
ITERATIVE METHODS FOR k-HESSIAN EQUATIONS

GERARD AWANOU

Abstract. On a domain of the n-dimensional Euclidean space, and for an integer
k = 1, . . . , n, the k-Hessian equations are fully nonlinear elliptic equations for k > 1
and consist of the Poisson equation for k = 1 and the Monge-Ampère equation for
k = n. We analyze for smooth non degenerate solutions a 9-point finite difference
scheme. We prove that the discrete scheme has a locally unique solution with a
quadratic convergence rate. In addition we propose new iterative methods which
are numerically shown to work for non smooth solutions. A connection of the latter
with a popular Gauss-Seidel method for the Monge-Ampère equation is established
and new Gauss-Seidel type iterative methods for 2-Hessian equations are introduced.

1. Introduction

Let Ω be a bounded, connected open subset of Rn, n ≥ 2 with boundary denoted ∂Ω.

Let u ∈ C2(Ω) and for x ∈ Ω, let D2u(x) =

(
(∂2u(x))(∂xi∂xj)

)
i,j=1,...,n

denote its

Hessian. We denote the eigenvalues of D2u(x) by λi(x), i = 1, . . . , n. For 1 ≤ k ≤ n,
the k-Hessian operator is defined as

Sk(D
2u) =

∑
i1<···<ik

λi1 · · ·λik .

We note that S1(D2u) = ∆u is the Laplacian operator and Sn(D2u) = detD2u is the
Monge-Ampère operator. For k ≥ 2, we are interested in the numerical approximation
of solutions of the Dirichlet problem for the k-Hessian equation

(1.1) Sk(D
2u) = f in Ω, u = g on ∂Ω,

with f and g given and f ≥ 0.

1.1. Local existence, uniqueness and quadratic convergence rate for a finite
difference discretization. Let u0 be a sufficiently close initial guess to the smooth
solution u of (1.1). Consider the iterative method

div

(
{Sijk (D2u0)}Dum+1

)
= div

(
{Sijk (D2u0)}Dum

)
+ f − Sk(D2um) in Ω

um+1 = g on ∂Ω,

(1.2)

where {Sijk (D2u0)} is a matrix which generalizes the cofactor matrix of D2u0.

We prove the convergence of (1.2) at the continuous level in Hölder spaces. A discrete
version of (1.2) is also shown to converge to a solution of a 9-point stencil discretization
of (1.1). This establishes the local existence and uniqueness of a discrete solution. In
addition the convergence rate of the discretization is shown to be quadratic.
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It is reasonable to expect that the discrete version of the iterative method (1.2) will
retrieve the correct solution when it is smooth and non degenerate. As with Newton’s
method it is not effective for non smooth and degenerate solutions. For these, we
advocate iterative methods like the subharmonicity preserving iterations described
below. The discrete version of (1.2) is used in this paper to prove the local solvability
of the 9-point scheme when u is smooth and non degenerate. These results form a
building block of a theory which explains why standard discretizations work for non
smooth solutions [4]. In addition results for smooth solutions are also needed for the
analysis of hybrid schemes where the 9 point scheme is used in part of the region
where the solution is smooth and a monotone scheme elsewhere [2].

1.2. Newton’s method. If one is only interested in smooth solutions, Newton’s
method is the most appropriate method. We analyze the convergence of Newton’s
method for solving (1.1) when it has a smooth solution.

1.3. Numerical work for subharmonicity preserving iterations. A smooth
function u is said to be k-convex if Sl(D

2u) ≥ 0, 1 ≤ l ≤ k. Convexity of a function
can be shown to be equivalent to n-convexity, Lemma 2.5. It is of interest in some
applications to be able to handle (1.1) when it has a non smooth k-convex solution. It
has only been recently understood, c.f. [4] for the Monge-Ampère equation, that what
is needed is a numerical method provably convergent for smooth solutions and nu-
merically robust to handle non smooth solutions. The approach in [4] is to regularize
the data and use approximation by smooth functions. The key to numerically handle
non smooth solutions of (1.1) is to preserve k-convexity in the iterations. For discrete
k-convexity we simply require discrete analogues of the condition Sl(D

2u) ≥ 0 with a
natural discretization of D2u. We refer to [1] where this approach was first used for
the discretization of n-convexity.

Consider the iterative method

∆um+1 =

(
(∆um)k +

1

c(k, n)
(f − Sk(D2um))

) 1
k

in Ω, um+1 = g on ∂Ω,(1.3)

with c(k, n) =
(
n
k

)
/nk.

If D2u has positive eigenvalues, we have the inequality

(1.4) Sk(D
2u) ≤ c(k, n)(∆u)k,

which follows from the Maclaurin inequalities, [13, Proposition 1.1 (v i)].

For k = 2, (1.4) also holds with no convexity assumption on u, [20, Lemma 15.11].
Explicitly c(2, 3) = 1/3. Also, c(n, n) = 1/nn which gives

detD2u ≤ 1

nn
(∆u)n,

a direct consequence of the arithmetic mean - geometric mean inequality.

If one starts with an initial guess u0 such that ∆u0 ≥ 0, (1.3) enforces ∆um ≥ 0
for all m. Indeed recall that f ≥ 0 and assume that ∆um ≥ 0. Then by (1.4)
1/c(k, n)Sk(D

2um) ≤ (∆um)k, and using (1.3) it follows that (∆um+1)k ≥ 0. In other
words, starting with an initial guess u0 with ∆u0 ≥ 0, (1.3) enforces subharmonicity
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in arbitrary dimension for smooth convex solutions and subharmonicity for 2-Hessian
equations with no convexity assumption on u. In addition for 2-Hessian equations,
the limit solution solves S2(D2u) = f ≥ 0. That is, the sequence um+1 defined by
(1.3) has a formal limit which solves ∆u ≥ 0 and S2(D2u) ≥ 0. Thus (1.3) enforces
2-convexity in arbitrary dimension for 2-Hessian equations.

Another class of iterative methods we introduce in this paper are Gauss-Seidel type
iterative methods. The Gauss-Seidel methods are more efficient than (1.3) for large
scale problems.

The simplicity of the methods discussed in this paper and the facility with which they
can be implemented, make them attractive to researchers interested in Monge-Ampère
equations. The other major motivation to study the subharmonicity preserving it-
erations is that they can be adapted to the finite element context and have been
numerically shown in that context to be robust for non smooth solutions.

