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1. Introduction

The KZ equations were discovered by physicists Vadim Knizhnik and Alexander Zamolod-
chikov [KZ] to describe the differential equations for conformal blocks on sphere in the Wess-
Zumino-Witten model of conformal field theory. As I.M. Gelfand said, the KZ equations are
remarkable differential equations discovered by physicists, defined in terms of a Lie algebra
and whose monodromy is described by the corresponding quantum group. It turned out
that the KZ equations are realized as suitable Gauss-Manin connections and its solutions
are represented by multidimensional hypergeometric integrals, see [CF, DJMM, Mat, SV1,
SV2, SV3]. The fact that certain integrals of closed differential forms over cycles satisfy a
linear differential equation follows by Stokes’ theorem from a suitable cohomological relation,
in which the result of the application of the corresponding differential operator to the inte-
grand of an integral equals the differential of a form of one degree less. Such cohomological
relations for the KZ equations associated with Kac-Moody algebras were developed in [SV3].

The goal of this paper is to construct polynomial solutions of the KZ differential equa-
tions over a finite field Fp with p elements, where p is a prime number, as analogs of the
hypergeometric solutions constructed in [SV3]. Our construction is based on the fact that
all cohomological relations described in [SV3] are defined over Z and can be reduced modulo
p. We learned how to construct polynomial solutions in this situation out of hypergeomet-
ric solutions from the remarkable paper by Yu.I. Manin [Ma], see a detailed exposition of
Manin’s idea in Section “Manin’s Result: The Unity of Mathematics” in the book [Cl] by
H.C. Clemens.

In the remainder of the introduction we consider the example of one-dimensional hyper-
geometric and p-hypergeometric integrals as an illustration of our constructions and results.
The multidimensional case is considered in Sections 2-4.

1.1. Case of field C. Let κ,m1, . . . ,mn be nonzero complex numbers, z = (z1, . . . , zn) ∈
Cn, t ∈ C. Denote |m| = m1 + · · ·+mn. Consider the master function

Φ(t, z1, . . . , zn) =
∏

16a<b6n

(za − zb)mamb/2κ
n∏
a=1

(t− za)−ma/κ

and the n-vector

I(γ)(z) = (I1(z), . . . , In(z)),(1.1)

where

Ij =

∫
Φ(t, z1, . . . , zn)

dt

t− zj
, j = 1, . . . , n.(1.2)

The integrals are over a closed (Pochhammer) curve γ in C−{z1, . . . , zn} on which one fixes
a uni-valued branch of the master function to make the integral well-defined. Starting from
such a curve chosen for given {z1, . . . , zn}, the vector I(γ)(z) can be analytically continued
as a multivalued holomorphic function of z to the complement in Cn to the union of the
diagonal hyperplanes zi = zj.

Theorem 1.1. The vector I(γ)(z) satisfies the algebraic equation

m1I1(z) + · · ·+mnIn(z) = 0(1.3)
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and the differential KZ equations:

∂I

∂zi
=

1

κ

∑
j 6=i

Ωi,j

zi − zj
I, i = 1, . . . , n,(1.4)

where

Ωi,j =



...
i ...

j

i · · · (mi−2)mj
2

· · · mj · · ·
...

...

j · · · mi · · · mi(mj−2)

2
· · ·

...
...


,

all other diagonal entries are
mimj

2
and the remaining off-diagonal entries are all zero.

Remark. The vector I(γ)(z) depends on the choice of the curve γ. Different curves give
different solutions of the same KZ equations and all solutions of equations (1.3) and (1.4)
are obtained in this way, if κ,m1, . . . ,mn are generic.

Remark. The differential equations (1.4) are the KZ differential equations with parameter
κ associated with the Lie algebra sl2 and the singular weight subspace of weight |m| − 2 of
the tensor product of sl2-modules with highest weights m1, . . . ,mn, see Section 2.

Remark. The KZ equations define a flat connection over the complement in Cn to the union
of all diagonal hyperplanes,[

∂

∂zi
− 1

κ

∑
j 6=i

Ωi,j

zi − zj
,

∂

∂zk
− 1

κ

∑
j 6=k

Ωk,j

zk − zj

]
= 0(1.5)

for all j, k.

Theorem 1.1 is a classical statement probably known in 19th century. Much more general
algebraic and differential equations satisfied by analogous multidimensional hypergeometric
integrals were considered in [SV3]. Theorem 1.1 is discussed as an example in [V2, Section
1.1].

Below we give a proof of Theorem 1.1. A modification of this proof in Section 1.2 will
produce for us polynomial solutions of the equations (1.3) and (1.4) modulo a prime p.

Proof of Theorem 1.1. Equations (1.3) and (1.4) are implied by the following cohomological
identities. We have

−m1

κ
Φ(t, z)

dt

t− z1

+ · · ·+ −m1

κ
Φ(t, z)

dt

t− zn
= dtΦ(t, z),(1.6)

where dt denotes the differential with respect to the variable t. This identity and Stokes’
theorem imply equation (1.3).

Denote

V (t, x) =
( dt

t− z1

, . . . ,
dt

t− zn

)
.(1.7)
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For any i = 1, . . . , n, letW i(t, z) be the vector of (0, . . . , 0, −1
t−zi , 0, . . . , 0) with nonzero element

at the i-th place. Then( ∂

∂zi
− 1

κ

∑
j 6=i

Ωi,j

zi − zj

)
Φ(t, z)V (t, x) = dt(Φ(t, z)W i(t, z)).(1.8)

The proof of this identity is straightforward. Much more general identities of this type see
in [SV3, Lemmas 7.5.5 and 7.5.7], cf. identities in Section 2.4.

Identity (1.8) and Stokes’ theorem imply the KZ equation (1.4). �

Example 1.1. Let κ = 2, n = 3, m1 = m2 = m3 = 1. Then I(γ)(z) = (I1(z), I2(z), I3(z)),
where

Ij(z) =
∏

16a<b63

4
√
za − zb

∫
γ(z)

1√
(t− z1)(t− z2)(t− z3)

dt

t− zj
.(1.9)

In this case, the curve γ(z) may be thought of as a closed path on the elliptic curve

y2 = (t− z1)(t− z2)(t− z3).

Each of these integrals is an elliptic integral. Such an integral is a branch of analytic con-
tinuation of a suitable Euler hypergeometric function up to change of variables.

1.2. Case of field Fp. Let κ,m1, . . . ,mn be positive integers. Let p > 2 be a prime number,
p - κ. The algebraic equation (1.3) and the differential KZ equations (1.4) are well-defined
when reduced modulo p. The reduction of the KZ equations satisfies the flatness condition
(1.5). We construct solutions of equations (1.3) and (1.4) with values in (Fp[z])n. Notice

that the space of such solutions is a module over the ring Fp[zp1 , . . . , zpn] since
∂zpi
∂zj

= 0.

Choose positive integers Ma for a = 1, . . . , n and Ma,b for 1 6 a < b 6 n such that

Ma ≡ −
ma

κ
, Ma,b ≡

mamb

2κ
(mod p).

That means that we project ma, κ, 2 to Fp, calculate −ma
κ
, mamb

2κ
in Fp and then choose

positive integers Ma,Ma,b satisfying these equations.
Fix an integer q. Consider the master polynomial

Φ(p)(t, z) =
∏

16a<b6n

(za − zb)Ma,b

n∏
a=1

(t− za)Ma ,

and the Taylor expansion with respect to the variable t of the vector of polynomials

Φ(p)(t, z)
( 1

t− z1

, . . . ,
1

t− zn

)
=
∑
i

Ī(i)(z, q) (t− q)i,

where the Ī(i)(z, q) are n-vectors of polynomials in z with integer coefficients. Let I(i)(z, q) ∈
(Fp[z])n be the canonical projection of Ī(i)(z, q).

