·w

j+1
2 p

j+1
2︸ ︷︷ ︸

N
[j+1]
(i+1,2)

· · ·

s
j+1
i w

j+1
i · · ·w

j+1
i p

j+1
i︸ ︷︷ ︸

N
[j+1]
(i+1,i)

s
j

i+1w
j

i+1 · · ·w
j

i+1p
j

i+1︸ ︷︷ ︸
N
[j+1]
(i+1,i+1)

· · · s
j
dw

j
d · · ·w

j
dp

j
d︸ ︷︷ ︸

N
[j+1]
(i+1,d)

,

where

|w
j+1
i | < (δj+1)

2
·N
[j+1]
(i+1,i) < (δj+1)

4
·N
[j+1]
(i+1,i−1) < (δj+1)

6
·N
[j+1]
(i+1,i−2)

< (δj+1)
8
·N
[j+1]
(i+1,i−3) < · · · < (δj+1)

2i
·N
[j+1]
(i+1,1)

< (δj+1)
2i+2
·N
[j+1]
(i+1,d) < (δj+1)

2i+4
·N
[j+1]
(i+1,d−1) < · · ·

< (δj+1)
2d−2
·N
[j+1]
(i+1,i+2) < (δj+1)

2d
·N
[j+1]
(i+1,i+1) (22)

and N [j+1]
(i+1,i+1) > κj+1|w

j+1
i+1 |, and define prefixes and suffixes by
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p
j+1
i+1 := s

j+1
1 w

j+1
1 · · ·w

j+1
1 p

j+1
1︸ ︷︷ ︸

N
[j+1]
(i+1,1)

s
j+1
2 w

j+1
2 · · ·w

j+1
2 p

j+1
2︸ ︷︷ ︸

N
[j+1]
(i+1,2)

· · ·

s
j+1
i w

j+1
i · · ·w

j+1
i p

j+1
i︸ ︷︷ ︸

N
[j+1]
(i+1,i)

s
j

i+1w
j

i+1 · · ·w
j

i+1p
j

i+1︸ ︷︷ ︸
N
[j+1]
(i+1,i+1)

,

s
j+1
i+1 := s

j

i+1w
j

i+1 · · ·w
j

i+1p
j

i+1︸ ︷︷ ︸
N
[j+1]
(i+1,i+1)

s
j

i+2w
j

i+2 · · ·w
j

i+2p
j

i+2︸ ︷︷ ︸
N
[j+1]
(i+1,i+2)

· · · s
j
dw

j
d · · ·w

j
dp

j
d︸ ︷︷ ︸

N
[j+1]
(i+1,d)

.

Again, we point out that the words wj1 , . . . , w
j
d occur as subwords of wj+1

i+1 , and the

frequency with which the letter i + 1 occurs in wj+1
i+1 is at least

∏j+1
k=1 κk , provided that

the frequency with which it occurs in wji+1 was at least
∏j

k=1 κk .

By induction, we obtain sequences {wj1}
∞

j=1, . . . , {w
j
d}
∞

j=1 satisfying:

(a) For any j > 2, any 1 ≤ k < j − 2, and any i1, i2 ∈ A, the word wki1 occurs in each
of the words wk+1

1 , . . . , wk+1
d by construction. Each of the words

wk+2
1 , . . . , wk+2

d , pk+2
1 , . . . , pk+2

d , sk+2
1 , . . . , sk+2

d (23)

contains at least one of the words wk+1
1 , . . . , wk+1

d and so wki1 occurs in each of these

words. Since wji2 is a concatenation of the words appearing in (23), it follows that wki1
occurs in wji2 syndetically, and the maximal gap length is at most

gk := max{|wk+2
l | : l ∈ A} ∪ {|pk+2

l | : l ∈ A} ∪ {|sk+2
l | : l ∈ A} = |wk+2

d |.