In two dimension, (1.3) appears to perform well in the degenerate case f ≥ 0 as
discrete k-convexity is enforced in the iterations. The situation is different in three
dimension with k = 2. We were not able to reproduce the solution u(x, y, z) = |x−1/2|
by solving (1.1) with k = 2 and using (1.3). Here, since u does not depend on z, we
have f(x, y, z) = 0 as in the two dimensional case. However, for n = 3 and k = 3,
we can preserve convexity in the degenerate case by using the sequence of nonlinear
2-Hessian equations

S2(D2um+1) = 3

((
1

3
S2(D2um)

) 3
2

+ f − detD2um
) 2

3

,(1.5)

with um+1 = g on ∂Ω. Each of these equations is solved iteratively by (1.3) with

k = 2, n = 3. We note that

(
1
3
S2(D2um)

) 3
2

−detD2um ≥ 0 when S2(D2um) > 0, [20,

Lemma 15.12]. Starting with an initial guess which satisfies S2(D2u0) > 0 and setting
detD2um = 0 in (1.5) whenever S2(D2um) = 0, we obtain a double sequence iterative
method which at the limit enforce ∆u ≥ 0, S2(D2u) ≥ 0, and detD2u = f ≥ 0.

The reason for setting detD2um = 0 in (1.5) whenever S2(D2um) = 0 is motivated
by the observation that in the case f = 0, if S2(D2um) = 0, S2(D2um+1) is ill-defined
or complex valued if detD2um > 0. While (1.3) may be inexact for degenerate 2-
Hessian equations, its use inside a double iterative method appears effective. This is
reminiscent of inexact Uzawa algorithms.

1.4. Relation with other work. The k-Hessian equations have mainly applica-
tions in conformal geometry and physics. The Monge-Ampère operator has received
recently a lot of interest from numerical analysts. For n = 3 and k = 2, the numerical
resolution of (1.1) has been considered in [22], where it was referred to as the σ2

problem. The iterative method (1.3) generalizes an iterative method introduced in
[5] for the two dimensional Monge-Ampère equation. The latter corresponds to the
choice k = n = 2 and the constant c(2, 2) = 1/4 replaced by 1/2. The 2-Hessian
equation has also been considered recently in [12] from the point of view of monotone
schemes.
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We will see that if the central finite difference discretization of (1.3) is solved by a
Gauss-Seidel iterative method, one recovers a Gauss-Seidel iterative method which
has been used by many authors to solve the two dimensional Monge-Ampère equation.
We will refer to the latter method as the 2D Gauss-Seidel method for Monge-Ampère
equation. It has been used in the numerical simulation of Ricci flow [15], as a smoother
in multigrid methods for the balance vortex model in meteorology, [8, 7] and has
been recently shown numerically to capture the viscosity solution of the 2D Monge-
Ampère equation [5]. The connection between (1.3) and the 2D Gauss-Seidel method
for the Monge-Ampère equation is what enables us to introduce new Gauss-Seidel
type iterative methods for k-Hessian equations.

The ingredients of our proof of the convergence rate for the finite difference discretiza-
tion are discrete Schauder estimates and a suitable generalization of the combined
fixed point iterative method used in [10]. Schauder estimates were also used in the
proof of convergence of Newton’s method at the continuous level [21].

1.5. Organization of the paper. The paper is organized as follows: In the next
section, we give some notations, recall the Schauder estimates and their discrete
analogues. In section 3 we prove our main results on the quadratic convergence rate
of a finite difference discretization of (1.1) and in section 4 we prove the convergence of
Newton’s method. In section 5 we introduce new Gauss-Seidel type iterative methods
and their connections with the subharmonicity preserving iterations (1.3). Section 6 is
devoted to numerical results. We conclude with some remarks. The reader interested
only in the Monge-Ampère equation, or for a first reading, may assume that k = n.

2. Notation and preliminaries

2.1. Hölder spaces and Schauder estimates. For a nonnegative integer r or for
r =∞, we denote by Cr(Ω) the set of all functions having all derivatives of order ≤ r
continuous on Ω and by Cr(Ω), the set of all functions in Cr(Ω) whose derivatives of
order ≤ r have continuous extensions to Ω. For a multi-index β = (β1, . . . , βn) ∈ Nn,
put |β| = β1 + . . . + βn. We use the notation Dβu(x) for the partial derivative
(∂/∂x1)β1 . . . (∂/∂xn)βnu(x).

The norm in Cr(Ω) is given by

||u||r;Ω =
r∑
j=0

|u|j;Ω, |u|j;Ω = sup|β|=jsupΩ|Dβu(x)|.

We denote by |x| the Euclidean norm of x ∈ Rn. A function u is said to be uniformly
Hölder continuous with exponent α, 0 < α ≤ 1 in Ω if the quantity

supx6=y
|u(x)− u(y)|
|x− y|α

,

is finite. The space Cr,α(Ω) consists of functions whose r-th order derivatives are
uniformly Hölder continuous with exponent α in Ω. It is a Banach space with norm

||u||r,α;Ω = ||u||r;Ω + [u]r,α;Ω,
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where

[u]r,α;Ω = sup|β|=rsupx6=y
|Dβu(x)−Dβu(y)|

|x− y|α
.

The norms || ||r;Ω and || ||r,α;Ω are naturally extended to vector fields and matrix fields
by taking the supremum over all components. We make the standard convention of
using C for a generic constant. For A = (aij)i,j=1,...,n and B = (bij)i,j=1,...,n we recall
that A : B =

∑n
i,j=1 aijbij. We will often use the following property

(2.1) ||fg||0,α;Ω ≤ C||f ||0,α;Ω||g||0,α;Ω, for f, g ∈ C0,α(Ω),

from which it follows that if A,B are matrix fields

(2.2) ||A : B||0,α;Ω ≤ C

n∑
i,j=1

||aij||0,α;Ω||bij||0,α;Ω.

We first state a global regularity result for the solution of strictly elliptic equations,
which follows from [14, Theorems 6.14, 6.6 and Corollary 3.8 ].

Theorem 2.1. Assume 0 < α < 1. Let Ω be a C2,α domain in Rn and f, aij ∈ Cα(Ω),
φ ∈ C2,α(Ω). We consider the strictly elliptic operator

(2.3) Lu =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
u(x),

with coefficients satisfying for positive constants λ,Λ,
n∑

i,j=1

aij(x)ζiζj ≥ λ
n∑
l=1

ζ2
l , ζl ∈ R, and |ai,j|0,α;Ω ≤ Λ.

Then the solution u of the equation

Lu = f in Ω, u = φ on ∂Ω,

satisfies
||u||2,α;Ω ≤ C(||φ||2,α;Ω + ||f ||0,α;Ω),

where C depends on n, α, λ,Λ,Ω, sup∂Ω |φ|, and supΩ |f |/λ.

We will make the slight abuse of language of also denoting by Sk(x), x = (x1, . . . , xn)
the kth elementary symmetric polynomial of the variable x, i.e.

Sk(λ) =
∑

i1<···<ik

λi1 · · ·λik .

A function u ∈ C2(Ω)∩C0(Ω) with Hessian D2u having eigenvalues λi, i = 1, . . . , n is
said to be k-admissible if Sj(λ) > 0, j = 1, . . . , k. Solutions of the k-Hessian equation
will be required to be k-admissible, thus requiring f > 0.