Theorem 1.2. For any integer q and positive integer l, the vector of polynomials
I(lp−1)(z, q) satisfies equations (1.3) and (1.4).

The parameters q and lp− 1 are analogs of cycles γ in Section 1.1.
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Proof. To prove that I(lp−1)(z, q) satisfies (1.3) and (1.4) we consider the Taylor expansions
at t = q of both sides of equations (1.6) and (1.8), divide them by dt, and then project the
coefficients of (t− q)lp−1 to (Fp[z])n. The projections of the right-hand sides equal zero since
d(tlp)/dt = lptlp−1 ≡ 0 (mod p). �

Example 1.2. Let κ = 2, m1 = · · · = mn = 1, cf. Example 1.1. Given p > 2 choose the
master polynomial

Φ(p)(t, z) =
∏

16a<b6n

(za − zb)
(p+1)2

4

n∏
s=1

(t− zs)
p−1
2 .(1.10)

Consider the Taylor expansion
n∏
s=1

(t− zs)
p−1
2

( 1

t− z1

, . . . ,
1

t− zn

)
=
∑
i

c̄i(z)ti,(1.11)

where c̄i = (c̄i1, . . . , c̄
i
n). Let ci be the projection of c̄i to (Fp[z])n. Then the vector of

polynomials

I(z) = (I1(z), . . . , In(z)) =
∏

16a<b6n

(za − zb)
(p+1)2

4

(
cp−1

1 (z), . . . , cp−1
n (z)

)
(1.12)

is a solution of the KZ differential equations over Fp[z] and I1(z) + · · ·+ In(z) = 0.

Example 1.3. Let κ = 2, m1 = · · · = mn = 1, p = 3. We have

Ωi,j(I1, . . . , In) =
1

2
(I1, . . . , Ii−1,−Ii + 2Ij, Ii+1, . . . , Ij−1, 2Ii − Ij, Ij+1, . . . , In)

≡ (−I1, . . . ,−Ii−1, Ii + Ij,−Ii+1, . . . ,−Ij−1, Ii + Ij,−Ij+1, . . . ,−In)

(mod 3). Equation (1.3) has the form I1(z) + · · · + In(z) = 0. We may choose the master
polynomial

Φ(p=3)(t, z) =
∏

16a<b6n

(za − zb)
n∏
s=1

(t− zs).

Choose a nonnegative integer l. Then the vector I(z, q) := I(3l−1)(z, q) = (I1(z, q), . . . ,
In(z, q)) of Theorem 1.2 has coordinates

Ij(z, q) =
( ∏

16a<b6n

(za − zb)
) ∑

16i1<···<in−3−3l6n,

j /∈{i1,...,in−3−3l}

n−3−3l∏
a=1

(q − zia)(1.13)

and is a solution of (1.3) and (1.4) with values in (F3[z])n for any q = 0, 1, 2. Expanding these
solutions into polynomials homogeneous in z we obtain solutions in homogeneous polyno-

mials, which stabilize with respect to n as follows. The vector I [r](z) = (I
[r]
1 (z), . . . , I

[r]
n (z)),

with coordinates

I
[r]
j (z) =

( ∏
16a<b6n

(za − zb)
) ∑

16i1<···<ir6n,
j /∈{i1,...,ir}

r∏
a=1

zia ,(1.14)
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is a solution of (1.3) and (1.4) with values in (F3[z])n if r ≡ n (mod 3) and r < n. Thus, the
vector I [0](z), with coordinates

I
[0]
j (z) =

∏
16a<b6n

(za − zb),(1.15)

is a solution with values in (F3[z])n for n ≡ 0 (mod 3); the vector I(1)(z), with coordinates

I
[1]
j (z) =

( ∏
16a<b6n

(za − zb)
) ∑

16i6n, i 6=j

zi,(1.16)

is a solution for n ≡ 1 (mod 3) and so on. Note that the sum in (1.14) is the m-th elementary
symmetric function in z1, . . . , ẑj, . . . , zn.

Solutions provided by Theorem 1.2 depend on parameters q, lp − 1. In this example all
solutions I [r](z) can be obtained by putting q = 0 and varying lp− 1 only.

1.3. Relation of polynomial solutions to integrals over Fp. For a polynomial F (t) ∈
Fp[t] define the integral ∫

Fp
F (t) :=

∑
t∈Fp

F (t).

Recall that

the sum
∑
t∈Fp

ti equals −1 if (p− 1)
∣∣i and equals zero otherwise.(1.17)

Theorem 1.3. Fix x1, . . . , xn, q ∈ Fp. Consider the vector of polynomials

F (t, x1, . . . , xn) := Φ(p)(t, x1, . . . , xn)
( 1

t− x1

, . . . ,
1

t− xn

)
∈ Fp[t]

of Section 1.2. Assume that degt F (t, x1, . . . , xn) < 2p− 2. Consider the polynomial solution
I(p−1)(z1, . . . , zn, q) of equations (1.3) and (1.4) defined in front of Theorem 1.2. Then

I(p−1)(x1, . . . , xn, q) = −
∫
Fp
F (t, x1, . . . , xn).(1.18)

This integral is a p-analog of the hypergeometric integral (1.2).

Proof. Consider the Taylor expansion F (t, x1, . . . , xn) =
∑2p−3

i=0 I(i)(x1, . . . , xn, q)(t− q)i. By
formula (1.17), we have

∑
t∈Fp F (t, x1, . . . , xn) = −I(p−1)(x1, . . . , xn, q). �

Example 1.4. Given κ, n, m1 = · · · = mn = 1, assume that n 6 2κ and κ
∣∣(p − 1). Then

F (t) =
∏

a<b(za − zb)Ma,b
∏n

s=1(t− xs)
p−1
κ

(
1

t−x1 , . . . ,
1

t−xn

)
and degt F (t) < 2p− 2.

1.4. Relation of solutions to curves over Fp.

Example 1.5. Let x1, x2, x3 ∈ Fp. Let Γ(x1, x2, x3) be the projective closure of the affine
curve

y2 = (t− x1)(t− x2)(t− x3)(1.19)
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over Fp. For a rational function h : Γ(x1, x2, x3)→ Fp define the integral∫
Γ(x1,x2,x3)

h =
′∑

P∈Γ(x1,x2,x3)

h(P ),(1.20)

as the sum over all points P ∈ Γ(x1, x2, x3), where h(P ) is defined.

Theorem 1.4. Let p > 2 be a prime. Let
(
cp−1

1 (x1, x2, x3), cp−1
2 (x1, x2, x3), cp−1

3 (x1, x2, x3)
)

be the vector of polynomials appearing in the solution (1.12) of the KZ equations of Example
1.2 for n = 3. Then∫

Γ(x1,x2,x3)

1

t− xj
= − cp−1

j (x1, x2, x3), j = 1, 2, 3.(1.21)

Remark. Theorems 1.2 and 1.4 say that the integrals
∫

Γ(x1,x2,x3)
1

t−xj are polynomials in

x1, x2, x3 ∈ Fp and the triple of polynomials

I(x1, x2, x3) =
∏

16a<b63

(xa − xb)
(p+1)2

4

(∫
Γ(x1,x2,x3)

1

t− x1

,

∫
Γ(x1,x2,x3)

1

t− x2

,

∫
Γ(x1,x2,x3)

1

t− x3

)
in these discrete variables satisfies the KZ differential equations! Cf. Example 1.1.

