

1 **A long-lived Indian Ocean slab: Deep dip reversal induced by the**
2 **African LLSVP**

3
4 Huilin Wang^{a,*}, Yaoyi Wang^{a,b,**}, Michael Gurnis^a, Sabin Zahirovic^c, Wei Leng^b

5
6 ^a Seismological Laboratory, California Institute of Technology, Pasadena, CA, 91125 United States

7 ^b School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

8 ^c Basin GENESIS Hub and EarthByte Group, School of Geosciences, University of Sydney, NSW 2006,
9 Australia

10
11 * Now at: *Institute of Geophysics, MOE Key Laboratory of Fundamental Physical Quantities Measurement,*
12 *School of Physics, Huazhong University of Science and Technology, Wuhan, China*

13 ** Now at: Department of Geology, University of Illinois, Urbana, IL 61801, United States

14
15 Correspondence to:

16 Huilin Wang

17 huilin@gps.caltech.edu

18
19
20
21 **ABSTRACT**

22 A slab-like high seismic velocity anomaly (referred as SEIS) has been inferred
23 beneath the central-southern Indian Ocean in a recent tomographic inversion. Although
24 subduction has previously been suggested regionally by surface observations, the new
25 inversion is consistent with a north-dipping slab extending from the upper mantle to the

26 core mantle boundary (CMB). We propose that SEIS anomaly originated from an oceanic
27 plate in the Paleo-Tethys that was consumed by a south-dipping intra-oceanic subduction
28 zone during the Triassic and Jurassic period. SEIS challenges traditional concepts of the
29 dynamics of slab decent by its relatively shallow depths and a present-day polarity
30 opposite to the geometry of subduction. Geodynamic models show the upwelling mantle
31 flow exerted by a thermochemical pile can hold and stagnate the descending SEIS slab
32 at shallow depths for more than 100 Myr. The spatial distribution of resistance from the
33 upwelling mantle flow can reverse the slab dip, producing a structure consistent with
34 seismic inversions yet starting with a plate tectonic reconstruction consistent with the
35 geology constraining the Tethyan tectonic domain. The results suggest that slabs can
36 descend through the lower mantle at rates substantial lower than 1 cm/yr, and even
37 reverse their polarity through interactions with background mantle flow.

38

39 **1. Introduction**

40 A slab-like, high seismic velocity anomaly has been interpreted from seismic
41 tomography of the mantle beneath the southern Indian Ocean recently, referred to as the
42 southeast Indian slab (SEIS) (Simmons et al., 2015; Fig. 1). Although high seismic
43 velocities had been previously inferred (see Fig. S1), a new global Earth model (LLNL-
44 G3D-JPS) (Simmons et al., 2015) recovers a massive high-velocity anomaly, which
45 regionally can display a slab-like structure, with a northward dipping feature from the
46 upper mantle toward the core mantle boundary (CMB). The most slab-like cross section
47 resides in a corridor between the Kerguelen Plateau and Java in Indonesia (Fig. 1a).

48 The presence of a slab beneath the Indian Ocean has long been suspected. Chase

49 (1979) argued that the band of geoid lows starting south of Indian, passing through
50 Siberia, over North America, down the western Atlantic and through the Ross Sea in
51 Antarctica before connecting up again with the Indian geoid low, are generated by mass
52 anomalies at about 1,200 km depth. Based on the position of the geoid lows and the
53 paleo-position of Mesozoic subduction zones, Chase and Sprowl (1983) suggested that
54 slabs in the lower mantle were responsible for the geoid lows, including a slab suggested
55 beneath the Indian Ocean. Spasojevic et al. (2010) noted an inverted structure in the
56 central Indian Ocean mantle with higher shear velocities below 2,000 km and lower
57 velocities above 1,000 km. Ghosh et al. (2017) suggested that the low-density materials
58 at ~300-900 km depth are responsible for the Indian Ocean geoid low. The low-density
59 materials could be entrained plumes from the edge of the African large low-shear-velocity
60 province (LLSVP) (Nerlich et al., 2016) or resulted from dehydration of Mesozoic slab in
61 the lower mantle (Spasojevic et al., 2010).

62 Despite seismic inversions and geoid interpretations pointing to the possibility of
63 Mesozoic subduction in the central Indian Ocean, Simmons et al. (2015) noted the lack
64 of Mesozoic plate reconstructions displaying subduction zones with a northward polarity.
65 In contrast, evidence for the Mesozoic tectonic evolution of the eastern Tethyan region
66 indicate a south-dipping subduction zone and an overall northward plate motion through
67 continued slab rollback. Independent data suggest that the Lhasa terrane has Gondwana
68 tectonic affinities and drifted northward over a south-dipping subduction zone during
69 Triassic to Jurassic period (e.g., Li et al., 2016; Zhu et al., 2011a). The south-dipping
70 subduction zone with a northward-retreating hinge could migrate across and consume
71 the Paleo-Tethyan oceanic plate(s) (see details in Section 2). The present-day seismic

72 high-velocity anomaly beneath the Indian Ocean therefore may capture the consumed
73 Paleo-Tethyan oceanic plate(s), and hence document the opening of the successor
74 Meso-Tethys. When examining the morphology of the SEIS anomaly with the Paleo-
75 Tethyan tectonics, two questions emerge. First is the inconsistency between southward
76 subduction polarity within the Paleo-Tethyan ocean and the north-dipping SEIS anomaly.
77 A south-dipping subduction zone that retreats northward is expected to produce a south-
78 dipping slab in the mantle, but the SEIS anomaly has a north-dipping structure.

