ITERATIVE METHODS FOR k-HESSIAN EQUATIONS

GERARD AWANOU

ABSTRACT. On a domain of the n-dimensional Euclidean space, and for an integer
k=1,...,n, the k-Hessian equations are fully nonlinear elliptic equations for k > 1
and consist of the Poisson equation for £ = 1 and the Monge-Ampére equation for
k = n. We analyze for smooth non degenerate solutions a 9-point finite difference
scheme. We prove that the discrete scheme has a locally unique solution with a
quadratic convergence rate. In addition we propose new iterative methods which
are numerically shown to work for non smooth solutions. A connection of the latter
with a popular Gauss-Seidel method for the Monge-Ampere equation is established
and new Gauss-Seidel type iterative methods for 2-Hessian equations are introduced.

1. INTRODUCTION

Let €2 be a bounded, connected open subset of R", n > 2 with boundary denoted 0f2.
Let u € C*(Q) and for z € Q, let D?u(z) = ((8%(1‘))(8%89@-)) denote its

ij=1,sn
Hessian. We denote the eigenvalues of D?u(z) by \i(z),i =1,...,n. For 1 <k < n,
the k-Hessian operator is defined as

Se(D%u) = > Ay N,
i< <,
We note that S;(D?*u) = Au is the Laplacian operator and S,,(D?*u) = det D?u is the

Monge-Ampere operator. For k > 2, we are interested in the numerical approximation
of solutions of the Dirichlet problem for the k-Hessian equation

(1.1) Sp(D*u) = finQ,u = gondQ,
with f and g given and f > 0.

1.1. Local existence, uniqueness and quadratic convergence rate for a finite
difference discretization. Let u° be a sufficiently close initial guess to the smooth
solution u of (1.1). Consider the iterative method

a2 M ({S’?(D%O)}D“m“) = div <{S;ij (DQuO)}Dum) 4+ f — Su(D*™) in Q)

u™ = gondQ,

where {S7(D?u®)} is a matrix which generalizes the cofactor matrix of D?u’.

We prove the convergence of (1.2) at the continuous level in Holder spaces. A discrete
version of (1.2) is also shown to converge to a solution of a 9-point stencil discretization
of (1.1). This establishes the local existence and uniqueness of a discrete solution. In

addition the convergence rate of the discretization is shown to be quadratic.
1
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It is reasonable to expect that the discrete version of the iterative method (1.2) will
retrieve the correct solution when it is smooth and non degenerate. As with Newton’s
method it is not effective for non smooth and degenerate solutions. For these, we
advocate iterative methods like the subharmonicity preserving iterations described
below. The discrete version of (1.2) is used in this paper to prove the local solvability
of the 9-point scheme when w is smooth and non degenerate. These results form a
building block of a theory which explains why standard discretizations work for non
smooth solutions [4]. In addition results for smooth solutions are also needed for the
analysis of hybrid schemes where the 9 point scheme is used in part of the region
where the solution is smooth and a monotone scheme elsewhere [2].

1.2. Newton’s method. If one is only interested in smooth solutions, Newton’s
method is the most appropriate method. We analyze the convergence of Newton’s
method for solving (1.1) when it has a smooth solution.

1.3. Numerical work for subharmonicity preserving iterations. A smooth
function u is said to be k-convex if S;(D?*u) > 0,1 <[ < k. Convexity of a function
can be shown to be equivalent to n-convexity, Lemma 2.5. It is of interest in some
applications to be able to handle (1.1) when it has a non smooth k-convex solution. It
has only been recently understood, c.f. [4] for the Monge-Ampere equation, that what
is needed is a numerical method provably convergent for smooth solutions and nu-
merically robust to handle non smooth solutions. The approach in [4] is to regularize
the data and use approximation by smooth functions. The key to numerically handle
non smooth solutions of (1.1) is to preserve k-convexity in the iterations. For discrete
k-convexity we simply require discrete analogues of the condition S;(D?u) > 0 with a
natural discretization of D?u. We refer to [1] where this approach was first used for
the discretization of n-convexity.

Consider the iterative method

1
k

! (f — Sk(DQUm))) in Q, u™*! = gon o9,

c(k,n)

(1.3)  Aum™! = ((Aum)k +

with c(k,n) = (})/n".

If D?u has positive eigenvalues, we have the inequality

(1.4) Se(D?*u) < c(k,n)(Au)*,

which follows from the Maclaurin inequalities, [13, Proposition 1.1 (v i)].

For k = 2, (1.4) also holds with no convezity assumption on w, [20, Lemma 15.11].
Explicitly ¢(2,3) = 1/3. Also, ¢(n,n) = 1/n™ which gives

1

det D*u < —(Au)™,

nn
a direct consequence of the arithmetic mean - geometric mean inequality.
If one starts with an initial guess u° such that Au® > 0, (1.3) enforces Au™ > 0
for all m. Indeed recall that f > 0 and assume that Au™ > 0. Then by (1.4)
1/c(k,n)Sp(D?*u™) < (Au™)*, and using (1.3) it follows that (Au™1)k > 0. In other
words, starting with an initial guess u® with Au® > 0, (1.3) enforces subharmonicity
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in arbitrary dimension for smooth convex solutions and subharmonicity for 2-Hessian
equations with no convexity assumption on u. In addition for 2-Hessian equations,
the limit solution solves So(D?u) = f > 0. That is, the sequence u™! defined by
(1.3) has a formal limit which solves Au > 0 and Sy(D?*u) > 0. Thus (1.3) enforces
2-convexity in arbitrary dimension for 2-Hessian equations.

Another class of iterative methods we introduce in this paper are Gauss-Seidel type
iterative methods. The Gauss-Seidel methods are more efficient than (1.3) for large
scale problems.

