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Abstract: We define a gly-stratification of the Grassmannian of
N planes Gr(N,d). The gly-stratification consists of strata Qa
labeled by unordered sets A = (A1) ... A(™) of nonzero parti-
tions with at most N parts, satisfying a condition depending on
d, and such that (®7_,Vy)*'™v # 0. Here V,() is the irreducible
gly-module with highest weight A(?). We show that the closure of
a stratum 4 is the union of the strata Q=, 2 = (¢, ..., (M),
such that there is a partition {I1,...,L,} of {1,2,...,n} with
Homg(, (Vew), ®jer,Vaw) # 0fori = 1,...,m. The gly-stratification
of the Grassmannian agrees with the Wronski map.

We introduce and study the new object: the self-dual Grass-
mannian sGr(N,d) C Gr(N,d). Our main result is a similar gx-
stratification of the self-dual Grassmannian governed by represen-
tation theory of the Lie algebra go,41 := spy, if N =2r +1 and of
the Lie algebra go, := 509,41 if N = 2r.

1. Introduction

The Grassmannian Gr(N,d) of N-dimensional subspaces of the complex d-
dimensional vector space has the standard stratification by Schubert cells §2)
labeled by partitions A = (d — N > Ay > ... > Ay = 0). A Schubert cycle
is the closure of a cell . It is well known that the Schubert cycle Q) is the
union of the cells ()¢ such that the Young diagram of A is inscribed into the
Young diagram of £. This stratification depends on a choice of a full flag in
the d-dimensional space.

In this paper we introduce a new stratification of Gr(N,d) governed by
representation theory of gly and called the gl -stratification, see Theorem
3.5. The gly-strata Q4 are labeled by unordered sets A = (A1), ... A(™) of
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nonzero partitions \(V = (d— N > )\gi) >... = )\%) > 0) such that

n N
(1.1) (@1 Vao*™ £0, Y S AP =N(@d-N),

i=1 j=1

where Vy@ is the irreducible gly-module with highest weight A(). We have
dim QA = n. We call the closure of a stratum 4 in Gr(V, d) a gly-cycle. The
aly-cycle Q4 is an algebraic set in Gr(V, d). We show that Q4 is the union of
the strata Qg, E = (€W ... £0™) such that there is a partition {Iy,..., I,,}
of {1,2,...,n} with Homg, (Ve Rjer,Vam) # 0 for i =1,...,m, see Theo-
rem 3.8.

Thus we have a partial order on the set of sequences of partitions satis-
fying (1.1). Namely A > E if there is a partition {I,..., L, } of {1,2,...,n}
with Homg, (Vew, ®jer,Vaw) # 0 for i = 1,...,m. An example of the corre-
sponding graph is given in Example 3.9. The gly-stratification can be viewed
as the geometrization of this partial order.

Let us describe the construction of the strata in more detail. We identify
the Grassmannian Gr(V,d) with the Grassmannian of N-dimensional sub-
spaces of the d-dimensional space Cylz| of polynomials in = of degree less
than d. In other words, we always assume that for X € Gr(N,d), we have
X C Cy[z]. Set P! = CU {oo}. Then, for any z € P!, we have the osculating
flag F(z), see (3.3), (3.4). Denote the Schubert cells corresponding to F(z) by
QA(F(2)). Then the stratum Q4 consists of spaces X € Gr(N,d) such that
X belongs to the intersection of Schubert cells €2y (F(z;)) for some choice
of distinct z; € P

= U (6%) (F(20))) € Gr(N,d).

Zlseees Zn
zi;éZj

A stratum €, is a ramified covering over (P1)® without diagonals quotient by
the free action of an appropriate symmetric group, see Proposition 3.4. The
degree of the covering is dim(®%_,Vy )*'v.

For example, if N = 1, then Gr(1,d) is the (d — 1)-dimensional projective
space of the vector space Cy[z]. The strata €2, are labeled by unordered sets
m = (myq,...,my,) of positive integers such that m;+---+m, = d—1. A stra-
tum 2y, consists of all polynomials f(x) which have n distinct zeros of multi-
plicities myq, ..., m,. In this stratum we also include the polynomials of degree
d—1—m,; with n—1 distinct roots of multiplicities mq, ..., m;—1, Miz1, ..., My.
We interpret these polynomials as having a zero of multiplicity m; at infinity.
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The stratum €2, 1y is open in Gr(1, d). The union of other strata is classically
called the swallowtail and the gl;-stratification is the standard stratification
of the swallowtail; see, for example, Section 2.5 of Part 1 of [AGV].

The gly-stratification of Gr(N,d) agrees with the Wronski map
Wr: Gr(N,d) — Gr(1, N(d— N) + 1)

which sends an N-dimensional subspace of polynomials to its Wronskian
det(d'=' f;/dx=1)N._;, where fi(z),..., fn(x) is a basis of the subspace. For
any gly-stratum $,,, of Gr(1, N(d — N) + 1), the preimage of €, under the
Wronski map is the union of gly-strata of Gr(N,d) and the restriction of the
Wronski map to each of those strata {25 is a ramified covering over {2, of
degree b(A) dim(®™,Vyw)®'V, where b(A) is some combinatorial symmetry
coefficient of A, see (3.9).

The main goal of this paper is to develop a similar picture for the new ob-
ject sGr(N,d) C Gr(N,d), called self-dual Grassmannian. Let X € Gr(N,d)
be an N-dimensional subspace of polynomials in x. Let X" be the N-dimen-
sional space of polynomials which are Wronski determinants of N —1 elements
of X:

XY = {det (@ fy/da' )" () € X,

y

The space X is called self-dual if XV = g - X for some polynomial g(z), see
[MV1]. We define sGr(N, d) as the subset of Gr(N,d) of all self-dual spaces.
It is an algebraic set.

The main result of this paper is the stratification of sGr(N,d) governed
by representation theory of the Lie algebras go,41 := spo,. if N = 2r 4+ 1
and gg, := 509,41 if N = 2r. This stratification of sGr(N,d) is called the
g -stratification, see Theorem 4.11.

The gy-stratification of sGr(N, d) consists of gy-strata sQa j labeled by
unordered sets of dominant integral gy-weights A = (A1), ..., A(™) equipped
with nonnegative integer labels k = (k1, ..., ky), such that (®}_, Vi) #0
and satisfying a condition similar to the second equation in (1.1); see Section
4.3. Here V,(y is the irreducible gy-module with highest weight A Different
liftings of an sly-weight to a gly-weight differ by a vector (k,...,k) with
integer k. Our label k; is an analog of this parameter in the case of gy .

A gn-stratum s  is a ramified covering over (IP’I)" without diagonals
quotient by the free action of an appropriate symmetric group. The degree
of the covering is dim(®]_;V @)%Y and, in particular, dimsQa = n; see
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Proposition 4.9. We call the closure of a stratum sQ4  in sGr(N,d) a gn-
cycle. The gn-cycle mA,k is an algebraic set. We show that @AJ@ is the
union of the strata sQz;, & = (€D ... €M) such that there is a partition
{0, ..., In} of {1,2,...,n} satisfying Homgy (Vew), ®jer, Vi) # 0 for i =
1,...,m, and the appropriate matching of labels; see Theorem 4.13.

If N = 2r, there is exactly one stratum of top dimension 2(d — N) =
dim sGr(NV, d). For example, the sos-stratification of sGr(4,6) consists of 9
strata of dimensions 4, 3, 3, 3, 2, 2, 2, 2, 1, see the graph of adjacencies in
Example 4.14. If N = 2r + 1, there are many strata of top dimension d — N
(except in the trivial cases of d = 2r 4+ 1 and d = 2r + 2). For example, the
sp-stratification of sGr(5,8) has four strata of dimension 3; see Section 4.7.
In all cases we have exactly one one-dimensional stratum corresponding to

n=1, A= (0),and k= (d— N).

Essentially, we obtain the gy-stratification of sGr(V, d) by restricting the
gly-stratification of Gr(N,d) to sGr(N,d).

For X € sGr(N,d), the multiplicity of every zero of the Wronskian of
X is divisible by r if N = 2r and by N if N = 2r + 1. We define the
reduced Wronski map Wr : sGr(N,d) — Gr(1,2(d — N) + 1) if N = 2r and
Wr @ sGr(N,d) — Gr(l,d — N + 1) if N = 2r + 1 by sending X to the
r-th root of its Wronskian if N = 2r and to the N-th root if N = 2r + 1.
The gy-stratification of sGr(N, d) agrees with the reduced Wronski map and
swallowtail gl;-stratification of Gr(1,2(d — N) + 1) or Gr(1l,d — N + 1). For
any gly-stratum €, the preimage of 2,,, under Wr is the union of gy-strata
(see Proposition 4.17) and the restriction of the reduced Wronski map to each
of those strata s{24  is a ramified covering over €2,,,; see Proposition 4.18.

Our definition of the gly-stratification is motivated by the connection to
the Gaudin model of type A; see Theorem 3.2. Similarly, our definition of
the self-dual Grassmannian and of the gy-stratification is motivated by the
connection to the Gaudin models of types B and C; see Theorem 4.5.

It is interesting to study the geometry and topology of strata, cycles, and
of self-dual Grassmannian; see Section 4.7.

The exposition of the material is as follows. In Section 2 we introduce the
gly Bethe algebra. In Section 3 we describe the gly-stratification of Gr(N, d).
In Section 4 we define the gy-stratification of the self-dual Grassmannian
sGr(N,d). In Section 5 we recall the interrelations of the Lie algebras sly,
509,41, 5Py, In Section 6 we discuss g-opers and their relations to self-dual
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spaces. Section 7 contains proofs of theorems formulated in Sections 3 and 4.
In Appendix A we describe the bijection between the self-dual spaces and the
set of gly Bethe vectors fixed by the Dynkin diagram automorphism of gl .
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2. Lie algebras
2.1. Lie algebra glx,

Let e;5, 1,7 = 1,..., N, be the standard generators of the Lie algebra gly,
satisfying the relations [e;;, esk] = 0js€i — dixes;. We identify the Lie algebra
sly with the subalgebra of gl generated by the elements e; — e;; and e;; for
i1#£7,4,j=1,...,N.

Let M be a gly-module. A vector v € M has weight A = (A\1,...,Ay) €
CNif eju=Nvfori=1,...,N. A vector v is called singular if ei;v = 0 for
1<i<j<N.

We denote by (M), the subspace of M of weight A\, by (M) the sub-
space of M of all singular vectors and by (M )S)’\ing the subspace of M of all
singular vectors of weight .

Denote by V) the irreducible gly-module with highest weight A.

The gly-module V{y o, . o) is the standard N-dimensional vector represen-
tation of gl,, which we denote by L.

A sequence of integers A = (Ay,...,Ay) such that \y =2 Ao > ... 2 Ay >
0 is called a partition with at most N parts. Set |\| = S, \;. Then it is said
that A is a partition of |A|. The gly-module L®™ contains the module V) if
and only if A is a partition of n with at most IV parts.