79 The second question is how the slab stagnated above or at the 660 km
80 discontinuity for more than 145 Myr. Previous studies estimated the globally average
81 descending rate of slabs is 1.2 ± 0.3 cm/yr in the lower mantle (van der Meer et al., 2009)
82 and 1.3 ± 0.3 cm/yr for the whole mantle (Butterworth et al., 2014). Using a descent
83 velocity of 1.3 cm/yr, the slab would sink to \sim 1900 km depth from the Jurassic to present,
84 which is much deeper than the shallow portion of the SEIS anomaly. The transition zone
85 can temporarily trap a slab resulting from trench retreat (e.g., Christensen, 1996), phase
86 transitions (e.g., Christensen and Yuen, 1985), viscosity increase (e.g., Gurnis and
87 Hager, 1988), slab strength variation (e.g., Čížková et al., 2002) and/or slab temperature
88 variation (King et al., 2015). But as the slab penetrates into the lower mantle, the slab is
89 usually reshaped by the long-term resistive stresses at the transition zone, which results
90 in a complex slab morphology in the lower mantle (Zhong and Gurnis, 1995; Christensen,
91 1996). However, the SEIS anomaly appears to have a simple dipping structure.

92 The newly-found SEIS anomaly is inconsistent with traditional concepts of a
93 sinking slab. The dynamic of subducted slabs is usually considered to be dominated by
94 its negative thermal buoyancy. Therefore, the subducted slab is anticipated to sink largely

95 vertically with a rate proportional to its negative buoyancy and inversely proportional to
96 the background mantle viscosity. Increasing studies noted that this assumption is
97 oversimplified and the sinking rate may vary significantly among different regions (e.g.,
98 Jarvis and Lowman, 2007; Schellart et al., 2009; Zahirovic et al., 2014). Below the
99 southern Indian Ocean, the SEIS anomaly is lying above the E-W orientated limb of the
100 African LLSVP (Fig. 1). As one of two largest low seismic velocity provinces (the other
101 one below mid-Pacific) in the lower mantle, the African LLSVP occupies an area of
102 $\sim 1.8 \times 10^7$ km² and extends at least 1,300 km above the CMB (e.g., Dziewonski, 1984).
103 The low seismic velocities are characterized by anti-correlation between the bulk-sound
104 velocity and shear velocity below 2,000 km depth, suggesting compositionally distinct
105 characteristics (Masters et al., 2000). The compositional difference may impose a higher
106 density and/or viscosity on the LLSVPs compared to ambient mantle (e.g., Ishii and
107 Tromp, 1999; McNamara and Zhong, 2004; Lau et al., 2017), and results in spatial
108 stability of the LLSVPs for the post-Pangea timeframe over the last 200 Myr. However,
109 the mantle in the vicinity of the LLSVPs is not stable, and the high temperatures make the
110 edges of LLSVPs long-lived sources of upwelling thermal plumes. For example, the
111 upwelling mantle flow above the African LLSVP is suggested to have caused the unusual
112 large-scale Cenozoic uplift and support the broad topography high in southern Africa
113 (Hager et al., 1984; Nyblade and Robinson, 1994; Lithgow-Bertelloni and Silver, 1998;
114 Gurnis et al., 2000a). The Pacific LLSVP may have imparted a strong upward vertical
115 force on the descending Tonga slab (Gurnis et al., 2000b). Elevated southern Africa and
116 the enigmatic stress field of the Tonga slab indicate that the upward mantle stress is
117 significant, but how the upwelling flow influences the dynamics of subducted slabs is not

118 known.

119 In this study, we first review the geological data of the Mesozoic plate motion and
120 present the scenario of south-dipping subduction with northward retreating hinge that
121 consumed Paleo-Tethyan plate(s). We then use numerical models to investigate the
122 possibility of a south-dipping subduction zone producing the present-day north-dipping
123 seismic anomaly. We focus on the interaction between the subducted Mesozoic slab and
124 the upwelling flow from the African LLSVP, and trace the morphology of the subducted
125 slab. Using geodynamic models, we show that upwelling mantle flow can hold the slab,
126 and in some cases entirely flip the slab polarity. This provides a solution for the
127 discrepancies between the Paleo-Tethyan plate motion inferred from geology and the
128 observed seismic anomaly. More generally, we show the importance of upwelling mantle
129 flow on reshaping adjacent subducted slabs.

130

131 **2. Geological constraints**

132 The Cenozoic plate motion in the Indian Ocean region is well constrained by the
133 magnetic lineations of the South East Indian Ridge and South West Indian Ridge as well
134 as paleomagnetism of the Indian subcontinent (Zahirovic et al., 2016). Before the
135 Cenozoic, the Indian continent separated from East Gondwanaland in the Early
136 Cretaceous and traveled northward across the Neo-Tethys Ocean until accreting to
137 Eurasia in the Eocene (Hall, 2012). The Neo-Tethyan plate, which represented the
138 oceanic gateway between India and Eurasia, subducted at the southern margin of Eurasia
139 (Seton et al., 2012), probably with a secondary intra-oceanic subduction zone that
140 extended from the eastern Mediterranean to Indonesia (Hafkenscheid et al., 2006;

141 Zahirovic et al., 2012). The shape and distribution of the consumed Neo-Tethyan plate
142 has been investigated and constrained by seismic and geodynamic studies, primarily at
143 mid-mantle depths in the Northern Hemisphere and near-equatorial latitudes (van der
144 Voo et al., 1999; Zahirovic et al., 2012; Nerlich et al., 2016). Prior to the Cretaceous, with
145 the lack of preserved seafloor spreading histories, the plate motions are more ambiguous.
146 However, there are a few lines of evidence for the Paleo- and Meso-Tethys plate tectonic
147 evolutions.