(b) For any i ∈ A and any j ∈ N, the frequency with which the letter i occurs as a
subword of wji is at least

∏j

k=1 κk ≥
∏
∞

k=1 κk > 1/2.

We further note that given the freedom with which the lengths are chosen, we can assume
that N [j ](i,k) divides N [j+1]

(i,k) for all i, k ∈ A and all j ∈ N. We make this assumption for the
remainder of the proof.

Step 2 (Construction and ergodic properties of the subshift (X, σ )): Observe that wj1 is
the leftmost subword of wj+1

1 for all j ∈ N, and so we can define a (one-sided) infinite
word w∞1 by declaring that for all j , the leftmost subword of w∞1 of length |wj1 | is w

j

1 .
Then for any i ∈ A and any j ∈ N, the word wji occurs as a subword of w∞1 syndetically.
Moreover, every subword of w∞1 occurs as a sub-subword of wj1 for some j . Therefore
all subwords of w∞1 occur syndetically.

Let X ⊂ AZ be the set of all bi-infinite sequences whose language consists only
of subwords of w∞1 , meaning it is the natural extension of the closure of w∞1 under σ .
Since all words in L(X) occur syndetically in every element of X, (X, σ ) is minimal.
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Moreover, wji ∈ L(X) for all i ∈ A and j ∈ N. Therefore, for fixed i ∈ A, there are
arbitrarily long words in L(X) for which the frequency with which the letter i occurs is
at least

∏
∞

k=1 κk > 1/2. For each such word wni , if yn ∈ [wni ] and

µn :=
1
n

|wni |−1∑
k=0

δσ k(yn),

then any weak-* limit point ν of the sequence (µn) is a σ -invariant probability measure
supported onX such that ν([i]) > 1/2 (such a construction of ν is, for example, a standard
way to prove the Krylov–Bogolyubov Theorem). Consequently, as the ergodic measures
are the extreme points in the (convex) set of invariant probability measures on X, there
exists an ergodic measure µi supported on X for which µi([i]) > 1/2. It follows that
µi([j ]) < 1/2 for all j 6= i, and so µj 6= µi for any j 6= i. Thus (X, σ ) has at least d
ergodic measures. If we can show that

lim inf
n→∞

PX(n)

n
< d + 1,

then there are at most d ergodic measures by Theorem 3.1; hence exactly d.
Thus we are left with showing that

lim inf
n→∞

PX(n)

n
= d, lim sup

n→∞

PX(n)

n
= d + 1.

Step 3 (Analysis of the growth rate of PX(n)): Let n > |w2
1| be a fixed integer. We

estimate the number of words in Ln(X), which is, by definition, PX(n). By construction,

|w1
1| < |w

1
2| < · · · < |w

1
d | < |w

2
1| < |w

2
2| < · · · < |w

2
d | < |w

3
1| < · · · .

We make the convention that wjd+1 := w
j+1
1 , wjd+2 := w

j+1
2 , and so on (with the analo-

gous convention for N [j ](i1,i2) when i2 > d). Therefore, there exist i1 ∈ A and j1 ∈ N such
that

|w
j1
i1
| ≤ n < |w

j1
i1+1|.

With this convention, observe that

w
j1+1
i1+1 := s

j1+1
1 w

j1+1
1 · · ·w

j1+1
1 p

j1+1
1︸ ︷︷ ︸

N
[j1+1]
(i1+1,1)

s
j1+1
2 w

j1+1
2 · · ·w

j1+1
2 p

j1+1
2︸ ︷︷ ︸

N
[j1+1]
(i1+1,2)

· · ·

s
j1+1
i1

w
j1+1
i1
· · ·w

j1+1
i1

p
j1+1
i1︸ ︷︷ ︸

N
[j1+1]
(i1+1,i1)

s
j1
i1+1w

j1
i1+1 · · ·w

j1
i1+1p

j1
i1+1︸ ︷︷ ︸

N
[j1]
(i1+1,i1+1)