Moreover, let κ = (κ1, . . . , κn−1) denote the principal curvatures of ∂Ω.

Definition 2.2. The domain Ω is said to be (k−1)-convex if there exists c0 > 0 such
that

Sk−1(κ) ≥ c0 > 0 on ∂Ω.

We then have, ([24, Theorems 3.3 and 3.4 ])



6 GERARD AWANOU

Theorem 2.3. Assume that Ω is (k − 1)-convex, ∂Ω ∈ C3,1, f ∈ C1,1(Ω), inf f > 0,
g ∈ C3,1(Ω). Then there is a unique k-admissible solution u ∈ C3,1(Ω) to the Dirichlet
problem (1.1).

We will need some identities for the k-Hessian operator Sk(D
2u) which are derived

explicitly for example in [13, p. 5–6]. See also [24]. For a symmetric matrix A =
(aij)i,j = 1, . . . , n with eigenvalues λi, i = 1, . . . , n, let us also denote by Sk(A) the
k-th elementary symmetric polynomial of λ. This is equivalent to say that Sk(A) is
the sum of all k × k principal minors of A. Using the permutation definition of the
determinant, we have

Sk(A) =
1

k!

∑
1≤i1,··· ,ik≤n

δj1,··· ,jki1,··· ,ik ai1j1 · · · aikjk ,(2.4)

where δj1,··· ,jki1,··· ,ik is the generalized Kronecker delta which takes the value +1 if i1, · · · , ik
differs from j1, · · · , jk by an even permutation and the value -1 in the case of an odd
permutation. In other words, for a choice of i1, . . . , ik, δ

j1,··· ,jk
i1,··· ,ik is the signature of the

permutation σ defined by σ(il) = jl, l = 1, . . . , k. This implies that we only consider
the case where the sets {i1, . . . , ik} and {j1, . . . , jk} are identical. Moreover we define
δj1,··· ,jki1,··· ,ik to be 0 if {i1, . . . , ik} 6= {j1, . . . , jk}. Note also that {i1, . . . , ik} is a subset of
k elements of {1, . . . , n}.
We have

Sijk (A) :=
∂

∂aij
Sk(A) =

1

(k − 1)!

∑
1≤i,i1,··· ,ik−1≤n

δ
j,j1,··· ,jk−1

i,i1,··· ,ik−1
ai1j1 · · · aik−1jk−1

,

and so Sk(A) = 1
k

∑n
i,j=1 S

ij
k (A)aij by the k-homogeneity of Sk and Euler’s theorem for

homogeneous functions. Here {j1, . . . , jk−1} is the image of the set of k − 1 elements
{i1, . . . , ik−1} not containing i by a permutation.

Let us denote by {Sijk (A)} the symmetric matrix with entries Sijk (A). We can write

Sk(A) = 1/k {Sijk (A)} : A, that is Sk(D
2v) = 1

k
{Sijk (D2v)} : D2v. Using (2.4) and

observing that the expression of Sk(A) can be written in terms of a multilinear map,
we obtain

S ′k(D
2v)D2w = {Sijk (D2v)} : D2w.(2.5)

Let us denote by {Sijk (A)}′ the Fréchet derivative of the mapping A → {Sijk (A)}.
Since {Sijk (A)}′(B) is a sum of terms each of which is a product of k − 2 terms from
A and is linear in B, we have

(2.6) ||{Sijk (D2v)}′D2w||0;Ω ≤ C|v|k−2
2;Ω |w|2;Ω.

Using (2.2) and (2.6) we also have

(2.7) ||{Sijk (D2v)}′D2w||0,α;Ω ≤ C|v|k−2
2,α;Ω|w|2,α;Ω.

Finally we note that

Lemma 2.4. Let v be a C2 strictly convex function with Hessian having smallest
eigenvalue uniformly bounded below by a constant a > 0. Then for η = a/(2n), we
have w strictly convex, whenever ||w − v||C2(Ω) < η.
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Proof. It follows from [16, Theorem 1 and Remark 2 p. 39] that for two symmetric
n× n matrices A and B,

(2.8) |λl(A)− λl(B)| ≤ nmax
i,j
|Aij − Bij|, l = 1, . . . , n.

It follows that for u, v ∈ C2(Ω),

|λ1(D2u(x))− λ1(D2v(x))| ≤ n||w − v||C2(Ω).(2.9)

The result then follows. �

We conclude this section with the equivalence of n-convexity and convexity in the
usual sense.

Lemma 2.5. A C2 function u is convex if and only if it is n-convex.

Proof. If u is C2, λi ≥ 0 on Ω for all i and thus Sl(D
2u) ≥ 0, l = 1, . . . , n.

Conversely let us assume that A is a symmetric matrix with Sl(A) ≥ 0, l = 1, . . . , n.
We show that its eigenvalues λi are all positive. Let

p(λ) = λn + c1λ
n−1 + . . .+ cn,

denote the characteristic polynomial of A. It can be shown [17, Theorem 1.2.12] that

cl = (−1)lSl(A), l = 1, . . . , n.

We show that if λi < 0 then p(λi) 6= 0. We have

p(λi) = λni + c1λ
n−1
i + . . .+ cn

= λni +
n∑
l=1

(−1)lSl(A)λn−li

= (−1)n
(

(−λi)n +
n∑
l=1

(−1)l−nSl(A)λn−li

)

= (−1)n
(

(−λi)n +
n∑
l=1

Sl(A)(−λi)n−l
)
.

Since −λi > 0 and Sl(A) ≥ 0 for all l, we have (−1)np(λi) ≥ 0. Moreover since∑n
l=1 Sl(A)(−λi)n−l ≥ 0 and −λi > 0 we have (−1)np(λi) 6= 0. We conclude that

λi ≥ 0 for all i. This completes the proof. �

2.2. Discrete Schauder estimates and related tools. We will study the numeri-
cal approximation of (1.1)–(1.3) by standard finite difference discretizations. For sim-
plicity, we consider a cuboidal domain Ω = (0, 1)n ⊂ Rn. Let 0 < h < 1 with 1/h ∈ Z.
Put

Zh = {x = (x1, . . . , xn)T ∈ Rn : xi/h ∈ Z}
Ωh

0 = Ω ∩ Zh,Ωh = Ω ∩ Zh, ∂Ωh = ∂Ω ∩ Zh = Ωh \ Ωh
0 .
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Let ei, i = 1, . . . , n denote the i-th unit vector of Rn. We define the following first
order difference operators on the space M(Ωh) of grid functions vh(x), x ∈ Zh,

∂i+v
h(x) :=

vh(x+ hei)− vh(x)

h
,

∂i−v
h(x) :=

vh(x)− vh(x− hei)
h

,

∂ihv
h(x) :=

vh(x+ hei)− vh(x− hei)
2h

.