Proof of Theorem 1.4. The proof is analogous to the reasoning in [Ma, Section 2] and [Cl].
The value of 1/(t−xj) at the infinite point of Γ(x1, x2, x3) equals zero. It is easy to see that∫

Γ(x1,x2,x3)

1

t− xj
=

∑
t∈Fp, t 6=xj

1

t− xj
+
∑
t∈Fp

1

t− xj

3∏
s=1

(t− xs)
p−1
2

=
∑
t∈Fp

(t− xj)p−2 +
∑
t∈Fp

∑
i

cij(x1, x2, x3)ti = −cp−1
j (x1, x2, x3),

where the last equality is by formula (1.17). �

Remark. In [Ma, Section 2] and in [Cl], an equation analogous to (1.21) is considered, where
the left-hand side is the number of points on Γ(x1, x2, x3) over Fp and the right-hand side
is the reduction modulo p of a solution of a second order Euler hypergeometric differential
equation. Notice that the number of points on Γ(x1, x2, x3) is the discrete integral over
Γ(x1, x2, x3) of the constant function h = 1. See details in Section “Manin’s Result: The
Unity of Mathematics” in [Cl].

Example 1.6. This example is a variant of Example 1.5.
Let x1, x2, x3, x4 ∈ Fp. Let Γ(x1, x2, x3, x4) be the projective closure of the affine curve

y2 = (t− x1)(t− x2)(t− x3)(t− x4)(1.22)

over Fp.
Let p > 3 be a prime. Let(

cp−1
1 (x1, x2, x3, x4), cp−1

2 (x1, x2, x3, x4), cp−1
3 (x1, x2, x3, x4), cp−1

4 (x1, x2, x3, x4)
)
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be the vector of polynomials appearing in the solution (1.12) of the KZ equations of Example
1.2 for n = 4. Then∫

Γ(x1,x2,x3,x4)

1

t− xj
= − cp−1

j (x1, x2, x3, x4), j = 1, 2, 3, 4.(1.23)

Example 1.7. Let κ = 3, n = 3, m1 = m2 = m3 = 2. Assume that 3
∣∣(p − 1). Choose the

master polynomial

Φ(p)(t, z) =
∏

16a<b63

(za − zb)
p+2
3

3∏
s=1

(t− zs)2 p−1
3 .

Consider the Taylor expansion
3∏
s=1

(t− zs)2 p−1
3

( 1

t− z1

,
1

t− z2

,
1

t− z3

)
=
∑
i

c̄i(z1, z2, z3)ti,(1.24)

where c̄i = (c̄i1, c̄
i
2, c̄

i
3). Let ci be the projection of c̄i to (Fp[z])3. Then the vector

I(z) = (I1(z), I2(z), I3(z)) =
∏

16a<b63

(za − zb)
p+2
3

(
cp−1

1 (z), cp−1
2 (z), cp−1

3 (z)
)

(1.25)

is a solution of the corresponding KZ differential equations over Fp[z] and I1(z) + I2(z) +
I3(z) = 0.

For distinct x1, x2, x3 ∈ Fp let Γ(x1, x2, x3) be the projective closure of the affine

y3 = (t− x1)(t− x2)(t− x3)(1.26)

over Fp. The curve has 3 points at infinity.

Theorem 1.5. Let p be a prime such that 3
∣∣(p− 1). Let(

cp−1
1 (x1, x2, x3), cp−1

2 (x1, x2, x3), cp−1
3 (x1, x2, x3)

)
be the vector of polynomials appearing in the solution (1.25) of the KZ equations. Then for
j = 1, 2, 3 we have ∫

Γ(x1,x2,x3)

1

t− xj
= − cp−1

j (x1, x2, x3).(1.27)

Proof. The value of 1/(t− xj) at infinite points of Γ equals zero. It is easy to see that∫
Γ(x1,x2,x3)

1

t− xj
=

∑
t∈Fp, t 6=xj

1

t− xj
(1.28)

+
∑
t∈Fp

1

t− xj

3∏
s=1

(t− xs)
p−1
3 +

∑
t∈Fp

1

t− xj

3∏
s=1

(t− xs)2 p−1
3

=
∑
t∈Fp

(t− xj)p−2 +
∑
t∈Fp

∑
i

cij(x1, x2, x3)ti = −cp−1
j (x1, x2, x3).

Notice that
∑

t∈Fp
1

t−xj

∏3
s=1(t− xs)

p−1
3 = 0 since the polynomial under the sum is of degree

p− 2 which is less than p− 1. The last equality in (1.28) is by formula (1.17). �
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Example 1.8. Let κ = 3, n = 3, m1 = m2 = 1, m3 = 2. Assume that 3 divides p − 1.
Choose the master polynomial

Φ(p)(t, z) = (z1 − z2)
5p+1

6 (z1 − z3)
2p+1

3 (z2 − z3)
2p+1

3 (t− z1)
p−1
3 (t− z2)

p−1
3 (t− z3)2 p−1

3 .

Consider the Taylor expansion

(t− z1)
p−1
3 (t− z2)

p−1
3 (t− z3)2 p−1

3

( 1

t− z1

,
1

t− z2

,
1

t− z3

)
=
∑
i

b̄i(z1, z2, z3)ti,(1.29)

where b̄i = (b̄i1, b̄
i
2, b̄

i
3). Let bi be the projection of b̄i to (Fp[z])3. Then the vector

I(z) = (z1 − z2)
5p+1

6 (z1 − z3)
2p+1

3 (z2 − z3)
2p+1

3

(
bp−1

1 (z), bp−1
2 (z), bp−1

3 (z)
)

(1.30)

is a solution of the corresponding KZ differential equations over Fp[z] and I1(z) + I2(z) +
2I3(z) = 0.

Similarly let κ = 3, n = 3, m1 = m2 = 2, m3 = 1. Assume that 3 divides p − 1. Choose
the master polynomial

Φ(p)(t, z) = (z1 − z2)
p+2
3 (z1 − z3)

2p+1
3 (z2 − z3)

2p+1
3 (t− z1)2 p−1

3 (t− z2)2 p−1
3 (t− z3)

p−1
3 .

Consider the Taylor expansion

(t− z1)2 p−1
3 (t− z2)2 p−1

3 (t− z3)
p−1
3

( 1

t− z1

,
1

t− z2

,
1

t− z3

)
=
∑
i

c̄i(z1, z2, z3)ti,(1.31)

where c̄i = (c̄i1, c̄
i
2, c̄

i
3). Let ci be the projection of c̄i to (Fp[z])3. Then the vector

I(z) = (z1 − z2)
p+2
3 (z1 − z3)

2p+1
3 (z2 − z3)

2p+1
3

(
cp−1

1 (z), cp−1
2 (z), cp−1

3 (z)
)

(1.32)

is a solution of the corresponding KZ differential equations over Fp[z] and 2I1(z) + 2I2(z) +
I3(z) = 0.

For distinct x1, x2, x3 ∈ Fp let Γ(x1, x2, x3) be the projective closure of the affine curve

y3 = (t− x1)(t− x2)(t− x3)2(1.33)

over Fp. The curve has genus 2 and one point at infinity.

Theorem 1.6. Let p be a prime such that 3 divides p− 1. Let(
bp−1

1 (x1, x2, x3), bp−1
2 (x1, x2, x3), bp−1

3 (x1, x2, x3)
)

be the vector of polynomials appearing in the solution (1.30) of the KZ equations with n = 3,
κ = 3, m1 = m2 = 1, m3 = 2. Let(

cp−1
1 (x1, x2, x3), cp−1

2 (x1, x2, x3), cp−1
3 (x1, x2, x3)

)
be the vector of polynomials appearing in the solution (1.32) of the KZ equations with n = 3,
κ = 3, m1 = m2 = 2, m3 = 1. Then for j = 1, 2, 3 we have∫

Γ(x1,x2,x3)

1

t− xj
= − bp−1

j (x1, x2, x3)− cp−1
j (x1, x2, x3).(1.34)
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Proof. The value of 1/(t− xj) at infinite points of Γ equals zero. It is easy to see that∫
Γ(x1,x2,x3)

1

t− xj
=

∑
t∈Fp, t 6=xj

1

t− xj
+
∑
t∈Fp

1

t− xj
(t− z1)

p−1
3 (t− z2)1 p−1

3 (t− z3)2 p−1
3

+
∑
t∈Fp

1

t− xj
(t− z1)2 p−1

3 (t− z2)2 p−1
3 (t− z3)4 p−1

3 =
∑
t∈Fp

(t− xj)p−2

+
∑
t∈Fp

∑
i

bij(x1, x2, x3)ti +
∑
t∈Fp

1

t− xj
(t− z1)2 p−1

3 (t− z2)2 p−1
3 (t− z3)

p−1
3

= − bp−1
j (x1, x2, x3) +

∑
t∈Fp

∑
i

cij(x1, x2, x3)ti = −bp−1
j (x1, x2, x3)− cp−1

j (x1, x2, x3).