The simplicity of the methods discussed in this paper and the facility with which they
can be implemented, make them attractive to researchers interested in Monge-Ampere
equations. The other major motivation to study the subharmonicity preserving it-
erations is that they can be adapted to the finite element context and have been
numerically shown in that context to be robust for non smooth solutions.

In two dimension, (1.3) appears to perform well in the degenerate case f > 0 as
discrete k-convexity is enforced in the iterations. The situation is different in three
dimension with £ = 2. We were not able to reproduce the solution u(z,y, 2) = |xr—1/2|
by solving (1.1) with & = 2 and using (1.3). Here, since u does not depend on z, we
have f(z,y,z) = 0 as in the two dimensional case. However, for n = 3 and k = 3,
we can preserve convexity in the degenerate case by using the sequence of nonlinear
2-Hessian equations

3 2
1 3 3
(15) SQ(DQ'LLerl) =3 ( (gSQ(DQUm)) + f — det D2um) y
with ¥ = g on 9Q. Each of these equations is solved iteratively by (1.3) with
3

2
k =2,n = 3. We note that <%SQ(D2um)) —det D?>u™ > 0 when Sy(D*u™) > 0, [20,

Lemma 15.12]. Starting with an initial guess which satisfies Sy(D?*u") > 0 and setting
det D?u™ = 0 in (1.5) whenever Sy(D?*u™) = 0, we obtain a double sequence iterative
method which at the limit enforce Au > 0, Sy(D?*u) > 0, and det D*u = f > 0.

The reason for setting det D*u™ = 0 in (1.5) whenever S;(D?*u™) = 0 is motivated
by the observation that in the case f = 0, if So(D?*u™) = 0, Sy(D?*u™*1) is ill-defined
or complex valued if det D?u™ > 0. While (1.3) may be inexact for degenerate 2-
Hessian equations, its use inside a double iterative method appears effective. This is
reminiscent of inexact Uzawa algorithms.

1.4. Relation with other work. The k-Hessian equations have mainly applica-
tions in conformal geometry and physics. The Monge-Ampere operator has received
recently a lot of interest from numerical analysts. For n = 3 and k = 2, the numerical
resolution of (1.1) has been considered in [22], where it was referred to as the oy
problem. The iterative method (1.3) generalizes an iterative method introduced in
[5] for the two dimensional Monge-Ampere equation. The latter corresponds to the
choice k = n = 2 and the constant ¢(2,2) = 1/4 replaced by 1/2. The 2-Hessian
equation has also been considered recently in [12] from the point of view of monotone
schemes.
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We will see that if the central finite difference discretization of (1.3) is solved by a
Gauss-Seidel iterative method, one recovers a Gauss-Seidel iterative method which
has been used by many authors to solve the two dimensional Monge-Ampere equation.
We will refer to the latter method as the 2D Gauss-Seidel method for Monge-Ampere
equation. It has been used in the numerical simulation of Ricci flow [15], as a smoother
in multigrid methods for the balance vortex model in meteorology, [8, 7] and has
been recently shown numerically to capture the viscosity solution of the 2D Monge-
Ampere equation [5]. The connection between (1.3) and the 2D Gauss-Seidel method
for the Monge-Ampere equation is what enables us to introduce new Gauss-Seidel
type iterative methods for k-Hessian equations.

The ingredients of our proof of the convergence rate for the finite difference discretiza-
tion are discrete Schauder estimates and a suitable generalization of the combined
fixed point iterative method used in [10]. Schauder estimates were also used in the
proof of convergence of Newton’s method at the continuous level [21].

1.5. Organization of the paper. The paper is organized as follows: In the next
section, we give some notations, recall the Schauder estimates and their discrete
analogues. In section 3 we prove our main results on the quadratic convergence rate
of a finite difference discretization of (1.1) and in section 4 we prove the convergence of
Newton’s method. In section 5 we introduce new Gauss-Seidel type iterative methods
and their connections with the subharmonicity preserving iterations (1.3). Section 6 is
devoted to numerical results. We conclude with some remarks. The reader interested
only in the Monge-Ampere equation, or for a first reading, may assume that k = n.

2. NOTATION AND PRELIMINARIES

2.1. Holder spaces and Schauder estimates. For a nonnegative integer r or for
r = 00, we denote by C"(Q2) the set of all functions having all derivatives of order < r
continuous on {2 and by C"(Q2), the set of all functions in C"(£2) whose derivatives of
order < r have continuous extensions to {). For a multi-index 8 = (84, ..., ,) € N",
put |[8] = B + ... + B.. We use the notation DPu(x) for the partial derivative
(0/0z1)% ... (8/0x,)  u(z).
The norm in C" () is given by
lullna =Y lulza:  lulza = supjg—supo| D7 u(z)].

=0
We denote by |x| the Euclidean norm of x € R™. A function u is said to be uniformly
Holder continuous with exponent «,0 < a < 1 in € if the quantity

Ju(z) — uly)]

M e =yl

Y

is finite. The space C™*({2) consists of functions whose r-th order derivatives are
uniformly Holder continuous with exponent « in 2. It is a Banach space with norm

lullr.ase = llullre + [ulra0,



where
|DPu(x) — Du(y)

|z —y|*
The norms || ||,.q and || ||,a.0 are naturally extended to vector fields and matrix fields
by taking the supremum over all components. We make the standard convention of
using C for a generic constant. For A = (a;;)ij=1,..n and B = (b;;); j=1,..n, We recall
that A: B =", a;b;. We will often use the following property

(2.1) 1 fgllo,aa < Cllflloaellglloan, for f,g € Oo7a(§)7
from which it follows that if A, B are matrix fields

[U] ra;Q = SUP|g|=rSUPy-,

.....

(2.2) 1A Blloaa < C > laijllo.aellbij]o.a0-

i,j=1

We first state a global regularity result for the solution of strictly elliptic equations,
which follows from [14, Theorems 6.14, 6.6 and Corollary 3.8 |.