Higher order difference operators are obtained by combining the above difference
operators. For a multi-index β = (β1, . . . , βn) ∈ Nn, we define

∂β+v
h := ∂β1+ · · · ∂

βn
+ vh.

The operators ∂β− and ∂βh are defined similarly. Note that

∂i+∂
i
−v

h(x) =
vh(x+ hei)− 2vh(x) + vh(x− hei)

h2
,(2.10)

∂ih∂
j
hv

h(x) =
1

4h2

{
vh(x+ hei + hej) + vh(x− hei − hej)

− vh(x+ hei − hej)− vh(x− hei + hej)

}
, i 6= j.

(2.11)

The second order derivatives ∂2v/∂xi∂xj are discretized using (2.10) and (2.11) for
i 6= j. This gives a discretization of the Hessian D2u which we denote by Hd(u

h).

Thus the discrete version of (1.1) takes the form

Sk(Hd u
h(x)) = f(x), x ∈ Ωh

0 , u
h(x) = g(x) on ∂Ωh.(2.12)

The discrete Laplacian takes the form

∆d(u
h) =

n∑
i=1

∂i+∂
i
−u

h.(2.13)

We consider a discrete uniformly elliptic linear operator with low order terms

Ldv
h(x) =

n∑
i,j=1

aij(x)∂i−∂
j
+v

h(x) +
n∑
i=1

bi(x)∂i+v
h(x), x ∈ Ωh

0 ,

i.e. the matrix (aij(x))i,j=1,...,n is uniformly positive definite. We now define discrete
analogues of the Hölder norms and semi-norms following [18]. Let [ξ, η] denote the
set of points ζ ∈ Ωh such that ξj ≤ ζj ≤ ηj, j = 1, . . . , n. Then for vh ∈ M(Ωh), 0 <
α < 1, we define

|vh|j;Ωh
0

= max { |∂β+vh(ξ)|, |β| = j, [ξ, ξ + β] ⊂ Ωh },

[vh]j,α;Ωh
0

= max

{
|∂β+vh(ξ)− ∂

β
+v

h(η)|
(|ξ − η|)α

, |β| = j, ξ 6= η, [ξ, ξ + β] ∪ [η, η + β] ⊂ Ωh

}
,

||vh||p;Ωh
0

= maxj≤p |vh|j;Ωh
0
,

||vh||p,α;Ωh
0

= ||vh||p;Ωh
0

+ [vh]p,α;Ωh
0
.
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The above norms are extended canonically to vector fields and matrix fields by taking
the maximum over all components. For j = 0, we have discrete analogues of the
maximum and C0,α norms.

For a domain O ⊂ Rn, we denote by Dh(O) the set of mesh functions on Rn which
vanish outside O. If vh = 0 on ∂Ωh, extending vh by 0 to Zh, we obtain vh ∈ Dh(Ω).
The following theorem then follows from [23, Lemma 3.4].

Theorem 2.6. Assume 0 < α < 1 and vh = 0 on ∂Ωh. Then there are constants C
and h0 such that for vh ∈M(Ωh), h ≤ h0

||vh||2,α;Ωh
0
≤ C||Ld vh||0,α;Ωh

0
,(2.14)

with the constant C independent of h.

Since

∂i+∂
i
−v

h(x) = ∂i+∂
i
+v

h(x− hei) and

∂jh∂
i
hv

h(x) =
1

4

(
∂j+∂

i
+v

h(x) + ∂j+∂
i
+v

h(x− hei) + ∂j+∂
i
+v

h(x− hej)

+ ∂j+∂
i
+v

h(x− hei − hej)
)
,

we have max {||∂i+∂i−vh||0,α;Ωh
0
, ||∂jh∂ihvh||0,α;Ωh

0
, i, j = 1, . . . , n} ≤ ||vh||2,α;Ωh

0
and hence

the above theorem also applies when the second order derivatives (2.10) and (2.11)
are used in the definition of ||.||2,α;Ωh

0
.

By Taylor series expansions, it is not difficult to verify that for v ∈ C2(Ω)

|v|j;Ωh
0
≤ |v|2;Ω, j ≤ 2.

Moreover, for v ∈ C4,α(Ω),

||D2v −Hd(v)||0;Ωh
0
≤ Ch2|v|4;Ω,(2.15)

and

[D2v −Hd(v)]0,α;Ωh
0
≤ Ch2[v]4,α;Ω.

To see that the last inequality holds, it is enough to consider a function of one variable
v ∈ C4,α(−1, 1) and estimate [v′′(x)− (v(x+ h)− 2v(x) + v(x− h))/h2]0,α. Now,

v′′(x)− v(x+ h)− 2v(x) + v(x− h)

h2
= −h

2

24
(v(4)(x+t1h)+v(4)(x−t2h)), t1, t2 ∈ [0, 1].

Next we note that, using the definition, the C0,α norm of v(4)(x + t1h) is bounded
above by the C0,α norm of v(4). The result then follows.

We have for v ∈ C4,α(Ω),

||D2v −Hd(v)||0,α;Ωh
0
≤ Ch2||v||4,α;Ω.(2.16)

Lemma 2.7. We have for u ∈ C4,α(Ω)

||Sk(D2u)− Sk(Hd(u))||0,α;Ωh
0
≤ Ch2|u|k−1

2;Ω ||u||4,α;Ω.
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Proof. By the mean value theorem, using (2.5), we have for some t in [0, 1], and
x ∈ Ωh

0 ,

Sk(D
2u)(x)− Sk(Hd(u))(x) = S ′k(tD

2(u)(x) + (1− t)Hd(u)(x)) : (D2u(x)

−Hd(u)(x))

=
n∑

i,j=1

Sijk (tD2(u)(x) + (1− t)Hd(u)(x))(D2u(x)

−Hd(u)(x))ij.

Using (2.2), it follows that

||Sk(D2u)− Sk(Hd(u))||0,α;Ωh
0
≤ C(|u|2;Ω + |u|2;Ωh

0
)k−1||D2u−Hd(u)||0,α;Ωh

0

≤ Ch2|u|k−1
2;Ω ||u||4,α;Ω.

�

3. Approximations by linear elliptic problems

In this section, we prove the convergence of the iterative method (1.2) and its discrete
version. As indicated in the introduction, we also obtain the existence and uniqueness
of the solution of the discrete version of (1.1), i.e. (2.12), as well as error estimates.

3.1. Convergence at the operator level. We assume that there is a unique k-
admissible solution u ∈ C2,α(Ω) of (1.1) for 0 < α < 1. Let u0 ∈ C2,α(Ω) such
that

(3.1) ||u− u0||2,α;Ω < δ.