�

1.5. Resonances over C and Fp. Under assumptions of Section 1.1 assume that

m1 + · · ·+mn = κ.(1.35)

Then the vector I(γ)(z), defined in (1.1), in addition to the algebraic equation (1.3) and
differential equations (1.4) satisfies the algebraic equation

z1m1I1(z) + · · ·+ znmnIn(z) = 0.(1.36)

Equation (1.36) follows from the cohomological relation:

dt(tΦ) = Φdt− Φ
n∑
j=1

mj

κ

t− zj + zj
t− zj

dt(1.37)

=
(

1−
n∑
j=1

mj

κ

)
Φdt−

n∑
j=1

zj
mj

κ
Φ

dt

t− zj
.

Relation (1.36) manifests resonances in conformal field theory, where solutions of KZ equa-
tions represent conformal blocks and conformal blocks satisfy algebraic equations analogous
to (1.36), see [FSV1, FSV2], Section 3.6.2 in [V2]. In conformal field theory the numbers
m1, . . . , mn, κ are natural numbers. In that case the master function Φ(t, z) is an algebraic
function and the hypergeometric integrals become integrals of algebraic forms over cycles
lying on suitable algebraic varieties. The monodromy of the hypergeometric integrals I(γ)(z)
in that case was studied in Sections 13 and 14 of [V1].

Relation (1.36) has an analog over Fp.

Theorem 1.7. Under assumptions of Theorem 1.2 let I(lp−1)(z, q) ∈ Fp[z]n be the polynomial
solution of equations (1.3) and (1.4) described in Theorem 1.2. Assume that

M1 + · · ·+Mn ≡ −1 (mod p).(1.38)

Then

z1M1I1(z) + · · ·+ znMnIn(z) = 0.(1.39)
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Proof. The theorem follows from (1.37) similarly to the proof of Theorem 1.2. Namely, we
consider the Taylor expansions at t = q of both sides of equation (1.37), divide them by
dt, and then project the coefficients of (t − q)lp−1 to Fp[z]. The projection coming from
dt(tΦ) equals zero since d(tlp)/dt = lptlp−1 ≡ 0 (mod p). The projection coming from(
1 −

∑n
j=1

mj
κ

)
Φdt equals zero by (1.38). The projection coming from −

∑n
j=1 zj

mj
κ

Φ dt
t−zj

gives (1.39). �

Example 1.9. Let κ = 2, m1 = · · · = mn = 1, p = 3, M1 = · · · = Mn = 1,

Φ(p=3)(t, z) =
∏

16a<b6n

(za − zb)
n∏
s=1

(t− zs)

as in Example 1.3. Let n ≡ 2 (mod 3), then M1 + · · · + Mn ≡ −1 (mod 3). Choose a
positive integer r, such that r ≡ n (mod 3) and r < n. Then the vector I [r](z) given by
(1.14) satisfies equations (1.3), (1.4), and

z1I
[r]
1 (z) + · · ·+ znI

[r]
n (z) ≡ 0 (mod 3).

1.6. Exposition of material. In Section 2 we describe the hypergeometric solutions of the
KZ equations associated with sl2 and explain their reduction to polynomial solutions over
Fp. In Section 3 we describe the resonance relations for sl2 conformal blocks and construct
their reduction over Fp. In Section 4 we explain how the results of Section 2 and 3 are
extended to the KZ equations associated with simple Lie algebras.

This article was inspired by lectures on hypergeometric motives by Fernando Rodriguez-
Villegas in May 2017 at MPI in Bonn. The authors thank him for stimulating discussions.
We were also motivated by the classical paper by Yu.I. Manin [Ma], from which we learned
how to construct solutions of differential equations over Fp from cohomological relations
between algebraic differential forms. The authors thank A. Buium, Yu.I. Manin, and W.
Zudilin for useful discussions and the referee for comments and suggestions contributed to
improving the presentation.

The article was conceived during the Summer 2017 Trimester program “K-Theory and
Related Fields” of the Hausdorff Institute for Mathematics (HIM), Bonn. The authors are
thankful to HIM for stimulating atmosphere and working conditions. The first author is
grateful to Max Planck Institute for Mathematics for hospitality during a visit in June 2017.

2. sl2 KZ equations

In this section we describe solutions of the KZ equations associated with the Lie algebra sl2.
The solutions to the KZ equations over C in the form of multidimensional hypergeometric
integrals are known since the end of 1980s. The polynomial solutions of the KZ equations
over Fp in the form of Fp-analogs of the multidimensional hypergeometric integrals are new.

2.1. sl2 KZ equations. Let e, f, h be standard basis of the complex Lie algeba sl2 with
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f . The element

Ω = e⊗ f + f ⊗ e+
1

2
h⊗ h ∈ sl2 ⊗ sl2(2.1)
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is called the Casimir element. Given n, for 1 6 i < j 6 n let Ω(i,j) ∈ (U(sl2))⊗n be the
element equal to Ω in the i-th and j-th factors and to 1 in the other factors. For i = 1, . . . , n
and distinct z1, . . . , zn ∈ C introduce

Hi(z1, . . . , zn) =
∑
j 6=i

Ω(i,j)

zi − zj
∈ (U(sl2))⊗n,(2.2)

the Gaudin Hamiltonians. For any κ ∈ C× and any i, k, we have[
∂

∂zi
− 1

κ
Hi(z1, . . . , zn),

∂

∂zk
− 1

κ
Hk(z1, . . . , zn)

]
= 0,(2.3)

and for any x ∈ sl2 and i we have

[Hi(z1, . . . , zn), x⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ x] = 0.(2.4)

Let ⊗ni=1Vi be a tensor product of sl2-modules. The system of differential equations

∂I

∂zi
=

1

κ

∑
j 6=i

Ω(i,j)

zi − zj
I, i = 1, . . . , n,(2.5)

on a ⊗ni=1Vi-valued function I(z1, . . . , zn) is called the KZ equations.

2.2. Irreducible sl2-modules. For a nonnegative integer i denote by Li the irreducible
i+ 1-dimensional module with basis vi, fvi, . . . , f

ivi and action h.fkvi = (i−2k)fkvi for k =
0, . . . , i; f.fkvi = fk+1vi for k = 0, . . . , i− 1, f.f ivi = 0; e.vi = 0, e.fkvi = k(i− k+ 1)fk−1vi
for k = 1, . . . , i.

For m = (m1, . . . ,mn) ∈ Zn>0, denote |m| = m1 + · · · + mn and L⊗m = Lm1 ⊗ · · · ⊗ Lmn .
For J = (j1, . . . , jn) ∈ Zn>0, with js 6 ms for s = 1, . . . , n, the vectors

fJvm := f j1vm1 ⊗ · · · ⊗ f jnvmn(2.6)

form a basis of L⊗m. We have

f.fJvm =
n∑
s=1

fJ+1svm, h.fJvm = (|m| − 2|J |)fJvm,

e.fJvm =
n∑
s=1

js(ms − js + 1)fJ−1svm.