Theorem 2.1. Assume 0 < oo < 1. Let Q be a C** domain in R™ and f,a" € C*(9),
¢ € C*%(Q). We consider the strictly elliptic operator

(2.3) Lu= Y a’(z) ax?;mju(:c),

4,j=1

with coefficients satisfying for positive constants X, A,

S a(@)GG 2 A G € R, and|a]oan < A.
=1

ij=1 —
Then the solution u of the equation

Lu= finQ,u= ¢ondll,
satisfies

ull2.0i0 < C(l]]2.0:0 + [[fllo.as0),
where C' depends on n,a, A\, A, ), supyq |¢|, and supg |f|/A.

We will make the slight abuse of language of also denoting by Si(x),x = (z1,...,z,)
the kth elementary symmetric polynomial of the variable z, i.e.

SN = D A
i1 <<t

A function u € C%(Q)NC°(Q) with Hessian D?u having eigenvalues \;,i = 1,...,n is
said to be k-admissible if S;(A) > 0,7 =1,..., k. Solutions of the k-Hessian equation
will be required to be k-admissible, thus requiring f > 0.

Moreover, let kK = (ky,. .., k,_1) denote the principal curvatures of 0f2.

Definition 2.2. The domain Q is said to be (k—1)-convez if there exists co > 0 such
that
Sk—1(K) > ¢co > 0 0n0f2.

We then have, ([24, Theorems 3.3 and 3.4 ])
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Theorem 2.3. Assume that  is (k — 1)-convez, 0Q € C*', f € CY1(Q), inf f >0,
g € C31(Q). Then there is a unique k-admissible solution v € C*(Q) to the Dirichlet
problem (1.1).

We will need some identities for the k-Hessian operator Si(D?*u) which are derived
explicitly for example in [13, p. 5-6]. See also [24]. For a symmetric matrix A =
(aij)i; = 1,...,n with eigenvalues \;,7 = 1,...,n, let us also denote by Si(A) the
k-th elementary symmetric polynomial of A\. This is equivalent to say that Si(A) is
the sum of all £ x k principal minors of A. Using the permutation definition of the
determinant, we have

1 e e
(2.4) Sk(A) = & > ST an e ai,,
T 1<y, i <n

where 62311 zj: is the generalized Kronecker delta which takes the value +1 if i1, --- iy
differs from jy, -+, jx by an even permutation and the value -1 in the case of an odd
permutation. In other words, for a choice of i1, ..., 4, (5511 f}f is the signature of the
permutation o defined by (i) = 7,/ = 1,..., k. This implies that we only consider
the case where the sets {i, ..., 4} and {ji,...,jir} are identical. Moreover we define
6 tobe 0if {iy, ... ik} # {j1,...,jr}. Note also that {i,... 4} is a subset of
k elements of {1,...,n}.

We have

Y 0 1 e

Sk](A) = 8a5k(A> - (k — 1)' Z 51?,1']11,--',i]kk711ai1j1 T Qi

S T 1<iyin, e yig—1<n

and so Sp(A) = ¢ > et Sy (A)ay; by the k-homogeneity of Sy, and Euler’s theorem for
homogeneous functions. Here {ji,...,jx_1} is the image of the set of k — 1 elements
{i1,...,ix_1} not containing ¢ by a permutation.

Let us denote by {S7(A)} the symmetric matrix with entries S7(A). We can write
Si(A) = 1/k{S/(A)} : A, that is Sx(D*v) = 1{S/(D*v)} : D*v. Using (2.4) and
observing that the expression of Si(A) can be written in terms of a multilinear map,

we obtain

(2.5) S (D*v)D*w = {S(D*v)} : D*w.

Let us denote by {S/(A)} the Fréchet derivative of the mapping A — {S;(A)}.

Since {S(A)}(B) is a sum of terms each of which is a product of k — 2 terms from
A and is linear in B, we have

(2.6) {8 (D?*0)} D*wllo:a < Clolsg’wlze.
Using (2.2) and (2.6) we also have
(2.7) {8 (D?*0)} D*wllo.n < Clulsoiolwlzan.

Finally we note that

Lemma 2.4. Let v be a C? strictly convex function with Hessian having smallest
eigenvalue uniformly bounded below by a constant a > 0. Then for n = a/(2n), we
have w strictly convex, whenever ||w — v||c2q) < 7.
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Proof. Tt follows from [16, Theorem 1 and Remark 2 p. 39] that for two symmetric
n X n matrices A and B,

7,7
It follows that for u,v € C?(Q),
(2.9) M (D*u(x)) — M (D*0(2))] < nllw — vl[c2q).
The result then follows. O

We conclude this section with the equivalence of n-convexity and convexity in the
usual sense.

Lemma 2.5. A C? function u is convez if and only if it is n-convez.

Proof. If wis C?, \; > 0 on § for all ¢ and thus S;(D?*u) >0,l=1,...,n

Conversely let us assume that A is a symmetric matrix with S;(A) >0,l=1,...,n
We show that its eigenvalues \; are all positive. Let

pA) = A"+ N+,
denote the characteristic polynomial of A. It can be shown [17, Theorem 1.2.12] that
o= (=1)S)(A),l=1,...,n
We show that if \; < 0 then p()\;) # 0. We have
PN = AN L+,

=\ + Z At
= (-1 ( "+ Z )8y (A /\”‘l)
= (e s

Since —A; > 0 and S;(A) > 0 for all [, we have (—1)"p()\;) > 0. Moreover since
S Si(A) (=)™t > 0 and —); > 0 we have (—1)"p(\;) # 0. We conclude that
A; > 0 for all 2. This completes the proof. O

2.2. Discrete Schauder estimates and related tools. We will study the numeri-
cal approximation of (1.1)—(1.3) by standard finite difference discretizations. For sim-
plicity, we consider a cuboidal domain Q = (0,1)" C R™. Let 0 < h < 1with1/h € Z.
Put

