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1. INTRODUCTION

The KZ equations were discovered by physicists Vadim Knizhnik and Alexander Zamolod-
chikov [KZ] to describe the differential equations for conformal blocks on sphere in the Wess-
Zumino-Witten model of conformal field theory. As I.M. Gelfand said, the KZ equations are
remarkable differential equations discovered by physicists, defined in terms of a Lie algebra
and whose monodromy is described by the corresponding quantum group. It turned out
that the KZ equations are realized as suitable Gauss-Manin connections and its solutions
are represented by multidimensional hypergeometric integrals, see [CF, DJMM, Mat, SV1,
SV2, SV3]. The fact that certain integrals of closed differential forms over cycles satisfy a
linear differential equation follows by Stokes’ theorem from a suitable cohomological relation,
in which the result of the application of the corresponding differential operator to the inte-
grand of an integral equals the differential of a form of one degree less. Such cohomological
relations for the KZ equations associated with Kac-Moody algebras were developed in [SV3].

The goal of this paper is to construct polynomial solutions of the KZ differential equa-
tions over a finite field IF, with p elements, where p is a prime number, as analogs of the
hypergeometric solutions constructed in [SV3]. Our construction is based on the fact that
all cohomological relations described in [SV3] are defined over Z and can be reduced modulo
p. We learned how to construct polynomial solutions in this situation out of hypergeomet-
ric solutions from the remarkable paper by Yu.l. Manin [Ma], see a detailed exposition of
Manin’s idea in Section “Manin’s Result: The Unity of Mathematics” in the book [C]] by
H.C. Clemens.

In the remainder of the introduction we consider the example of one-dimensional hyper-
geometric and p-hypergeometric integrals as an illustration of our constructions and results.
The multidimensional case is considered in Sections 2-4.

1.1. Case of field C. Let k,my,...,m, be nonzero complex numbers, z = (z1,...,2,) €
C",t € C. Denote |m| = my + - - - + m,,. Consider the master function

n

(I)(t7 Zlyeeey Zn) - H (Za — Zb)mamb/m{ H(t — Za)fma/”

1<a<b<n a=1

and the n-vector
(L1) 10(z) = ((2), ..., In(2)),

where
(12) [j:/¢(t,z1,...,zn)

The integrals are over a closed (Pochhammer) curve v in C —{z1, ..., z,} on which one fixes
a uni-valued branch of the master function to make the integral well-defined. Starting from
such a curve chosen for given {z1,...,z,}, the vector I)(z) can be analytically continued
as a multivalued holomorphic function of z to the complement in C" to the union of the
diagonal hyperplanes z; = z;.

dt
t—Zj7

g=1...,n.

Theorem 1.1. The vector IV (2) satisfies the algebraic equation

(1.3) myli(z) + - +myl,(2) =0
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and the differential KZ equations:

ol 1 Q; .
(1.4) = —Z—’]], 1=1,...,n,

0%z; K 2 — Z;
‘ gAY
where
i J
(mi=2)m;
Q; = : : ;

m;(m;—2)
j m'L %

all other diagonal entries are ’2 " and the remaining off-diagonal entries are all zero.

Remark. The vector 1()(z) depends on the choice of the curve 5. Different curves give
different solutions of the same KZ equations and all solutions of equations (1.3) and (1.4)
are obtained in this way, if k, mq,...,m, are generic.

Remark. The differential equations (1.4) are the KZ differential equations with parameter
rk associated with the Lie algebra sl and the singular weight subspace of weight |m| — 2 of
the tensor product of slo-modules with highest weights my, ..., m,, see Section 2.

Remark. The KZ equations define a flat connection over the complement in C™ to the union
of all diagonal hyperplanes,

1 Qe s
1.5 - S J .
(1.5) azl Zzl—z] 8zk /ﬁj# 2k — 2

for all j, k.

Theorem 1.1 is a classical statement probably known in 19th century. Much more general
algebraic and differential equations satisfied by analogous multidimensional hypergeometric
integrals were considered in [SV3]. Theorem 1.1 is discussed as an example in [V2, Section
1.1].

Below we give a proof of Theorem 1.1. A modification of this proof in Section 1.2 will
produce for us polynomial solutions of the equations (1.3) and (1.4) modulo a prime p.

Proof of Theorem 1.1. Equations (1.3) and (1.4) are implied by the following cohomological
identities. We have

dt —mq dt
d(t d(t
K (* Z>t—21+ + K (’Z>t—zn

(1.6) = d;P(t, 2),

where d; denotes the differential with respect to the variable ¢. This identity and Stokes’
theorem imply equation (1.3).
Denote

(1.7) V(t,z) = (
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Foranyi=1,...,n,let W(t, 2) be the vector of (0, ..., 0, %, 0,...,0) with nonzero element
at the i-th place. Then

(1.8) (aaz' - % 3 %)@(t, DV (tz) = dy(D(t, 2)Wi(t, 2)).
' g#i Tt

The proof of this identity is straightforward. Much more general identities of this type see
in [SV3, Lemmas 7.5.5 and 7.5.7], cf. identities in Section 2.4.
Identity (1.8) and Stokes’ theorem imply the KZ equation (1.4). O

Example 1.1. Let k = 2, n = 3, m; = my = mg = 1. Then I (2) = (I,(2), I(2), I5(2)),
where

(19) - I va= 1 &

1<a<b<3 (2) \/(t —2)(t — 2)(t — 2z3) T — Zj‘
In this case, the curve v(z) may be thought of as a closed path on the elliptic curve
Y = (t— 21)(t — 2)(t — 23).

Each of these integrals is an elliptic integral. Such an integral is a branch of analytic con-
tinuation of a suitable Euler hypergeometric function up to change of variables.

1.2. Case of field IF,. Let x,m4,...,m, be positive integers. Let p > 2 be a prime number,
p 1 k. The algebraic equation (1.3) and the differential KZ equations (1.4) are well-defined
when reduced modulo p. The reduction of the KZ equations satisfies the flatness condition
(1.5). We construct solutions of equations (1.3) and (1.4) with values in (Fp[z])" Notice

that the space of such solutions is a module over the ring F,[z], ..., 2P] since 5 =
Choose positive integers M, for a =1,...,n and M,; for 1 < a < b < n such that
M, = —%, M,y = Ml (mod p).
K 2K
That means that we project mg, k,2 to [, calculate —==, ==t in [F, and then choose
positive integers M,, M, satisfying these equations.
Fix an integer q. Consider the master polynomial

n

) (¢, 2) = H (20 — 2) Moo H(t — 2g)Ma,

1<a<b<n a=1

and the Taylor expansion with respect to the variable t of the vector of polynomials
1
W) (¢ ( . ) 7o (t -
R oot e by Z (z.0) (t—q)",

where the 1% (z, q) are n-vectors of polynomials in z with integer coefficients. Let I @(z,q) €
(F,[z])™ be the canonical projection of 1 (z, q).