Let A, i be partitions with at most N parts. We write A C p if and only
if A <pgfori=1,...,N.

2.2. Simple Lie algebras
Let g be a simple Lie algebra over C with Cartan matrix A = (a;;); ;—_;. Let

D = diag{dy,...,d,} be the diagonal matrix with positive relatively prime
integers d; such that DA is symmetric.
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Let h C g be the Cartan subalgebra and let g = n_ & h & ny be the
Cartan decomposition. Fix simple roots aq,...,a, in h*. Let &q,...,d4, € b
be the corresponding coroots. Fix a nondegenerate invariant bilinear form (,)
in g such that (&, &;) = a;j/d;. The corresponding invariant bilinear form in
h* is given by (o, ;) = dja; ;. We have (A, &) = 2(\, o)/ (i, o) for A € h*.
In particular, (a;, &;) = a; ;. Let wi,...,w, € h* be the fundamental weights,
<w]‘, dz> = 5i7j.

Let P={Aeb* |\, &) €Z,i=1,...,r} and PT = {\ € h*|(\, ;) €
Zso, © = 1,...,7} be the weight lattice and the cone of dominant integral
weights.

For A € b*, let V) be the irreducible g-module with highest weight A\. We
denote (A, ;) by A; and sometimes write (A1, A, ..., A,) for \.

Let M be a g-module. Let (M) = {v € M | nyv = 0} be the sub-
space of singular vectors in M. For p € h* let (M), = {v € M | hv =
p(h)v, for all h € b} be the subspace of M of vectors of weight u. Let
(M)3e = (M)*™&N(M), be the subspace of singular vectors in M of weight p.

Given a g-module M, denote by (M)? the subspace of g-invariants in M.
The subspace (M)? is the multiplicity space of the trivial g-module in M.
The following facts are well known. Let A, p be partitions with at most N
parts, dim(Vy ® V,,)*'™W = 1if \; = k — uny1-4, i = 1,..., N, for some integer
k > p1 and 0 otherwise. Let A, u be g-weights, dim(V\ ® V,,)® = 0, for
g = 502,41, 5Pg,

For any Lie algebra g, denote by U(g) the universal enveloping algebra
of g.

2.3. Current algebra gt

Let g[t] = g ® C[t] be the Lie algebra of g-valued polynomials with the point-
wise commutator. We call it the current algebra of g. We identify the Lie
algebra g with the subalgebra g ® 1 of constant polynomials in g[¢]. Hence,
any g[t]-module has the canonical structure of a g-module. The standard
generators of gly[t] are e;; @ P, i,j = 1,..., N, p € Zxo. They satisfy the
relations [e;; @ 1P, eg, @ t1] = djsei @ VT — dpes; ® P2 1t is convenient to
collect elements of g[t] in generating series of a formal variable z. For g € g,
set

(2.1) g(x) = Z(g ®t5)z ™5t
s=0
For gly[t] we have (zo — z1)[eij(z1), esk(z2)] = 0js(ewn(z1) — ein(xe)) —

dik(esj(x1) — esj(z2)). For each a € C, there exists an automorphism 7, of
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g[t], 7o : g(x) = g(z — a). Given a g[t]-module M, we denote by M (a) the
pull-back of M through the automorphism 7,. As g-modules, M and M (a)
are isomorphic by the identity map.

We have the evaluation homomorphism, ev : g[t] — g, ev : g(x) — gz
Its restriction to the subalgebra g C g[t] is the identity map. For any g-module
M, we denote by the same letter the g[t]-module, obtained by pulling M back
through the evaluation homomorphism. For each a € C, the g[t]-module M (a)
is called an evaluation module.

For g = sly, spy,, 09,41, it is well known that finite-dimensional irre-
ducible g[t]-modules are tensor products of evaluation modules V) (z1) ®

- ® Vi (2n) with dominant integral g-weights A, ... A\ and distinct

evaluation parameters zq, ..., z,.

-1

2.4. Bethe algebra

Let S; be the permutation group of the set {1,...,l}. Given an N x N matrix
B with possibly noncommuting entries b;;, we define its row determinant to
be

rdet B = Z 1)b1o(1)b2o(2) - - - ONo()-

gESN

Define the universal differential operator DB by
(22) DB = rdet(éij&,; — eji<x))£[j:1'

It is a differential operator in variable x, whose coefficients are formal power
series in 71 with coefficients in U (gly[t]),

N
(2.3) DF =9Y + ) Bi(x)oy ",
i=1
where
Bz(x) = Z Bijwij
j=i

and B;; € U(gly[t]), i = 1,...,N, j € Z>;. We call the unital subalgebra
of U(gly[t]) generated by B;; € U(gly[t]), i =1,...,N, j € Zx;, the Bethe
algebra of gl and denote it by B.

The Bethe algebra B is commutative and commutes with the subalgebra
U(gly) C U(gly[t]), see [T]. As a subalgebra of U(gly[t]), the algebra B
acts on any gly[t]-module M. Since B commutes with U(gly), it preserves
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the subspace of singular vectors (M )08 as well as weight subspaces of M.
Therefore, the subspace (M)}"® is B-invariant for any weight A.

We denote M (o0) the gly-module M with the trivial action of the Bethe
algebra B. More generally, for a gly[t]-module M’, we denote by M’ & M (c0)
the gly-module where we define the action of B so that it acts trivially on
M (00). Namely, the element b € B acts on M’ @ M (oo) by b® 1.

Note that for a € C and gly-module M, the action of e;;(z) on M(a)
is given by e;j/(x — a) on M. Therefore, the action of series B;(x) on the
module M’ ® M (00) is the limit of the action of the series B;(x) on the module
M'® M(z) as z — oo in the sense of rational functions of x. However, such
a limit of the action of coefficients B;; on the module M’ ® M(z) as z — oo
does not exist.

Let M = V) be an irreducible gly-module and let M’ be an irreducible
finite-dimensional gly[t]-module. Let ¢ be the value of the "V | e; action on
M.

Lemma 2.1. We have an isomorphism of vector spaces:

c+ ||
N

T (M@ V)TN — (M/)zing, where \; = — AN41-i;

given by the projection to a lowest weight vector in Vy. The map 7 is an
isomorphism of B-modules (M' @ Vy(00))*' — (M/);lng' -

Consider P! := C U {oo}. Set
B, = {z=(21,...,20) € (P | z; # 2; for 1<i<j<n}
R]f”n::{z:(zl,...,zn)eﬁbn|zi€R0rZ¢:oo, for 1<i<n}.

We are interested in the action of the Bethe algebra B on the tensor
product @7, Vi (2s), where A = (AD) ... A} is a sequence of partitions
with at most N parts and z = (21,...,2,) € P,,. By Lemma 2.1, it is sufficient
to consider spaces of invariants (®7_; Vi (2s))°'~. For brevity, we write Va »
for the B-module @7 _; Vi (2zs) and V4 for the gly-module @&, V.

Let v € VA, be a common eigenvector of the Bethe algebra B, B;(z)v =
hi(x)v, i =1,...,N. Then we call the scalar differential operator

N
Dy =0) +>  hi(x)o)
=1

the differential operator associated with the eigenvector v.
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3. The gly-stratification of Grassmannian
Let N, d € Z~¢ such that N < d.
3.1. Schubert cells

Let Cy[z] be the space of polynomials in = with complex coefficients of degree
less than d. We have dim C4[x] = d. Let Gr(N, d) be the Grassmannian of all
N-dimensional subspaces in C4[z]. The Grassmannian Gr(N,d) is a smooth
projective complex variety of dimension N(d — N).

Let Ry[z] C Cg4lz] be the space of polynomials in z with real coefficients
of degree less than d. Let Gr®(V,d) c Gr(N, d) be the set of subspaces which
have a basis consisting of polynomials with real coefficients. For X € Gr(N, d)
we have X € Gr®(N,d) if and only if dimg(X N Ry[z]) = N. We call such
points X real.

For a full flag F = {0 C Fy C 5 C --- C Fy = Cy[z]} and a partition
A= (A1,...,An) such that A\; < d — N, the Schubert cell Qy(F) C Gr(N,d)
is given by

N(F) ={X e€Gr(N,d) | dim(X NFgj ry,)=N—}
dim(X N Fy_j_xy_,—1) =N —j—1}.

We have codim Q,(F) = |Al.
The Schubert cell decomposition associated to a full flag F, see for ex-
ample [GH], is given by

(3.1) Gr(N,d)= || (F).

The Schubert cycle Q,(F) is the closure of a Schubert cell Qy(F) in the
Grassmannian Gr(N, d). Schubert cycles are algebraic sets with very rich ge-
ometry and topology. It is well known that Schubert cycle Q,(F) is described
by the formula

(3.2) DF) = ] W)
ACu,
p1<d—N
Given a partition A = (Ay,...,Ay) such that Ay < d — N, introduce a
new partition

A=(d—N—=Ay,d—N—Ay_1,....,d— N — Ay).
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We have |\| + |\| = N(d — N).
Let F(oco) be the full flag given by

(3.3) F(00) = {0 C Cifa] € Cafz] C -+~ C Cylzl}.

The subspace X is a point of Q)(F(oc0)) if and only if for every i =
1,..., N, it contains a polynomial of degree \; + N — 1.
For z € C, consider the full flag

(34)  F(2) ={0C (x — 2)7'Cy[2] C (z — 2)42Cy[x] C --- C Cyla]}.

The subspace X is a point of Q,(F(z)) if and only if for everyi = 1,..., N,
it contains a polynomial with a root at z of order \; + N — .

A point z € C is called a base point for a subspace X C Cylz] if g(z) =0
for every g € X.

3.2. Intersection of Schubert cells

Let A = (AM, ..., A(") be a sequence of partitions with at most N parts and
z=(21,...,20) €Pp. Set |A| = 3", [AG)].
The following lemma is elementary.

Lemma 3.1. If dim(VA)®'" > 0, then |A| is divisible by N. Suppose further
IA|=N(d—N), then \\) <d—N fors=1,...,n. O

Assuming |A| = N(d—N), denote by Q4 . the intersection of the Schubert
cells:

(3.5) Onz = ﬁ Qa0 (F(25))-

Note that due to our assumption, {24 . is a finite subset of Gr(XV,d). Note
also that Q4 » is non-empty if and only if dim(V4)*'™ > 0.

Theorem 3.2. Suppose dim(Vx)*'™ > 0. Let v € (Va )"V be an eigenvector
of the Bethe algebra B. Then Ker D, € Q ,. Moreover, the assignment k :
v = KerD, is a bijective correspondence between the set of eigenvectors of
the Bethe algebra in (Va )"~ (considered up to multiplication by nonzero
scalars) and the set QA .

Proof. The first statement is Theorem 4.1 in [MTV3] and the second state-
ment is Theorem 6.1 in [MTV4]. O
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We also have the following lemma, see for example [MTV1].