Zyp={x = (21,...,2,)" €R":2;/h € Z}
Q= QN7Z,, Q" =QN7Z, 00" =0QN7Z, = Q"\ Q.
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Let €', = 1,...,n denote the i-th unit vector of R®. We define the following first
order difference operators on the space M(Q") of grid functions v"(x),z € Z,

v"(x + het) — v ()

8i’Uh(I) = A )
YR Y
(9i_vh(a:) v (x) Uh(x he )7
; v"(x + he') — v"(z — he
ahvh(x) — ( )2h ( )

Higher order difference operators are obtained by combining the above difference
operators. For a multi-index 8 = (1, ..., 0,) € N*, we define

o =9 ... 90,
The operators 9° and 8,[3 are defined similarly. Note that

v(z + he') — 20" (x) + v"(x — he?)
h? ’

(2.10) d' 0" " (x) =

1 ) ) ) .
D olvh (z) = 4h2{ "(2 4 he' 4+ hed) + 0" (x — he' — he?)
(2.11)
— v"(z + he' — he?) — v (x — he' + hej)},z' # j.
The second order derivatives §%v/dx;0z; are discretized using (2.10) and (2.11) for
i # j. This gives a discretization of the Hessian D?u which we denote by Hq(u").
Thus the discrete version of (1.1) takes the form
(2.12) Se(Hqu"(2)) = f(z), 2 € Qb u"(x) = g(x) on OQ".

The discrete Laplacian takes the form
(2.13) Ag(uh) =Y 0,0 u"
i=1

We consider a discrete uniformly elliptic linear operator with low order terms

Ldvh@):Za (x) ' +Zb’ VO (x), x € QF,
ij=1
i.e. the matrix (¢ (x)); j=1.. ., is uniformly positive definite. We now define discrete
analogues of the Holder norms and semi-norms following [18]. Let [£,7n] denote the
set of points ¢ € Q" such that & < ¢; <n;,7 =1,...,n. Then for v" € M(Q"),0 <
a < 1, we define

[0"|;,0n = max {[{v" ()], 8] =j, €.6+B8] c QY
B, h
h]j,a;ggzmax{'aw (ﬁ) s PO 15— e £ ee 4 BUT n+mcm},

0" |pon = maxj<p [0,

[v

||Uh| |p,o¢;Qg - ||Uh| |p;Qg + [Uh]p,oc;Qg'
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The above norms are extended canonically to vector fields and matrix fields by taking
the maximum over all components. For 7 = 0, we have discrete analogues of the
maximum and C%% norms.

For a domain O C R", we denote by Dy (O) the set of mesh functions on R"™ which
vanish outside O. If v" = 0 on 90", extending v" by 0 to Z;, we obtain v" € Dy(9).
The following theorem then follows from [23, Lemma 3.4].

Theorem 2.6. Assume 0 < o < 1 and v" =0 on OQ". Then there are constants C
and ho such that for v € M(Q"), h < hy

(214) ||Uh||2704;(26L S CHLdvhHO,a;Qg?

with the constant C independent of h.

Since
9'.0" " (z) = 9.9\ v" (v — he') and
AN (x) = i(@i@ivh(m) + PO " (v — he') + DL0L 0" (2 — he?)
+ 3,0 " (& — he' — hej)),
we have max {0402 v"[|g o.08 ||8,{8}'Lvh||0’a;93, i, =1,...,n} <|[o"|540n and hence

the above theorem also applies when the second order derivatives (2.10) and (2.11)
are used in the definition of |[.[|; 4;0n-

By Taylor series expansions, it is not difficult to verify that for v € C?(Q)
ol < 0], < 2.
Moreover, for v € C**(Q),
(2.15) 1D%0 = Ha(v)|lgn < Ch*[v]ag,
and
[D?v — Ha(v)]o,as0n < Ch*[v]1.0:0-

To see that the last inequality holds, it is enough to consider a function of one variable

v € C**(—1,1) and estimate [v"(z) — (v(z + h) — 2v(z) + v(z — h))/h*]o.a. Now,
h)—2 —h h?

,U//(x)_v(x_’_ ) 2;1(21;) +U(x ) - _ﬁ<v(4)(l’+t1h)+U(4)<l’—t2h)),tbt2 € [07 1]

Next we note that, using the definition, the C%® norm of v)(x + ¢,h) is bounded

above by the C%* norm of v(¥). The result then follows.

We have for v € C**(Q),
(2.16) 1D0%0 = Ha(0)llo,00 < CR?|[0]la.00-

Lemma 2.7. We have for u € C**(Q)
[19k(D*u) = Sk(Ha(w))[o.as0n < Ch [l |ul|40:0-
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Proof. By the mean value theorem, using (2.5), we have for some ¢ in [0, 1], and
r e,

Sk(D*u)(x) — Sk(Ha(w))(x) = Sp(tD*(u)(z) + (1 — t)Ha(u)(2)) : (D*u(=)

— Hy(u)(z))
— Z S (D (u)(x) + (1 — t)Ha(u)(2))(D*u(x)
| — Ha(u) ().

Using (2.2), it follows that
HS]C(Dzu) - Sk(Hd<u)>H0,a;Qg < C(’ullg + ‘u|2;98)k_1HD2u - Hd(u)HO,oz;Qg

< Ch?fulyg [ulla.aso-

3. APPROXIMATIONS BY LINEAR ELLIPTIC PROBLEMS

In this section, we prove the convergence of the iterative method (1.2) and its discrete
version. As indicated in the introduction, we also obtain the existence and uniqueness
of the solution of the discrete version of (1.1), i.e. (2.12), as well as error estimates.

3.1. Convergence at the operator level. We assume that there is a unique k-
admissible solution u € C%%(Q) of (1.1) for 0 < a < 1. Let u® € C**(Q) such
that

(3.1) [Ju — u°|2.00 < 6.