Theorem 1.2. For any integer q and positive integer [, the vector of polynomials
IV (2, q) satisfies equations (1.3) and (1.4).

The parameters ¢ and [p — 1 are analogs of cycles v in Section 1.1.
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Proof. To prove that 1P~V (z, q) satisfies (1.3) and (1.4) we consider the Taylor expansions
at t = g of both sides of equations (1.6) and (1.8), divide them by dt, and then project the
coefficients of (¢t —¢)"?~! to (IF,[z])". The projections of the right-hand sides equal zero since
d(t')/dt = Ipt’"=1 = 0 (mod p). O

Example 1.2. Let Kk =2, m; = --- = m, = 1, c¢f. Example 1.1. Given p > 2 choose the
master polynomial

p+1)? n p—
(1.10) oW(t,2) = [ (za—2)" 7 [t 2)".
s=1

1<a<bsn

Consider the Taylor expansion

(1.11) ﬁ(t—zs)"EI(t_lzl,...,t_lzn) :Za"(z)ti,

s=1
where ¢ = (¢,...,c,). Let ¢ be the projection of & to (F,[z])". Then the vector of
polynomials
®+D? _
(1.12) I(z) = (L(2),- o La(2) = ]] Gam2) 7 (A7 (2) e 7 (2))
1<a<b<n

is a solution of the KZ differential equations over F,[z] and I;(2) + - -- + I,(2) = 0.

Example 1.3. Let k =2, my =---=m, =1, p=3. We have
1
Qi,j<[la---7[n) = 5([17"'712‘717_11'+2[j7[i+17"~7[j7172[i_[j7[j+17-"71n)
= (_Ily"'u_[’i717li+[j7_[i+17"'7_[j717[7;+[jJ_Ij+17"'7_[n)

(mod 3). Equation (1.3) has the form I;(z) + --- + I,(2) = 0. We may choose the master
polynomial

Pt z) = ] (za—2) [J( - 20

1<a<b<n s=1

Choose a nonnegative integer I. Then the vector I(z,q) := I®Y(z,q) = (Ii(z,q), ...,
I,,(z,q)) of Theorem 1.2 has coordinates

n—3—3l
(1.13) Lea=( I Ga-2) S II —=)

1<a<b<n 19 <<y 331N,
JE{i1, i 331}
and is a solution of (1.3) and (1.4) with values in (IF3[z])" for any ¢ = 0, 1, 2. Expanding these
solutions into polynomials homogeneous in z we obtain solutions in homogeneous polyno-
mials, which stabilize with respect to n as follows. The vector I"(z) = ([{ﬂ(z), . ,L[f](z)),
with coordinates

(1.14) 1}%):( I1 (za—zb)> 3 Hz

1<a<b<n 1<ip < <ir<n, g=1
J¢{i1,.-ir}
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is a solution of (1.3) and (1.4) with values in (F3[z])" if r = n (mod 3) and r < n. Thus, the
vector 11%(z), with coordinates

(1.15) e = I (o)
1<a<bsn
is a solution with values in (F3[z])" for n = 0 (mod 3); the vector I(V)(2), with coordinates
(116 P -w) X =
1<a<bsn 1<i<n, i#j

is a solution for n = 1 (mod 3) and so on. Note that the sum in (1.14) is the m-th elementary
symmetric function in 2y,...,2j,. .., 2.

Solutions provided by Theorem 1.2 depend on parameters ¢, [p — 1. In this example all
solutions I1"(z) can be obtained by putting ¢ = 0 and varying Ip — 1 only.

1.3. Relation of polynomial solutions to integrals over F,. For a polynomial F(t) €
[F,[t] define the integral

[ ro-gro

teF,
Recall that

(1.17)  the sum Z t' equals —1 if (p—1)|i and equals zero otherwise.
teF,

Theorem 1.3. Fiz xq,...,2,,q € F,. Consider the vector of polynomials
1 1
) € Bl

t—a’ T t—uy,
of Section 1.2. Assume that deg, F'(t,x1,...,x,) < 2p—2. Consider the polynomial solution
I D(21, ..., 2, q) of equations (1.3) and (1.4) defined in front of Theorem 1.2. Then

F(t,xy,...,x,) = @(p)(t,xl,...,xn)<

(1.18) 1P V(2. . 2y, q) = —/ F(t,xy,...,x,).
Fp
This integral is a p-analog of the hypergeometric integral (1.2).
Proof. Consider the Taylor expansion F'(t,xy,...,x,) = prog IO (xy, ... 2y, q)(t —q)". By
formula (1.17), we have 7, ¢ F(t,21,...,2,) = N Ll T q). O
Example 1.4. Given k, n, m; = --- = m,, = 1, assume that n < 2x and /{‘ —1). Then
F(t) = Taep(za — 20)M= [Toe, (8 — s)pﬂl(t_lm,...,t_lzn) and deg, F'(t) < 2p — 2.

1.4. Relation of solutions to curves over F,.

Example 1.5. Let x1, 29,25 € F,. Let I'(z1, 22, x3) be the projective closure of the affine
curve

(1.19) y? = (t — 21)(t — 22)(t — 3)
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over F,,. For a rational function h : I'(z1, 22, z35) — [F,, define the integral

!/

(1.20) / = Y ),
I'(z1,22,x3)

PGF(ml,mg,:Eg)

as the sum over all points P € I'(z1, 9, x3), where h(P) is defined.
Theorem 1.4. Let p > 2 be a prime. Let (c’f_l(xl,xg,xg),cg_l(:vl,xg,xg),cg_l(ml,xg,xg))

be the vector of polynomials appearing in the solution (1.12) of the KZ equations of Example
1.2 for n = 3. Then

1
(121) / = —C§71<I’1,l‘2,$3), j = 17273'
I(z1,z2,23) t— Zj

1
o ,Ig) t—x;

Remark. Theorems 1.2 and 1.4 say that the integrals fF(:ﬁ are polynomials in

x1, T2, x3 € IF), and the triple of polynomials

@+1)? 1 1 1
Iy anas) = [[ (e — )" (/ gl g )
I'(z1,x2,23) t— T F(Il,z‘g,z‘g,) t— T2 F($1,$2,$3) t— xs3

1<a<b<3

in these discrete variables satisfies the KZ differential equations! Cf. Example 1.1.