148 Zircon age spectra and Hf isotopic data suggest that the Lhasa terrane has
149 Gondwana (likely NW Australian shelf) tectonic affinities (Burrett et al., 2014; Zhu et al.,
150 2011b). Paleomagnetic data syntheses suggest that the Lhasa terrane drifted away from
151 the Gondwanaland in the Late Triassic and moved northward from ~15°S to ~25°N until
152 colliding with Qiangtang on Eurasia in the Early Cretaceous, which forms present-day
153 Tibet (Li et al., 2005; Li et al., 2016; Fig. 2a). The northward motion of the Lhasa terrane
154 is consistent with other Tethyan terranes that have been accreted to southern Eurasia or
155 Southeast Asia. The Lhasa terrane also records continuous subduction-related
156 magmatism from at least ~215 Ma, which approximately represents the onset of
157 northward drift, to ~150 Ma (Zhu et al., 2011a; Fig. 2b). The magmatic history of Lhasa
158 displays a progressive younging from the south (started from ca. 215 Ma) to the north
159 (started from ca. 134 Ma) (Zhu et al., 2011a; Fig. 2b). Zhu et al. (2011a) interpreted this
160 northward migration of magmatism as the rollback of continuous south-dipping
161 subduction at the northern margin of the Lhasa terrane. The northward retreating of
162 subduction hinge opened the Meso-Tethys from ~200 Ma as a back-arc basin (Fig. 2b).
163 After the Lhasa terrane accreted onto Eurasia, the Meso-Tethyan oceanic plate started

164 to subduct at a north-dipping subduction zone along the southern margin of Lhasa.

165 A north-dipping subduction zone may have been contemporaneously active along
166 southern Eurasia within the Paleo-Tethyan plate. However, this north-dipping subduction
167 zone would have had a limited lifespan and would have been interrupted by the northward
168 migration of the Lhasa terrane. Simmons et al. (2015) also noted that the southward hinge
169 retreating scenario requires Australia to be located further south than the scenarios
170 presented in most plate reconstructions, further supporting the possibility that this slab
171 represents an older subduction system than the Cretaceous to Eocene Neo-Tethyan
172 system during which Australia was moving northward towards Eurasia (Gibbons et al.,
173 2015).

174 The paleomagnetic, geochronological, and petrological constraints indicate a
175 northward motion of Lhasa and a southward polarity of a Tethyan subduction zone during
176 the Triassic to Jurassic period. As other subducted Mesozoic slabs in the deep mantle
177 detected by seismic surveys (e.g., the Farallon plate below North America), the SEIS
178 anomaly inferred in the new seismic image could be the consumed Paleo-Tethyan plate.

179

180 **3. Insights from two-dimensional models**

181 There is little work on how a subducted slab descends through the mantle in the
182 presence of a mantle structure with characteristics appropriate for an LLSVP. Before
183 using spherical models of mantle convection with explicit plate reconstructions, a brief
184 consideration of the factors governing slab descent is appropriate. We carried out 37 two
185 dimensional, time-dependent computations (see Supplementary Material for details) with
186 the primary factors determining the descent rate, including the lower mantle viscosity,

187 viscosity contrast across the slab, lithosphere age before subduction, slab geometry (slab
188 position with respect to mantle upwelling and dip), strength of the phase transition at 660
189 km depth and the characteristics of the thermochemical pile (the modeled LLSVP),
190 including its Rayleigh number, ratio of chemical to thermal differential density, and
191 background viscosity. Results from two-dimensional models must be used carefully as
192 the three-dimensional configuration could prove to be key and the along strike length of
193 the ancient Indian Ocean slab could be longer or shorter than the width of the LLSVP.

194 Many of the results are self-evident from the wide body of work on mantle
195 convection (Schubert et al., 2001), such as the inverse relation between descent rate and
196 lower mantle viscosity and the dependence of descent rate on the net buoyancy of the
197 thermochemical pile, the age of the lithosphere prior to subduction, and the Clapeyron
198 slope of the 660 km discontinuity. However, two factors did produce results that were
199 initially unexpected. First, the initial dip angle of the slab, either to the south and/or to the
200 north, had a substantial influence on the final dip angle. When the slab was displaced
201 from the center of the pile, the northern dip of the slab descended at a larger rate than
202 the southern edge, such that in time the slab became nearly vertical. In some cases,
203 because the models were two dimensional, the slab could overturn especially for those
204 cases with net positive buoyancy for the pile. The end result could be a slab that dips to
205 the south, not north. However, if the slab initially dipped to the south, as implied by our
206 preferred reconstructions of the Indian Ocean, we found a range of cases in which the
207 slab eventually developed an apparent dip down to the north (Fig. 3). In these cases, the
208 slab descended at a normal rate to the north but a slower rate over the chemical pile. We
209 found cases in which the slab could approximately blanket the chemical pile.

210 The ambient or pre-exponential factor to the viscosity law for the material
211 composing the chemical pile also strongly influenced the descent of the slab. Using the
212 idea that the material could have been primordial and composed of material with a
213 substantially larger grain size (Solomatov and Reese, 2008), the pile could have a high
214 viscosity despite its high temperature, essentially overcoming of the normal temperature
215 dependence of viscosity. In these cases (Fig. 3), the descent of the slab could slow down
216 such that after several hundred million years the slab still remains on top of the pile.