For λ ∈ Z, introduce the weight subspace L⊗m[λ] = { v ∈ L⊗m | h.v = λv} and the singular
weight subspace SingL⊗m[λ] = { v ∈ L⊗m[λ] | h.v = λv, e.v = 0}. We have the weight

decomposition L⊗m = ⊕|m|k=0L
⊗m[|m| − 2k]. Denote

Ik = {J ∈ Zn>0 | |J | = k, js 6 ms, s = 1, . . . , n}.

The vectors (fJv)J∈Ik form a basis of L⊗m[|m| − 2k].

Remark. The sl2-action on the sum of singular weight subspaces SingL⊗m[|m| − 2k] gener-
ates the entire sl2-module L⊗m. If I(z1, . . . , zn) is an L⊗m-valued solution of the KZ equa-
tions, then for any x ∈ sl2 the function x.I(z1, . . . , zn) is also a solution, see (2.4). These
observations show that in order to construct all L⊗m-valued solutions of the KZ equations
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it is enough to construct all SingL⊗m[|m| − 2k]-valued solutions for all k and then generate
the other solutions by the sl2-action.

2.3. Solutions of KZ equations with values in SingL⊗m
[
|m| − 2k

]
over C. Given

k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0, κ ∈ C×, denote t = (t1, . . . , tk), z = (z1, . . . , zn), define
the master function

Φk,n,m(t, z) : = Φk,n,m(t1, . . . , tk, z1, . . . , zn, κ)(2.7)

=
∏
i<j

(zi − zj)mimj/2κ
∏

16i6j6k

(ti − tj)2/κ

n∏
l=1

k∏
i=1

(ti − zl)−ml/κ.

For any function or differential form F (t1, . . . , tk), denote

Symt[F (t1, . . . , tk)] =
∑
σ∈Sk

F (tσ1 , . . . , tσk), Antt[F (t1, . . . , tk)] =
∑
σ∈Sk

(−1)|σ|F (tσ1 , . . . , tσk).

For J = (j1, . . . , jn) ∈ Ik define the weight function

WJ(t, z) =
1

j1! . . . jn!
Symt

[
n∏
s=1

js∏
i=1

1

tj1+···+js−1+i − zs

]
.(2.8)

For example,

W(1,0,...,0) =
1

t1 − z1

, W(2,0,...,0) =
1

t1 − z1

1

t2 − z1

,

W(1,1,0,...,0) =
1

t1 − z1

1

t2 − z2

+
1

t2 − z1

1

t1 − z2

.

The function

Wk,n,m(t, z) =
∑
J∈Ik

WJ(t, z)fJvm(2.9)

is the L⊗m[|m| − 2k]-valued vector weight function.
Consider the L⊗m[|m| − 2k]-valued function

I(γ)(z1, . . . , zn) =

∫
γ(z)

Φk,n,m(t, z, κ)Wk,n,m(t, z)dt1 ∧ · · · ∧ dtk,(2.10)

where γ(z) in {z}×Ck
t is a horizontal family of k-dimensional cycles of the twisted homology

defined by the multivalued function Φk,n,m(t, z,m), see [SV3, V1, V2]. The cycles γ(z) are
multi-dimensional analogs of Pochhammer double loops.

Theorem 2.1. The function I(γ)(z) takes values in SingL⊗m[|m| − 2k] and satisfies the KZ
equations.

This theorem and its generalizations can be found, for example, in [CF, DJMM, SV1,
SV2, SV3].

The solutions in Theorem 2.1 are called the multidimensional hypergeometric solutions of
the KZ equations. The coordinate functions

I
(γ)
J (z1, . . . , zn) =

∫
γ

Φk,n,m(t, z)WJ(t, z)dt1 ∧ · · · ∧ dtk, J ∈ Ik,(2.11)
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are called the multidimensional hypergeometric functions associated with the master function
Φk,n,m.

The fact that solutions in Theorem 2.1 take values in SingL⊗m[|m| − 2k] may be reformu-
lated as follows. For any J ∈ Ik−1, we have

n∑
s=1

(js + 1)(ms − js)I(γ)
J+1s

(z) = 0,(2.12)

where we set I
(γ)
J+1s

(z) = 0 if J + 1s /∈ Ik.
The pair consisting of the KZ equations (1.4) and hypergeometric solutions (1.2) is iden-

tified with the pair consisting of the KZ equations (2.5) and hypergeometric solutions (2.10)
with values in SingL⊗m[|m| − 2]. In this case the system of equations in (2.12) is identified
with equation (1.3).

2.4. Proof of Theorem 2.1. We sketch the proof following [SV3]. The reason to present
a proof is to show later in Section 2.5 how a modification of this reasoning leads to a
construction of polynomial solutions of the KZ equations over Fp.

The proof of Theorem 2.1 is a generalization of the proof of Theorem 1.1 and is based on
cohomological relations.

It is convenient to reformulate the definition of the hypergeometric integral (2.10). Given
k, n ∈ Z>0 and a multi-index J = (j1, . . . , jn) with |J | 6 k, introduce a differential form

ηJ =
1

j1! · · · jn!
Antt

[d(t1 − z1)

t1 − z1

∧ · · · ∧ d(tj1 − z1)

tj1 − z1

∧ d(tj1+1 − z2)

tj1+1 − z2

∧ . . .

∧
d(tj1+···+jn−1+1 − zn)

tj1+···+jn−1+1 − zn
∧ · · · ∧ d(tj1+···+jn − zn)

tj1+···+jn − zn

]
,

which is a logarithmic differential form on Cn×Ck with coordinates z, t. If |J | = k, then for
any z ∈ Cn we have on {z} × Ck the identity

ηJ = WJ(t, z)dt1 ∧ · · · ∧ dtk.

Example 2.1. For k = n = 2 we have

η(2,0) =
d(t1 − z1)

t1 − z1

∧ d(t2 − z1)

t2 − z1

,

η(1,1) =
d(t1 − z1)

t1 − z1

∧ d(t2 − z2)

t2 − z2

− d(t2 − z1)

t2 − z1

∧ d(t1 − z2)

t1 − z2

.

The hypergeometric integrals (2.10) can be defined in terms of the differential forms ηJ :

I(γ)(z1, . . . , zn) =
∑
J∈Ik

(∫
γ(z)

Φk,n,mηJ

)
fJvm.(2.13)
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Introduce the logarithmic differential 1-forms

α =
∑

16i<j6n

mimj

2κ

d(zi − zj)
zi − zj

+
∑

16i<j6k

2

κ

d(ti − tj)
ti − tj

+
n∑
s=1

k∑
i=1

−ms

κ

d(ti − zs)
ti − zs

,

α′ =
∑

16i<j6k

2

κ

d(ti − tj)
ti − tj

+
n∑
s=1

k∑
i=1

−ms

κ

d(ti − zs)
ti − zs

.

We shall use the following algebraic identities for logarithmic differential forms.

Theorem 2.2 ([SV3]). On Cn × Ck we have

α′ ∧ ηJ =
n∑
s=1

(js + 1)
ms − js

κ
ηJ+1s ,(2.14)

for any J with |J | = k − 1, and

α ∧
∑
J∈Ik

ηJfJvm =
1

κ

∑
i<j

Ω(i,j)d(zi − zj)
zi − zj

∧
∑
|J |=k

ηJfJvm.(2.15)

Proof. Identity (2.14) is the spacial case of Theorem 6.16.2 in [SV3] for the Lie algebra sl2.
Identity (2.15) is a special case of Theorem 7.5.2” in [SV3] for the Lie algebra sl2. �

Corollary 2.3. On Cn × Ck we have∑
J∈Ik

d(Φk,n,mηJ)fJvm =
1

κ

∑
i<j

Ω(i,j)d(zi − zj)
zi − zj

∧
∑
J∈Ik

(Φk,n,mηJ)fJvm,(2.16)

where the differential is taken with respect to variables z, t.