Lemma 3.3. Let z be a generic point in P,. Then the action of the Bethe
algebra B on (Va )" is diagonalizable. In particular, this statement holds

for any sequence z € RP,,. ]
3.3. The glp-stratification of Gr(NN, d)

The following definition plays an important role in what follows.

Define a partial order > on the set of sequences of partitions with at
most N parts as follows. Let A = (A1, ... A)) 2= (W . &™) be two
sequences of partitions with at most N parts. We say that A > E if and only
if there exists a partition {Iy,..., I,,} of the set {1,2,...,n} such that

HomQIN(‘/f(i%@V)\(j)) ?’éo, 1= 1,...77’)7,.

JeL;

Note that A and E are comparable only if |A| = |Z|.

We say that A = (A1) A™) is nontrivial if and only if (VA)*'™ # 0
and [A®)| > 0, s = 1,...,n. The sequence A will be called d-nontrivial if A
is nontrivial and |A| = N(d — N).

Suppose Z is d-nontrivial. If A > = and [A®)| > 0 for all s = 1,...,n,
then A is also d-nontrivial.

Recall that €24 . is the intersection of Schubert cells for each given z, see
(3.5), define Q4 by the formula

(3.6) Qa == |J Qa: C Gr(N,d).

ZGIEP’H

By definition, Q4 does not depend on the order of A®) in the sequence A =
(A, A™M). Note that Q4 is a constructible subset of the Grassmannian
Gr(N, d) in Zariski topology. We call Q4 with a d-nontrivial A a gly-stratum
of Gr(N,d).

Let 1M, ..., (@ be the list of all distinct partitions in A. Let n; be the
number of occurrences of u® in A, i = 1,...,a, then 3%, n; = n. Denote
n = (ni,...,n,). We shall write A in the following order: A®) = 10) for
Zg:ns-l-léié Zgzlns,j: 1,...,a.

Let Sp.pn, be the subgroup of the symmetric group S,, permuting {n; +
e+ 1,00, n 4o+ 0}, 0 =1, a. Then the group Sy, = Spipn, X
Sning X o+ X Spu, acts freely on IP’n and on Rﬁj’n. Denote by I@’n/Sn and
R}fpn/Sn the sets of orbits.
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Proposition 3.4. Suppose A = (A, ... A" is d-nontrivial. The stratum
Qa s a ramified covering of f?’n/Sn. Moreover, the degree of the covering is
equal to dim(V)*™. In particular, dim Q5 = n. Over RI@”/SH, this covering
is unramified of the same degree, moreover all points in fibers are real.

Proof. The statement follows from Theorem 3.2, Lemma 3.3, and Theorem
1.1 of [MTV3]. O

Clearly, we have the following theorem.

Theorem 3.5. We have

(3.7) Gr(N,d) = ] Qa

d-nontrivial A

O

Next, for a d-nontrivial A, we call the closure of Q4 inside Gr(N,d), a
gly-cycle. The gly-cycle Q4 is an algebraic set. We describe the gly-cycles
as unions of gly-strata.

Let A = (AW, ... A®) and E = (€W, ... =) be such that E < A.
We call Q= a simple degeneration of 24 if and only if both A and E are d-
nontrivial. In view of Theorem 3.2, taking a simple degeneration is equivalent
to making two coordinates of z collide.

Theorem 3.6. [jQE s a simple degeneration of Qa, then Qg is contained
in the gly-cycle Q.

Theorem 3.6 is proved in Section 7.1.
Suppose ® = (A1), 01) is d-nontrivial and A > ©. Then, it is clear

that Qg is obtained from 4 by a sequence of simple degenerations. We call
Qe a degeneration of Q4.

Corollary 3.7. If Qe is a degeneration of Qa, then Qe is conlained in the
gly-cycle Q4. O

Theorem 3.8. For d-nontrivial A, we have
(3.8) QA= || @

E<A,
d-nontrivial 2

)

Theorem 3.8 is proved in Section 7.1.

Theorems 3.5 and 3.8 imply that the subsets Q4 with d-nontrivial A give
a stratification of Gr(N,d). We call it the gly-stratification of Gr(N,d).
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Example 3.9. We give an example of the gl,-stratification for Gr(2,4) in
the following picture. In the picture, we simply write A for Qa. We also
write tuples of numbers with bold font for 4-nontrivial tuples of partitions,
solid arrows for simple degenerations between 4-nontrivial tuples of parti-
tions. The dashed arrows go between comparable sequences where the set (2=
corresponding to the smaller sequence is empty.

((150)7 (170)’ (150)’ (170))

N

((2,0),(1,0),(1,0)) ((1,1),(1,0),(1,0))

- ~ -
- ~ -
- ~ -
- ~ -
- S -
V3 EY Vs

((3,0),(1,0))  ((2,0),(2,0))  ((2,0),(1,1))  ((2,1),(1,0)) ((1,1),(1,1))

|
|
|
|
I~ o
|
1
Y

((4,0)) ((3,1)) ((2,2))

In particular, Q((I,O),(1,0),(1,0),(1,0)) is dense in Gr(2,4).
Remark 3.10. In general, for Gr(N,d), let ¢; = (1,0,...,0) and let

A = (e1,€1,...,€1).
—— ——

N(d—N)

Then A is d-nontrivial, and Q4 is dense in Gr(N,d). Clearly, Q4 consists
of spaces of polynomials whose Wronskian (see Section 3.4) has only simple
roots.

Remark 3.11. The group of affine translations acts on Cy[z| by changes of
variable. Namely, for a € C*,b € C, we have a map sending f(z) — f(ax+b)
for all f(z) € Cg4[x]. This group action preserves the Grassmannian Gr(N, d)
and the strata Q4.

3.4. The case of N = 1 and the Wronski map

We show that the decomposition in Theorems 3.5 and 3.8 respects the Wronski
map.
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From now on, we use the convention that xz — z, is considered as the
constant function 1 if z; = oo. .
Consider the Grassmannian of lines Gr(1,d). By Theorem 3.5, the de-

composition of Gr(1,d) is parameterized by unordered sequences of positive

integers m = (my, ..., my) such that |m|=d — 1.
Let z = (z1,...,2,) € P,,. We have Cf € Q,,, . if and only if

flx) = aH(x —zg)™, a#0.

In other words, the stratum €2, of the gl;-stratification (3.7) of Gr(1,d)
consists of all points in Gr(l,d) whose representative polynomials have n
distinct roots (one of them can be oo) of multiplicities my, ..., m,,.

Therefore the gl;-stratification is exactly the celebrated swallowtail strat-
ification.

For g1 (z),...,gi(z) € C[z], denote by Wr(g1(x), ..., gi(x)) the Wronskian,
Wi(gi(2),..., qu()) = det(d""g;/da’" 1)} ;.

Let X € Gr(N,d). The Wronskians of two bases of X differ by a multipli-
cation by a nonzero number. We call the monic polynomial representing the
Wronskian the Wronskian of X and denote it by Wr(X). It is clear that
deg, Wr(X) < N(d — N).

The Wronski map

Wr : Gr(N,d) — Gr(1, N(d — N) + 1)

is sending X € Gr(N,d) to CWr(X).
The Wronski map is a finite algebraic map; see, for example, Propositions
3.1 and 4.2 in [MTV5], of degree dim(L®N(@=N))slx which is explicitly given
by
orr2l...(d—N-—1)!
! NN+ (N+2)!...(d=1)

(N(d—

see [S]. ]
Let A = (A, ... X)) be d-nontrivial and z = (z1,...,2,) € P,. If
X € QA 2, then one has

n

We(X) = [ (z — 2)X.

s=1

Set d = N(d — N) + 1. Therefore, we have the following proposition.
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Proposition 3.12. The preimage of the stratum ., of Gr(1, N(d— N)+1)
under the Wronski map is a union of all d-nontrivial strata Qa of Gr(N,d)
such that (N =mg, s=1,...,n. O

Let A = (\D, ..., )\(”)) be an unordered sequence of partitions with at
most N parts. Let a be the number of distinct partitions in A. We can assume
that A, ..., \@ are all distinct and let nq, ..., n, be their multiplicities in
A, ny+ -+ ng = n. Define the symmetry coefficient of A as the product of
multinomial coefficients:

(25:1,,..,a, A= ”3)!
(3.9) b(A) = 1:[ [lozt,..a, poj=i(ns)!

Proposition 3.13. Let A = (A, ... A" be d-nontrivial. Then the Wron-
ski map Wrla, : QA — Qs a ramified covering of degree b(A) dim (V)™

Proof. The statement follows from Theorem 3.2, Lemma 3.3, and Proposition
3.12. 0

In other words, the gly-stratification of Gr(N,d) given by Theorems 3.5
and 3.8, is adjacent to the swallowtail gl;-stratification of Gr(1, N(d—N)+1)
and the Wronski map.

4. The gy-stratification of self-dual Grassmannian

It is convenient to use the notation: go,y1 = spo,., and go, = 509,41, 7 = 2.
We also set g3 = sly. The case of g3 = sly is discussed in detail in Section 4.6.

4.1. Self-dual spaces

Let A = (AM, ..., \™) be a tuple of partitions with at most N parts such
that [A| = N(d — N) and let z = (z1,...,2,) € P,.

Define a tuple of polynomials T' = (T3, ..., Tx) by
(4.1) Ti(z) = [[(x — 2" N0, i=1,... N,

s=1

where )\S{;)H = 0. We say that T is associated with A, z.

Let X € Qp > and g1,...,9; € X. Define the divided Wronskian Wit with
respect to A, z by

1 .
WrT<gl7"'7g7,> Wrgla---agz HT;\H}l —j» 1,...,N.
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Note that Wrf(gy, ..., ) is a polynomial in z.
Given X € Gr(N,d), define the dual space X' of X by

XT:{WrT(glv--'vgN—l)|gi€X7 /L:177N_1}

Lemma 4.1. If X € Qp , then X' € Q.. C Gr(N, d), where

d=>" M —d+2N,

s=1

and A = (5\(1), e ,5\(”)) s a sequence of partitions with at most N parts such
that

AW =M = A =1 N s=1n D

5{? = 0 for every s = 1,...,n, hence X' has

Note that we always have A
no base points.

Given a space of polynomials X and a rational function g in x, denote by
g - X the space of rational functions of the form ¢ - f with f € X.

A self-dual space is called a pure self-dual space if X = XT. A space of
polynomials X is called self-dual if X = g- X for some polynomial g € C[z].
In particular, if X € Q4 . is self-dual, then X =Ty - X t. where Ty is defined
in (4.1). Note also, that if X is self-dual then g - X is also self-dual.

It is obvious that every point in Gr(2,d) is a self-dual space.

Let sGr(N,d) be the set of all self-dual spaces in Gr(N,d). We call
sGr(N,d) the self-dual Grassmannian. The self-dual Grassmannian sGr(N, d)
is an algebraic subset of Gr(N, d).