· · · s
j1
d w

j1
d · · ·w

j1
d p

j1
d︸ ︷︷ ︸

N
[j1]
(i1+1,d)

,

where

n < |w
j1
i1+1| < |w

j1
i1+2| < · · · < |w

j1
d | < |w

j1+1
1 | < · · · < |w

j1+1
i1
|. (24)
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It follows from the construction that if i2 ∈ A and j2 ∈ N are such that |wj2
i2
| ≥ |w

j1+1
i1+1 |,

then wj2
i2

can also be written as a concatenation of words from the sets

{w
j1+1
1 , w

j1+1
2 , . . . , w

j1+1
i1

, w
j1
i1+1, w

j1
i1+2, . . . , w

j1
d } = {w

j1+1
i1

, w
j1
i1+1, . . . , w

j1
i1+d−1}

and

{p
j1+1
i : 1 ≤ i ≤ i1} ∪ {p

j1
i : i1 < i ≤ d} ∪ {s

j1+1
i : 1 ≤ i ≤ i1} ∪ {s

j1
i : i1 < i ≤ d}.

Moreover, there are restrictions on the order in which these words may be concatenated
in wj2

i2
:

(i) If i1 + 1 ≤ i < i1 + d , then the only words that may be concatenated with wj1
i are

w
j1
i itself and pj1

i s
j1
i+1w

j1
i+1.

(ii) The only words that may be concatenated to the right end of wj1
i1+d

(= w
j1+1
i1

) are

w
j1+1
i1

itself and pj1+1
i1

s
j1
i1+1w

j1
i1+1.

Therefore, by (24), the only words of length n that appear as subwords of wj2
i2

are those
which appear as subwords of words from the set

{w
j1
i w

j1
i : i1 < i ≤ i1 + d} ∪ {w

j1
i p

j1
i s

j1
i+1w

j1
i+1 : i1 < i < i1 + d}

∪ {w
j1
i1+d

p
j1
i1+d

s
j1
i1+1w

j1
i1+1}, (25)

with superscripts following the convention that if the subscript is larger than d , we in-
crement the superscript by 1. Since all words in Ln(X) occur as subwords of wj2

1 for
all sufficiently large j2, it follows that all words in Ln(X) appear as subwords of the 2d
words in the set (25).

We now analyze the words that appear in (25) by decomposing them into words of
length comparable to n. By construction, if 1 ≤ m ≤ d then wj1

i1+m
can be written as a

concatenation of words from the set (recall the divisibility of the lengths assumed at the
end of Step 1)

{w
j1
i1+1} ∪

d⋃
k=2

{
s
j1
i1+k−1w

j1
i1+k−1 · · ·w

j1
i1+k−1p

j1
i1+k−1︸ ︷︷ ︸

N
[j1]
(i1+k,i1+k−1)

, s
j1−1
i1+k

w
j1−1
i1+k
· · ·w

j1−1
i1+k

p
j1−1
i1+k︸ ︷︷ ︸

N
[j1]
(i1+k,i1+k)

,

s
j1−1
i1+k+1w

j1−1
i1+k+1 · · ·w

j1−1
i1+k+1p

j1−1
i1+k+1︸ ︷︷ ︸

N
[j1]
(i1+k,i1+k+1)

, . . . , s
j1−1
d−1 w

j1−1
d−1 · · ·w

j1−1
d−1 p

j1−1
d−1︸ ︷︷ ︸

N
[j1]
(i1+k,d−1)

,

s
j1−1
d w

j1−1
d · · ·w

j1−1
d p

j1−1
d︸ ︷︷ ︸

N
[j1]
(i1+k,d)

, s
j1
1 w

j1
1 · · ·w

j1
1 p

j1
1︸ ︷︷ ︸

N
[j1]
(i1+k,1)

, s
j1
2 w

j1
2 · · ·w

j1
2 p

j1
2︸ ︷︷ ︸

N
[j1]
(i1+k,2)