For k = n, using an eigenvalue argument, it is not difficult to prove that the cofactor
matrix is uniformly positive definite under the assumption f > f; > 0 for a constant
fo. We assume that the matrix {S}/(D?u)} is uniformly positive definite. We claim
that this holds if u € C?(2) and there is c3 > 0 such that

cs < Sy(D*u),1 <1< k.
We then have

(3.2) c3 < S)(D*u) < ey, 1 <1<k,
for a constant ¢y. The proof is essentially given as [13, Theorem 1.3 |. We define
, 0
SL(A) = Sk(A).
L) = 50

First we note from the proof of [13, Theorem 1.3 ] that the eigenvalues of {S}’(D?u)}

are given by Si(A(D?u)),1 < i < n. On the other hand, since S;(D?*u) > ¢3 > 0,1 <
[ < k, we have by [6, Proposition 1.1]

0

O\

Finally, as Sp(D?u) < ¢4 and u € C?(Q), the result follows.

Ealle

Sk(A)E > 0 for A = A\(D?u).
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By the continuity of the smallest eigenvalue of a matrix as a function of its entries,
{S2(D*u)} is also uniformly positive definite for |u — u®|s.q sufficiently small.

Next, {S(D?u’)} is a symmetric matrix and divergence free by [13, Formula 1.10
|. Thus we obtain

(3.3) div ({SZj(DQUO)}DU)) = {S7(D*")} : D*.

We have

Theorem 3.1. Under the assumption that there is a unique k-admussible solution
u € C?(Q) of (1.1) for 0 < a < 1, the sequence defined by (1.2) converges to u for
u® sufficiently close to u.

Proof. We define the operator R : C>%(Q) — C?%(Q) by

—div ({S,?j (D*u°)}yD(v — Rv)) = —Sp(D*v) + finQ
R(v) = gon 0f2.

By Theorem 2.1, the operator R is well defined. We show that for p > 0 sufficiently
small, R is a strict contraction in the ball B,(u) = {v € C**(Q), [lu — v||2.0.0 < p}-

For v,w € B,(u) we have using (3.3)

div ({5;‘3 (DQuO)}D(Rv—Rw)) = div <{S,?(D2u0)}D(u—w)) +S(D*w)—S,(D*v)
= —{SY(D*u%)} : (D*w — D*v) + Sp(D*w) — S(D%v).
Next, by the mean value theorem and using (2.5), we have for some ¢ in [0, 1],
Si(D*w) — Sp(D*v) = {S7 (tD*w + (1 — t)D*v)} : D*(w — v)
= {S/ (t(D*w — D*u°) + (1 — t)(D*v — D*u°) + D*u®)} : D*(w — v).
We use (2.7) to estimate the C%* norm of
A ={SJ(t(D*w — D*u°) + (1 — t)(D*v — D*u°) + D*u°)} — {S7(D*u)}.
For 0 < s <1 to be specified below, put
g = st(D*w — D*u®) + s(1 — t)(D*v — D*u°) + D*u°.
We have
(3-4) lostloae < ([’ = vllaan + (10" = wlloa0 + [[0”]|200-
By the mean value theorem, for some s € [0, 1] we have
A= {SP ()Y ((D*w — DA) + (1 — 1)(D% — D)),
and thus by (2.7)

. 0,0;92 > Ol 0;-9 U — V|2,;Q U — Wl2,;02)-
(3.5) Al < Claslg a6 = vllza0 + [[u® = w||2,00)
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By Schauder estimates (Theorem 2.1), (2.2), (3.4) and (3.5) we obtain
1R(v) = R(w)|[zai0 < CllAllo,as0l|ID*(v = w)l[0.as0
(3.6) < O(|[u° = vllza0 + [0 = wllo.a0 + [[u][200)"
(Ilu” = vllzasn + [[u” = wllza0)llv = w]|2a0
< Cp+ 0+ [[u’lfa.me) (0 + 0)l|v — w200,

where § measures how close u” is to u (3.1). Thus, for p and ¢ sufficiently small, R is
a strict contraction in B,(u).

It remains to show that R maps B,(u) into itself. We note by the definition of R and
unicity of the solution of (1.1), a fixed point of R solves (1.1). Let v € B,(u),

lu — Roll2,00 = [[Ru — Rv[|g,a0 < [lu — v]|2.00 < p,

which shows that R maps B,(u) into itself. The existence of a fixed point follows from
the Banach fixed point theorem. Moreover, the sequence defined by u™* = R(u™),
i.e. the sequence defined by (1.2), converges for p and ¢ sufficiently small to u. O

3.2. Finite difference discretization. Next we consider the following discrete ver-
sion of (1.2)
(S (Hqu®")} - Hgu™ ™ = {S7 (Hqu®M)} : Hau™"
(3.7) + f = Sp(Hau™")in Q8
u™ T = gon 00"

Under the assumptions of Theorem 3.5 below, we show that (2.12) has a unique

solution to which the above sequence converges. Moreover, the convergence rate is
O(h?). Define

(3.8) By(u) = {v" € M(Q"), |[v" = ull a0 < p}-
Lemma 3.2. Let S" : M(Q") — M(Q") be a strict contraction with contraction
factor less than 1/2, i.e. for v" w" € M(Q")
157 (0") — S" (") oy < 511" — w0l
Let us also assume that S™ does not move the center u of the ball B,(u) too far, i.e.
15" () ~ ully < Coh®

Then S™ maps B,(u) into itself for p = 2Coh?. Moreover S™ has a unique fized point
ul in B,(u) with the error estimate

||U’ - uh||2,a;Qg < 200h2‘

Proof. For v" € B,(u),
15" (v") = ully gy < 1" (") = S™ (W)llas0y + 118" () = vl 00y

1
< éth - uHQ,a;Qg + Cvoh2

P 2 P P
<Pion<lil_,
sy thhi=5+5=p
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This proves that S" maps B,(u) into itself. The existence of a fixed point follows from
the Banach fixed point theorem. The convergence rate follows from the observation
that

[l — "0y < llu— S"(W)]|o,0i0p + 15" (W) = S"(W")l]5,002
1
< Coh® + QHU}L = ullz,a08-

O

Remark 3.3. For h sufficiently small, Hq(u) is sufficiently close to D*u and hence
{S?(Hqu)} is positive definite, a property which also holds for { S (Hqu®")} for u®"
sufficiently close to w. The arguments are similar to the ones of Lemma 2./4. See also
Lemma 3.4 below.