Proof of Theorem 1.4. The proof is analogous to the reasoning in [Ma, Section 2] and [C]].
The value of 1/(t — z;) at the infinite point of I'(x1, x9, x3) equals zero. It is easy to see that

1 1 1 3 .

telFy, t#x;

= Z t—I'J p 2 + ZZ [L’l,JTQ,[L'g = —C§_1($1,$2,I3),

tel, telF, 1

where the last equality is by formula (1.17). O

Remark. In [Ma, Section 2] and in [Cl], an equation analogous to (1.21) is considered, where
the left-hand side is the number of points on I'(zy, 2, x3) over F,, and the right-hand side
is the reduction modulo p of a solution of a second order Euler hypergeometric differential
equation. Notice that the number of points on I'(xy, 2y, x3) is the discrete integral over
[(x1,z9, x3) of the constant function A = 1. See details in Section “Manin’s Result: The
Unity of Mathematics” in [CI].

Example 1.6. This example is a variant of Example 1.5.
Let x1, xq, x5, 24 € F). Let I'(x1, 29, x3, 24) be the projective closure of the affine curve

(1.22) y? = (t —x1)(t — 22)(t — 23)(t — 24)

over [F),.
Let p > 3 be a prime. Let

(011)71(3;17 X2, T3, x4>7 012)71(3;17 X2, T3, x4>7 013)71(3;17 X2, T3, x4>7 Ciil(xlu X2, T3, x4>)



8 VADIM SCHECHTMAN AND ALEXANDER VARCHENKO

be the vector of polynomials appearing in the solution (1.12) of the KZ equations of Example
1.2 for n = 4. Then

1
(123) / = _C‘Z;_l(l‘lax27$3yx4)v j: 1727374'
T(x1,2x2,23,24) t— Lj

Example 1.7. Let kK = 3, n = 3, m; = my = mg = 2. Assume that 3| . Choose the
master polynomial

oW (t,2) = [[ (2a—2)F [t~ 25

1<a<b<3 s=1

Consider the Taylor expansion

- 1 1
1.24 (t — 2, 2"31( ) , 2,
( ) 51:[ : t—Zl t—ZQ t—Zg Z e 23

where ¢ = (¢}, ¢, ). Let ¢ be the projection of & to (Fp[z])®. Then the vector

(1.25) I(2) = (L(2), (), Is(2) =[] (za=2)"5 (47'(2). 4 7'(2), 657 (2))

1<a<b<3

is a solution of the corresponding KZ differential equations over F,[z] and I1(z) + I(z) +
I3(Z) = 0.

For distinct xy, z9, 3 € F), let I'(z4, 22, 23) be the projective closure of the affine
(1.26) yP = (t — 1) (t — 1) (t — x3)
over [F,. The curve has 3 points at infinity.
Theorem 1.5. Let p be a prime such that 3’(p —1). Let
(011371(131,372, 563), 072371(561,132,373), 0571(1'1, 562,133))

be the vector of polynomials appearing in the solution (1.25) of the KZ equations. Then for
7 =1,2,3 we have

(127) / ! = _Cgil(mlax%xg)'
(

1,72,3) t— Lj

Proof. The value of 1/(t — x;) at infinite points of I" equals zero. It is easy to see that

(1.28) /F( _14= > t_le

1171,1172,1173) t aj] ter t;éxj

Y Ht—msp1+z

p—1
| (e
tEFp te]Fp

—Z t— ;)P 2+ZZ (21, T2, x3)t :—C§_1($17$2,$3>.

tel, teF, 1

Notice that >, — T, (t— )" = 0 since the polynomial under the sum is of degree
J
p — 2 which is less than p — 1. The last equality in (1.28) is by formula (1.17). O
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Example 1.8. Let Kk = 3, n = 3, m; = my = 1, m3 = 2. Assume that 3 divides p — 1.
Choose the master polynomial

OV (t,2) = (2 — 2)

T T (@) ()T ()T ()T

Consider the Taylor expansion

p—1 p—1 p—1 1 1 1 _ A
(1.29) (t—2)5 (t — 2)5 (t — zg>2?( ) =3 Bz, 20, )t

t—z t—29 t— 23

where b® = (bi, b5, b5). Let b® be the projection of b to (F,[2])%. Then the vector
(130) @) =(n-2)" (=) T (=) T (0 (2.0 (2,17 (2)

is a solution of the corresponding KZ differential equations over F,[z] and I1(z) + I»(z) +
215(2) = 0.

Similarly let Kk = 3, n = 3, m; = my = 2, mz = 1. Assume that 3 divides p — 1. Choose
the master polynomial

pt+2 2p+1 2p+1

q)(p)(t’ 2)=(21—22) 3 (21 —23) 3 (22— 23) 3 p—1

(t — 20)2"5 (t — 20)2"5 (t — 23)"7 .

Consider the Taylor expansion

p— p—1 p—1 1 1 1 . .
(1.31) (t — 2255 (t — 2)25 (¢ — 23)T( ) =3 E(z1, 20, )t

t—Zl,t—ZQ’t—Zg
where ¢ = (¢}, ¢, ). Let ¢* be the projection of ¢ to (Fp[z])®. Then the vector
p+2 2p+1 2p+1

(1.32) I(z) =(z1— )7 (1—23) F (n—2) * (47(2), & (=), ' (2))

is a solution of the corresponding KZ differential equations over F,[z] and 21 (z) + 25(2) +
[3(2) =0.

For distinct z1, x9, x5 € F,, let I'(xq, 9, 3) be the projective closure of the affine curve
(1.33) Y = (t —x1)(t — 22)(t — 13)°
over [F,. The curve has genus 2 and one point at infinity.
Theorem 1.6. Let p be a prime such that 3 divides p — 1. Let
(b]f_l(wla T2, lEs), bé’_l(a:l, $2,$3), b§_1($17$2, -’Eg))

be the vector of polynomials appearing in the solution (1.30) of the KZ equations with n = 3,
k=3 mi=mo=1,m3=2. Let

(0110_1(%, T2, 5U3)a Cg_l(xl, T2, $3)7 c’é‘l(an, T, 353))

be the vector of polynomials appearing in the solution (1.32) of the KZ equations with n = 3,
k=3,my=mo =2, m3=1. Then for j =1,2,3 we have

1
(1.34) / = —b§_1($1,$2,$3) - C§_1($1a932>$3)-
[(z1,72,x3) t— Lj
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Proof. The value of 1/(t — x;) at infinite points of I' equals zero. It is easy to see that

1 1 . - -
I = 2 FY =) T = @) (- 2
D(a1eaas) U L teFy, t#a; b= teF, b=z
> T ) (- )T =D ()
ter teF,
—i—ZZbl x1,$2,$3t+2t_ (t— =) 2p3 (t—z2)23 (t_z?))p%
teF, i teFy v
= —bp- (21, 2, 23) + Z Z (T1, w2, 23)t" = —b§_1($1,$2,933) - C§_1(351,$2,5U3)-
teF, i

1.5. Resonances over C and FF,. Under assumptions of Section 1.1 assume that
(1.35) my+ -+ my, = k.

Then the vector 10)(z), defined in (1.1), in addition to the algebraic equation (1.3) and
differential equations (1.4) satisfies the algebraic equation

(1.36) zama i (2) + -+ zpmp I, (2) = 0.