, . . . , s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+k,i1)

}

(26)
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obeying the analogous rules for concatenation (wj1
i1+1 may be concatenated with itself or

any block that begins with sj1
i1+2, and any word that ends with pj1

i1+k
may be concatenated

with a word that begins with sj1
i1+k+1, again understood cyclically). In turn, the words of

length n that occur in words produced from this set are, themselves, words that occur
when words from the set{
w
j1
i1+1, s

j1−1
i1+2w

j1−1
i1+2 · · ·w

j1−1
i1+2p

j1−1
i1+2︸ ︷︷ ︸

N
[j1]
(i1+2,i1+2)

, . . . ,

s
j1−1
d w

j1−1
d · · ·w

j1−1
d p

j1−1
d︸ ︷︷ ︸

N
[j1]
(i1+2,d)

, s
j1
1 w

j1
1 · · ·w

j1
1 p

j1
1︸ ︷︷ ︸

N
[j1]
(i1+2,1)

, . . . , s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+2,i1)

}
(27)

are concatenated (with the analogous rules for concatenation). Moreover,

|w
j1−1
i1+2 | < |w

j1−1
i1+3 | < · · · < |w

j1−1
d | < |w

j1
1 | < · · · < |w

j1
i1
| ≤ n < |w

j1
i1+1| (28)

and
n < |w

j1
i1+1| < N

[j1]
(i1+2,m) (29)

for all 1 ≤ m ≤ d (again, if i1+2 > d then we increment the superscript ofN [j1]
(i1+2,m) by 1

and reduce the subscript by d). In particular, every word in the set (25) can be obtained
by concatenating words from the set (26), and any word of length n that occurs in a word
in (25) can also be found in a word obtained by concatenating words from (27).

For i1 + 2 ≤ i < i1 + d + 1, define

qi := · · ·w
j1−1
i w

j1−1
i w

j1−1
i p

j1−1
i s

j1−1
i+1 w

j1−1
i+1 w

j1−1
i+1 w

j1−1
i+1 · · ·

to be the bi-infinite word whose restriction to the set of nonnegative indices is the infinite
concatenation sj1−1

i+1 w
j1−1
i+1 w

j1−1
i+1 w

j1−1
i+1 · · · , and whose restriction to the set of negative

indices is the infinite concatenation · · ·wj1−1
i w

j1−1
i w

j1−1
i p

j1
i1+1 (note that the dependence

of qi on j1 is suppressed in our notation). Similarly define

qi1+d+1 := · · ·w
j1
i1+1w

j1
i1+1w

j1
i1+1p

j1
i1+1s

j1−1
i1+2w

j1−1
i1+2w

j1−1
i1+2w

j1−1
i1+2 · · · .

The set of words length n that arise by concatenating words from the set (27) is pre-
cisely the set of words of length n that appear in qi1+1, qi1+2, . . . , qi1+d , by (29). By the
estimates in (19)–(22), we have

|w
j1−1
i | < δj1 · |w

j1
i1
| ≤ δj1 · n

for all i1 + 1 < i < d + i1. It follows that:

(i) If i1 + 1 < i < i1 + d − 1, then the number of words of qi of length n is at least
n+ 1 (since qi is aperiodic) and at most n+ 2δj1n, as there are at most δj1n words in
each block (periodic part) of qi and at most n transition words obtained from words
that overlap the origin.
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(ii) The number of words of qi1+d−1 of length n is at least n + 1 and at most n + δj1n

+ |w
j1
i1
|.

(iii) The only new words of qi1+d are the n + 1 transition words which appear in
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+2,i1)

s
j1
i1+1w

j1
i1+1 as well as words that appear in wj1

i1+1w
j1
i1+1.

(iv) The only new words of qi1+d+1 are the n + 1 transition words which appear in
w
j1
i1+1p

j1
i1+1 s

j1−1
i1+2w

j1−1
i1+2 · · ·w

j1−1
i1+2︸ ︷︷ ︸

N
[j1]
(i1+2,i1+2)

.