Let Qa - be the finite set defined in (3.5) and €24 the set defined in (3.6).
Denote by s€2a » the set of all self-dual spaces in Q5 » and by s{24 the set of
all self-dual spaces in Qp:

sQAz = Qa2 [ |sCGr(N,d) and sQp = Q[ )sGr(N,d).

We call the sets sQ25 gn-strata of the self-dual Grassmannian. A stratum s{Qp
does not depend on the order of the set of partitions A. Note that each sQp
is a constructible subset of the Grassmannian Gr(N, d) in Zariski topology.

A partition A with at most N parts is called N-symmetric if A\; — A1 =
AN—i — AN—it1, ¢ = 1,..., N — 1. If the stratum s{2p is nonempty, then all
partitions A®) are N-symmetric; see also Lemma 4.4 below.
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The self-dual Grassmannian is related to the Gaudin model in types B and
C, see [MV1] and Theorem 4.5 below. We show that sGr(N, d) also has a re-
markable stratification structure similar to the gly-stratification of Gr(N,d),
governed by representation theory of guy; see Theorems 4.11 and 4.13.

Remark 4.2. The self-dual Grassmannian also has a stratification induced
from the usual Schubert cell decomposition (3.1), (3.2). For z € P!, and an N-
symmetric partition A with A\; < d—N, set sQ\(F(2)) = Qr(F(2))NsGr(N, d).
Then it is easy to see that

sGr(N,d) = |_| sQ,(F(z)) and
N—symmetric u,
SN (F(2)) = |_| sQu(F(2)).

N —symmetric p,
n1<d—N, ACp

4.2. Bethe algebras of types B and C and self-dual Grassmannian

The Bethe algebra B (the algebra of higher Gaudin Hamiltonians) for a simple

Lie algebras g were described in [FFR]. The Bethe algebra B is a commutative

subalgebra of U(g[t]) which commutes with the subalgebra U(g) C U(g[t]).

An explicit set of generators of the Bethe algebra in Lie algebras of types

B, C, and D was given in [M]. Such a description in the case of gly is given

above in Section 2.4. For the case of gx we only need the following fact.
Recall our notation g(x) for the current of g € g, see (2.1).

Proposition 4.3 ([FFR, M]). Let N > 3. There exist elements Fj; € gn,
i,7 =1,..., N, and polynomials Gs(x) in d*Fj;(z)/dz*, s = 1,...,N, k =
0,..., N, such that the Bethe algebra of gn is generated by coefficients of
G(z) considered as formal power series in x71. O

Similar to the gly case, for a collection of dominant integral gy-weights
A=0D Ay and z = (z1,...,2,) € By, we set Vao = @7, Vi (25),
considered as a B-module. Namely, if z € C", then Vj . is a tensor product
of evaluation gy[t]-modules and therefore a B-module. If, say, z, = oo, then
B acts trivially on Vi@ (c0). More precisely, in this case, b € B acts by b ® 1
where the first factor acts on ®7={ Vi (2s) and 1 acts on Vi) (00).

We also denote V) the module Vi ., considered as a gy-module.

Let 1 be a dominant integral gy-weight and & € Zy(. Define an N-
symmetric partition g4 with at most N parts by the rule: (uax)n = k



308 Kang Lu et al.

and

(1, &), if 1< < [§],
4.2 i i1 = g
(4.2) (ak)i — (pak)it {<,LL, &n_i), if [%] <i<N-1.

We call 14,5, the partition associated with weight v and integer k.
Let A = (AM, ..., A() be a sequence of dominant integral gy-weights

and let k = (ki,...,k,) be an n-tuple of nonnegative integers. Then denote
Asg = ()\(Al Ko )\(n) ) the sequence of partitions associated with M) and
kg, s = 1.

We use notatlon pa = paoand Ag = Ay o

Lemma 4.4. If 2 is a d-nontrivial sequence of partz'tions with at most N
parts and sQ= is nonempty, then E has the form B = Aag for a sequence
of dominant integral gn-weights A = (A ... A™) and an n-tuple k of
nonnegative integers. The pair (A, k) is uniquely determined by 2. Moreover,
if N =2r, then Y™ (\®) &) is even.

Proof. The first statement follows from Lemma 4.1. If N = 2r is even, the
second statement follows from the equality

N(dN):|E|:ir(2§<)\(s) D+ A )+NZk O
s=1 i=1

Therefore the strata are effectively parameterized by sequences of domi-
nant integral gy-weights and tuples of nonnegative integers. In what follows
we write sQA gk for sQa, , and sQp g - for sQa, , =

Define a formal differential operator

N
=0+ Gi(x)o)

i=1

For a B-eigenvector v € Vi, Gi(z)v = hi(z)v, we denote D, = 9N +
SN hi(2)N " the corresponding scalar differential operator.

Theorem 4.5. Let N > 3.

There exists a choice of generators G;(x) of the gn Bethe algebra B (see
Proposition 4.3), such that for any sequence of dominant integral gy -weights
A= QW X)) any z € P, and any B-eigenvector v € (Va,z)®N,
we have Ker ((Tl...TN)1/2 Dy - (Ty...Tn)"V?) € sQp, .2, where T =
(Ty,...,Tn) is associated with A, z
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Moreover, if |[Aa| = N(d — N), then this defines a bijection between the
joint eigenvalues of B on (Va 2)% and sQa, » C Gr(N,d).

Proof. Theorem 4.5 is deduced from [R] in Section 7.2. O

The second part of the theorem also holds for N = 3; see Section 4.6.

Remark 4.6. In particular, Theorem 4.5 implies that if dim(V)%y > 0,
then dim(Va,,)*"™ > 0. This statement also follows from Lemma A.2 given
in the Appendix.

We also have the following lemma from [R].

Lemma 4.7. Let z be a generic point in P,,. Then the action of the g Bethe
algebra on (Va )% is diagonalizable and has simple spectrum. In particular,
this statement holds for any sequence z € RP,,. ]

4.3. Properties of the strata

We describe simple properties of the strata s{2a .

Given A, k, z, define A, k, Z by removing all zero components, that is the
ones with both \®) = 0 and k, = 0. Then SQAJM = sQA k> and SQ;U;, =
sQa k. Also, by Remark 4.6, if (VA)® # 0, then dim(Va,,)*"™ > 0, thus
|A k| is divisible by N.

We say that (A, k) is d-nontrivial if and only if (Va)®¥ # 0, |AD) | > 0,
s=1,...,n,and [Ag| = N(d— N). ’

If (A, k) is d-nontrivial then the corresponding stratum sQp p C sGr(N, d)
is nonempty, see Proposition 4.9 below.

Note that [Aa k| = |Aa|+ N|k|, where |k| = k1 +- - -+ k,,. In particular, if
(A, 0) is d-nontrivial then (A, k) is (d + |k|)-nontrivial. Further, there exists
a bijection between Q4 , » in Gr(N,d) and Q4 , , - in Gr(NV, d + |k|) given by

(4.3) Qnpz = gz X [Ja— 20" X

s=1

Moreover, (4.3) restricts to a bijection of s{24 , » in sGr(N,d) and sQa, ,, - in
sGr(N,d + |k|).

If (A, k) is d-nontrivial then A 4 g, is d-nontrivial. The converse is not true.
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Example 4.8. For this example we write the highest weights in terms of
fundamental weights, e.g. (1,0,0,1) = w; + ws. We also use sly-modules
instead of gly-modules, since the spaces of invariants are the same.

For N =4 and g4 = so05 of type By, we have

dim(Viz,0) ® Vir,0) @ Vig))® = 0 and  dim(Vig0.9) ® Vi1,01) © Viz0.2))" = 2.

Let A = ((2,0),(1,0),(2,0)). Then A 4 is 9-nontrivial, but (A, (0,0, 0)) is not.
Similarly, for N =5 and g5 = sp, of type Cy, we have

dim(Vi1,0)®V(0,1)®V(0.1))%° = 0 and  dim(V{1,0,0.1)®V(0,1,1,0)®V(0,1,1,0))°" = 2.

Let A = ((1,0),(0,1),(1,0)). Then A4 is 8-nontrivial, but (A, (0,0,0)) is not.

Let p®, ..., 4@ be all distinct partitions in A4 k. Let n; be the number
of occurrences of ,u(i) in Ay, then 3% n; = n. Denote n = (n4,...,n,),
we shall write A4 g in the following order: )\S?ki =19 for S Ing+1<i <
S o ns, j=1,...,a.

Proposition 4.9. Suppose (A, k) is d-nontrivial. The set sQa  is a ramified
covering of]?’n/Sn. Moreover, the degree of the covering is equal to dim(Vp )9~ .
In particular, dimsQp , = n. Over ]Rff”n/Sn, this covering is unramified of
the same degree, moreover all points in fibers are real.

Proof. The proposition follows from Theorem 4.5, Lemma 4.7, and Theorem
1.1 of [MTV3]. O

We find strata sQp p C sGr(N,d) of the largest dimension.

Lemma 4.10. If N = 2r, then the d-nontrivial stratum sQa  C sGr(N,d)
with the largest dimension has (A\®), k) = (w,,0), s = 1,...,2(d — N). In
particular, the dimension of this stratum is 2(d — N).

If N =2r + 1, the d-nontrivial strata sQa , C sGr(N,d) with the largest
dimension have (\®), ks) equal to either (w;,,0) with some js € {1,...,7},
or to (0,1), for s =1,...,d — N. Each such stratum is either empty or has
dimension d — N. There is at least one nonempty stratum of this dimension,
and if d > N + 1 then more than one.

Proof. By Proposition 4.9, we are going to find the maximal n such that
(A, k) is d-nontrivial, where A = (A1), ... A™) is a sequence of dominant
integral gn-weights and k = (kq, ..., k;,) is an n-tuple of nonnegative integers.
Since A 4k is d-nontrivial, it follows that () #0 or A®) =0 and k, > 0, for
alls=1,...,n.
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Suppose N = 2r. If A(®) £ 0, we have

r—1
> NGhl = (2309, 6 + (A9, 6)) > 7

i=1

Ry

If ky > 0, then [\, | > 2rk, > 2r. Therefore, it follows that

n

n < Z |)\(57) )

s=1

=|Aak|=(d—N)N

Hence n < 2(d — N).
If we set A(®) = w, and ks =0 forall s = 1,...,2(d — N). Then (A, k) is
d-nontrivial since
dim(V,,, ® V. )02+ = 1.
Now let us consider N = 2r + 1, r > 1. Similarly, if A(*) # 0, we have

r

> = @2r+ DY 0O, &) > 20 + 1.
i=1

If £, > 0, then |)‘(:,)ks > (2r + 1)ks > 2r + 1. It follows that

n

2r+n <> NS, | =Aax] = (d— N)N.

s=1

Hence n < d—N. Clearly, the equality is achieved only for the (A, k) described
in the statement of the lemma. Note that if (\(*) k) = (0,1) for all s =

.,d— N, then (A, k) is d-nontrivial and therefore nonempty. If d > N +1
we also have d-nontrivial tuples parameterized by ¢ = 1,...,r, such that
(A k) =(0,1), s=3,...,d— N, and (\®)k,) = (w;,0), s = 1,2. O

4.4. The gn-stratification of self-dual Grassmannian

The following theorem follows directly from Theorems 3.5 and 4.5.
Theorem 4.11. We have

(4.4) sGr(N,d) = L] SQA k-
d-nontrivial (A,k)
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Next, for a d-nontrivial (A, k), we call the closure of s j inside sGr(XV,
d), a gn-cycle. The gy-cycles sQp g are algebraic sets in sGr(V, d) and there-
fore in Gr(N, d). We describe gn-cycles as unions of gy-strata similar to (3.8).