Equation (1.36) follows from the cohomological relation:

" m,t—z+ z;
1.37 d(t®) = @dt—0 )y —L——dt
(1.37) (1) Y
= (1—2% @)@dt—iz-@@ a_
Pl o Tk t—z;

Relation (1.36) manifests resonances in conformal field theory, where solutions of KZ equa-
tions represent conformal blocks and conformal blocks satisfy algebraic equations analogous
o (1.36), see [FSV1, FSV2], Section 3.6.2 in [V2]. In conformal field theory the numbers
mi, ..., My, £ are natural numbers. In that case the master function ®(¢, z) is an algebraic
function and the hypergeometric integrals become integrals of algebraic forms over cycles
lying on suitable algebraic varieties. The monodromy of the hypergeometric integrals () (2)
in that case was studied in Sections 13 and 14 of [V1].

Relation (1.36) has an analog over F,.

Theorem 1.7. Under assumptions of Theorem 1.2 let P~ (z,q) € F,[2]" be the polynomial
solution of equations (1.3) and (1.4) described in Theorem 1.2. Assume that

(1.38) My+---+M,=-1 (mod p).
Then
(1.39) ML (2) 4+ -+ 2o M1, (2) = 0.
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Proof. The theorem follows from (1.37) similarly to the proof of Theorem 1.2. Namely, we
consider the Taylor expansions at t = ¢ of both sides of equation (1.37), divide them by
dt, and then project the coefficients of (¢t — ¢)”~! to F,[z]. The projection coming from
di(t®) equals zero since d(t)/dt = Ipt’»"* = 0 (mod p). The projection coming from
(1 =37, ) ®dt equals zero by (1.38). The projection coming from — Y7 | z; 22 4L

j=1 J=171 K 7 t—z;
gives (1.39). O
Example 1.9. Let k=2 my=---=m, =1, p=3, My =---= M, =1,
or=(t,z) = [ (za—2) [t = 2)
1<a<b<n s=1
as in Example 1.3. Let n = 2 (mod 3), then M; + --- + M, = —1 (mod 3). Choose a

positive integer r, such that 7 = n (mod 3) and r < n. Then the vector I(z) given by
(1.14) satisfies equations (1.3), (1.4), and

lelm(z) 4 20MN(2) =0 (mod 3).

1.6. Exposition of material. In Section 2 we describe the hypergeometric solutions of the
KZ equations associated with sly and explain their reduction to polynomial solutions over
F,. In Section 3 we describe the resonance relations for sly conformal blocks and construct
their reduction over F,. In Section 4 we explain how the results of Section 2 and 3 are
extended to the KZ equations associated with simple Lie algebras.

This article was inspired by lectures on hypergeometric motives by Fernando Rodriguez-
Villegas in May 2017 at MPI in Bonn. The authors thank him for stimulating discussions.
We were also motivated by the classical paper by Yu.l. Manin [Ma], from which we learned
how to construct solutions of differential equations over F, from cohomological relations
between algebraic differential forms. The authors thank A.Buium, Yu.l. Manin, and W.
Zudilin for useful discussions and the referee for comments and suggestions contributed to
improving the presentation.

The article was conceived during the Summer 2017 Trimester program “K-Theory and
Related Fields” of the Hausdorff Institute for Mathematics (HIM), Bonn. The authors are
thankful to HIM for stimulating atmosphere and working conditions. The first author is
grateful to Max Planck Institute for Mathematics for hospitality during a visit in June 2017.

2. sly, K7Z EQUATIONS

In this section we describe solutions of the KZ equations associated with the Lie algebra sls.
The solutions to the KZ equations over C in the form of multidimensional hypergeometric
integrals are known since the end of 1980s. The polynomial solutions of the KZ equations
over [F,, in the form of F,-analogs of the multidimensional hypergeometric integrals are new.

2.1. sly KZ equations. Let e, f,h be standard basis of the complex Lie algeba sly with
le, f] = h, [h,e] = 2e, [h, f] = —2f. The element

1
(21) Q:€®f‘|‘f®€+§h®h€5[g®5[2
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is called the Casimir element. Given n, for 1 < i < j < n let Q09 € (U(sly))®" be the

element equal to €2 in the ¢-th and j-th factors and to 1 in the other factors. Fort=1,....n
and distinct zq, ..., z, € C introduce
1))
2.2 Hz gee ey in) — S Ul(sl ®n7
(2.2) (21 Zn) Z{: o (U(sl))
J#i
the Gaudin Hamiltonians. For any x € C* and any i, k, we have
0 1 0 1
2.3 — —Hi(z1,. ., 2n),=— — —Hp(z1,...,2,)| =0,
(23) L?zi K (=1 ) 0z, K Kz )

and for any x € sl and 7 we have
(2.4) [Hi(z1,. .., 2p),2®1®@ - @14+ +1®---®@1®z] =0.
Let ®' ,V; be a tensor product of sl;-modules. The system of differential equations

or 1 Q)

(2.5)

5~ .0 1=1,...,n,
! gAY
n

on a @}, V;-valued function I(zy,..., z,) is called the KZ equations.

2.2. Irreducible sl;-modules. For a nonnegative integer ¢ denote by L; the irreducible
i+ 1-dimensional module with basis v;, fuv;, ..., fiv; and action h. f*v; = (i — 2k) fv; for k =
0,...,0; f.ffvy = fflyfor k=0,...,i—1, f.flv; =0; ev; =0, e.fro; = k(i —k+ 1) f* 1,
fork=1,...,1.