Thus we are left with counting subwords of wj1
i1+1w

j1
i1+1 that have not already appeared.

Write

w
j1
i1+1 := s

j1
1 w

j1
1 · · ·w

j1
1 p

j1
1︸ ︷︷ ︸

N
[j1]
(i1+1,1)

s
j1
2 w

j1
2 · · ·w

j1
2 p

j1
2︸ ︷︷ ︸

N
[j1]
(i1+1,2)

· · ·

s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+1,i1)

s
j1−1
i1+1w

j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

N
[j1]
(i1+1,i1+1)

· · · s
j1−1
d w

j1−1
d · · ·w

j1−1
d p

j1−1
d︸ ︷︷ ︸

N
[j1]
(i1+1,d)

.

Then by (22) and the observation that |wj1
i1+1| < N

[j1]
(i1+1,i1+1)/δj1 for all sufficiently

large j1, we have

|w
j1
i1
| < δj2 ·N

[j1]
(i1+1,i1)

< N
[j1]
(i1+1,i1)

/δj1 < δj1 ·N
[j1]
(i1+1,i1−1) < N

[j1]
(i1+1,i1−1)/δj1

< δj1 ·N
[j1]
(i1+1,i1−2) < N

[j1]
(i1+1,i1−2)/δj1 < δj1 ·N

[j1]
(i1+1,i1−3) < N

[j1]
(i1+1,i1−3)/δj1

< · · · < δj1 ·N
[j1]
(i1+1,1) < N

[j1]
(i1+1,1)/δj1 < δj1 ·N

[j1]
(i1+1,d) < N

[j1]
(i1+1,d)/δj1

< δj1 ·N
[j1]
(i1+1,d−1) < N

[j1]
(i1+1,d−1)/δj1 < · · · < δj1 ·N

[j1]
(i1+1,i1+2)

< N
[j1]
(i1+1,i1+2)/δj1 < δj1 ·N

[j1]
(i1+1,i1+1) < |w

j1
i1+1| < N

[j1]
(i1+1,i1+1)/δj1 .

Thus there are four possibilities:

(i) |wj1
i1
| ≤ n < N

[j1]
(i1+1,i1)

;

(ii) N [j1]
(i1+1,i1)

≤ n < N
[j1]
(i1+1,i1−1) (indices taken modulo d);

(iii) N [j1]
(i1+1,i1−1) ≤ n < N

[j1]
(i1+1,i1+1) and there exists i2 ∈ A \ {i1, i1 + 1} such that

N
[j1]
(i1+1,i2)

≤ n < N
[j1]
(i1+1,i2−1) (indices taken modulo d);

(iv) N [j1]
(i1+1,i1+1) ≤ n < |w

j1
i1+1| (by condition (29)).
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In case (i), there are no words of length n in wj1
i1+1w

j1
i1+1 that were not previously

counted (all blocks in its decomposition are of length larger than n). In this case

PX(n) ≤ (d − 1)δj1n+ |w
j1
i1
| + dn. (30)

In particular, since |wj1
i1
| < δj1N

[j1]
(i1+1,i1)

, we are in case (i) when n = b|wj1
i1
|/δj1c and so

(30) holds. This implies that

PX

(⌊
|w
j1
i1
|

δj1

⌋)
≤ (d + dδj1) ·

⌊
|w
j1
i1
|

δj1

⌋
.

This situation arises infinitely often (once for each δj ), and since δj
j→∞
−−−→ 0,

lim inf
n→∞

PX(n)

n
≤ d.

Combining this with the fact that (X, σ ) has at least d distinct nonatomic ergodic mea-
sures and applying Theorem 3.1, we find that

lim inf
n→∞

PX(n)

n
= d.