217

218 **4. Global mantle convection models**

219 **4.1 Methods**

220 To investigate the dynamic of the SEIS slab below Indian Ocean, we construct
221 global mantle convection models in a spherical domain with paleo-geographical
222 constraints. The equations of conservation of mass, momentum and energy under the
223 Boussinesq approximation are solved using the finite element code *CitcomS* (Zhong et
224 al., 2000). All models are run from 160 Ma to the present. This Late Jurassic age is chosen
225 as it represents the late stage of Paleo-Tethyan closure and suturing of Lhasa with
226 Eurasia (Yan et al., 2016), and approximates the time from which the Paleo-Tethyan slab
227 is likely to be freely sinking in the mantle. Plate reconstructions (Zahirovic et al., 2016)
228 with 1 Myr time intervals are incorporated in the surface velocity fields; the thermal
229 structure of the lithosphere and the shallow portion of subducted slabs (above 350 km
230 depth) are progressively assimilated (Bower et al., 2015). As the slab subducts to depths
231 greater than 350 km, it progressively merges with the dynamically evolving mantle
232 convection. The thermal structure of the oceanic lithosphere is simulated based on

233 reconstructed seafloor ages and a half-space cooling model, and the continental thermal
234 structure is based on tectonothermal ages of terranes (Flament et al., 2014).

235 The mantle flow model has 12 caps, each with $128 \times 128 \times 64$ elements, resulting in
236 ~ 50 km resolution at the surface and ~ 26 km at the CMB. Refinement is used in the radial
237 direction, providing the highest resolution of 18 km near the top and bottom boundaries
238 and a lowest resolution of ~ 90 km in the mid-mantle. We prescribe an isothermal
239 boundary at the top surface (non-dimensional temperature $T=0$) and a free slip and
240 isothermal boundary condition at the CMB ($T=1$). All materials have temperature- and
241 composition-dependent density. The viscosity is a function of temperature, depth and
242 composition (Fig. 4; see detailed in Supplementary Material). Detailed model parameters
243 are listed in Table 1.

244 We aim to investigate the interaction between subducted Mesozoic slab and the
245 African thermochemical pile. As we explore different Paleo-Tethyan plate motions which
246 are not yet incorporated into the current generation of plate reconstructions, we place a
247 synthetic slab in the mantle below southern Indian Ocean region as an initial condition
248 (Fig. 5). The slab extends between depths of 350 and 1,200 km, covering an area of
249 3,500 km (in EW direction) \times 4,000 km (in NS direction). The slab dips southward, which
250 is assumed to result from a south-dipping subduction zone that retreated northeastward
251 in the Jurassic to Triassic period according to previous studies (e.g., Zhu et al., 2011a; Li
252 et al., 2004; Li et al., 2016). The thermal structure of the slab is created using a Gaussian
253 function and the buoyancy corresponds to an initial 40- to 80-Myr-old oceanic lithosphere
254 (the initial age being a free parameter). The temperature across slab boundaries is
255 smooth and gradually increased to the ambient mantle temperature ($T=0.5$).

256 We prescribe two thermochemical piles residing at the positions for the African and
257 Pacific LLSVPs inferred from tomographic images (Fig. 5). For simplicity, we define a
258 height of 600 km for the thermochemical piles. The interiors of the pile structures have a
259 temperature of $T=0.8$, which is 60% higher than ambient. Tracers are used to represent
260 the synthetic thermochemical piles, in order to track the density and/or viscosity variation
261 due to the compositional difference. The African and Pacific piles are 100 kg/m^3 denser
262 and 10 times higher in viscosity than the ambient mantle in order to stabilize these
263 features in the lowermost mantle.

264

265 **4.2. Results**

266 Mantle convection is influenced by both the low-temperature downgoing slabs and
267 the upwelling mantle flow sourced from the hot thermochemical piles (Model 1; Fig. 6).
268 The updraft flow from the African pile holds and uplifts the southern portion of the synthetic
269 slab. The northern slab, without the thermochemical pile lying below, sinks vertically
270 driven by its negative buoyancy. As a result of the unevenly distributed resistance
271 stresses from the mantle flow, the slab gradually flips in the mantle. Since $\sim 70 \text{ Ma}$, the
272 dip direction of the slab reverses from southward to northward. The eastern Tethyan
273 subduction zone during the Cretaceous and subduction zones around Indonesia feed
274 additional subducted slabs into the mantle below $\sim 25^\circ\text{S}-0^\circ\text{N}$ (the northern part of the
275 cross section in Fig. 6). The accumulated negative buoyancy pushes the slab to the
276 deepest mantle. At 0 Ma, the slabs in the south still resides at $\sim 400 \text{ km}$ depth in the upper
277 mantle, while the slabs in the north have already reached the CMB (Fig. 7). The geometry
278 of the slab materials is generally consistent with the SEIS anomaly in the LLNL

279 tomography image (Fig. 8; Simmons et al., 2015).

280 The African thermochemical pile gradually upwells to mid-mantle depths
281 (~1,200 km) in the Model 1. Faster than the thermochemical pile, the hot mantle initially
282 surrounding the African pile convects to the top of the thermochemical pile and ascends
283 into the upper mantle. This results in a sharp thermal transition at the side boundaries of
284 the African pile. Meanwhile, the African pile has been pushed ~15° southward by the
285 sinking slabs by 70 Ma, followed by a period of stability above the CMB. In the cross
286 section (Fig. 6), the initial “square-shaped” thermochemical pile gradually evolves into a
287 bell-like structure that slightly tilts northward.