Lemma 3.4. Let u be a k-admissible solution of (1.1). Assume that inf f >
0 and u € CYR). Then for h sufficiently small, Ag(u) > co > 0 where ¢y =
1/2((inf f)/c(k,n))/*.  Moreover, if u is a strictly conver function, then for p =
O(h?), Ha(u) is a positive matriz and v" is a discrete convex function, when v €
B,(u).

Proof. Since the eigenvalues of a matrix are continuous functions of its entries (as
roots of the characteristic polynomial), for a matrix A = (a;;) with Sp(A) > 0, we
have for € > 0, the existence of v > 0 depending only on the space dimension n such

that [Si(B) — Sk(A)| < € when sup,;|b;; — a;;| <. This implies Sy(B) > Si(A) — €.
Thus with € = Si(A)/2, we have Si(B) > Sk(A)/2.

For h sufficiently small we have Ch?|u|s.q < v and thus since Sp(D?*u) = f > inf f > 0,
by (2.15) Sp(Ha(w)) > 1/2inf f. By (1.4)

Aafu) 2 5 ((int £)/e(h, 1)

Let v" € B,(u). Then by definition of B,(u) and (2.15)
1Ha(v") = Ha(w)llo,any < [Ha(w") = D?ullg aiop + 100 = Ha(w)llo a0

S 1Y + Ch2|u|4;Q7
which can be made smaller than v for A and p sufficiently small. Thus given that
Ha(u) is positive definite, the same holds for H4(v"). O

Theorem 3.5. Assume that u € C**(Q) is k-admissible. Choose u®" such that
||u®h — ullg,0i0n = O(h?). For h sufficiently small, (2.12) has a locally unique solution

ul which satisfies Ag(u”) > 0 and u" converges to the unique solution u of (1.1) as
h — 0 at the rate O(h?).

Proof. Tt follows from the assumptions that inf f > 0. We define the operator R" :
M(QF) — M(Q") by

—{SJ (Hqu"M)} - Ha(v" — RMM) = —Sp(Hao") + fin QB
R'"v") = gonoQ",
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and show that R" has a unique fixed point in B,(u) for p = O(h?). By Remark 3.3
the above problem is then well defined. It follows from (3.3) that the operator R" is
a discrete version of the operator R used in the proof of Theorem 3.1. Thus, as in
the proof of Theorem 3.1 we obtain

(S (Hau"M)} : Hy(RM" — RMo™) = Sp(Haw") — Sp(Ha")
F{SE (M)} Ha (o — ).

And thus by the mean value theorem and discrete Schauder estimates, as in the proof
of Theorem 3.1

(3.9) |IR"(v") = R"(w")ll5 00 <

Cp+ 0n + [[u*"|l005) (0 + S)l[V" — w"[]5 aunp-
Next, note that with (2.16) applied to u one has [ulyq0r < Cllullsa0. It follows
that Huo’hﬂz,a;ﬂg < ullga0n + 0n < Clullg,ai2 + n. We recall that by assumption
[ = ully giqn = O(h?). Thus R is a strict contraction in B,(u) for p =O(h?) and

h sufficiently small. Moreover, the contraction factor can be made smaller than 1/2
by choosing h sufficiently small.

Since f = Sy(D?u), by the discrete Schauder estimates Theorem 2.6 and Lemma 2.7
1B () — ullg g < ClISk(D?6) — Sy(Ma(w))llpmsy < CH.

By Lemma 3.2 we conclude that R" has a fixed point u" in B,(u) with the claimed

convergence rate.

The claimed property of u” follows from the fact that v" € B,(u) and Lemma 3.4.
O

4. NEWTON’S METHOD

As in the previous section, we assume that {S{’(D?u)} is uniformly positive definite.
By Remark 3.3, for h sufficiently small, there exists m’ > 0 such that for " € B,(u),
{5 (Hqv")} has smallest eigenvalue greater than m’. We consider for u®" € B,(u)
the sequence of iterates

{SY (Haqu™")} - (Hqu™ T — Hgu™") = f — Sp(Hqu™") in QF

4.1
(4.1) u™ T = g in 0O,

We note that (4.1) defines u™*1" as the solution of a discrete second order elliptic
equation in non divergence form, which is uniformly elliptic for u™" € B,(u) for h
sufficiently small.

Theorem 4.1. The sequence defined by (4.1) satisfies

(4.2) [ — |y i < O™ =[5 o,

for p and h sufficiently small and where u” denotes the solution of (2.12) in B,(u), p =
O(h?).



Proof. Put
(4.3) B = {S} (Hqu™")} : (Hqu™ " — Haguh).
We have by (2.12)
B = {S}(Hau™")} : (Hqu™" — Haqu") + Sp(Hau") — Sp(Hqu™")
a0 = (S S M) ) (o™ H)

S (Hau") )+ (Hau™" — Hau?) + S (Hau") — Sp(Hau™").