In particular, this implies that there are exactly d ergodic measures.
In case (ii), we have

N
[j1]
(i1+1,i1)

≤ n < N
[j1]
(i1+1,i1−1)

and n < N
[j1]
(i1+1,k) for all k ∈ A \ {i1}. In this case, the only new words of length n that

arise in wj1
i1+1w

j1
i1+1 are the n−N [j1]

(i1+1,i1)
transition words that arise in

s
j1
i1−1w

j1
i1−1 · · ·w

j1
i1−1p

j1
i1−1︸ ︷︷ ︸

N
[j1]
(i1+1,i1−1)

s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+1,i1)

s
j1−1
i1+1w

j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

N
[j1]
(i1+1,i1+1)

,

where a word is a transition word if it completely contains the middle block (all other
blocks have length larger than n and so contribute no new words). Thus, in case (ii),

PX(n) ≤ dn+ 2dδj1n+ (n−N
[j1]
(i1+1,i1)

) ≤ (d + 1)n+ 2dδj1 . (31)

In case (iii),

n ≥ N
[j1]
(i1+1,i2)

> δj1 ·N
[j1]
(i1+1,i2+1) > δj1 ·N

[j1]
(i1+1,i2+2) > · · · > δj1 ·N

[j1]
(i1+1,i1)

(32)

and
n < N

[j1]
(i1+1,i2−1) < N

[j1]
(i1+1,i2−2) < · · · < N

[j1]
(i1+1,i1+1)
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by (19)–(22). Therefore the only new words of length n that arise in wj1
i1+1w

j1
i1+1 are the

transition words that arise in

s
j1
i2−1w

j1
i2−1 · · ·w

j1
i2−1p

j1
i2−1︸ ︷︷ ︸

N
[j1]
(i1+1,i2−1)

s
j1
i2
w
j1
i2
· · ·w

j1
i2
p
j1
i2︸ ︷︷ ︸

N
[j1]
(i1+1,i2)

· · ·

s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+1,i1)

s
j1−1
i1+1w

j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

N
[j1]
(i1+1,i1+1)

.

That is, this word decomposes into blocks such that the first and last have length larger
than n; the transition words are those that fully contain one of the blocks of length smaller
than n. There are at most

(n−N
[j1]
(i1+1,i2)

)+N
[j1]
(i1+1,i2+1) +N

[j1]
(i1+1,i2+2) + · · · +N

[j1]
(i1+1,i1−1) +N

[j1]
(i1+1,i1)

such blocks. By (32), this is at most n−N [j1]
(i1+1,i2)

+ dδj1n. So in case (iii),

PX(n) ≤ dn+ 2dδj1n+ n−N
[j1]
(i1+1,i2)

+ dδj1n ≤ (d + 1)n+ 3dδj1n. (33)

Finally, in case (iv), the only new words are the transition words that occur in

s
j1−1
i1+1w

j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

N
[j1]
(i1+1,i1+1)

s
j1−1
i1+2w

j1−1
i1+2 · · ·w

j1−1
i1+2p

j1−1
i1+2︸ ︷︷ ︸

N
[j1]
(i1+1,i1+2)

· · ·

s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+1,i1)

s
j1−1
i1+1w

j1−1
i1+1 · · ·w

j1−1
i1+1p

j1−1
i1+1︸ ︷︷ ︸

N
[j1]
(i1+1,i1+1)

s
j1−1
i1+2w

j1−1
i1+2 · · ·w

j1−1
i1+2p

j1−1
i1+2︸ ︷︷ ︸

N
[j1]
(i1+1,i1+2)

· · ·

s
j1
i1
w
j1
i1
· · ·w

j1
i1
p
j1
i1︸ ︷︷ ︸

N
[j1]
(i1+1,i1)

,

where a word is a transition word if it completely contains any of the blocks of length
smaller than N [j1]

(i1+1,i1+1). However, by (19)–(22), we have

δj1n ≥ δj1N
[j1]
(i1+1,i1+1) > N

[j1]
(i1+1,k)

for all k ∈ A \ {i1+ 1}, and so there are at most n+ dδj1n such words. Thus in case (iv),