Now we deduce from identity (2.14) the following formula (2.20). Since |J | = k − 1, we
can write

ηJ =
k∑
l=1

cJ,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk + . . . ,(2.17)

where the dots denote the terms having differentials dzi and cJ,l(t, z) are rational functions
of the form

PJ,l(t, z)

( ∏
16i<j6n

(zi − zj)
∏

16i<j6k

(ti − tj)
n∏
l=1

k∏
i=1

(ti − zl)

)−1

,(2.18)

where PJ,l(t, z) is a polynomial in t, z with integer coefficients. Also for any s = 1, . . . , n we
have

ηJ+1s = WJ+1sdt1 ∧ · · · ∧ dtk + . . . ,(2.19)
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where the dots denote the terms having differentials dzi. Formula (2.14) implies that for any
J with |J | = k − 1 we have the identity

dt

(
Φk,n,m

k∑
l=1

cJ,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk

)
(2.20)

=
n∑
s=1

(js + 1)
ms − js

κ
Φk,n,mWJ+1sdt1 ∧ · · · ∧ dtk,

where dt denotes the differential with respect to the variables t.
Now we deduce from identity (2.16) the following formula (2.23). Fix i ∈ {1, . . . , n}. For

any J ∈ Ik, write

Φk,n,mηJ = Φk,n,mWJdt1 ∧ · · · ∧ dtk(2.21)

+ dzi ∧

(
Φk,n,m

k∑
l=1

cJ,i,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk

)
+ . . . ,

where the dots denote the terms which contain dzj with j 6= i, and the coefficients cJ,i,l(t, z)
are rational functions in t, z of the form

PJ,i,l(t, z)

( ∏
16i<j6n

(zi − zj)
∏

16i<j6k

(ti − tj)
n∏
l=1

k∏
i=1

(ti − zl)

)−1

,(2.22)

where PJ,i,l(t, z) is a polynomial in t, z with integer coefficients.
Formula (2.16) implies that for any i ∈ {1, . . . , n} we have∑

J∈Ik

( ∂

∂zi
(Φk,n,mWJ) dt1 ∧ · · · ∧ dtk(2.23)

+ dt
(
Φk,n,m

n∑
l=1

cJ,i,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk
))
fJvm

=
1

κ

∑
j 6=i

Ω(i,j)

zi − zj

∑
J∈Ik

Φk,n,mWJdt1 ∧ · · · ∧ dtkfJvm,

where dt denotes the differential with respect to the variables t.
Integrating both sides of equations (2.20) and (2.23) over γ(z) and using Stokes’ theorem

we obtain equations (2.12) and (2.5) for the vector I(γ)(z) in (2.10). Theorem 2.1 is proved.

2.5. Solutions of KZ equations with values in SingL⊗m
[
|m| − 2k

]
over Fp. Given

k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0, κ ∈ Q×, let p > 2 be a prime number such that p does
not divide the numerator of κ. In this case equations (2.12) and (2.5) are well-defined over
the field Fp and we may discuss their polynomial solutions in Fp[z1, . . . , zn].

Choose positive integers Ms for s = 1, . . . , n, Mi,j for 1 6 i < j 6 n, and M0, such that

Ms ≡ −
ms

κ
, Mi,j ≡

mimj

2κ
, M0 ≡ 2

κ
(mod p).



SOLUTIONS OF KZ DIFFERENTIAL EQUATIONS MODULO p 17

Fix integers q = (q1, . . . , qk). Let t = (t1, . . . , tk), z = (z1, . . . , zn) be variables. Define the
master polynomial

Φ
(p)
k,n,M(t, z) : = Φ

(p)
k,n,M(t1, . . . , tk, z1, . . . , zn)(2.24)

=
∏

16i<j6n

(zi − zj)Mi,j

∏
16i6j6k

(ti − tj)M
0

n∏
s=1

k∏
i=1

(ti − zs)Ms .

Consider the Taylor expansion of the vector∑
J∈Ik

Φ
(p)
k,n,M(t, z)WJ(t, z)fJvm =

∑
i1,...,ik

Ī(i1,...,ik)(z, q)(t1 − q1)i1 . . . (tk − qk)ik .(2.25)

Notice that each coordinate Φ
(p)
k,n,M(t, z)WJ(t, z) is a polynomial in t, z with integer coef-

ficients due to the positivity of the integers Ms,Mi,j,M
0 and the definition of the weight

functions WJ(t, z). Hence the Taylor coefficients Ī(i1,...,ik)(z, q) are vectors of polynomials
in z with integer coefficients. Let I(i1,...,ik)(z, q) ∈ (Fp[z])dimL⊗m[|m|−2k] be their canonical
projection modulo p.

Theorem 2.4. For any integers q = (q1, . . . , qk) and positive integers l = (l1, . . . , lk), the
vector of polynomials I(z, q) := I(l1p−1,...,lkp−1)(z, q) satisfies equations (2.12) and (2.5).

The parameters q, l1p− 1, . . . , lkp− 1 are analogs of cycles γ in Section 2.3.

Proof. To prove that I(l1p−1,...,lkp−1)(z, q) satisfies (2.12) and (2.5) consider the Taylor expan-
sions at (t1, . . . , tk) = (q1, . . . , qk) of both sides of equations (2.20) and (2.23), divide them
by dt1 ∧ · · · ∧ dtk. Notice that the Taylor expansions are well defined due to formulas (2.18)
and (2.22).

Project the Taylor coefficients of (t1 − q1)l1p−1 . . . (tk − qk)
lkp−1 to (Fp[z])dimL⊗m[|m|−2k].

Then the terms coming from the dt( )-summands equal zero since d(tlipi )/dti = lipt
lip−1
i ≡ 0

(mod p), and we obtain equations (2.12) and (2.5). �

Example 2.2. Let p = 3, κ = 4, n = 5, k = 2, m1 = · · · = m5 = 1. Notice that in this case
κ ≡ 1 (mod 3) and we may set κ = 1.

The set Ik consists of ten elements J = (j1, . . . , j5) with ji ∈ {0, 1} and j1 + · · ·+ j5 = 2.
The space L⊗m[|m| − 2k] = (L1)⊗5[1] has basis fJvm = f j1v1 ⊗ · · · ⊗ f j5v1, J ∈ Ik. We have

Ω(1,2)v1 ⊗ v1 ∧ . . . ≡ −v1 ⊗ v1 ∧ . . . ,
Ω(1,2)fv1 ⊗ fv1 ∧ . . . ≡ −fv1 ⊗ fv1 ∧ . . . ,

Ω(1,2)fv1 ⊗ v1 ∧ . . . ≡ fv1 ⊗ v1 ∧ · · ·+ v1 ⊗ fv1 ∧ . . . ,
Ω(1,2)v1 ⊗ fv1 ∧ . . . ≡ fv1 ⊗ v1 ∧ · · ·+ v1 ⊗ fv1 ∧ . . .

(mod 3). The other Ω(i,j) act similarly. The system of equations (2.12) on
I(z) =

∑
J∈Ik IJ(z)fJvm consists of five equations. The first is

I(1,1,0,0,0)(z) + I(1,0,1,0,0)(z) + I(1,0,0,1,0)(z) + I(1,0,0,0,1)(z) ≡ 0 (mod 3),
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where z = (z1, . . . , z5), the other are similar. Let t = (t1, t2). We may choose the master
polynomial

Φ
(p=3)
2,5,M(t, z) = (t1 − t2)2

∏
16i<j65

(zi − zj)2

2∏
i=1

5∏
s=1

(ti − zs)2.

Fix integers q = (0, 0) and l = (4, 3). Then the vector

I(11,8)(z) =
∑
J∈Ik

I
(11,8)
J (z)fJvm(2.26)

with

I
(11,8)
(1,1,0,0,0)(z) = −z3 − z4 − z5, I

(11,8)
(1,0,1,0,0)(z) = −z2 − z4 − z5,(2.27)

and similar other coordinates satisfies equations (2.12) and (2.5).