For m = (my,...,m,) € Z%, denote |m| =my +--- +my and L¥" = L, @ --- @ L, .
For J = (j1,...,Jn) € Z%, with j; < m, for s = 1,...,n, the vectors
(26) fJUm = fjlvml Q- ® fjnvmn

form a basis of L®™. We have

f-fovm = ZfJﬂsvm, hefyvm = (Im| = 2[J]) frvm,
s=1

e-fJUm = st(ms - js + 1)fJflsUm-
s=1

For A € Z, introduce the weight subspace L™\ = { v € L¥™ | h.v = Av} and the singular
weight subspace SingL®™[\|] = { v € L®"[\] | hwv = Mv, ev = 0}. We have the weight
decomposition L™ = EB‘,CWZL‘OL®m[|m| — 2k]. Denote

Iy ={Je€Zi | |J| =k, js <mg, s=1,...,n}.
The vectors (fsv) ez, form a basis of L¥"[|m| — 2k].

Remark. The sly-action on the sum of singular weight subspaces Sing L®™[|m/| — 2k| gener-
ates the entire sly-module L®™. If I(z, ..., z,) is an L®™-valued solution of the KZ equa-
tions, then for any x € sly the function z.1(zy,...,2,) is also a solution, see (2.4). These
observations show that in order to construct all L®™-valued solutions of the KZ equations
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it is enough to construct all Sing L®™[|m| — 2k]-valued solutions for all k£ and then generate
the other solutions by the sly-action.

2.3. Solutions of KZ equations with values in SingL®"[|m| — 2k] over C. Given

k,n € Zso,m=(my,...,my,) € ZZ%,, k € C*, denote t = (t1,...,tx), 2 = (21,...,2y), define
the master function
(2.7) Cpnm(t,2): = Crpm(te, .. th 21, ., 20, K)
n k
= [IG—zymm 1] =)< [T 11 =27

i<j 1<i<j<k 1=1 i=1
For any function or differential form F(tq,...,%;), denote
Symy[F(ty, .. )] = > Fltoy, oo toy), Ant[F(ty, .. t)] = Y (=DIF(t,,, ... ).

oc€SE oESK

For J = (j1,...,Jn) € Ij define the weight functz’on

(2.8) W,(t, z) = Symt 11 H

j s—=1 i=1 J1+ +Js—1+1 T Zs
For example,
1 1 1
W, = s W, - )
(1,0,...,0) a—— (2,0....,0) P ——
1 1 1 1
W, )
(L1.0,.0) ty —z1ty— 29 1o — 21t — 29
The function
(2.9) Winm(t, 2) = ZWJthJUm

JETL;

is the L®™[|m| — 2k]-valued wvector weight function.
Consider the L®™[|m| — 2k]-valued function

(2100 ID(z,....z) = / B (b 20 5 Wi (£, 2)dt1 A <<+ A b,
7(2)

where (2) in {2} x C} is a horizontal family of k-dimensional cycles of the twisted homology
defined by the multivalued function ®y ., (t, z,m), see [SV3, V1, V2]. The cycles v(z) are
multi-dimensional analogs of Pochhammer double loops.

Theorem 2.1. The function IV (z) takes values in SingL®™[|m| — 2k] and satisfies the KZ
equations.

This theorem and its generalizations can be found, for example, in [CF, DJMM, SV1,
SV2, SV3|.

The solutions in Theorem 2.1 are called the multidimensional hypergeometric solutions of
the KZ equations. The coordinate functions

@11 I, 2) :/@km,m(t,z)wJ(t,zmlA...Adtk, JeT,

Y
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are called the multidimensional hypergeometric functions associated with the master function
(I)k: n,m:-

The fact that solutions in Theorem 2.1 take values in Sing L®™[|m| — 2k] may be reformu-
lated as follows. For any J € Z,_1, we have

n

(2.12) S G+ D — I (2) =0,

s=1

where we set 151)1(2) =0if J+ 1, ¢ I;.

The pair consisting of the KZ equations (1.4) and hypergeometric solutions (1.2) is iden-
tified with the pair consisting of the KZ equations (2.5) and hypergeometric solutions (2.10)
with values in SingL®™[|m| — 2]. In this case the system of equations in (2.12) is identified
with equation (1.3).

2.4. Proof of Theorem 2.1. We sketch the proof following [SV3]. The reason to present
a proof is to show later in Section 2.5 how a modification of this reasoning leads to a
construction of polynomial solutions of the KZ equations over [F),.

The proof of Theorem 2.1 is a generalization of the proof of Theorem 1.1 and is based on
cohomological relations.

It is convenient to reformulate the definition of the hypergeometric integral (2.10). Given

k,n € Z~o and a multi-index J = (jy,...,J,) with |J| < k, introduce a differential form
1 d(t, — z d(t;, —z d(tj+1 — 2
Ny = — . Antt[(l 1)/\---A (t;, 1)A (141 2)/\
j1! . ]n‘ tl — 21 tjl — 21 tj1+1 — 29
A d(tj1+...+jn71+1 - Zn) A A d(t]1++]n - Zn) ,
Ljitortjno1+1 — Zn Ljittjn = Zn

which is a logarithmic differential form on C" x C* with coordinates z,t. If |J| = k, then for
any z € C" we have on {2} x C* the identity

ny = Wy(t,z)dty A -+ A dtg.
Example 2.1. For £ =n = 2 we have

d(tl — Zl) A d(tz — Zl>

N0 = th — 21 ty — 21
7’](1’1) = d(tl — zl) A d(tQ - 22) B d(tQ - Zl) A d(tl — 22> .
hh— 2= to — 29 ty — 21 t— 2

The hypergeometric integrals (2.10) can be defined in terms of the differential forms 7;:

(2.13) I, z) =Y (/ |

qu,n,m"?J) fJUm .
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Introduce the logarithmic differential 1-forms

n k

m;m; CZ(ZZ - Zj) —Mm d i S)
a =
Z 26z — 2 + Z + Z kot —zs
1<i<g<n 1<z<]<k s=1 =1
2d(ti — 1) | == s dlt — z)
o s alt; Zs
@ Z Kot —t; + Z Z ko ti—zs
1<i<j<k s=1 =1

We shall use the following algebraic identities for logarithmic differential forms.

Theorem 2.2 ([SV3]). On C" x C* we have

n

. ms — js
(2.14) o Any=> (G +1) L

s=1

for any J with |J| =k —1, and

(2.15) a/\anfﬂ)m:—ZQ” — /\meﬂ)m

JETy 1<j |J|=k

Proof. Identity (2.14) is the spacial case of Theorem 6.16.2 in [SV3] for the Lie algebra sls.
Identity (2.15) is a special case of Theorem 7.5.2” in [SV3] for the Lie algebra sl,. O

Corollary 2.3. On C" x C* we have

(216) Z d @knmﬁj fJUm = —ZQ(ZJ - /\ Z q)knan van%

Z]
JGIk Z<] JGIk

where the differential is taken with respect to variables z,t.