288 We test two end-member cases in which there is either no inserted slab or no
289 African pile (Table 2). Model 2 tests the case without the slab insertion below the central
290 Indian Ocean (Fig. S3a). The other model parameters are identical to that in the Model 1.
291 Subduction arises as it does in Zahirovic et al. (2016) with the subducted slabs mainly
292 residing beneath the Australia region. In cross-section, the Mesozoic subducted slab
293 accumulates beneath the NW shelf of Australia between mid- to lower-mantle depths at
294 0 Ma. The model result confirms that the current generation of plate reconstructions
295 cannot generate the SEIS-like anomaly. The African pile below the southern Indian Ocean
296 is pushed westward by the mantle flow generated by the eastern Tethyan subduction
297 zone. In Model 3, the African pile is not imposed (Fig. S3b), the slab sinking is dominated
298 by negative buoyancy and so is not impeded during its descent. The transition zone
299 temporarily traps the northern portion of the slab; thus the slab dip steepens with time but
300 the direction of dip remains the same.

301 A series of additional models are computed to investigate the effects of the slab

302 buoyancy, viscosity jump and Clapeyron slope at the 660 km discontinuity, as well as the
303 density and viscosity contrast of the thermochemical piles. If the inserted slab is 40 Myr
304 older than in Model 1, the slab is thicker and denser (Model 4; Fig. S3c). Even though the
305 slab has more negative buoyancy, the slab still flips through the flow induced by the hot
306 mantle sourced from the African pile. The viscosity increase and delay of the phase
307 change at 660 km discontinuity can reduce slab descent. We test the case with a modest,
308 factor of 30, increase in the viscosity at 660 km discontinuity (Model 5; Fig. S3d). The
309 motion of the descending slab and upwelling hot mantle are both more rapid compared
310 to that found in Model 1. The upwelling mantle flow reverses the slab earlier in this case.
311 At 0 Ma, the shallow portion of African thermochemical pile sits directly below the 660 km
312 discontinuity, and a large portion of the Mesozoic slab rests above the CMB. The overall
313 dip of the slab in the mid-mantle is approximately vertical. If the Clapeyron slope of the
314 ringwoodite transformation is zero (Model 6; Fig. S3e), the slab descends at a slightly
315 larger rate into the lower mantle in this case.

316 The physical properties of the African and Pacific thermochemical piles are poorly
317 known. If the viscosity of thermochemical piles is lower than in Model 1 by a factor of 10,
318 the thermochemical pile upwells more rapidly with narrower widths as “hot sheets” (Model
319 7; Fig. S4a). At 0 Ma, the top of thermochemical pile is positioned in the upper mantle at
320 ~400 km depth. In Model 8, the thermochemical piles are 125 kg/m^3 denser than ambient
321 mantle (Fig. S4b). The higher density makes the African pile more stable at the CMB, with
322 a flatter and more defined outer shape compared to that in Model 1.

323

324 **5. Discussion and conclusions**

325 A substantial high seismic velocity anomaly is found beneath the central-southern
326 Indian Ocean, characterized by a northward dipping feature from the upper mantle to the
327 CMB, lying above the African LLSVP (Simmons et al., 2015; Fig. 1). The SEIS anomaly
328 is likely to be a residual Tethyan plate consumed in the Mesozoic. However, the shape of
329 the SEIS anomaly and the inferred Tethyan plate history are controversial (Fig. 2). This
330 study designs numerical models to investigate the interaction between thermochemical
331 piles and subducted slabs. Models show that the upwelling flow from the thermochemical
332 pile imposes a sizeable upward stress on the overlying slab, resulting in a much lower
333 slab descent rate. The slab above the upwelling flow can stagnate at shallow depths for
334 more than one hundred million years (Fig. 6). For slabs more distal from the
335 thermochemical pile, the negative buoyancy drives the slab to sink sub-vertically. As a
336 result, a slab, which was initially south-dipping and lying across the African pile, gradually
337 flips and reverses its polarity by the unevenly distributed resistance stress in the viscous
338 mantle. At present, the predicted slab exists in a northward polarity extending from the
339 upper mantle to the CMB, which is generally consistent with the observed SEIS anomaly.
340 Models demonstrate that the SEIS anomaly could be a fragment of the Paleo-Tethyan
341 plate, which was subducted at a south-dipping, intra-oceanic subduction zone during
342 Triassic to Jurassic times, consistent with the magmatism and paleomagnetic records on
343 the Lhasa terrane (Zhu et al., 2011a; Li et al., 2004; Li et al., 2016). Detailed requirements
344 for the subducted slab(s) (e.g., spatial coverage and geometry) for matching the seismic
345 anomalies and their implications for the Tethyan oceanic tectonics need to be investigated
346 in future.

347 Compared to previous studies that use simple models and/or assume a constant
348 slab descent rate, this study investigates the slab motion in the region where the upwelling
349 mantle flow is active (e.g., above LLSVPs). We demonstrate that the slab evolution can
350 strongly depend on the background mantle flow. Above the LLSVPs, which are the largest
351 heat anomalies in the mantle, the thermal plumes can push through the viscous mantle
352 and rise from the deepest mantle to contribute to uplift at Earth's surface (e.g., Hager et
353 al., 1984; Torsvik et al., 2010; Gurnis et al., 2000a). If a slab descends into the LLSVP,
354 the upwelling thermal plumes can hold, stagnate and reshape the slab. We have carried
355 out a series of 2D and global models to test the variation of modeling parameters within
356 a reasonable range (Tables 2 and S2). Some differences are shown in the present-day
357 morphology of the slab (Figs. 2 and 8), but the upwelling flow plays the first-order role in
358 flipping a slab in the mantle. The models show that the background stress induced by the
359 mantle flow can complicate interpretations of slab polarity and depth. Therefore, we
360 suggest that further evaluation of seismic image in the mantle needs to apply a
361 geodynamic flow model to forward predict the synthetic seismic structure from plate
362 reconstructions.