Put
(4.5) B, = ({S}'j (Hqu™")} — {S,?(Hduh)}> D (Hau™" — Hqu"),
and

(4.6) By ={S!(Hau")} : (Hau™" — Hau") + Sp(Hau") — Sp(Hau™").
By the mean value theorem, (2.5) and (2.7), we have
By = ({SY (tHau™" + (1 — ) Hau") Y (Hau™" — Hau"))  (Hau™" — Hqu"),
for t € [0,1] and thus
1B1llo.asy < CUM gy + 4™ |l 00p) ™" = u"[[3 0

(4.7) < Clfullyany +2)" 2 [la™" = u[[3 4

< O(HUHQ,@;QQ + P)k_2||um’h - Uh”g,a;(zg'
We also have by the mean value theorem

By = {S (Hau")} : (Hqu™" — Hau)
+{SY (tHau" + (1 — t)Hqu™")} : (Hqu" — Hqu™")

_ ({S,ij(Hduh)} —{S} (tHqu" + (1 — t)?—[dum’h)}) : (Hqu™" — Hqu")
(4.8)

= ({Sllc]((l - 3>Hduh + St'Hduh + 3(1 _ t)'Hdum,h)}/
((1 - t)(Hduh — Hdumvh))) . (Hdum,h . Hduh),

for s,t € [0,1]. As for B; we obtain
(49) ||BQ||O,a;Qg S O(||u||2,o¢;Q6” + p)k_2||um7h - uh||§,a;Qg'

Combining (4.3)—(4.8) and using Schauder estimates, we obtain (4.2).

15

O

Choosing p = O(h?) we have Cp < 1 for h sufficiently small. We conclude that
u™tth € B,(u) when u™" € B,(u) and the quadratic convergence rate of Newton’s

method.
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Remark 4.2. Having established that the discrete problem has a locally unique so-
lution and that v" is a discrete convex function for v" sufficiently close to u, the
convergence of Newton’s method also follows from the wverification of standard as-
sumptions given in [19, p. 68]. See [11] for an example of verification of the standard
assumptions for a wide stencil discretization.

5. GAUSS-SEIDEL ITERATIVE METHODS

It is a natural idea to solve (2.12) by a nonlinear Gauss-Seidel method, that is solve
(2.12) for u”(z) and solve the resulting nonlinear equations by a Gauss-Seidel method.
Although this seems a daunting task for arbitrary k, we show that for k = 2, this takes
a very elegant form. We then establish a connection between the resulting nonlinear
Gauss-Seidel iterative method for 2-Hessian equations and the discrete version of
(1.3), i.e

1
k

(f — Sk(Hq umh))) in QF

m+1,h _ m,h\k
(1) D ((Ad“ "t e

um—i—l,h = gon 8Qh,

when the Gauss-Seidel method is used to solve the Poisson equations.

5.1. Nonlinear Gauss-Seidel method for 2-Hessian equations. We start with
the identity

1
2

(52) Ad uh = ((Ad Uh)2 -+ C(Ql, Tl) (f — SQ(Hd uh))) s

and show that the right hand side is independent of u"(z). Note that by (2.11),
0L o ul(z),i # j is independent of uh(:c) and by (2.13)

(9(Adu ) Z B
h2_ h2

Since 0Sk(A)/0z =37 1(8Sk( )/8aij)(aaij/8z), we conclude that

B ()2
Sy 2 Ha ' (@) ZS (o)) 5ty

1753

DI uh<x>>maiaiuh<x>

hZZS“ (Hau"(z)) = Z Z 5L R P u"(z)

Ay Ohonu" (@)

ZZ " ul( (n—l)AdU()
i=1 p#i
2 hey  4n
= =5 () e(2,n)Agu’ (z) = =52, n)Agul (),
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and we recall that the definition of 5;5 was given in section 2.1. This gives

I N Y L W) ) =

We can therefore rewrite (5.2) as

h? [ = u"(z + he’) + u'(x — he?)
h —
u'(x) = 3 [Z 2

(5.3) =1

- ((Ad ut () + (f = S2(Ha Uh@"))) 1 ,

c(2,n)
where the solution with Azu” > 0 has been selected. For n = 2, this is the identity
which was solved in [15, 8, 7, 5] by a Gauss-Seidel iterative method, as indicated in
the introduction. For n > 3, this provides new iterative methods for the 2-Hessian
equations.

Henceforth, we shall assume that a row ordering of the elements of Q" is chosen. Note
that if we apply the Gauss-Seidel method to the problem (5.1), we obtain a double
sequence u™P" defined by

ok [ "L P (4 het) 4 um P LR (1 — het)
i1

um-i—Lp-‘rl,h(x)

T o h2

NI
| IS |

m, 2 1 m,
—((Adu )+ s~ SuHa h(x)))

This leads us to consider the double sequence u;“h defined by

m+1,h( )

Up+1

_ 2wt (g het) + ul M (@ — hel)
2n h?

i=1
1

(2,n)

where Agqult"(x) and Sy(Hquyy"(x)) are the actions of the discrete Laplace and 2-

m
p

Formally, as m — oo, this gives the nonlinear Gauss-Seidel method

h? [zn: wh(x + he') +ul, (z — he')

- <(Ad up" () + (f = Sa2(Ha UZZJh(w))> 1 ,

Hessian operators on u”" updated with the most recently computed values.

h _
U’p—‘,—l(l’) - % : h2
(5.4) =

1

(= S )) .

- ((Ad uz*(‘r))Q + C(Q,TL)

where as above Agul (x) and Sy(Hqu),(x)) are the actions of the discrete Laplace

and 2-Hessian operators on u;} updated with the most recently computed values of

h

p41 SINCE as

ul, . In particular, the right hand side of (5.4) does not depend on u

shown above, the right hand side of (5.3) does not depend on u"(x).
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6. NUMERICAL RESULTS

We give numerical results for the oy problem, i.e. for k = 2, n = 3 using the subhar-
monicity preserving iterations. Although our theoretical results only cover smooth
solutions, as indicated in the abstract and in the introduction, the subharmonicity
preserving iterations appear able to handle non smooth solutions. The initial guess
in all of our numerical experiments is taken as the finite difference approximation of
the solution of the Poisson equation Au = 2y/f in Q with u = g on 9.