Now we deduce from identity (2.14) the following formula (2.20). Since |J| = k — 1, we
can write

k
(217) T]J:ZCJJ(t,Z)dtl/\"'/\dtl/\"'/\dtk—i-...,

=1

where the dots denote the terms having differentials dz; and c;;(¢, z) are rational functions
of the form

n k -1
(2.18) PJJ(t,z)( I G-2) ]I (ti—tj)HH(ti—zl)> :
1<i<y<n 1<i<j<k =1 =1

where Pj,(t, z) is a polynomial in t, z with integer coefficients. Also for any s =1,...,n we
have

(219) Nj+1, = WJ+1Sdt1A"'Adtk+...,
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where the dots denote the terms having differentials dz;. Formula (2.14) implies that for any
J with |J| = k — 1 we have the identity

k
(220) dt (@km’m Z CJJ(t, Z)dtl VANEREIVAN C/i-t\l VANRIERIVA dtk>
=1

. mg — .s
- Z(]S +1) K ’ CpnmWrpr,dtr A- -+ A dty,

s=1

where d; denotes the differential with respect to the variables ¢.
Now we deduce from identity (2.16) the following formula (2.23). Fix i € {1,...,n}. For
any J € Iy, write

(221) (I)k,mmnj = q)k,n,mWJdtl VANEIEIAN dtk

k
+dz A (cbk,n,mzcj,i,l(t,z)dtl A ANdt A== A dtk) +...,

=1

where the dots denote the terms which contain dz; with j # 4, and the coefficients c;;,(¢, 2)
are rational functions in ¢, z of the form

(2.22) PJM(t,z)( I G-2 J[ -t HH(@--@) ,

1<i<j<n 1<i<j<k =1 i=1

where Pj;(t,z) is a polynomial in ¢, z with integer coefficients.
Formula (2.16) implies that for any ¢ € {1,...,n} we have

)
(2.23) 3 ( o (D Wo)dts A+ Aty
JET, v

+dt (I)kanCle )dtl Agg/\Adtk))fJUm

Q(m
== Z P

where d; denotes the differential with respect to the variables ¢.
Integrating both sides of equations (2.20) and (2.23) over y(z) and using Stokes’ theorem
we obtain equations (2.12) and (2.5) for the vector 1™ (z) in (2.10). Theorem 2.1 is proved.

Z (I)kanJdtl A dtkavm7

%j JET,,

2.5. Solutions of KZ equations with values in SingL®™[|m| — 2k] over F,. Given
k,n € Zso, m=(mq,...,my) € Z2,, k € Q*, let p > 2 be a prime number such that p does
not divide the numerator of k. In this case equations (2.12) and (2.5) are well-defined over
the field F, and we may discuss their polynomial solutions in F, [z, ..., 2,].

mg . mimj 0 _
My=-"2 M= . M°=
K 2K

Choose positive integers M, for s =1,...,n, M;; for 1 <i < j < n, and M?, such that
2
K

(mod p).
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Fix integers ¢ = (q1,...,qx). Let t = (t1,...,tx), 2 = (21,...,2,) be variables. Define the
master polynomial

(2.24) @,(C]?T)L’M(t, z): = @,(ﬁzfin(tl, ety 21y Z0)
n k
= H (Zl — Zj)Mi‘j H (tl — tj)Mo H H t — ZS S.
1<i<g<n 1<i<j<k s=1i=1

Consider the Taylor expansion of the vector

(2.25) ZCI)k (& 2)Wi(t, 2) frvm = ZI“” (z,q)(t1 — @)™ ..t — qp)™

JEIy, U1 ek

Notice that each coordinate @,(C]?L’M(t,z)WJ(t z) is a polynomial in ¢,z with integer coef-
ficients due to the positivity of the integers M;, M; ;, M° and the definition of the weight
functions W;(t, z). Hence the Taylor coefficients I(-%)(z, q) are vectors of polynomials
in z with integer coefficients. Let 00 (z q) € (F,[2])3™E*"mI=2k] he their canonical
projection modulo p.

Theorem 2.4. For any integers ¢ = (q1,...,qx) and positive integers | = (l,...,lx), the
vector of polynomials I(z,q) := IP=LP=1) (2 q) satisfies equations (2.12) and (2.5).

The parameters ¢, I1p — 1,...,lxp — 1 are analogs of cycles v in Section 2.3.

Proof. To prove that [(hP=1-tpP=1) (2 ¢) satisfies (2.12) and (2.5) consider the Taylor expan-
sions at (t1,...,tx) = (q1,.-.,qx) of both sides of equations (2.20) and (2.23), divide them
by dt; A --- Adty. Notice that the Taylor expansions are well defined due to formulas (2.18)
and (2.22).

Project the Taylor coefficients of (t; — q1)"7~' ... (t — qu)*?~" to (FF,[z])dim Lo (ml=2k],
Then the terms coming from the d;()-summands equal zero since d(t?)/dt; = L;pt'* ™" = 0
(mod p), and we obtain equations (2.12) and (2.5). O

Example 2.2. Let p=3, k=4, n=5, k=2, m; =---=ms = 1. Notice that in this case
k =1 (mod 3) and we may set k = 1.
The set Zj consists of ten elements J = (ji,...,J5) with j; € {0 1} and j1 4+ -+ j5 = 2.

The space L®™[|m| — 2k] = (L,)®°[1] has basis f;v, = ff'v; @+ ® fBvy, J € Ik We have
9(1’2)U1®U1/\... = QUi A...,
QB o @ foy Aee. = —for @ for A ...,
Q(1’2)fv1®vl/\... = fuiQuA---+v1® fur AL,
QM @ fuiA.. = fr@uA-—+01® forA...

(mod 3). The other Q) act similarly. The system of equations (2.12) on
I(z) = 3 ez, 11(2) fyvm consists of five equations. The first is

[(1,1,0,0,0)(2) + [(1,0,1,0,0)(2) + 1(1,0,0,1,0)(2) + [(1,0,0,0,1)(2) =0 (mod 3),
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where z = (21,...,25), the other are similar. Let ¢t = (¢1,t2). We may choose the master
polynomial

H(tl — 23)2.

YNt 2) = (i —t2)* [ (2 —2)?

2

1<i<j<5 i=1 s=1
Fix integers ¢ = (0,0) and [ = (4,3). Then the vector
(2.26) 1089(z) = > 0 15 (2) frvm
JETL;,
with
11,8 11,8
(2-27) I((1,1,o),o,o)(z) = —Z3 — 24 — Z5, I((1,0,1),0,0)(Z) = —RX2 — 24 — Z5,

and similar other coordinates satisfies equations (2.12) and (2.5).