363 The African and Pacific LLSVPs are suggested to be thermally and chemically
364 distinct from seismic data (e.g., Su and Dziewonski, 1997), and therefore they are likely
365 to have a different density and viscosity than the surrounding mantle. Many studies
366 suggest that the interior density in LLSVPs is higher than that of ambient mantle (e.g.,
367 Ishii and Tromp, 1999; Lau et al., 2017), but the viscosity is poorly constrained. Models
368 show that a high viscosity can stabilize the thermochemical piles in the deepest mantle
369 (e.g., Model 1). Otherwise, if the thermochemical piles have the same viscosity

370 relationship as the lower mantle (Model 7), then the hot piles are easily entrained as short
371 wavelength volumes that upwell to the upper mantle within ~150 Myr. Koelmeijer et al.
372 (2017) recently proposed the LLSVPs are less dense than the surrounding mantle based
373 on the splitting Stoneley modes of free oscillations. Even through this study noted the
374 possibility of a ~100-km-thick iron-rich denser layer at the base, the buoyant portion of
375 the LLSVPs could require an even higher viscosity for maintaining the layered-density
376 structure and anchoring the LLSVPs to the CMB. From a compositional perspective, if the
377 LLSVPs are strong and do not participate in convection, then they can remain
378 compositionally distinct from the rest of the convecting mantle for long periods of time.
379 The high viscosity of the LLSVPs could be caused by large grain sizes inherited from a
380 primordial mantle or through Ostwald ripening. Solomatov and Reese (2008) postulated
381 that the viscosity variations caused by grain size variations in the mantle can be at least
382 two orders of magnitude. Mixing of heterogeneities can be significantly delayed if the
383 viscosity of the heterogeneities is larger than that of the surrounding mantle. This could
384 allow the chemical heterogeneities to survive for billions of years despite ongoing mantle
385 convection.

386 The convective mantle flow caused by the downgoing slab also modifies the
387 thermal structure of thermochemical piles. The convective mantle flow advects the hot
388 mantle around the thermochemical piles. If the convective flow erodes the boundaries of
389 the LLSVPs faster than thermal diffusion, the thermal boundary of the LLSVPs gradually
390 sharpens. Because subduction zones and downwelling slabs dominate to the north of the
391 African LLSVP, our models predict the northern side of the African LLSVP could be
392 sharper than the southern side.

393 This study investigates the interaction between a subducted slab and upwelling
394 mantle flow. We propose that the north-dipping SEIS anomaly observed in the seismic
395 observations could be Paleo-Tethyan oceanic lithosphere that subducted at a south-
396 dipping subduction zone. The upwelling flow exerted from the African LLSVP can reverse
397 the slab polarity and stagnate the slab at shallow depths for more than one hundred
398 million years. More broadly, our models show that the influence of the upwelling buoyant
399 mantle on slab dynamics can be more significant than recognized earlier.

400

401

402 **Acknowledgements.** We thank two anonymous reviewers for their invaluable comments
403 and suggestions. We also thank Nathan Simmons for earlier discussions on the origin of
404 the SEIS and Kara Matthews for discussions of Tethyan reconstructions. HW and MG
405 were supported by the National Science Foundation through EAR-1600956 and EAR-
406 1645775 and by Statoil ASA. YW participated through the Visiting Undergraduate
407 Research Program (VURP) at Caltech. SZ was supported by the Australian Research
408 Council through IH130200012. The original *CitcomS* code is obtained from Computational
409 Infrastructure for Geodynamics (<http://geodynamics.org>).

410

411

412 **References**

- 413 Bower, D.J., Gurnis, M. and Flament, N., 2015. Assimilating lithosphere and slab history
414 in 4-D Earth models. *Physics of the Earth and Planetary Interiors*, 238, pp.8-22.
- 415 Burrett, C., Zaw, K., Meffre, S., Lai, C., Khositanont, S., Chaodumrong, P., Udchachon,
416 M., Ekins, S., Halpin, J.A., 2014. The configuration of Greater Gondwana-Evidence
417 from LA ICPMS, U-Pb geochronology of detrital zircons from the Palaeozoic and
418 Mesozoic of Southeast Asia and China. *Gondwana Res.* 26, 31–51.
- 419 Butterworth, N.P., Talsma, A.S., Müller, R.D., Seton, M., Bunge, H.P., Schuberth, B.S.A.,
420 Shephard, G.E. and Heine, C., 2014. Geological, tomographic, kinematic and
421 geodynamic constraints on the dynamics of sinking slabs. *Journal of
422 Geodynamics*, 73, pp.1-13.
- 423 Chase, C.G., 1979. Subduction, the geoid, and lower. *Nature*, 282, p.29.
- 424 Chase, C.G. and Sprowl, D.R., 1983. The modern geoid and ancient plate
425 boundaries. *Earth and Planetary Science Letters*, 62(3), pp.314-320.
- 426 Christensen, U.R. and Yuen, D.A., 1985. Layered convection induced by phase
427 transitions. *Journal of Geophysical Research: Solid Earth*, 90(B12), pp.10291-
428 10300.
- 429 Christensen, U.R., 1996. The influence of trench migration on slab penetration into the
430 lower mantle. *Earth and Planetary Science Letters*, 140(1-4), pp.27-39.
- 431 Čížková, H., van Hunen, J., van den Berg, A.P. and Vlaar, N.J., 2002. The influence of
432 rheological weakening and yield stress on the interaction of slabs with the 670 km
433 discontinuity. *Earth and Planetary Science Letters*, 199(3), pp.447-457.