We use the following test functions on the unit cube [0, 1]

Test 1: A smooth solution which is strictly convex, u(x,y,z) = e? T2 5o that
flx,y, 2) = 43 + 2% + y® + 22)e2@* 7 +2%) and g(x,y, 2) = e T+ on 9Q.

Test 2: A smooth solution which is 2-convex but not convex. It is known that for
a radial function u(z) = ¢(r),r = |z|,z € R" the eigenvalues of D*u are given by
A1 = ¢"(r) with multiplicity 1 and Ay = ¢'(r)/r with multiplicity n — 1. See for
example [9, Lemma 2.1]. Tt follows that with u(z,y, 2) = In(a + 2 +y + 2%), we have

é(r) = In(a + r?) and we get Au = 6{:”2’" > 0, So(D?%u) = 4(3“ >0, det D*u =

2%, in [0, 1]. With a = 2, det D*u takes negative values in [O, 1]3.

Test 3: A solution not in H2(Q), u(z,y, 2) = —/3 — 22 — y2 — 22 so that f(z,y,2) =
— (22 + 92+ 22— 9)/(=3+ 2% +y* +22)? and g(z,y, 2) = —/3 — 22 — y2 — 22 on ON.

Test 4: No exact solution is known. Here f(z,y,z) =1 and g(x,y,z) = 0.

Test 5: A degenerate three dimensional Monge-Ampere equation. We take f(z,y, z) =
0 and g(x,y,2) = |z — 1/2|. We use the double iterative method based on (1.5).

Numerically, the solution computed may not satisfy S2D?*u™ > 0. At those points we
set both Sy(D?*u™) and det D*u™ to 0 in (1.5). If the numerical value of Sy(D?*u™)
is negative, then 0 is a better approximate value. Since So(D?u™) is computed from
u™, the numerical value of det D?>u™ would also be inaccurate. Since u™ is expected
to be an approximate solution of u for which det D?u > 0, a better approximation of
det D?u™ at any stage where the latter is negative is also 0. It would be interesting
to analyze the effect of these rounding off errors on the overall numerical convergence
of the method. For example, one may analyze the convergence of the inexact dou-
ble iteration. Similar situations appear with inexact Newton’s methods and inexact
Uzawa algorithms.

The right hand side f(x,y, z) can be computed from the exact solution u(z,y, z) using
the definition of Sy(D?u) as the sum of the 2 x 2 principal minors.

For all tests but Test 3, we used the direct solver (5.1). For h = 2% we run out of
memory with (5.1). For Test 3, the Gauss-Seidel method was used since there is no
memory issue for the latter with A = 2°. As expected, we have quadratic convergence
(as h — 0) for the smooth solutions of Tests 1 and 2 while enough data is not available
to give the convergence rate for the singular solution of Test 3.



h

1/2! 1/22 1/23 1/24 1/25
Error | 6.2328 1072 2.6556 102 7.7836 10~® 2.0616 10~% 5.2449 10~
Rate 1.23 1.77 1.92 1.97

TABLE 1. Maximum error with Test 1.

h
1/2! 1/22 1/23 1/24 1/25
Error | 6.5241 107 5.0653 10~* 1.3850 10~* 3.5587 10~° 9.1276 107
Rate 0.36 1.87 1.96 1.96

TABLE 2. Maximum error with Test 2.

h
1/2* 1/2° 1/26
Error | 1.1084 102 9.7971 10~* 7.6618 10~*

Rate 0.18 0.35

TABLE 3. Maximum error with Test 3.

——— )
0 ==
0 o1 02 03 04 05 06 07 08 09 1

FIGURE 1. Test 4, h = 1/2°. Graph and contour in plane z = 1/2.

FIGURE 2. Test 5, h = 1/2*. Graph in the plane z = 1/2.
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In [5], it was argued based on numerical evidence that the Gauss-Seidel method (5.4)
is faster than a certain variant of the direct solver (5.1) for singular solutions. In our
implementation we saw evidence of the contrary, that is, the Gauss-Seidel method is
less efficient. We note that the Gauss-Seidel method requires much more loops which
are not efficient in MATLAB.

7. CONCLUDING REMARKS

Remark 7.1. Although the pseudo-transient and time marching methods introduced
in [3] work as well for k-Hessian equations, and apply to more general fully nonlinear
equations, the subharmonicity preserving iterative methods introduced in this paper
are parameter free. All these type of methods can be accelerated with fast Poisson
solvers and multigrid methods.

Remark 7.2. When it comes to numerical methods for fully nonlinear equations,
there are two types of convergence to study. Since the equations are nonlinear, they
must be solved iteratively. One must then address the convergence to the discrete
solution of the iterative methods used. The second type of convergence is the conver-
gence of the numerical solution to the exact solution as the discretization parameter
converges to (. We have addressed both types of convergence in this paper.

Remark 7.3. Eristence of a discrete solution and convergence (as the mesh size
h — 0), for finite difference discretization of smooth solutions of fully nonlinear
equations, are not often discussed. It is clear that convergence does not simply follow
from the consistency of standard finite difference discretization of the second order
derivatives. For wviscosity solutions, convergence of monotone, stable and consistent
schemes follows immediately from the theory of Barles and Souganidis.

Remark 7.4. The iterative method (1.3) can be viewed as a linearization of the fully
nonlinear equation (1.1). It is possible to linearize (1.1) in ways different from (1.2)
and (1.3). See for example the methods described in [3]. The iterative method (1.3)
has been shown numerically to select discrete solutions which converge to non smooth
solutions. Since (1.3) consists of a sequence of Poisson equations, the numerical
solution of (1.1) can now be tackled with any good numerical method.
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