Example 2.3. Let k =4, n =2, k = 2, m; = my = 2. The space L5?[0] has basis f?v; ® vy,
fve ® fug, va @ f2ve. The system of equations (2.12) takes the form:

[(2’0)(2) + [(1,1)(2) =0, I(Ll)(z) + 1(072)(2) = 0.
Let p = 41 + 3 for some [. We may choose

2 2

ptl ptl p-1
‘P%,M(h,tz,zb 7)) = (21 — Zz)p2 (t — tz)p2 HH(Q — Zs)p2 .

i=1 s=1

Notice that 4’%1 is even, the polynomial @g?%’M(tl,tQ,zl,zg) is symmetric with respect to

permutation of ¢, t,, and the solution
(2.28) IP=1P7V (2 2)
41
: (0(2,0)(217 22)f2112 ® vy + ca,1y(21, 22) fra @ fug + c20)(21, 22)v2 ® f2U2)

:<21_22) 2

is nonzero. Here c;(z1, 22) are the polynomials determined by the construction of Section
2.5.
For example, for p = 3,

(2.29) I1®2(2) = (21 — 22)2 (P02 @ vy — fUo ® fvg + vy @ f2u3).

2.6. Relation of solutions to integrals over IF’;. For a polynomial F'(t,...,t;) € F,[t1,
..., tx] and a subset v C F’; define the integral

/F(tl,...,tk):: > F(t,....t)

Theorem 2.5. Fiz xq,...,x, € F,. Consider the vector of polynomials

F(t) := CI),(CITT)MM(tl, eyt X1, Ty) Z Wity ta, 21, .., 20) frUm,
JELy
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of formula (2.25). Assume that deg, F(ti,...,tx) < 2p—2 fori=1,...,k. Consider the
solution I®P=1+P=V (2 q) of equations (2.12) and (2.5), described in Theorem 2.4. Then

(230) [(p—l,..v,p—l)(xl’ cey Ty q) = (_1)k /k F(tla s 7tk)
Fp

This integral is a p-analog of the hypergeometric integral (2.11).

Proof. Theorem 2.5 is a straightforward corollary of formula (1.17), cf. the proof of Theorem
1.3. [

Example 2.4. The polynomial F(t;,ts) of Example 2.3 satisfies the inequalities
deg, F'(t1,t2) <2p—2fori=1,2.

2.7. Example of a p-analog of skew-symmetry. For J € 7, the differential forms
Wy(t, z)dty A - -+ A dty are skew-symmetric with respect to permutations of ¢y, ..., ;. Here
is an example of a p-analog of that skew-symmetry. Another demonstration of the skew-
symmetry see in Example 2.5.

Consider the KZ differential equations with parameters n, k, k, mq,...,m, € Z~qy, where
K, My, ...,m, are even, k = 2k, my; = 2m/,...,m, = 2m, . Assume that ' is even and the
prime p is such that #’|(p — 1) and (p — 1)/x is odd, cf. Example 2.5. Choose

“ TIT]

2.31) @) (t2) = [ (-2 [] 1)

1<i<j<n 1<i<j<k 1=1 s=1
k 2
= 11 (zl-—zj)Mivj< IT &=t TTT] - =) ) IT @ -
1<i<j<n 1<i<j<k i=1 s=1 1<i<y<k
Notice that

k n

(2.32) pt.2):= [ ti—t)" ' TITIt: = 2™
1<i<j<k i=1 s=1

as well as the product [[,;_;,(ti — ;) are skew-symmetric with respect to permutations of
oot

Let a be a generator of the cyclic group F. Let x = (21,...,7,) € F}. For £ =1,... &/,
denote

(233) () = {t € F* | p(t,2)"7 =o'

7Y (@) = {t € F} | p(t,x) = 0}.

The partition of Fy by subsets (y(x )5, is invariant with respect to the action of the
symmetric group Sk of permutations of ¢, ..., ;. For every ¢, the subset ,(z) is invariant
with respect to the action of the alternating subgroup Ay C Sg. For J € I the restriction
of the function W (t,x) [[;o;<(ti —t;) to the set y,(z) is Ap-invariant. We have

/2
/k(I)gzL’M(t,z)WJ(t,x): [T G-z > 20" tx) J] ti—t).

Fy 1<i<j<n =1 ve(z 1<i<j<k
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2.8. Relation of solutions to surfaces over F,.

Example 2.5. For distinct z1, 2o € F,, let I'(21, 22) be the closure in P'(F,) x P'(F,) of the
affine surface

(2.34) y? = (t; — to)(t1 — 1) (ts — 1) (t1 — 22)(t2 — 12),

where P1(F,) is the projective line over F,. For a rational function h : I'(z1, ) — F,, define
the integral

(2.35) /F( )h =S 'n(p),

Pel

as the sum over all points P € I'(z1, x5), where h(P) is defined.
Recall

1 1 1 1
Wio2)(t1, ta, 21, 22) =

Wia0)(t1,ta, 21, 22) =

ty —x1ty —ay ty — Tty — o

1 1 1 1
tl—ZEth—l'Q tg—l‘ltl—{L’Q‘
Theorem 2.6. Let p = 4l + 3 for some l. Let
C2.0)(21, 22) [202 ® V2 + 11y (21, 22) [02 @ fU2 + co,0)(21, 22)02 @ fP02

be the vector of polynomials appearing in the solution (2.28) of the KZ equations of Example
2.3. Then

t1 — to
(236) C 2,0 (ill'l, .1’2) = / y
20 Pa1,es) (B — T1)(t2 — 1)

Wy (ti, to, 21, 22) =

( ) / t1 — 12 +/ t1 — 12

Ca,n\x1,T2) = )

Ly Plan,ee) (11— T1)(t2 = 22)  Jr(ay ) (t2 — 21) (8 — 72)
( ) / ty — 12

Co,2)\T1,T2) = .