For k = n, using an eigenvalue argument, it is not difficult to prove that the cofactor
matrix is uniformly positive definite under the assumption f ≥ f0 > 0 for a constant
f0. We assume that the matrix {Sijk (D2u)} is uniformly positive definite. We claim
that this holds if u ∈ C2(Ω) and there is c3 > 0 such that

c3 ≤ Sl(D
2u), 1 < l ≤ k.

We then have

(3.2) c3 ≤ Sl(D
2u) ≤ c4, 1 < l ≤ k,

for a constant c4. The proof is essentially given as [13, Theorem 1.3 ]. We define

Sik(λ) :=
∂

∂λi
Sk(λ).

First we note from the proof of [13, Theorem 1.3 ] that the eigenvalues of {Sijk (D2u)}
are given by Sik(λ(D2u)), 1 ≤ i ≤ n. On the other hand, since Sl(D

2u) ≥ c3 > 0, 1 <
l ≤ k, we have by [6, Proposition 1.1]

∂

∂λi
Sk(λ)

1
k > 0 for λ = λ(D2u).

Finally, as Sk(D
2u) ≤ c4 and u ∈ C2(Ω), the result follows.



11

By the continuity of the smallest eigenvalue of a matrix as a function of its entries,
{Sijk (D2u0)} is also uniformly positive definite for |u− u0|2;Ω sufficiently small.

Next, {Sijk (D2u0)} is a symmetric matrix and divergence free by [13, Formula 1.10
]. Thus we obtain

(3.3) div

(
{Sijk (D2u0)}Dv)

)
= {Sijk (D2u0)} : D2v.

We have

Theorem 3.1. Under the assumption that there is a unique k-admissible solution
u ∈ C2,α(Ω) of (1.1) for 0 < α < 1, the sequence defined by (1.2) converges to u for
u0 sufficiently close to u.

Proof. We define the operator R : C2,α(Ω)→ C2,α(Ω) by

− div

(
{Sijk (D2u0)}D(v −Rv)

)
= −Sk(D2v) + f in Ω

R(v) = g on ∂Ω.

By Theorem 2.1, the operator R is well defined. We show that for ρ > 0 sufficiently
small, R is a strict contraction in the ball Bρ(u) = {v ∈ C2,α(Ω), ||u− v||2,α;Ω < ρ}.
For v, w ∈ Bρ(u) we have using (3.3)

div

(
{Sijk (D2u0)}D(Rv−Rw)

)
= div

(
{Sijk (D2u0)}D(v−w)

)
+Sk(D

2w)−Sk(D2v)

= −{Sijk (D2u0)} : (D2w −D2v) + Sk(D
2w)− Sk(D2v).

Next, by the mean value theorem and using (2.5), we have for some t in [0, 1],

Sk(D
2w)− Sk(D2v) = {Sijk (tD2w + (1− t)D2v)} : D2(w − v)

= {Sijk (t(D2w −D2u0) + (1− t)(D2v −D2u0) +D2u0)} : D2(w − v).

We use (2.7) to estimate the C0,α norm of

A = {Sijk (t(D2w −D2u0) + (1− t)(D2v −D2u0) +D2u0)} − {Sijk (D2u0)}.

For 0 ≤ s ≤ 1 to be specified below, put

αst = st(D2w −D2u0) + s(1− t)(D2v −D2u0) +D2u0.

We have

(3.4) |αst|0,α;Ω ≤ ||u0 − v||2,α;Ω + ||u0 − w||2,α;Ω + ||u0||2,α;Ω.

By the mean value theorem, for some s ∈ [0, 1] we have

A = {Sijk (αst)}′(t(D2w −D2u0) + (1− t)(D2v −D2u0)),

and thus by (2.7)

(3.5) ||A||0,α;Ω ≤ C|αst|k−2
0,α;Ω(||u0 − v||2,α;Ω + ||u0 − w||2,α;Ω).
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By Schauder estimates (Theorem 2.1), (2.2), (3.4) and (3.5) we obtain

||R(v)−R(w)||2,α;Ω ≤ C||A||0,α;Ω||D2(v − w)||0,α;Ω

≤ C(||u0 − v||2,α;Ω + ||u0 − w||2,α;Ω + ||u0||2,α;Ω)k−2

(||u0 − v||2,α;Ω + ||u0 − w||2,α;Ω)||v − w||2,α;Ω

≤ C(ρ+ δ + ||u0||2,α;Ω)k−2(ρ+ δ)||v − w||2,α;Ω,

(3.6)

where δ measures how close u0 is to u (3.1). Thus, for ρ and δ sufficiently small, R is
a strict contraction in Bρ(u).

It remains to show that R maps Bρ(u) into itself. We note by the definition of R and
unicity of the solution of (1.1), a fixed point of R solves (1.1). Let v ∈ Bρ(u),

||u−Rv||2,α;Ω = ||Ru−Rv||2,α;Ω ≤ ||u− v||2,α;Ω ≤ ρ,

which shows that R maps Bρ(u) into itself. The existence of a fixed point follows from
the Banach fixed point theorem. Moreover, the sequence defined by um+1 = R(um),
i.e. the sequence defined by (1.2), converges for ρ and δ sufficiently small to u. �

3.2. Finite difference discretization. Next we consider the following discrete ver-
sion of (1.2)

{Sijk (Hd u
0,h)} : Hdu

m+1,h = {Sijk (Hd u
0,h)} : Hdu

m,h

+ f − Sk(Hd u
m,h) in Ωh

0

um+1,h = g on ∂Ωh.

(3.7)

Under the assumptions of Theorem 3.5 below, we show that (2.12) has a unique
solution to which the above sequence converges. Moreover, the convergence rate is
O(h2). Define

(3.8) Bρ(u) = {vh ∈M(Ωh), ||vh − u||2,α;Ωh
0
≤ ρ}.

Lemma 3.2. Let Sh : M(Ωh) → M(Ωh) be a strict contraction with contraction
factor less than 1/2, i.e. for vh, wh ∈M(Ωh)

||Sh(vh)− Sh(wh)||2,α;Ωh
0
≤ 1

2
||vh − wh||2,α;Ωh

0
.

Let us also assume that Sh does not move the center u of the ball Bρ(u) too far, i.e.

||Sh(u)− u||2,α;Ωh
0
≤ C0h

2.

Then Sh maps Bρ(u) into itself for ρ = 2C0h
2. Moreover Sh has a unique fixed point

uh in Bρ(u) with the error estimate

||u− uh||2,α;Ωh
0
≤ 2C0h

2.