- 434 Dziewonski, A.M., 1984. Mapping the lower mantle: determination of lateral heterogeneity
435 in P velocity up to degree and order 6. *Journal of Geophysical Research: Solid*
436 *Earth*, 89(B7), pp.5929-5952.
- 437 Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J., Heine, C. and Müller, R.D.,
438 2014. Topographic asymmetry of the South Atlantic from global models of mantle
439 flow and lithospheric stretching. *Earth and Planetary Science Letters*, 387, pp.107-
440 119.
- 441 Ghosh, A., Thyagarajulu, G. and Steinberger, B., 2017. The Importance of Upper Mantle
442 Heterogeneity in Generating the Indian Ocean Geoid Low. *Geophys. Res. Lett.*
- 443 Gibbons, A.D., Zahirovic, S., Müller, R.D., Whittaker, J.M. and Yatheesh, V., 2015. A
444 tectonic model reconciling evidence for the collisions between India, Eurasia and
445 intra-oceanic arcs of the central-eastern Tethys. *Gondwana Res.*, 28(2), 451-492.
- 446 Gurnis, M. and Hager, B.H., 1988. Controls of the structure of subducted
447 slabs. *Nature*, 335(6188), 317-321.
- 448 Gurnis, M., Mitrovica, J.X., Ritsema, J. and van Heijst, H.J., 2000a. Constraining mantle
449 density structure using geological evidence of surface uplift rates: The case of the
450 African superplume. *Geochem. Geophys. Geosyst.*, 1(7).
- 451 Gurnis, M., Ritsema, J., Van Heijst, H.J. and Zhong, S., 2000b. Tonga slab deformation:
452 The influence of a lower mantle upwelling on a slab in a young subduction
453 zone. *Geophys. Res. Lett.*, 27(16), 2373-2376.
- 454 Hafkenscheid, E., Wortel, M.J.R. and Spakman, W., 2006. Subduction history of the
455 Tethyan region derived from seismic tomography and tectonic reconstructions. *J.*
456 *Geophys. Res., Solid Earth*, 111(B8).

- 457 Hager, B.H., Clayton, R.W., Richards, M.A., Comer, R.P. and Dziewonski, A.M., 1984.
- 458 Lower mantle heterogeneity, dynamic topography and the geoid.
- 459 Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the
- 460 Indian Ocean. *Tectonophysics*, 570, 1-41.
- 461 Ishii, M. and Tromp, J., 1999. Normal-Mode and Free-Air Gravity Constraints on Lateral
- 462 Variations in Velocity and Density of Earth's Mantle. *Science*, 285(5431), 1231-
- 463 1236.
- 464 Jarvis, G.T. and Lowman, J.P., 2007. Survival times of subducted slab remnants in
- 465 numerical models of mantle flow. *Earth Planet. Sci. Lett.* 260(1), 23-36.
- 466 King, S.D., Frost, D.J. and Rubie, D.C., 2015. Why cold slabs stagnate in the transition
- 467 zone. *Geology*, 43(3), pp.231-234.
- 468 Koelemeijer, P., Deuss, A. and Ritsema, J., 2017. Density structure of Earth's lowermost
- 469 mantle from Stoneley mode splitting observations. *Nature Communications*, 8.
- 470 Lau, H.C.P., Mitrovica, J.X., Davis, J.L., Tromp, J., Yang, H.Y., Al-Attar, D., 2017. Tidal
- 471 tomography constrains Earth's deep-mantle buoyancy. *Nature* 551, 321–326.
- 472 Li, P., Rui, G., Cui, J., Ye, G., 2004. Paleomagnetic analysis of eastern Tibet:
- 473 implications for the collisional and amalgamation history of the Three Rivers
- 474 Region, SW China. *J. Asian Earth Sci.* 24, 291–310.
- 475 Li, Z., Ding, L., Lippert, P.C., Song, P., Yue, Y. and van Hinsbergen, D.J., 2016.
- 476 Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from
- 477 Gondwana to Eurasia. *Geology*, 44(9), 727-730.
- 478 Lithgow-Bertelloni, C. and Silver, P.G., 1998. Dynamic topography, plate driving forces
- 479 and the African superswell. *Nature*, 395(6699), 269-272.

- 480 Masters, G., Laske, G., Bolton, H. and Dziewonski, A., 2000. The relative behavior of
481 shear velocity, bulk sound speed, and compressional velocity in the mantle:
482 implications for chemical and thermal structure. Earth's deep interior: mineral
483 physics and tomography from the atomic to the global scale, 63-87.
- 484 McNamara, A.K. and Zhong, S., 2004. The influence of thermochemical convection on
485 the fixity of mantle plumes. *Earth Planet. Sci. Lett.*, 222(2), 485-500.
- 486 Nerlich, R., Colli, L., Ghelichkhan, S., Schuberth, B. and Bunge, H.P., 2016. Constraining
487 central Neo-Tethys Ocean reconstructions with mantle convection
488 models. *Geophys. Res. Lett.* 43(18), 9595-9603.
- 489 Nyblade, A.A. and Robinson, S.W., 1994. The african superswell. *Geophys. Res.*
490 *Lett.* 21(9), 765-768.
- 491 Schellart, W.P., Kennett, B.L.N., Spakman, W. and Amaru, M., 2009. Plate
492 reconstructions and tomography reveal a fossil lower mantle slab below the
493 Tasman Sea. *Earth Planet. Sci. Lett.* 278(3), 143-151.
- 494 Schubert, G., Turcotte, D.L. and Olson, P., 2001. Mantle convection in the Earth and
495 planets. Cambridge University Press. 940.
- 496 Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A.,
497 Gurnis, M., Turner, M., Maus, S. and Chandler, M., 2012. Global continental and
498 ocean basin reconstructions since 200Ma. *Earth-Sci. Rev.* 113(3), pp.212-270.
- 499 Simmons, N.A., Myers, S.C., Johannesson, G., Matzel, E., Grand, S.P., 2015. Evidence
500 for long-lived subduction of an ancient tectonic plate beneath the southern Indian
501 Ocean. *Geophys. Res. Lett.* 42, 9270–9278.