©2 (e1we) (B — T2)(t2 — 22)

Proof. The values of W (t1, ta, x1, x2) at infinite points of I'(xy, z3) equal zero, so the integrals
are sums over points of the affine surface. We prove the first equality in (2.36). We have

/ t1 — to _ Z t1 — to
Pla1,e) (01— 1) (t2 — 71) (ty — 21)(t2 — 21)

t1,te#T1

p—1

tl — t2 2 2 -
" Z (tl - Il)(tQ - fL‘l) <(t1 N t2) H H(tz - xs))
= [(t — 20)P 2 — (t — 1) 2] + Z Z CN (1, )t = c0) (21, T2).

t1,t2€F, t1,t2€Fy 11,02

.
o
=+
IS
<.
Il
—_
»
Il
—_

O

Remark. Consider the projection I'(xy,z5) — IFIQD, (t1,t2,y) — (t1,t2). For any distinct
t1,to € F, exactly one of the two points (¢1,t2), (t2,t1) lies in the image of the projection,
since (t1 — to)(t; — x1)(ta — z1)(t; — 22)(t2 — ) is skew-symmetric in 1,7, and —1 is not a
square if p = 41 + 3.
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3. RESONANCES IN sl, K7Z EQUATIONS

3.1. Resonances in conformal field theory over C. Let mq,...,m,,k € Z~q, L®™ =
Ly, ®: - ® Ly, . Assume that x > 2 is an integer. Assume that

0SS my,....my,my++-+-+m, —2k <Kk —2.
Consider the positive integer
(3.1) (=kK—1—|m|+2k.
For z = (21,...,2,) € C" with distinct coordinates define
Binm(2) = {w € L™ | haw = (|m| — 2k)w, ew =0, (ze)‘w = 0},

where ze : L®™ — L®™ is the linear operator defined by the formula

WD QW > Y 2 @ B Wy B+ D W,
s=1

for any w; ® -+ - ® w, € L®™. This vector space is called the space of conformal blocks.

Example 3.1. Let k =1, |m| =k, £ = 1, Then

Bk,n,m(z) — {stvml ®®fvms ®®Umn
s=1

imsfs =0, izsmsls = 0}.
s=1 s=1

Theorem 3.1 ([FSV1, FSV2]). The family of subspaces
Binm(2) C SingL®™[|m| — 2k],
depending on z, is invariant with respect to the KZ equations. [l

Theorem 3.2 ([FSV1, FSV2]). All the hypergeometric solutions of the KZ equations with
values in SingL®™[|m| — 2k], constructed in Section 2.3, take values in the subspaces of
conformal blocks.

Proof. Theorem 3.2 is proved in [FSV1]. Another proof for arbitrary simple Lie algebras
is given in [FSV2]. Let 1M (z) = > Jet, ]57)(2)Fjvm be a hypergeometric solution. We
need to check that (ze)’I((z) = 0. This equation is a system of algebraic equations on
the coefficients (Iy)(z)) sez,- The equations of the system are labeled by basis vectors of
L®™[|m| — 2(k — ¢)]. Namely, for any @ € Zj_, one calculates the coefficient of Fgv,, in
(ze)' 1™ (2) and equate that coefficient to zero, cf. the second equation in Example 3.1. Such
an equation follows from a cohomological relation. Namely, the corresponding differential
k-form, whose integral over (z) has to be zero, equals the differential with respect to the
t-variables of some differential k£ — 1-form 7, ,,0(t,2). Then the desired equation holds

by Stokes’ theorem, see this reasoning on pages 182-184 in [FSV1]. This proves Theorem
3.2. O

Remark. That k — 1-form 7, 4 ¢0(%, 2) is determined by the numbers n, k, ¢ and the index
() and has the form

(I)k,n,m(tv Z)
k
H1<i<j<n<zi - 2j) H1<i<j<k:(ti —t;) [Ty H::1(ti — )

(3'2) nn,k,f,Q(ta Z) = ﬂn,k,@,Q(t> Z)a
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where fu,k00(t, 2) is a polynomial differential £ — 1-form in ¢,z with integer coefficients
determined by n, k, ¢, () only, see pages 182-184 in [FSV1].

3.2. Resonances over F,. Given k,n € Zsg, m = (my,...,my,) € Z%, k € Z=o, let
p > 2 be a prime number such that p does not divide k. Choose positive integers M, for
s=1,...,n, M;; for 1 <i<j<n, M°and K such that

s Ny 2 1
Msz—ﬁ, Mijzmmj, M= =, =— (mod p).

K ’ 2K K K
Fix integers ¢ = (q1,...,qk). As in Section 2.5 for any nonnegative integers [y, ..., [; define
the vector I01--i) (2, q) € (IF,[z])dim L= Im|=2k]
Theorem 3.3. Let { € Z~q be such that
(3.3) ((-1K-> M,—(k-—1)M°=1 (mod p).

s=1

Then for any integers ¢ = (qu,-..,qx) and positive integers | = (ly,...,l;), the vector of

(3.4) (ze)fTOP=Leslip=1) (5 0) = 0,
Remark. The resonance equation (3.1) has the form

(-1 2
Ly 2y
K K KR

Equation (3.3) is the reduction modulo p of that equation.

Proof. The proof of Theorem 3.3 is similar to the proof of Theorem 2.1 and uses the universal
differential k—1-forms n,, s, (t, z) of Section 3.1 instead of the differential k—1-forms (¢, z)
in (2.17). O

Example 3.2. Let p =3, k =4, n =5k =2, m; =--- =ms = 1. Consider the vector

IO (%) = > JeT, ]51178)(2)]:‘]1)”1 of Example 2.2, which is a solution of (2.5) and (2.12). The

resonance equation (3.3) in this case takes the form £+ 1 = 0 (mod 3) and is satisfied for
= 2. The condition (ze)2111®)(2) = 0 means

(3.5) > 189 I =% =0 (mod 3).

Equation (3.5) takes the form

—212’2(2’3 + 24 + 25) — 2425(2’1 + 29 + 23) =-3 Z Rkl = 0

1<i<j<k<h

(mod 3).



SOLUTIONS OF KZ DIFFERENTIAL EQUATIONS MODULO p 23

4. KZ EQUATIONS OVER [, FOR OTHER LIE ALGEBRAS

The KZ equations are defined for any simple Lie algebra g or more generally for any Kac-
Moody algebra, see for example [SV3]. Similarly to what was done in Sections 2 and 3, one
can construct polynomial solutions of those KZ equations over I, as well as of the singular
vector equations and resonance equations over [F,,.

The construction of the polynomial solutions over F, in the sl case was based on the
algebraic identities for logarithmic differential forms (2.14), (2.15) and the associated coho-
mological relations (2.20), (2.23) as well as on the cohomological relations associated with
the differential forms 7, 4 ¢k (¢, 2) in (3.2). For an arbitrary Kac-Moody algebra the analogs
of the algebraic identities in (2.14) and (2.15) are the identities of Theorems 6.16.2 and 7.5.2”
in [SV3], respectively. For an arbitrary simple Lie algebra, the construction of analogs of the
cohomological identities for the differential forms 7, 1 ¢ x (¢, 2) is the main result of [FSV2].

Remark. The F,-analogs of multidimensional hypergeometric integrals associated with ar-
rangements of hyperplanes see in [V4]. Remarks on the Gaudin model and Bethe ansatz
over [, see in [V3].
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