Proof. For vh ∈ Bρ(u),

||Sh(vh)− u||2,α;Ωh
0
≤ ||Sh(vh)− Sh(u)||2,α;Ωh

0
+ ||Sh(u)− u||2,α;Ωh

0

≤ 1

2
||vh − u||2,α;Ωh

0
+ C0h

2

≤ ρ

2
+ C0h

2 ≤ ρ

2
+
ρ

2
= ρ.
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This proves that Sh maps Bρ(u) into itself. The existence of a fixed point follows from
the Banach fixed point theorem. The convergence rate follows from the observation
that

||u− uh||2,α;Ωh
0
≤ ||u− Sh(u)||2,α;Ωh

0
+ ||Sh(u)− Sh(uh)||2,α;Ωh

0

≤ C0h
2 +

1

2
||uh − u||2,α;Ωh

0
.

�

Remark 3.3. For h sufficiently small, Hd(u) is sufficiently close to D2u and hence
{Sijk (Hdu)} is positive definite, a property which also holds for {Sijk (Hd u

0,h)} for u0,h

sufficiently close to u. The arguments are similar to the ones of Lemma 2.4. See also
Lemma 3.4 below.

Lemma 3.4. Let u be a k-admissible solution of (1.1). Assume that inf f >
0 and u ∈ C4(Ω). Then for h sufficiently small, ∆d(u) ≥ c0 > 0 where c0 =
1/2((inf f)/c(k, n))1/k. Moreover, if u is a strictly convex function, then for ρ =
O(h2), Hd(u) is a positive matrix and vh is a discrete convex function, when vh ∈
Bρ(u).

Proof. Since the eigenvalues of a matrix are continuous functions of its entries (as
roots of the characteristic polynomial), for a matrix A = (aij) with Sk(A) > 0, we
have for ε > 0, the existence of γ > 0 depending only on the space dimension n such
that |Sk(B)− Sk(A)| < ε when supij|bij − aij| < γ. This implies Sk(B) > Sk(A)− ε.
Thus with ε = Sk(A)/2, we have Sk(B) > Sk(A)/2.

For h sufficiently small we have Ch2|u|4;Ω < γ and thus since Sk(D
2u) = f > inf f > 0,

by (2.15) Sk(Hd(u)) ≥ 1/2 inf f . By (1.4)

∆d(u) ≥ 1

2
((inf f)/c(k, n))1/k.

Let vh ∈ Bρ(u). Then by definition of Bρ(u) and (2.15)

||Hd(v
h)−Hd(u)||0,α;Ωh

0
≤ ||Hd(v

h)−D2u||0,α;Ωh
0

+ ||D2u−Hd(u)||0,α;Ωh
0

≤ ρ+ Ch2|u|4;Ω,

which can be made smaller than γ for h and ρ sufficiently small. Thus given that
Hd(u) is positive definite, the same holds for Hd(v

h). �

Theorem 3.5. Assume that u ∈ C4,α(Ω) is k-admissible. Choose u0,h such that
||u0,h−u||2,α;Ωh

0
= O(h2). For h sufficiently small, (2.12) has a locally unique solution

uh which satisfies ∆d(u
h) ≥ 0 and uh converges to the unique solution u of (1.1) as

h→ 0 at the rate O(h2).

Proof. It follows from the assumptions that inf f > 0. We define the operator Rh :
M(Ωh)→M(Ωh) by

−{Sijk (Hd u
0,h)} : Hd(v

h −Rhvh) = −Sk(Hd v
h) + f in Ωh

0

Rh(vh) = g on ∂Ωh,
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and show that Rh has a unique fixed point in Bρ(u) for ρ = O(h2). By Remark 3.3
the above problem is then well defined. It follows from (3.3) that the operator Rh is
a discrete version of the operator R used in the proof of Theorem 3.1. Thus, as in
the proof of Theorem 3.1 we obtain

{Sijk (Hd u
0,h)} : Hd(R

hvh −Rhwh) = Sk(Hdw
h)− Sk(Hd v

h)

+ {Sijk (Hd u
0,h)} : Hd (vh − wh).

And thus by the mean value theorem and discrete Schauder estimates, as in the proof
of Theorem 3.1

(3.9) ||Rh(vh)−Rh(wh)||2,α;Ωh
0
≤
C(ρ+ δh + ||u0,h||2,α;Ωh

0
)k−2(ρ+ δh)||vh − wh||2,α;Ωh

0
.

Next, note that with (2.16) applied to u one has |u|2,α;Ωh
0
≤ C||u||4,α;Ω. It follows

that ||u0,h||2,α;Ωh
0
≤ ||u||2,α;Ωh

0
+ δh ≤ C||u||4,α;Ω + δh. We recall that by assumption

||u0,h − u||2,α;Ωh
0

= O(h2). Thus Rh is a strict contraction in Bρ(u) for ρ =O(h2) and

h sufficiently small. Moreover, the contraction factor can be made smaller than 1/2
by choosing h sufficiently small.

Since f = Sk(D
2u), by the discrete Schauder estimates Theorem 2.6 and Lemma 2.7

||Rh(u)− u||2,α;Ωh
0
≤ C||Sk(D2u)− Sk(Hd(u))||0,α;Ωh

0
≤ Ch2.

By Lemma 3.2 we conclude that Rh has a fixed point uh in Bρ(u) with the claimed
convergence rate.

The claimed property of uh follows from the fact that uh ∈ Bρ(u) and Lemma 3.4.

�

4. Newton’s method

As in the previous section, we assume that {Sijk (D2u)} is uniformly positive definite.
By Remark 3.3, for h sufficiently small, there exists m′ > 0 such that for vh ∈ Bρ(u),

{Sijk (Hdv
h)} has smallest eigenvalue greater than m′. We consider for u0,h ∈ Bρ(u)

the sequence of iterates

{Sijk (Hdu
m,h)} : (Hdu

m+1,h −Hdu
m,h) = f − Sk(Hdu

m,h) in Ωh
0

um+1,h = g in ∂Ωh.
(4.1)

We note that (4.1) defines um+1,h as the solution of a discrete second order elliptic
equation in non divergence form, which is uniformly elliptic for um,h ∈ Bρ(u) for h
sufficiently small.

Theorem 4.1. The sequence defined by (4.1) satisfies

(4.2) ||um+1,h − uh||2,α;Ωh
0
≤ C||um,h − uh||22,α;Ωh

0
,

for ρ and h sufficiently small and where uh denotes the solution of (2.12) in Bρ(u), ρ =
O(h2).
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Proof. Put

(4.3) B = {Sijk (Hdu
m,h)} : (Hdu

m+1,h −Hdu
h).

We have by (2.12)

B = {Sijk (Hdu
m,h)} : (Hdu

m,h −Hdu
h) + Sk(Hdu

h)− Sk(Hdu
m,h)

=

(
{Sijk (Hdu

m,h)} − {Sijk (Hdu
h)}
)

: (Hdu
m,h −Hdu

h)

+ {Sijk (Hdu
h)} : (Hdu

m,h −Hdu
h) + Sk(Hdu

h)− Sk(Hdu
m,h).