Example 2.3. Let κ = 4, n = 2, k = 2, m1 = m2 = 2. The space L⊗2
2 [0] has basis f 2v2⊗v2,

fv2 ⊗ fv2, v2 ⊗ f 2v2. The system of equations (2.12) takes the form:

I(2,0)(z) + I(1,1)(z) = 0, I(1,1)(z) + I(0,2)(z) = 0.

Let p = 4l + 3 for some l. We may choose

Φ
(p)
2,2,M(t1, t2, z1, z2) = (z1 − z2)

p+1
2 (t1 − t2)

p+1
2

2∏
i=1

2∏
s=1

(ti − zs)
p−1
2 .

Notice that p+1
2

is even, the polynomial Φ
(p)
2,2,M(t1, t2, z1, z2) is symmetric with respect to

permutation of t1, t2, and the solution

I(p−1,p−1)(z1, z2)(2.28)

= (z1 − z2)
p+1
2

(
c(2,0)(z1, z2)f 2v2 ⊗ v2 + c(1,1)(z1, z2)fv2 ⊗ fv2 + c(2,0)(z1, z2)v2 ⊗ f 2v2)

is nonzero. Here cJ(z1, z2) are the polynomials determined by the construction of Section
2.5.

For example, for p = 3,

I(2,2)(z) = (z1 − z2)2(f 2v2 ⊗ v2 − fv2 ⊗ fv2 + v2 ⊗ f 2v2).(2.29)

2.6. Relation of solutions to integrals over Fkp. For a polynomial F (t1, . . . , tk) ∈ Fp[t1,

. . . , tk] and a subset γ ⊂ Fkp define the integral∫
γ

F (t1, . . . , tk) :=
∑

(t1,...,tk)∈γ

F (t1, . . . , tk).

Theorem 2.5. Fix x1, . . . , xn ∈ Fp. Consider the vector of polynomials

F (t) := Φ
(p)
k,n,M(t1, . . . , tk, x1, . . . , xn)

∑
J∈Ik

WJ(t1, t2, x1, . . . , xn)fJvm,
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of formula (2.25). Assume that degti F (t1, . . . , tk) < 2p − 2 for i = 1, . . . , k. Consider the

solution I(p−1,...,p−1)(z, q) of equations (2.12) and (2.5), described in Theorem 2.4. Then

I(p−1,...,p−1)(x1, . . . , xn, q) = (−1)k
∫
Fkp
F (t1, . . . , tk).(2.30)

This integral is a p-analog of the hypergeometric integral (2.11).

Proof. Theorem 2.5 is a straightforward corollary of formula (1.17), cf. the proof of Theorem
1.3. �

Example 2.4. The polynomial F (t1, t2) of Example 2.3 satisfies the inequalities
degti F (t1, t2) < 2p− 2 for i = 1, 2.

2.7. Example of a p-analog of skew-symmetry. For J ∈ Ik, the differential forms
WJ(t, z)dt1 ∧ · · · ∧ dtk are skew-symmetric with respect to permutations of t1, . . . , tk. Here
is an example of a p-analog of that skew-symmetry. Another demonstration of the skew-
symmetry see in Example 2.5.

Consider the KZ differential equations with parameters n, k, κ, m1, . . . ,mn ∈ Z>0, where
κ, m1, . . . ,mn are even, κ = 2κ′,m1 = 2m′1, . . . ,mn = 2m′n. Assume that κ′ is even and the
prime p is such that κ′

∣∣(p− 1) and (p− 1)/κ′ is odd, cf. Example 2.5. Choose

Φ
(p)
k,n,M(t, z) =

∏
16i<j6n

(zi − zj)Mi,j

∏
16i<j6k

(ti − tj)p−
p−1
κ′

k∏
i=1

n∏
s=1

(ti − zs)m
′
s
p−1
κ′(2.31)

=
∏

16i<j6n

(zi − zj)Mi,j

( ∏
16i<j6k

(ti − tj)κ
′−1

k∏
i=1

n∏
s=1

(ti − zs)m
′
s

) p−1
κ′ ∏

16i<j6k

(ti − tj).

Notice that

ϕ(t, z) :=
∏

16i<j6k

(ti − tj)κ
′−1

k∏
i=1

n∏
s=1

(ti − zs)m
′
s(2.32)

as well as the product
∏

16i<j6k(ti− tj) are skew-symmetric with respect to permutations of
t1, . . . , tk.

Let a be a generator of the cyclic group F×p . Let x = (x1, . . . , xn) ∈ Fnp . For ` = 1, . . . , κ′,
denote

γ`(x) = {t ∈ Fkp | ϕ(t, x)
p−1
κ′ = a`

p−1
κ′ }, γ0(x) = {t ∈ Fkp | ϕ(t, x) = 0}.(2.33)

The partition of Fkp by subsets (γ`(x))κ
′

`=0 is invariant with respect to the action of the
symmetric group Sk of permutations of t1, . . . , tk. For every `, the subset γ`(x) is invariant
with respect to the action of the alternating subgroup Ak ⊂ Sk. For J ∈ Ik the restriction
of the function WJ(t, x)

∏
16i<j6k(ti − tj) to the set γ`(x) is Ak-invariant. We have∫

Fkp
Φ

(p)
k,n,M(t, z)WJ(t, x) =

∏
16i<j6n

(zi − zj)Mi,j

κ′/2∑
`=1

2a`
p−1
κ′

∫
γ`(x)

WJ(t, x)
∏

16i<j6k

(ti − tj).



20 VADIM SCHECHTMAN AND ALEXANDER VARCHENKO

2.8. Relation of solutions to surfaces over Fp.

Example 2.5. For distinct x1, x2 ∈ Fp let Γ(x1, x2) be the closure in P 1(Fp)×P 1(Fp) of the
affine surface

y2 = (t1 − t2)(t1 − x1)(t2 − x1)(t1 − x2)(t2 − x2),(2.34)

where P 1(Fp) is the projective line over Fp. For a rational function h : Γ(x1, x2)→ Fp define
the integral ∫

Γ(x1,x2)

h =
∑
P∈Γ

′
h(P ),(2.35)

as the sum over all points P ∈ Γ(x1, x2), where h(P ) is defined.
Recall

W(2,0)(t1, t2, x1, x2) =
1

t1 − x1

1

t2 − x1

, W(0,2)(t1, t2, x1, x2) =
1

t1 − x2

1

t2 − x2

,

W(1,1)(t1, t2, x1, x2) =
1

t1 − x1

1

t2 − x2

+
1

t2 − x1

1

t1 − x2

.

Theorem 2.6. Let p = 4l + 3 for some l. Let

c(2,0)(z1, z2)f 2v2 ⊗ v2 + c(1,1)(z1, z2)fv2 ⊗ fv2 + c(2,0)(z1, z2)v2 ⊗ f 2v2

be the vector of polynomials appearing in the solution (2.28) of the KZ equations of Example
2.3. Then

c(2,0)(x1, x2) =

∫
Γ(x1,x2)

t1 − t2
(t1 − x1)(t2 − x1)

,(2.36)

c(1,1)(x1, x2) =

∫
Γ(x1,x2)

t1 − t2
(t1 − x1)(t2 − x2)

+

∫
Γ(x1,x2)

t1 − t2
(t2 − x1)(t1 − x2)

,

c(0,2)(x1, x2) =

∫
Γ(x1,x2)

t1 − t2
(t1 − x2)(t2 − x2)

.