Define a partial order > on the set of pairs {(A, k)} as follows. Let A =
ADAM) == (€M) €M) be two sequences of dominant integral g -
weights. Let k = (k1,...,k,), L = (I1,...,ln) be two tuples of nonnegative
integers. We say that (A, k) > (E,1) if and only if there exists a partition
{I,...,L,} of {1,2,...,n} such that

Homgy (Ve @ Vao) 20, 1650, 1= 3 Y 1.

JjEI; JEL;

fori=1,...,m.

If (A, k) > (E,1) are d-nontrivial, we call sQz; a degeneration of sQp k.
If we suppose further that m =n — 1, we call sQ=; a simple degeneration of
SQA,k-

Theorem 4.12. If sQ=; is a degeneration of sQa k, then sz, is contained
in the gn-cycle sQA k.

Theorem 4.12 is proved in Section 7.2.

Theorem 4.13. For d-nontrivial (A, k), we have

(45) SigAyk = |_| SQEJ.
ED<(AK),

d-nontrivial (2,1)

Theorem 4.13 is proved in Section 7.2.

Theorems 4.11 and 4.13 imply that the subsets sQ24 j with d-nontrivial
(A, k) give a stratification of sGr(N,d), similar to the gly-stratification of
Gr(N,d); see (3.7) and (3.8). We call it the gy-stratification of sGr(N,d).

Example 4.14. The following picture gives an example for sos-stratification
of sGr(4, 6). In the following picture, we write (A1), ..., (A™)y,,) for sQa .
We also simply write A\(®) for (A\(*))o. For instance, ((0,1)1,(0,1)) represents
sQa k. where A = ((0,1),(0,1)) and k = (1,0). The solid arrows represent
simple degenerations. Unlike the picture in Example 3.9 we do not include
here the pairs of sequences which are not 6-nontrivial, as there are too many
of them.
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((0,1),(0,1),(0,1),(0, 1))

((0,2), (0,1 ((0,0)y, (0, 1), (0,1))
((0 ((0,1)1,(0,1))  ((0,0)1,(0,0);)

\\ [

In particular, the stratum s2(.1,(0,1),(0,1),(0,1)) is dense in sGr(4, 6).

Proposition 4.15. If N = 2r is even, then the stratum sQa j, with (AO) k) =
(wr,0), where s =1,...,2(d — N), is dense in sGr(N,d).

Proof. For N = 2r, one has the gy-module decomposition
(46) VUJr ® VUJT — ‘/Z(A)r @ le @ tt @ Vwr_1 @ ‘/(0 ..... 0)

It is clear that (A, k) is d-nontrivial. It also follows from (4.6) that if (2,1)
is d-nontrivial then (A, k) > (E,1). The proposition follows from Theorems
4.11 and 4.13. O

Remark 4.16. The group of affine translations, see Remark 3.11, preserves
the self-dual Grassmannian sGr(N, d) and the strata sQ k.

4.5. The gn-stratification of sGr(IN,d) and the Wronski map

Let A = ()\(1), ey )\(”)) be a sequence of dominant integral gy-weights and let

k = (ki,...,ks) be an n-tuple of nonnegative integers. Let z = (z1,...,2,) €
P,.
Recall that A = (A®), &,). If X € sQp k., one has
1 (s) (s) N
( H (ac — 2z ))\1 e +ks> , if N=2r+1;
Wr(X) = Z .
( H (z — )2A§S)+--~+2A§?1+AS>+2k5) if N = 9
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We define the reduced Wronski map Wr as follows.
If N =2r+1, the reduced Wronski map

Wr : sGr(N,d) — Gr(1,d — N + 1)

is sending X € sGr(N, d) to C(Wr(X))'/N.
If N = 2r, the reduced Wronski map

Wr : sGr(N, d) — Gr(1,2(d — N) + 1)

is sending X € sGr(N,d) to C(Wr(X))Y/.

The reduced Wronski map is also a finite map.

For N = 2r, the degree of the reduced Wronski map is given by
dim(foQ(d_N))gN . This dimension is given by, see [KLP],

@7 (N=1t ] ((j—i)<N—i—j+1))ﬁ (d_(;(ill)!j(\;t]j\)f)!-yk)!'

1<i<j<r k=0

Letd=d—-N+1if N=2r+1andd=2(d— N)+1if N =2r. Let
m = (my,...,my) be an unordered sequence of positive integers such that
lm|=d— 1.

Similar to Section 3.4, we have the following proposition.

Proposition 4.17. The preimage of the stratum Q. of Gr(1,d) under the
reduced Wronski map is a union of all strata sQa g of sGr(N,d) such that

|AE§?,€S = Nmg, s =1,...,n, if N is odd and such that |/\f)k =7rms, § =
1,...,n, if N = 2r is even. O

Let A = ()\(1), e ,)\(”)) be an unordered sequence of dominant integral
gn-weights and k = (k1,...,k,) a sequence of nonnegative integers. Let a

be the number of distinct pairs in the set {(A\®), k), s = 1,...,n}. We can
assume that (A, k1), ..., (A k,) are all distinct, and let ny, . .., n, be their
multiplicities, ny + -+ +ng = n.

Consider the unordered set of integers m = (myq, ..., my), where Nmg; =
|AE§?,€S it N is odd or rms = |>‘E§,)ks ift N = 2r is even. Consider the stra-

tum €y, in Gr(1,d), corresponding to polynomials with n distinct roots of
multiplicities mq, ..., my,.

Proposition 4.18. Let (A, k) be d-nontrivial. Then the reduced Wronski map
Wrlsap . 1 5Qak — Qi is a ramified covering of degree b(A 4 1) dim (V4 )%,
where b(Aa k) is given by (3.9).
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Proof. The statement follows from Theorem 4.5, Lemma 4.7, and Proposition
4.17. 0

In other words, the gy-stratification of sGr(N, d) given by Theorems 4.11

and 4.13, is adjacent to the swallowtail gl;-stratification of Gr(1,d) and the
reduced Wronski map.

4.6. Self-dual Grassmannian for N = 3

Let N = 3 and g3 = sly. We identify the dominant integral sly-weights with
nonnegative integers. Let A = (A, ..., A(® \) be a sequence of nonnegative
integers and z = (21, ..., 2z, 00) € Ppiq.

Choose d large enough so that k := d —3 — >0, A& — X > 0. Let
k=1(0,...,0,k). Then A4 has coordinates

AP = (20029 0), s=1,....n,

A = (d—B—i/\(s)+)\,d—3—§:/\(5),d—3—§:)\(5)—A).
s=1

s=1 s=1

Note that we always have [A4 k| = 3(d — 3) and spaces of polynomials in
sQA k> are pure self-dual spaces.

Theorem 4.19. There exists a bijection between the common eigenvectors in
(Va.2)%"2 of the gl, Bethe algebra B and sQa .z

Proof. Let X € $QA k2, and let T = (T1(x), To(z), T5(x)) be associated with
A4k, z, then
n

Ti(x) = Ta(z) = [J (@ — 2.

s=1
Following Section 6 of [MV1], let w = (u1,u2,u3) be a Witt basis of X,
one has

Wr(ul, U2> = T1U1, Wr(ul, U3) = T1"U,2, WI'(UQ, U3) = T1U3.

Let y(z,c) = uy + cug + %u;),, it follows from Lemma 6.15 of [MV1] that

Wr(y(x, c), %(w, c)) =Tyy(z,c).

Since X has no base points, there must exist ¢ € C such that y(x,’) and
T1(z) do not have common roots. It follows from Lemma 6.16 of [MV1] that
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y(z, ) = p* and y(x,c) = (p+ (c — ¢)q)? for suitable polynomials p(x), g(x)
satisfying Wr(p, q) = 27T1. In particular, {p?, pq, ¢*} is a basis of X. Without
loss of generality, we can assume that degp < degq. Then

n n

degp = %(Z)\(s) —)\), degq = %(ZA(S) +)\) +1.

s=1 s=1

Since X has no base points, p and ¢ do not have common roots. Combining
with the equality Wr(p, ¢) = 277, one has that the space spanned by p and ¢

has singular points at 21,..., 2, and co only. Moreover, the exponents at zs,
s =1,...,n, are equal to 0,\®) + 1, and the exponents at oo are equal to
—degp, —degq.

By Theorem 3.2, the space span{p, ¢} corresponds to a common eigenvec-
tor of the gl, Bethe subalgebra in the subspace (@j5—; Vinw g)(2s) ®

Vid—2—deg prd—1-deg ) (00)) "

Conversely, given a common eigenvector of the gl, Bethe algebra in
(V,Lz)ﬁ[?, by Theorem 3.2, it corresponds to a space X of polynomials in
Gr(2, d) without base points. Let {p, ¢} be a basis of X, define a space of poly-
nomials span{p?, pq, ¢*} in Gr(3,d). It is easy to see that span{p?, pq, ¢*} €
SQA k,z is a pure self-dual space. O

Let X € Gr(2,d), denote by X? the space spanned by f? for all polyno-
mials f € X. It is clear that X? € sGr(3,2d — 1). Define

(4.8) 7 Gr(2,d) — sGr(3,2d — 1)

by sending X to X2. The map 7 is an injective algebraic map.

Corollary 4.20. The map w defines a bijection between the subset of spaces
of polynomials without base points in Gr(2,d) and the subset of pure self-dual
spaces in sGr(3,2d — 1). O

Note that not all self-dual spaces in sGr(3,2d — 1) can be expressed as X2
for some X € Gr(2,d) since the greatest common divisor of a self-dual space
does not have to be a square of a polynomial.

4.7. Geometry and topology

It would be very interesting to determine the topology and geometry of the
strata and cycles of Gr(N,d) and of sGr(NV,d). In particular, it would be
interesting to understand the geometry and topology of the self-dual Grass-
mannian sGr(N, d). Here are some simple examples of small dimension.
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Of course, sGr(N, N) = Gr(N, N) is just one point. Also, sGr(2r+1,2r+
2) is just P

Consider sGr(2r,2r 4 1), 7 > 1. It has only two strata: s€2, ., ) (0,0) and
58(0),(1)- Moreover, the reduced Wronski map has degree 1 and defines a bijec-
tion: Wr : sGr(2r,2r + 1) — Gr(1,3). In particular, the 509, -stratification
in this case is identified with the swallowtail gl,;-stratification of quadratics.
There are two strata: polynomials with two distinct roots and polynomials
with one double root. Therefore, through the reduced Wronski map, the self-
dual Grassmannian sGr(2r, 27+ 1) can be identified with P? with coordinates
(ap : a1 : az) and the stratum sy (1) is a nonsingular curve of degree 2 given
by the equation a? — 4agaz = 0.