PX(n) ≤ dn+ 2dδj1n+ n+ dδj1n = (d + 1)n+ 3dδj1n. (34)

It follows from (30), (31), (33), and (34) that

lim sup
n→∞

PX(n)

n
≤ d + 1,

and therefore the lim sup is equal to d + 1 by Theorem 3.1. ut
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We end with several constructions showing various senses in which our results cannot
be improved. We first review some standard facts about Sturmian shifts. A Sturmian shift
(Y, σ ) is a minimal subshift of {0, 1}Z whose complexity function satisfies PY (n) = n+1
for all n ∈ N. Any Sturmian shift is uniquely ergodic, and for any α ∈ (0, 1) \ Q there
exists a Sturmian shift (Yα, σ ) whose unique invariant probability measure µ satisfies
µ([0]) = α. In particular, there are uncountably many distinct Sturmian shifts.

We first show that the technical condition (that there exists a generic measure µ and
a generic point xµ such that the orbit closure of xµ is not uniquely ergodic) cannot be
dropped from the second statement in Theorem 3.1:

Proposition 5.1. For d ≥ 1, there exists a subshift (X, σ ) which has precisely d ergodic
measures and zero nonergodic generic measures, and whose complexity function satisfies
PX(n) = dn+ d for all n ∈ N. This subshift has the property that every x ∈ X is generic
for some ergodic measure and the orbit closure of any point is uniquely ergodic.

Proof. Fix d ∈ N and fix a Sturmian shift (Y, σ ) on the alphabet {0, 1}. Let A :=
{01, 11, 02, 12, . . . , 0d , 1d} and for 1 ≤ i ≤ d let Yi ⊂ AZ be the image of (Y, σ )
under the 1-block code that sends 0 7→ 0i and 1 7→ 1i . Let

X :=

d⋃
i=1

Yi ⊂ AZ

and observe that X is closed and σ -invariant. Moreover, we have PX(n) = dn+ d for all
n ∈ N. Each subshift Yi ⊂ X supports a unique ergodic measure, and so there are at least
d ergodic measures for (X, σ ). Conversely, for each x ∈ X there exists 1 ≤ i ≤ d such
that x ∈ Yi . Since Yi is uniquely ergodic, x is generic for the (unique) ergodic measure
supported on Yi . Thus there can be no other measures that have a generic point. ut

Finally, we show that the assumption of linear growth in Theorem 1.1 is optimal, in the
sense that there is no analog of Theorem 1.1 with an assumption of a superlinear growth
rate and conclusion that the set of ergodic measures is finite for all subshifts whose com-
plexity function grows at most at that rate.

Proposition 5.2. Let (pn)∞n=1 be a sequence of real numbers such that

lim inf
n→∞

pn

n
= ∞.

Then there exists a subshift (X, σ ) which has infinitely many nonatomic ergodic measures
and satisfies PX(n) ≤ pn for all but finitely many n.

Proof. For each n ∈ N, there exists a set Fn ⊂ {0, 1}n such that |Fn| = n + 1 and
Ln(Yα) = Fn for uncountably many α ∈ (0, 1). For N ≤ n, let XN (Fn) be the set of
words of length N that arise as a subword of a word in Fn. Clearly if Ln(Yα) = Fn
then LN (Yα) = XN (Fn). Let G1 ⊂ {0, 1} be such that G1 = X1(Fn) for infinitely many
n ∈ N. Inductively, we assume that we have defined Gi ⊂ {0, 1}i for all 1 ≤ i < j such
that:
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(i) For all 1 ≤ j1 < j2 < j we have Gj1 = Xj1(Gj2).
(ii) There are infinitely many n for which Gj−1 = Xj−1(Fn).
We then choose Gj ⊂ {0, 1}j such that among those n for which Gj−1 = Xj−1(Fn), there
are infinitely many n for which Gj = Xj (Fn). In this way, we obtain an infinite sequence
G1,G2, . . . such that if 1 ≤ j1 < j2, then Gj1 = Xj1(Gj2) and there are uncountably many
α ∈ (0, 1) for which Lj2(Yα) = Gj2 .