Proof. The values of WJ(t1, t2, x1, x2) at infinite points of Γ(x1, x2) equal zero, so the integrals
are sums over points of the affine surface. We prove the first equality in (2.36). We have∫

Γ(x1,x2)

t1 − t2
(t1 − x1)(t2 − x1)

=
∑

t1,t2 6=x1

t1 − t2
(t1 − x1)(t2 − x1)

+
∑
t1,t2

t1 − t2
(t1 − x1)(t2 − x1)

(
(t1 − t2)

2∏
i=1

2∏
s=1

(ti − xs)
) p−1

2

=
∑

t1,t2∈Fp

[(t1 − x2)p−2 − (t1 − x1)p−2] +
∑

t1,t2∈Fp

∑
i1,i2

ci1,i2(x1, x2)ti11 t
i2
2 = c(2,0)(x1, x2).

�

Remark. Consider the projection Γ(x1, x2) → F2
p, (t1, t2, y) 7→ (t1, t2). For any distinct

t1, t2 ∈ Fp exactly one of the two points (t1, t2), (t2, t1) lies in the image of the projection,
since (t1 − t2)(t1 − x1)(t2 − x1)(t1 − x2)(t2 − x2) is skew-symmetric in t1, t2 and −1 is not a
square if p = 4l + 3.
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3. Resonances in sl2 KZ equations

3.1. Resonances in conformal field theory over C. Let m1, . . . ,mn, k ∈ Z>0, L⊗m =
Lm1 ⊗ · · · ⊗ Lmn . Assume that κ > 2 is an integer. Assume that

0 6 m1, . . . ,mn,m1 + · · ·+mn − 2k 6 κ− 2.

Consider the positive integer

` = κ− 1− |m|+ 2k.(3.1)

For z = (z1, . . . , zn) ∈ Cn with distinct coordinates define

Bk,n,m(z) = {w ∈ L⊗m | h.w = (|m| − 2k)w, e.w = 0, (ze)`w = 0},
where ze : L⊗m → L⊗m is the linear operator defined by the formula

w1 ⊗ · · · ⊗ wn 7→
n∑
s=1

zsw1 ⊗ · · · ⊗ ews ⊗ · · · ⊗ wn,

for any w1 ⊗ · · · ⊗ wn ∈ L⊗m. This vector space is called the space of conformal blocks.

Example 3.1. Let k = 1, |m| = κ, ` = 1, Then

Bk,n,m(z) =
{ n∑

s=1

Isvm1 ⊗ · · · ⊗ fvms ⊗ · · · ⊗ vmn
∣∣∣ n∑

s=1

msIs = 0,
n∑
s=1

zsmsIs = 0
}
.

Theorem 3.1 ([FSV1, FSV2]). The family of subspaces

Bk,n,m(z) ⊂ SingL⊗m[|m| − 2k],

depending on z, is invariant with respect to the KZ equations. �

Theorem 3.2 ([FSV1, FSV2]). All the hypergeometric solutions of the KZ equations with
values in SingL⊗m[|m| − 2k], constructed in Section 2.3, take values in the subspaces of
conformal blocks.

Proof. Theorem 3.2 is proved in [FSV1]. Another proof for arbitrary simple Lie algebras

is given in [FSV2]. Let I(γ)(z) =
∑

J∈Ik I
(γ)
J (z)FJvm be a hypergeometric solution. We

need to check that (ze)`I(γ)(z) = 0. This equation is a system of algebraic equations on

the coefficients (I
(γ)
J (z))J∈Ik . The equations of the system are labeled by basis vectors of

L⊗m[|m| − 2(k − `)]. Namely, for any Q ∈ Ik−` one calculates the coefficient of FQvm in
(ze)`I(γ)(z) and equate that coefficient to zero, cf. the second equation in Example 3.1. Such
an equation follows from a cohomological relation. Namely, the corresponding differential
k-form, whose integral over γ(z) has to be zero, equals the differential with respect to the
t-variables of some differential k − 1-form ηn,k,`,Q(t, z). Then the desired equation holds
by Stokes’ theorem, see this reasoning on pages 182–184 in [FSV1]. This proves Theorem
3.2. �

Remark. That k − 1-form ηn,k,`,Q(t, z) is determined by the numbers n, k, ` and the index
Q and has the form

ηn,k,`,Q(t, z) =
Φk,n,m(t, z)∏

16i<j6n(zi − zj)
∏

16i<j6k(ti − tj)
∏k

i=1

∏n
s=1(ti − zs)

µn,k,`,Q(t, z),(3.2)
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where µn,k,`,Q(t, z) is a polynomial differential k − 1-form in t, z with integer coefficients
determined by n, k, `, Q only, see pages 182–184 in [FSV1].

3.2. Resonances over Fp. Given k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Zn>0, κ ∈ Z>0, let
p > 2 be a prime number such that p does not divide κ. Choose positive integers Ms for
s = 1, . . . , n, Mi,j for 1 6 i < j 6 n, M0 and K such that

Ms ≡ −
ms

κ
, Mi,j ≡

mimj

2κ
, M0 ≡ 2

κ
, K ≡ 1

κ
(mod p).

Fix integers q = (q1, . . . , qk). As in Section 2.5 for any nonnegative integers l1, . . . , lk define
the vector I(i1,...,ik)(z, q) ∈ (Fp[z])dimL⊗m[|m|−2k].

Theorem 3.3. Let ` ∈ Z>0 be such that

(`− 1)K −
n∑
s=1

Ms − (k − 1)M0 ≡ 1 (mod p).(3.3)

Then for any integers q = (q1, . . . , qk) and positive integers l = (l1, . . . , lk), the vector of
polynomials I(l1p−1,...,lkp−1)(z, q) satisfies the equation

(ze)`I(l1p−1,...,lkp−1)(z, q) = 0.(3.4)

Remark. The resonance equation (3.1) has the form

`− 1

κ
= 1− |m|

κ
+

2

κ
(k − 1).

Equation (3.3) is the reduction modulo p of that equation.

Proof. The proof of Theorem 3.3 is similar to the proof of Theorem 2.1 and uses the universal
differential k−1-forms ηn,k,`,Q(t, z) of Section 3.1 instead of the differential k−1-forms ηJ(t, z)
in (2.17). �

Example 3.2. Let p = 3, κ = 4, n = 5, k = 2, m1 = · · · = m5 = 1. Consider the vector

I(11,8)(z) =
∑

J∈Ik I
(11,8)
J (z)fJvm of Example 2.2, which is a solution of (2.5) and (2.12). The

resonance equation (3.3) in this case takes the form ` + 1 ≡ 0 (mod 3) and is satisfied for
` = 2. The condition (ze)2I(11,8)(z) = 0 means

∑
J=(j1,...,j5)∈Ik

I
(11,8)
J (z)

5∏
i=1; ji=1

zi ≡ 0 (mod 3).(3.5)

Equation (3.5) takes the form

−z1z2(z3 + z4 + z5)− · · · − z4z5(z1 + z2 + z3) = −3
∑

16i<j<k65

zizjzk ≡ 0

(mod 3).
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4. KZ equations over Fp for other Lie algebras

The KZ equations are defined for any simple Lie algebra g or more generally for any Kac-
Moody algebra, see for example [SV3]. Similarly to what was done in Sections 2 and 3, one
can construct polynomial solutions of those KZ equations over Fp as well as of the singular
vector equations and resonance equations over Fp.

The construction of the polynomial solutions over Fp in the sl2 case was based on the
algebraic identities for logarithmic differential forms (2.14), (2.15) and the associated coho-
mological relations (2.20), (2.23) as well as on the cohomological relations associated with
the differential forms ηn,k,`,K(t, z) in (3.2). For an arbitrary Kac-Moody algebra the analogs
of the algebraic identities in (2.14) and (2.15) are the identities of Theorems 6.16.2 and 7.5.2”
in [SV3], respectively. For an arbitrary simple Lie algebra, the construction of analogs of the
cohomological identities for the differential forms ηn,k,`,K(t, z) is the main result of [FSV2].

Remark. The Fp-analogs of multidimensional hypergeometric integrals associated with ar-
rangements of hyperplanes see in [V4]. Remarks on the Gaudin model and Bethe ansatz
over Fp see in [V3].
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