(4.4)

Put

(4.5) B1 =

(
{Sijk (Hdu

m,h)} − {Sijk (Hdu
h)}
)

: (Hdu
m,h −Hdu

h),

and

(4.6) B2 = {Sijk (Hdu
h)} : (Hdu

m,h −Hdu
h) + Sk(Hdu

h)− Sk(Hdu
m,h).

By the mean value theorem, (2.5) and (2.7), we have

B1 =
(
{Sijk (tHdu

m,h + (1− t)Hdu
h)}′(Hdu

m,h −Hdu
h)
)

: (Hdu
m,h −Hdu

h),

for t ∈ [0, 1] and thus

||B1||0,α;Ωh
0
≤ C(||uh||2,α;Ωh

0
+ ||um,h||2,α;Ωh

0
)k−2||um,h − uh||22,α;Ωh

0

≤ C(||u||2,α;Ωh
0

+ ρ)k−2||um,h − uh||22,α;Ωh
0

≤ C(||u||2,α;Ωh
0

+ ρ)k−2||um,h − uh||22,α;Ωh
0
.

(4.7)

We also have by the mean value theorem

B2 = {Sijk (Hdu
h)} : (Hdu

m,h −Hdu
h)

+ {Sijk (tHdu
h + (1− t)Hdu

m,h)} : (Hdu
h −Hdu

m,h)

=

(
{Sijk (Hdu

h)} − {Sijk (tHdu
h + (1− t)Hdu

m,h)}
)

: (Hdu
m,h −Hdu

h)

=

(
{Sijk ((1− s)Hdu

h + stHdu
h + s(1− t)Hdu

m,h)}′

(
(1− t)(Hdu

h −Hdu
m,h)

))
: (Hdu

m,h −Hdu
h),

(4.8)

for s, t ∈ [0, 1]. As for B1 we obtain

||B2||0,α;Ωh
0
≤ C(||u||2,α;Ωh

0
+ ρ)k−2||um,h − uh||22,α;Ωh

0
.(4.9)

Combining (4.3)–(4.8) and using Schauder estimates, we obtain (4.2). �

Choosing ρ = O(h2) we have Cρ < 1 for h sufficiently small. We conclude that
um+1,h ∈ Bρ(u) when um,h ∈ Bρ(u) and the quadratic convergence rate of Newton’s
method.
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Remark 4.2. Having established that the discrete problem has a locally unique so-
lution and that vh is a discrete convex function for vh sufficiently close to u, the
convergence of Newton’s method also follows from the verification of standard as-
sumptions given in [19, p. 68]. See [11] for an example of verification of the standard
assumptions for a wide stencil discretization.

5. Gauss-Seidel iterative methods

It is a natural idea to solve (2.12) by a nonlinear Gauss-Seidel method, that is solve
(2.12) for uh(x) and solve the resulting nonlinear equations by a Gauss-Seidel method.
Although this seems a daunting task for arbitrary k, we show that for k = 2, this takes
a very elegant form. We then establish a connection between the resulting nonlinear
Gauss-Seidel iterative method for 2-Hessian equations and the discrete version of
(1.3), i.e.

∆d u
m+1,h =

(
(∆d u

m,h)k +
1

c(k, n)
(f − Sk(Hd u

m,h))

) 1
k

in Ωh
0

um+1,h = g on ∂Ωh,

(5.1)

when the Gauss-Seidel method is used to solve the Poisson equations.

5.1. Nonlinear Gauss-Seidel method for 2-Hessian equations. We start with
the identity

∆d u
h =

(
(∆d u

h)2 +
1

c(2, n)
(f − S2(Hd u

h))

) 1
2

,(5.2)

and show that the right hand side is independent of uh(x). Note that by (2.11),
∂ih∂

j
hu

h(x), i 6= j is independent of uh(x) and by (2.13),

∂(∆d u
h(x))

∂(uh(x))
=

n∑
i=1

− 2

h2
= −2n

h2
.

Since ∂Sk(A)/∂z =
∑n

i,j=1(∂Sk(A)/∂aij)(∂aij/∂z), we conclude that

∂

∂(uh(x))
S2(Hd u

h(x)) =
n∑

i,j=1
i 6=j

Sij2 (Hd u
h(x))

∂

∂(uh(x))
∂ih∂

j
hu

h(x)

+
n∑
i=1

Sii2 (Hd u
h(x))

∂

∂(uh(x))
∂i+∂

i
−u

h(x)

= − 2

h2

n∑
i=1

Sii2 (Hd u
h(x)) = − 2

h2

n∑
i=1

∑
1≤p≤n
p6=i

δipip ∂
p
+∂

p
−u

h(x)

= − 2

h2

n∑
i=1

∑
p 6=i

∂p+∂
p
−u

h(x) = − 2

h2
(n− 1)∆d u

h(x)

= − 2

h2
(2n) c(2, n)∆d u

h(x) = −4n

h2
c(2, n)∆d u

h(x),
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and we recall that the definition of δipip was given in section 2.1. This gives

∂

∂(uh(x))

(
(∆d u

h(x))2 +
1

c(2, n)
(f − S2(Hd u

h(x)))

)
= 0.

We can therefore rewrite (5.2) as

uh(x) =
h2

2n

[ n∑
i=1

uh(x+ hei) + uh(x− hei)
h2

−
(

(∆d u
h(x))2 +

1

c(2, n)
(f − S2(Hd u

h(x))

) 1
2
]
,

(5.3)

where the solution with ∆d u
h ≥ 0 has been selected. For n = 2, this is the identity

which was solved in [15, 8, 7, 5] by a Gauss-Seidel iterative method, as indicated in
the introduction. For n ≥ 3, this provides new iterative methods for the 2-Hessian
equations.

Henceforth, we shall assume that a row ordering of the elements of Ωh is chosen. Note
that if we apply the Gauss-Seidel method to the problem (5.1), we obtain a double
sequence um,p,h defined by

um+1,p+1,h(x) =
h2

2n

[ n∑
i=1

um+1,p,h(x+ hei) + um+1,p+1,h(x− hei)
h2

−
(

(∆d u
m,h(x))2 +

1

c(2, n)
(f − S2(Hd u

m,h(x))

) 1
2
]
,

This leads us to consider the double sequence um,hp defined by

um+1,h
p+1 (x) =

h2

2n

[ n∑
i=1

um+1,h
p (x+ hei) + um+1,h

p+1 (x− hei)
h2

−
(

(∆d u
m,h
p∗ (x))2 +

1

c(2, n)
(f − S2(Hd u

m,h
p∗ (x))

) 1
2
]
,

where ∆d u
m,h
p∗ (x) and S2(Hd u

m,h
p∗ (x)) are the actions of the discrete Laplace and 2-

Hessian operators on um,hp updated with the most recently computed values.