Consider sGr(2r + 1,2r + 3), » > 1. In this case, we have r + 2 strata:
SQ(Wi,Wi)7(070)7 1= 1, e, Ty SQ(0,0)7(1,1)7 and SQ(O)y(g). The reduced Wronski map
Wr 1 sGr(2r + 1,2r + 3) — Gr(1, 3) restricted to any strata again has degree
1. Therefore, through the reduced Wronski map, the self-dual Grassmannian
sGr(2r + 1, 2r + 3) can be identified with 7 + 1 copies of P? all intersecting in
the same nonsingular degree 2 curve corresponding to the stratum s ) ().
In particular, every 2-dimensional sp,,-cycle is just P2.

Consider sGr(2r +1,2r +4), r > 1. We have dimsGr(2r +1,2r +4) = 3.
This is the last case when for all strata the coverings of Proposition 4.9 have
degree one. There are already many strata. For example, consider sGr(5, 8),
that is r = 2. There are four strata of dimension 3 corresponding to the
following sequences of sp,-weights and 3-tuples of nonnegative integers:

Ay = (w1,w1,0), ki =(0,0,1); Ao = (w1,w1,w2), k2 =(0,0,0);
AS = ((JJQ,WQ,O), k3 = (070, 1)3 A4 = (07070)7 k4 = (17 1) ]')

By the reduced Wronski map, the stratum €4, , is identified with the sub-
set of Gr(1,4) represented by cubic polynomials without multiple roots and
the cycle Qa, g, with Gr(1,4) = P3. The stratification of Qa, g, is just
the swallowtail of cubic polynomials. However, for other three strata the
reduced Wronski map has degree 3. Using instead the map in Proposition
4.9, we identify each of these strata with Ps/(Z/2Z) or with the subset of
Gr(1,3) x Gr(1,2) represented by a pair of polynomials (p1,ps2), such that
deg(p1) < 2, deg(pa) < 1 and such that all three roots (including infinity)
of p1py are distinct. Then the corresponding sp,-cycles ﬁAi,kw 1=1,2,3, are
identified with Gr(1,3) x Gr(1,2) = P? x PL.
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A similar picture is observed for 3-dimensional strata in the case of
sGr(2r,2r 4+ 2). Consider, for example, Gr(2,4); see Example 3.9. Then the
4-dimensional stratum € oy (1,0),(1,0),(1,0) is dense and (relatively) compli-
cated, as the corresponding covering in Proposition 3.4 has degree 2. But
for the 3-dimensional strata the degrees are 1. Therefore, 220y (1,0),(1,0) and
Q(1,1),1,0),(1,0) are identified with @3/(2/22) and the corresponding cycles are
just Gr(1,3) x Gr(1,2) = P? x PL.

5. More notation
5.1. Lie algebras

Let g and b be as in Section 2.2. One has the Cartan decomposition g =n_ &
h@n,. Introduce also the positive and negative Borel subalgebras b = h&n,
and b_ =hdn_.

Let ¢ be a simple Lie group, % a Borel subgroup, and A" = [£, 4] its
unipotent radical, with the corresponding Lie algebras n, C b C g. Let ¢ act
on g by adjoint action.

Let Fq,...,E. € ny, dq,...,0 € b, F1,..., F, € n_ be the Chevalley
generators of g. Let p_; be the regular nilpotent element . ; F;. The set
p_1+b={p_1+0b| b€ b} is invariant under conjugation by elements of .4 .
Consider the quotient space (p_1 +b)/4" and denote the .4 -conjugacy class
of g € p_1+ b by [g]g.

Let P = {X € hl{ai,A\) € Z, i = 1,...,r} and P+ = {X € pl({oy, \) €
Z>o, i =1,...,7} be the coweight lattice and the cone of dominant integral
coweights. Let p € h* and p € h be the Weyl vector and covector such that
(p,;) =1and (o, p) =1, 1 =1,...,7.

The Weyl group W C Aut(h*) is generated by simple reflections s;, i =
1,...,7,

si(A) = A — (A, di)ay, A eED™

The restriction of the bilinear form (-, -) to b is nondegenerate and induces an
isomorphism h = h*. The action of W on b is given by s;(ft1) = it — {a, i)
for /i € h. We use the notation

v

w-d=w\+p)—p, w-A=wA+p)—p weW, Xebh®, Aeh,

for the shifted action of the Weyl group on h* and b, respectively.
Let ‘g = g(*A) be the Langlands dual Lie algebra of g, then *(s09,.1) =
sp,, and f(sp,y,) = 509,11. A system of simple roots of ‘g is &,. .., d, with
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the corresponding coroots ay, ..., a,. A coweight A€ bh of g can be identified
with a weight of ‘g.

For a vector space X we denote by M(X) the space of X-valued mero-
morphic functions on P!. For a group R we denote by R(M) the group of
R-valued meromorphic functions on P!.

5.2. sp,, as a subalgebra of sl;,

Let vy, ..., vg, be a basis of C?". Define a nondegenerate skew-symmetric form
x on C?" by

X(Uiavj) = (_1)i+16i,27‘+1—j7 27] = 17 s >2T'

The special symplectic Lie algebra g = sp,, by definition consists of all endo-
morphisms K of C?" such that x(Kwv,v') + x(v, Kv') = 0 for all v, € C%.
This identifies sp,, with a Lie subalgebra of sly,..

Denote Fj;; the matrix with zero entries except 1 at the intersection of
the i-th row and j-th column.
The Chevalley generators of g = sp,, are given by

Ei=Eiit1+ Eoyriori1-i, Fi=FEip1i+ FEyy1i20—, 1=1,...,7r—1,
ET = Lpr41, Fr = Er—i—l,ry
& = Ejj — Ejp 01+ Eor_jor—j — Eorpi—jort1—j, G = Epp — By pq1,

j=1...,r—1.

Moreover, a coweight Ae bh can be written as

(51) A= Z(a“ ot {ap_1, A) + oy, )/2)( — Eyrp1-ior1-i)-

In particular,

T

2r — 21+ 1
p= Z — Epr1-i2r1-i)-
=1

For convenience, we denote the coefficient of Ej; in the right hand side of
(5.1) by (A)y, fori=1,...,2r.
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5.3. so02,41 as a subalgebra of sy,

Let v, ..., v9.41 be a basis of C***!. Define a nondegenerate symmetric form
X on (C2r+1 by

X(U’i; U]) = (_1)i+16i,2r+2—j7 Za.] = 17 R 2r + 1.

The special orthogonal Lie algebra g = s§09,.,1 by definition consists of all
endomorphisms K of C* 1 such that y(Kv,v") + x(v, Kv') = 0 for all v,v’ €
C?r*1. This identifies 509,,; with a Lie subalgebra of sy, .

Denote FEj;; the matrix with zero entries except 1 at the intersection of
the ¢-th row and j-th column.

The Chevalley generators of g = s09,11 are given by

Ei = FEii1+ Eorp1ioryoi, Fi= B+ Eorgoioryi,
1=1,...,m,

&j = Ej; — Fip1 41+ Eorpi—jori1—j — Eorgo_jorio—yj, J=1,...,7.

Moreover, a coweight A€ h can be written as
(5.2) A= Z <<ai7 A+ o, 5\>) (Esi — Eoryo—iorio—i)-
i=1

In particular,
p=> (r+1=14i)(Ei— Eaioizria—i).
i=1

For convenience, we denote the coefficient of F;; in the right hand side of

v

(5.2) by (A)y, fori=1,...,2r + 1.
5.4. Lemmas on spaces of polynomials

Let A = (AW, ... A0, A) be a sequence of partitions with at most N parts
such that |A] = N(d — N) and let z = (21, ..., 2n, 00) € Py

Given an N-dimensional space of polynomials X, denote by Dx the monic
scalar differential operator of order N with kernel X. The operator Dx is a
monodromy-free Fuchsian differential operator with rational coefficients.

Lemma 5.1. A subspace X C Cylz] is a point of Qa » if and only if the
operator Dx is Fuchsian, reqular in C\ {z1,...,2,}, the exponents at zq,
s=1,...,n, being equal to )\5\5}), /\g\‘;)_l +1,... ,AP + N —1, and the exponents
at oo being equal to 1 + Ay —d, 2+ Ay_1—d,..., N+ X1 —d. O
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Let T = (T1,...,Ty) be associated with A, z, see (4.1). Let T = {uy, ..
un} be a basis of X € Q4 ,, define a sequence of polynomials

*

(5.3) yn—i = Wrl(uy,...,u;), i=1,...,N—1.

Denote (y1,...,yn—-1) by yp. We say that yp is constructed from the basis T

Lemma 5.2 ([MV1]). Suppose X € Qa , and let ' = {uy,...,un} be a basis
of X. If ypr = (y1,...,yn—1) is constructed from T, then

Dy = (o (BT 0 (A5

hn Y2
< (00— ! (BN (0, — (v a Ta).
U

Let D = ON+"N, hi(2)0N " be a differential operator with meromorphic
coefficients. The operator D* = ON + 3% | (—1)'0N~"h;(x) is called the formal
conjugate to D.

Lemma 5.3. Let X € Qp , and let {u1,...,un} be a basis of X, then

Wr(uy, ..., Uy .., un)
Wr(ug,...,uy)

. i=1,...,N,

form a basis of Ker((Dx)*). The symbol w; means that u; is skipped. Moreover,
given an arbitrary factorization of Dx to linear factors, Dx = (0, + f1)(0x +

f2) ... (0 + fn), we have (Dx)* = (0z — fn)(Ox — fN-1) .- (0x — f1)-

Proof. The first statement follows from Theorem 3.14 of [MTV2]. The second
statement follows from the first statement and Lemma A.5 of [MV1]. O

Lemma 5.4. Let X € Qa . Then
Dyt = (Ty---Ty) - (DX)* (T - --TN)’I.

Proof. The statement follows from Lemma 5.3 and the definition of XT. O

Lemma 5.5. Suppose X € Qp , is a pure self-dual space and z is an arbitrary
complex number, then there exists a basis I' = {uq,...,un} of X such that
for yr = (y1,...,yn—1) given by (5.3), we have y; = yn—; and y;(z) # 0 for
everyi=1,..., N — 1.

Proof. The lemma follows from the proofs of Theorem 8.2 and Theorem 8.3
of [MV1]. O
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6. g-oper

We fix N, N > 4, and set g to be the Langlands dual of gy. Explicitly,
g =5py, if N =2r and g = s09,4; if N =2r + 1.