For each n ∈ N, set

An := {α ∈ (0, 1) : Ln(Yα) = Gn}.
Then by construction, An is uncountable for all n ∈ N,

A1 ⊇ A2 ⊇ · · · ,

and An 6= An+1 for infinitely many n ∈ N. (If not, there exist distinct α1, α2 ∈
⋂
An,

and so Ln(Yα1) = Ln(Yα2) for all n, contradicting the fact that the frequency with which
the letter 0 occurs as a subword of any word in Ln(Yαi ) tends to αi for i = 1, 2.)

We now construct the subshift. Find N1 ∈ N such that pn > 2n + 2 for all n ≥ N1.
Choose the smallest M1 ≥ N1 for which AM1+1 6= AM1 and let α1 ∈ AM1 \ AM1+1.
Set X1 := Yα1 and observe that PX1(n) = n + 1 for all n. Now find N2 ∈ N such that
pn > 3n + 3 for all n ≥ N2. Find the smallest M2 ≥ N2 for which AM2+1 6= AM2

and let α2 ∈ AM2 \ AM2+1. Set X2 := Yα1 ∪ Yα2 . Then, by construction, α2 ∈ AM1 and
so LM1(Yα2) = LM1(Yα1), but since α2 ∈ AM2 ⊂ AM1+1 we know that LM1+1(Yα2) 6=

LM1+1(Yα1). Consequently, PX2(n) = n+1 for all n ≤ M1, and n+1 < PX2(n) ≤ 2n+2
for all n > M1.

Now recursively suppose we have chosen integers M1 < · · · < Mi such that for each
1 ≤ k ≤ i we have pn > (k+1)n+ (k+1) for all n ≥ Mk and moreover AMk+1 6= AMk

.
Suppose further that we have chosen α1, . . . , αi such that αk ∈ AMk

\ AMk+1 for each k.
Finally, define Xi := Yα1 ∪ · · · ∪ Yαi . Then, by construction, we have PXi (n) ≤ kn + k
for all n ≤ Mk . FindNi+1 ∈ N such that pn > (i+2)n+ (i+2) for all n ≥ Ni+1, and let
Mi+1 be the smallest integer larger than Ni+1 for which AMi+1 6= AMi+1+1. Let αi+1 ∈

AMi+1 \ AMi+1+1. Define Xi+1 := Yα1 ∪ · · · ∪ Yαi ∪ Yαi+1 . Since αi+1 ∈ AMi+1 ⊂ AMi
,

we know that Lk(Xi) = Lk(Xi+1) for all k ≤ Mi , and since αi+1 ∈ AMi+1 we know
that LMi+1(Xi) 6= LMi+1(Xi+1). Consequently, PXi+1(n) = PXi (n) for all n ≤ Mi , and
PXi+1(n) ≤ (i + 1)n+ (i + 1) for all n > Mi . By construction, pn > (i + 1)n+ (i + 1)
for all n ≥ Mi . Therefore our recursive construction continues for all i ∈ N.

Thus we obtain a sequence of subshifts X1 ⊂ X2 ⊂ · · · such that PXi (n) < pn for
all i ∈ N and all n ≥ N1. Setting

X :=

∞⋃
i=1

Xi,

we see that Ln(X) =
⋃
∞

i=1 Ln(Xi) for all n ∈ N. Therefore, PX(n) < pn for all n ≥ N1.
On the other hand, Yαi ⊂ X for all i ∈ N and there is an ergodic probability supported
on Yαi . Since Yαi 6= Yαj for all i 6= j by construction, X has infinitely many ergodic
measures. ut
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