Formally, as m→∞, this gives the nonlinear Gauss-Seidel method

uhp+1(x) =
h2

2n

[ n∑
i=1

uhp(x+ hei) + uhp+1(x− hei)
h2

−
(

(∆d u
h
p∗(x))2 +

1

c(2, n)
(f − S2(Hd u

h
p∗(x))

) 1
2
]
,

(5.4)

where as above ∆d u
h
p∗(x) and S2(Hd u

h
p∗(x)) are the actions of the discrete Laplace

and 2-Hessian operators on uhp updated with the most recently computed values of

uhp+1. In particular, the right hand side of (5.4) does not depend on uhp+1 since as

shown above, the right hand side of (5.3) does not depend on uh(x).
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6. Numerical results

We give numerical results for the σ2 problem, i.e. for k = 2, n = 3 using the subhar-
monicity preserving iterations. Although our theoretical results only cover smooth
solutions, as indicated in the abstract and in the introduction, the subharmonicity
preserving iterations appear able to handle non smooth solutions. The initial guess
in all of our numerical experiments is taken as the finite difference approximation of
the solution of the Poisson equation ∆u = 2

√
f in Ω with u = g on ∂Ω.

We use the following test functions on the unit cube [0, 1]3:

Test 1: A smooth solution which is strictly convex, u(x, y, z) = ex
2+y2+z2 so that

f(x, y, z) = 4(3 + x2 + y2 + z2)e2(x2+y2+z2) and g(x, y, z) = ex
2+y2+z2 on ∂Ω.

Test 2: A smooth solution which is 2-convex but not convex. It is known that for
a radial function u(x) = φ(r), r = |x|, x ∈ Rn the eigenvalues of D2u are given by
λ1 = φ′′(r) with multiplicity 1 and λ2 = φ′(r)/r with multiplicity n − 1. See for
example [9, Lemma 2.1]. It follows that with u(x, y, z) = ln(a+x2 +y2 +z2), we have

φ(r) = ln(a + r2) and we get ∆u = 6a+2r2

(a+r2)2
≥ 0, S2(D2u) = 4 3a−r2

(a+r2)3
≥ 0, detD2u =

2 a−r2
(a+r2)2

, in [0, 1]3. With a = 2, detD2u takes negative values in [0, 1]3.

Test 3: A solution not in H2(Ω), u(x, y, z) = −
√

3− x2 − y2 − z2 so that f(x, y, z) =

−(x2 + y2 + z2− 9)/(−3 + x2 + y2 + z2)2 and g(x, y, z) = −
√

3− x2 − y2 − z2 on ∂Ω.

Test 4: No exact solution is known. Here f(x, y, z) = 1 and g(x, y, z) = 0.

Test 5: A degenerate three dimensional Monge-Ampère equation. We take f(x, y, z) =
0 and g(x, y, z) = |x− 1/2|. We use the double iterative method based on (1.5).

Numerically, the solution computed may not satisfy S2D2um ≥ 0. At those points we
set both S2(D2um) and detD2um to 0 in (1.5). If the numerical value of S2(D2um)
is negative, then 0 is a better approximate value. Since S2(D2um) is computed from
um, the numerical value of detD2um would also be inaccurate. Since um is expected
to be an approximate solution of u for which detD2u ≥ 0, a better approximation of
detD2um at any stage where the latter is negative is also 0. It would be interesting
to analyze the effect of these rounding off errors on the overall numerical convergence
of the method. For example, one may analyze the convergence of the inexact dou-
ble iteration. Similar situations appear with inexact Newton’s methods and inexact
Uzawa algorithms.

The right hand side f(x, y, z) can be computed from the exact solution u(x, y, z) using
the definition of S2(D2u) as the sum of the 2× 2 principal minors.

For all tests but Test 3, we used the direct solver (5.1). For h = 26, we run out of
memory with (5.1). For Test 3, the Gauss-Seidel method was used since there is no
memory issue for the latter with h = 26. As expected, we have quadratic convergence
(as h→ 0) for the smooth solutions of Tests 1 and 2 while enough data is not available
to give the convergence rate for the singular solution of Test 3.
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h
1/21 1/22 1/23 1/24 1/25

Error 6.2328 10−2 2.6556 10−2 7.7836 10−3 2.0616 10−3 5.2449 10−4

Rate 1.23 1.77 1.92 1.97

Table 1. Maximum error with Test 1.

h
1/21 1/22 1/23 1/24 1/25

Error 6.5241 10−4 5.0653 10−4 1.3850 10−4 3.5587 10−5 9.1276 10−6

Rate 0.36 1.87 1.96 1.96

Table 2. Maximum error with Test 2.

h
1/24 1/25 1/26

Error 1.1084 10−3 9.7971 10−4 7.6618 10−4

Rate 0.18 0.35

Table 3. Maximum error with Test 3.

Figure 1. Test 4, h = 1/25. Graph and contour in plane z = 1/2.

Figure 2. Test 5, h = 1/24. Graph in the plane z = 1/2.
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In [5], it was argued based on numerical evidence that the Gauss-Seidel method (5.4)
is faster than a certain variant of the direct solver (5.1) for singular solutions. In our
implementation we saw evidence of the contrary, that is, the Gauss-Seidel method is
less efficient. We note that the Gauss-Seidel method requires much more loops which
are not efficient in MATLAB.

7. Concluding Remarks

Remark 7.1. Although the pseudo-transient and time marching methods introduced
in [3] work as well for k-Hessian equations, and apply to more general fully nonlinear
equations, the subharmonicity preserving iterative methods introduced in this paper
are parameter free. All these type of methods can be accelerated with fast Poisson
solvers and multigrid methods.

Remark 7.2. When it comes to numerical methods for fully nonlinear equations,
there are two types of convergence to study. Since the equations are nonlinear, they
must be solved iteratively. One must then address the convergence to the discrete
solution of the iterative methods used. The second type of convergence is the conver-
gence of the numerical solution to the exact solution as the discretization parameter
converges to 0. We have addressed both types of convergence in this paper.

Remark 7.3. Existence of a discrete solution and convergence (as the mesh size
h → 0), for finite difference discretization of smooth solutions of fully nonlinear
equations, are not often discussed. It is clear that convergence does not simply follow
from the consistency of standard finite difference discretization of the second order
derivatives. For viscosity solutions, convergence of monotone, stable and consistent
schemes follows immediately from the theory of Barles and Souganidis.

Remark 7.4. The iterative method (1.3) can be viewed as a linearization of the fully
nonlinear equation (1.1). It is possible to linearize (1.1) in ways different from (1.2)
and (1.3). See for example the methods described in [3]. The iterative method (1.3)
has been shown numerically to select discrete solutions which converge to non smooth
solutions. Since (1.3) consists of a sequence of Poisson equations, the numerical
solution of (1.1) can now be tackled with any good numerical method.
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