6.1. Miura g-oper

Fix a global coordinate z on C C P!. Consider the following subset of differ-
ential operators

opg(P") = {8, + p-1 +v | v € M(b)}.

This set is stable under the gauge action of the unipotent subgroup A4 (M) C
@ (M). The space of g-opers is defined as the quotient space Opg(IP)l) =
opy(P')/ A (M). We denote by [V] the class of V € opy(P') in Op,4(P").

We say that V = 8, +p_1 + v € opy(P') is regular at z € P! if v has no
pole at z. A g-oper [V] is said to be regular at z if there exists f € A4 (M)
such that f=!- V- f is regular at 2.

Let V = 0, 4+ p—_1+ v be a representative of a g-oper [V]. Consider V as a
¢-connection on the trivial principal bundle p : ¢4 x P! — P!. The connection
has singularities at the set Sing C C where the function v has poles (and
maybe at infinity). Parallel translations with respect to the connection define
the monodromy representation 7 (C \ Sing) — ¢. Its image is called the
monodromy group of V. If the monodromy group of one of the representatives
of [V] is contained in the center of ¢, we say that [V] is a monodromy-free
g-oper.

A Miura g-oper is a differential operator of the form V =0, + p_1 + v,
where v € M(b).

A g-oper [V] has reqular singularity at z € P!\ {oo}, if there exists a
representative V of [V] such that

N (g P—g 4 P TW
(x—=2) - V-(r—2)"=0,+ e
where w € M(b) is regular at z. The residue of [V] at z is [p_; + w(z)]5. We
denote the residue of [V] at z by res,[V].

Similarly, a g-oper [V] has reqular singularity at oo € PL, if there exists a

representative V of [V] such that

y ; 1t w
O v S Y e S
X
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where @ € M(b) is regular at co. The residue of [V] at oo is —[p_1 +W(00)],.
We denote the residue of [V] at oo by rese[V].

Lemma 6.1. For any X, [i € b, we have [p_1 — p — :\]g =[p_1—p— g if
and only if there exists w € W such that A=w- [ ]

Hence we can write [y for [p_1 — p — Alg. In particular, if [V] is regular
at z, then res.[V] = [0]w.

Let A = (AM . A™ X) be a sequence of n + 1 dominant integral g-
coweights and let z = (z1,...,2,,00) € I@’n+1. Let Opg(Pl)%sz denote the set
of all g-opers with at most regular singularities at points z, and oo whose
residues are given by

v

res, [V] = [A®]y, reseo[V] = —[Aw, s=1,....,n,
and which are regular elsewhere. Let Opg(]P’l) Az C Opg(]P’l)ﬁsz denote the
subset consisting of those g-opers which are also monodromy-free.

Lemma 6.2 ([F]). For every g-oper [V] € Op,(P')4 . there exists a Miura
g-oper as one of its representatives. ]

Lemma 6.3 ([F]). Let V be a Miura g-oper, then [V] € Opg(IPl)%Sz if and
only if the following conditions hold: 7

(i) V is of the form

LS (ORI
(6.1) V=0, 4p, -3 ATy 00

=1 T — Zs

for some m € Zxo, ws €W fors=1,...,n and w; € W, t; € P1\ 2z
forj=1,...,m,
(ii) there exists woo € W such that

(6.2) S wg A+ 30 = weo - A,
s=1 j=1

(tit) [V] is reqular at t; for j =1,...,m.
]

Remark 6.4. The condition (6.2) implies that 3>, (o, A®)) + (o, A) is
even if N = 2r.
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6.2. Miura transformation

Following [DS], one can associate a linear differential operator Ly to each
Miura g-oper V = 0, + p_1 + v(z), v(z) € M(b).

In the case of sl,4q, v(z) € M(h) can be viewed as an (r + 1)-tuple
(v1(x),...,v,41(x)) such that 7% v;(x) = 0. The Miura transformation

=

sends V = 0, + p_1 + v(z) to the operator
Ly = (0z +v1(2)) ... (0p + vrg1(x)).
Similarly, the Miura transformation takes the form
Ly = (0x +01(2)) ... (O + 0r(2)) (02 — vr(x)) ... (O — v1())
for g = sp,, and
Ly = (0: + v1()) ... (0p + 07 (2))02(05 — vr(2)) ... (O — v1(2))

for g = 509,41. The formulas of the corresponding linear differential operators
for the cases of sp,,. and s09,41 can be understood with the embeddings
described in Sections 5.2 and 5.3.

It is easy to see that different representatives of [V] give the same differ-
ential operator, we can write this map as [V] = Liy].

Recall the definition of (A);; for A € b from Sections 5.2 and 5.3.

Lemma 6.5. Suppose V is a Miura g-oper with [V] € Opy(P') .. then
Liv) is a monic Fuchsian differential operator with singularities at points in
z only. The exponents of Liy) at z5, s = 1,...,n, are (5\(5))1-@' + N —1i, and the

v

exponents at oo are —(N);; — N +i,i=1,...,N.

Proof. Note that V satisfies the conditions (i)-(iii) in Lemma 6.3. By Theorem
5.11 in [F] and Lemma 6.1, we can assume ws = 1 for given s. The lemma
follows directly. O

Denote by Z(¥) the center of 4, then

Z(g) _ {]2r+1} it g = 50241,
{:I:IQT} lfg = 5Py,

We have the following lemma.
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Lemma 6.6. Suppose V is a Miura g-oper with [V] € Opg(Pl)Az. If g =
509,41, then Ly is a monodromy-free differential operator. If g = spo,., then
the monodromy of Liy) around zs is —Ia if and only if <04T,5\(S)> s odd for
giwen s € {1,...,n}. O

6.3. Relations with pure self-dual spaces

Let A = (5\(1), A 5\) be a sequence of n+1 dominant integral g-coweights
and let z = (21,...,2,,00) € ]f’)n+1.

Consider A as a sequence of dominant integral gny-weights. Choose d
large enough so that k :=d — N — 3" (A®))1; — ()11 > 0. (We only need
to consider the case that 7, (A(®));; + (X)1; is an integer for N = 2r, see
Lemma 4.4 and Remark 6.4.) Let k = (0,...,0, k). Note that we always have
|Aax| = N(d — N) and spaces of polynomials in SR g (=50 ) are
pure self-dual spaces. h

Apk,z

Theorem 6.7. There exists a bijection between Opg(]P’l)A L and s€ly . . given
by the map [V] — Ker(f~' - Liy) - f), where T = (Ty,...,Tn) is associated
with ijA,k,z and f= (T} .. .TN)*l/Q.

Proof. We only prove it for the case of g = sp,,.. Suppose [V] € Opg(IP’l)Ayz,
by Lemmas 6.2 and 6.3, we can assume V has the form (6.1) satisfying the
conditions (i), (ii), and (iii) in Lemma 6.3.

Note that if (c, 5\(8)) is odd, f has monodromy —I5, around the point
2s. By Lemma 6.6, one has that f~!- Liv) - f is monodromy-free around the
point z, for s = 1,...,n. Note also that S>7 (a, A®)) + (a,, A) is even, it
follows that f~!- Liv) - f is also monodromy-free around the point co. Hence
ft Liv) - f is a monodromy-free differential operator.

It follows from Lemmas 5.1 and 6.5 that Ker(f~!- Ly - f) € Q
Since Ly takes the form

Apr,z"

(0 +v1(x)) ... (0 + 0,(2)) (0 — vr()) ... (O — v1()),

it follows that Ker(f~!- Ly - f) is a pure self-dual space by Lemma 5.4.

If there exist [V4],[Va] € Opg(]P’l)A,z such that f~'- Ligy-f = f'-
Liv,) - f, then they are the same differential operator constructed from dif-
ferent bases of Ker(f~!- Liy) - f) as described in Lemma 5.2. Therefore they
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correspond to the same $09,;1-population by Theorem 7.5 of [MV1]. It follows
from Theorem 4.2 and remarks in Section 4.3 of [MV2] that [V;] = [V3].

Conversely, give a self-dual space X € s} , .. By Lemma 5.5, there
exists a basis I' of X such that for yp = (y1,. .. ;g)N,l) we have y; = yn_,
i=1,...,N — 1. Following [MV2], define v € M(h) by

<Oéi, ’U) - I (Tz ﬁ yj—ai,j)7
j=1

then we introduce the Miura g-oper Vp = 0, +p_1+v, which only has regular
singularities. It is easy to see from Lemma 5.2 that f~! - L, f=Dx. It
follows from the same argument as the previous paragraph that [Vy] = [V/]
for any other basis I of X and hence [Vr] is independent of the choice of T
Again by Lemma 5.5, for any xy € C\ z we can choose I" such that y;(z¢) # 0
foralli =1,...,N — 1, it follows that [Vr] is regular at xy. By exponents
reasons (see Lemma 6.5), we have

ves,, [Vr] = Ay, 1ese[Vr] = —[Alw, s=1,...,n.

On the other hand, [Vr] is monodromy-free by Theorem 4.1 of [MV2]. It
follows that [Vp] € Op,(P") A.z» Which completes the proof. O

7. Proof of main theorems
7.1. Proof of Theorems 3.6 and 3.8

We prove Theorem 3.6 first.
By assumption, 2 = (¢, ... 1) is a simple degeneration of A =
(AD | X™) . Without loss of generality, we assume that £0 = X&) for

t1=1,...,n—2 and
dim(V)\(n—l) & V)\(n))?(?ﬁl) > 0.

Recall the strata 25 is a union of intersections of Schubert cells Q4 -,
see (3.6). Taking the closure of Qa is equivalent to allowing coordinates of
z € IPn coincide.

Let zg = (21,...,2n-1) € If”n_l. Let X € Qz,,. By Theorem 3.2, there
exists a common eigenvector v € (Va z,)°'V of the Bethe algebra B such that
D, = Dx.
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Let z{, = (21,...,2n—1, 2n—1). Consider the B-module VA=, then we have

n—2
Vazp =(@Q) Vo (25)) © (Va1 @ Vaem ) (20-1)
s=1

n—2

=D A1) \m) (& Vaer (25)) @ Vilzn-1),
m

s=1

where ¢ = dim(Vyw-1 ® Vyw)3"8 are the Littlewood-Richardson

’,\Lm—l),,\(n)
coefficients. Since dim(Vyn-1 ® V,\<n>)zi(2gi1
particular, (Va 5,)*'v C (VA%)“N. Hence v is a common eigenvector of the
Bethe algebra B on (VAyzé)slN such that D, = Dyx.

It follows that X is a limit point of A , as z, approaches z,_;. This
completes the proof of Theorem 3.6.

Theorem 3.8 follows directly from Theorem 3.6.

, > 0, we have Ve ,, C VA,z;- In

7.2. Proof of Theorems 4.5, 4.12, and 4.13

We prove Theorem 4.5 first. We follow the convention of Section 6.

We can identify the sequence A = (5\(1), LA 5\) of dominant integral
g-coweights as a sequence of dominant integral gy-weights. Consider the gy-
module Vi = Viq) ®- - @ V5., @ V5. It follows from Theorem 3.2 and Corollary
3.3 of [R] that there exists a bijection between the joint eigenvalues of the
gn Bethe algebra B acting on (Vi) (21) ® - - - ® Vi (20))%"8 and the g-opers
in Opg(IF’l) A for all possible dominant integral g-coweight A. In fact, one
can show that Theorem 3.2 and Corollary 3.3 of [R] are also true for the
subspaces of (Vi) (21) ® -+ @ Vi) (zn));ing with specific gy-weight X. Recall
that k = (0,...,0,k), where k =d— N —>"_ (A®)1; — (A)11 > 0. Since one
has the canonical isomorphism of B-modules

(V[Lz)gN = (Vj\(l)(zl) ® Tt ® Vj\(n) (Zn>)§\ing7

by Theorem 6.7, we have the following theorem.

Theorem 7.1. There exists a bijection between the joint eigenvalues of the
gn Bethe algebra B acting on (Vi ,)®V and sQ , . C sGr(N,d) such that
given a joint eigenvalue of B with a corresponding B-eigenvector v in (V;\’z)gN
we have Ker ((Ty...Tn)Y? - Dy - (Ty ... Tn)"Y?) € SQOA fo.z- O
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The fact that Ker (T1...Tn)Y2 Dy« (T1...Tn)"Y/?) € sQ ., for the
eigenvector v € (Vj )9 of the gn Bethe algebra (except for the case of even
N when there exists s € {1,2,...,n} such that (a,, A®)) is odd) also follows
from the results of [LMV] and [MM].

Note that by Proposition 2.10 in [R], the i-th coefficient of the scalar
differential operator Lv] in Theorem 6.7 is obtained by action of a universal
series G;(z) € U(gn[t][[x7]]). Theorem 4.5 for the case of N > 4 is a direct
corollary of Theorems 6.7 and 7.1.

Thanks to Theorem 4.5, Theorems 4.12 and 4.13 can be proved in a similar
way as Theorems 3.6 and 3.8.

Appendix A. Self-dual spaces and z-invariant vectors
A.1. Diagram automorphism =
There is a diagram automorphism w : sly — sl such that
w(E;) = Ex_i, w(F})=Fn_i, w?’=1 w(ha)=ha.
The automorphism w is extended to the automorphism of gl by
oly = oly, eij (=) eyy Ny, 4,j=1,...,N.

By abuse of notation, we denote this automorphism of gl also by w.
The restriction of w to the Cartan subalgebra h, induces a dual map
w* by = by, A= A, by

for all A € b%,h € ha.

Let (%)% = {\ € b% | \* = A} C b%. We call elements of (h%)° symmetric
weights.

Let hy be the Cartan subalgebra of gy. Consider the root system of type
An_1 with simple roots af, ..., a4 _; and the root system of gx with simple
roots aq, .. .,a[%].

There is a linear isomorphism P : b% — (h%)° A — A4, where My is
defined by

(A1) Ma,af) = (A ) = (N di), i=1,.., g] '
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Let A € b% and fix two nonzero highest weight vectors vy € (V))x, vr+ €
(Vas)as. Then there exists a unique linear isomorphism Z : V) — Vi« such
that

(A-2) Io(vr) = vx, Zw(gv) = w(9)Zx(v),

for all g € sly,v € V). In particular, if \ is a symmetric weight, Z, is a linear
automorphism of V), where we always assume that vy = vy«.

Let M be a finite-dimensional s{y-module with a weight space decom-
position M = @uehz(M)H' Let f : M — M be a linear map such that
f(hv) = w(h)f(v) for h € ha,v € M. Then it follows that f((M),) C (M),»
for all 1 € b%. Define a formal sum

TS f = > T(flon,)e(n),

pe(h)°

where Tr(f|(ar),) for i € (b% )" denotes the trace of the restriction of f to the
weight space (M),,.

Lemma A.1. We have Tryep (f @ f') = (Tey f) - (Teyp f). O

Let A = (AM, ..., A() be a sequence of dominant integral gy-weights,
then the tuple A4 = ()\(Al), . 7)\(X)) is a sequence of symmetric dominant
integral sly-weights. Let Vya = QL Vi . The tensor product of maps Z

A

in (A.2) with respect to )\(:), s=1,...,n, gives a linear isomorphism
(A?)) T i Vaa — Vs,

of sly-modules. Note that the map Z, preserves the weight spaces with sym-
metric weights and the corresponding spaces of singular vectors. In particular,
(Va4)®™ is invariant under Z,.

Lemma A.2. Let p be a gy-weight. Then we have
dim(VA)Zing = Tr(Iw’(VAA)ZiZg)7 dlm(VA)# = TY(IW‘(VAA)M)'

In particular, dim(VA)® = Tr(Zs |y, ,)siv)-

Proof. The statement follows from Lemma A.1 and Theorem 1 of Section 4.4
of [FSS]. O
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A.2. Action of w on the Bethe algebra

The automorphism w is extended to the automorphism of current algebra
gl [t] by the formula w(g®t*) = w(g)®t°, where g € gly and s =0,1,2,... .
Recall the operator D, see (2.3).

Proposition A.3. We have the following identity
aN+Z 1)'0Y " Bi(x).

Proof. Tt follows from the proof of Lemma 3.5 of [BHLW] that no nonzero
elements of U(gly[t]) kill all ®_; L(zs) for all n € Z-y and all 2, ..., z,. It
suffices to show the identity when it evaluates on @, L(zs).

Following the convention of [MTV6], define the N x N matrix G, =
Gn(N,n,z,ps, 2z, A, X, P) by the formula

o= (- 308+ (s
i,j=

T — 2

By Theorem 2.1 of [MTV6], it suffices to show that

rdet(Gp,) H T — 2q)

a=1

A1) = > TTwe—M) [T~ 2) det(za)iE5 det(pa)iEh.
A,B,|A|=|B| b¢ A agB

The proof of (A.4) is similar to the proof of Theorem 2.1 in [MTV6] with the
following modifications.

Let m be a product whose factors are of the form f(x), ps, pij, xij where
f(z) is a rational function in z. Then the product m will be called normally
ordered if all factors of the form p,, x;; are on the left from all factors of the
form f(z), pi;.

Correspondingly, in Lemma 2.4 of [MTV6], we put the normal order for
the first ¢ factors of each summand. O

We have the following corollary of Proposition A.3.

Corollary A.4. The gly Bethe algebra B is invariant under w, that is
w(B) = B. ]
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Let A = (AM, ..., A() be a sequence of partitions with at most N parts
and z = (21,...,2,) € P,.

Let v € (Va2)®'v be an eigenvector of the gly Bethe algebra B. Denote
w(DP), the scalar differential operator obtained by acting by the formal
operator w(DB) on v.

Corollary A.5. Letv € (Va 2)*'N be a common eigenvector of the gly Bethe
algebra; then the identity w(D?), = (D,)" holds. O

Let 2 = (6M, ... £M) be a sequence of N-tuples of integers. Suppose

5(5)—)\(5):7713(1,...,1), s=1,...,n.

ple) = [[w = 2™, () = I(p(a) = 3. -

s=1 s=1 T = Zs

Here we use the convention that 1/(x — zs) is considered as the constant
function 0 if z; = oo.

Lemma A.6. For any formal power series a(x) in x=1 with complex coeffi-
cients, the linear map obtained by sending e;;j(x) to e;j(x) + d;i;a(x) induces
an automorphism of gly[t]. O

We denote the automorphism in Lemma A.6 by 74(z)-

Lemma A.7. The B-module obtained by pulling Va » via 1y is isomorphic
to ngz. O

By Lemma A.7, we can identify the B-module Vz . with the B-module
VA.z as vector spaces. This identification is an isomorphism of sly-modules.
For v € (V,2)*'N we use 1y(;)(v) to express the same vector in (Vg )™V
under this identification.

Lemma A.8. The following identity for differential operators holds
M) (DP) = ¢(2)DP(p(x)) .
Proof. The lemma follows from the simple computation:
p(2) (0 — €ii(2))((2)) ™! = 0y — i) — (). O

Proposition A.9. Let v € (VA 2)*'V be an eigenvector of the Bethe algebra
such that D, = Dx for some X € Qp , then Doy @) = D) x -
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Proof. With the identification between the B-modules Vz , and Vj ., we have

Dy 0) = (@) (D)), = 0(2)Dy(p(z)) ™" = o(2)Dx (p(x)) ™" = Dy(a)-x-

The second equality follows from Lemma A.S8. O
A.3. I -invariant Bethe vectors and self-dual spaces

Let A = (A1), ...,A\™) be a tuple of dominant integral gy-weights. Recall
the map Z : Vaa — Vpa, from (A.3).

Note that an sly-weight can be lifted to a gly-weight such that the N-th
coordinate of the corresponding gly-weight is zero. From now on, we consider
)\Ej) from (A.1) as gly-weights obtained from (4.2), that is as the partitions
with at most N — 1 parts.

Let 2= (W, ... ,5(”)) be a sequence of N-tuples of integers such that

€& 2 = Ay 1,01, s=1,...n

Consider the sly-module V4 as the gly-module Vp ,, the image of Va , under
7, in (A.3), considered as a gly-module, is Vg. Furthermore, the image of
(Va,)?™ under Z, is (Vz)*'~.

Let T = (11,...,Tyn) be associated with A 4, z, we have

n

Ty Ty = [[ (= - )
s=1
Let o(x) = T+ Tn and let ¢¥(z) = ¢'(z)/p(z). Hence by Lemma A.7,
the pull-back of Vg . through 7y,) is isomorphic to Va, ». Furthermore, the
pull-back of (Va2 )*'¥ through n,) is isomorphic to (Va, ).

Theorem A.10. Let v € (Va, )"~ be an eigenvector of the gly Bethe
algebra B such that D, = Dx for some X € Qn, », then D = Dyxt.
Moreover, X is self-dual if and only if T, (v) = v.

Proof. Tt follows from Proposition A.9, Corollary A.5, and Lemma 5.4 that

Ny (z) 9L (V)

Dy, oz (v) =P(2) Do) (p(2)) ™ = p(2)w (D), (p(x)) ™!
=(Ty...Tn)(Dx) (T} ... Ty) "' = Dyt.

Since (AS))N =0 forall s=1,...,n, X has no base points. Therefore X
is self-dual if and only if Dx = Dx+. Suppose X is self-dual, it follows from
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Theorem 3.2 that 1,(,)0Z (v) is a scalar multiple of v. By our identification, in
terms of an sly-module homomorphism, 7,,) is the identity map. Moreover,
since Z, is an involution, we have Z(v) = +v.

Finally, generically, we have an eigenbasis of the action of B in (Va, »)*'
(for example for all z € RPn) In such a case, by the equality of dimensions
using Lemma A.2, we have Z,(v) = v. Then the general case is obtained by
taking the limit. O
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