- 502 Spasojevic, S., Liu, L. and Gurnis, M., 2009. Adjoint models of mantle convection with
503 seismic, plate motion, and stratigraphic constraints: North America since the Late
504 Cretaceous. *Geochem. Geophys. Geosyst.* 10(5).
- 505 Spasojevic, S., Gurnis, M., Sutherland, R., 2010. Mantle upwellings above slab
506 graveyards linked to the global geoid lows. *Nat. Geosci.* 3, 435–438.
- 507 Su, W.J. and Dziewonski, A.M., 1997. Simultaneous inversion for 3-D variations in shear
508 and bulk velocity in the mantle. *Physics of the Earth Planet. Interiors*, 100(1-4),
509 pp.135-156.
- 510 Solomatov, V.S. and Reese, C.C., 2008. Grain size variations in the Earth's mantle and
511 the evolution of primordial chemical heterogeneities. *J Geophys. Res., Solid*
512 *Earth*, 113(B7).
- 513 Torsvik, T.H., Burke, K., Steinberger, B., Webb, S.J. and Ashwal, L.D., 2010. Diamonds
514 sampled by plumes from the core-mantle boundary. *Nature*, 466(7304), pp.352-
515 355.
- 516 Zahirovic, S., Müller, R.D., Seton, M., Flament, N., Gurnis, M. and Whittaker, J., 2012.
517 Insights on the kinematics of the India-Eurasia collision from global geodynamic
518 models. *Geochem. Geophys. Geosyst.* 13(4).
- 519 Zahirovic, S., Seton, M. and Müller, R.D., 2014. The Cretaceous and Cenozoic tectonic
520 evolution of Southeast Asia. *Solid Earth*, 5(1), p.227.
- 521 Zahirovic, S., Matthews, K.J., Flament, N., Müller, R.D., Hill, K.C., Seton, M. and Gurnis,
522 M., 2016. Tectonic evolution and deep mantle structure of the eastern Tethys since
523 the latest Jurassic. *Earth-Science Rev.* 162, 293-337.

- 524 Zhong, S. and Gurnis, M., 1995. Mantle convection with plates and mobile, faulted plate
525 margins. *Science*, 268, 838-838.
- 526 Zhong, S., Zuber, M.T., Moresi, L. and Gurnis, M., 2000. Role of temperature-dependent
527 viscosity and surface plates in spherical shell models of mantle convection. *J. Geophys. Res., Solid Earth*, 105(B5), pp.11063-11082.
- 528
- 529 Zhu, D.C., Zhao, Z.D., Niu, Y., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q. and Wu,
530 F.Y., 2011a. The Lhasa Terrane: Record of a microcontinent and its histories of
531 drift and growth. *Earth Planet. Sci. Lett.*, 301(1), pp.241-255.
- 532 Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Mo, X.X., 2011b. Lhasa terrane in Southern Tibet
533 came from Australia. *Geology* 39, 727–730.
- 534 Van Der Meer, D.G., Spakman, W., Van Hinsbergen, D.J., Amaru, M.L. and Torsvik, T.H.,
535 2010. Towards absolute plate motions constrained by lower-mantle slab
536 remnants. *Nature Geoscience*, 3(1), 36-40.
- 537 Van der Voo, R., Spakman, W. and Bijwaard, H., 1999. Tethyan subducted slabs under
538 India. *Earth and Planetary Science Letters*, 171(1), 7-20.
- 539 Yan, M., Zhang, D., Fang, X., Ren, H., Zhang, W., Zan, J., Song, C. and Zhang, T., 2016.
540 Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block:
541 implications for the evolution of the Paleo-and Meso-Tethys. *Gondwana Res.*, 39,
542 292-316.
- 543
- 544
- 545

546 **Figure captions**

547

548 **Figure 1.** Slab-shaped seismic anomaly in the LLNL-G3D-JPS model (Simmons et al.,
549 2015). (a) A cross section of the mantle between the Kerguelen Plateau to Indonesia
550 shows a high shear-wave velocity anomaly (SEIS) dipping northward extending from the
551 upper mantle to the CMB. The profile of the cross section is shown in Figure 1b. The start
552 and end points of the cross section locate at 60°S, 43°E, and 0°S, 113°E, respectively. In
553 this cross-section, the African LLSVP is located below the SEIS anomaly. (b) Spatial
554 distributions of SEIS anomaly at depths of 623 km, 871 km, 1,071 km, 1,671 km, 2,071 km
555 and 2,471 km. The African LLSVP below the southern Indian Ocean is shown at depth of
556 2,471 km.

557

558 **Figure 2.** Tectonic reconstructions of the Lhasa terrane. (a) Map views of the Lhasa
559 terrane northward drift (modified after Li et al., 2016). The paleolatitude of the Lhasa
560 terrane is derived from paleomagnetic data, whereas the paleolongitude is unconstrained.
561 The background is the plate reconstruction model of Zahirovic et al. (2016). Oceanic
562 crustal ages are color-coded. (b) Schematic cross sections of the Mesozoic plate motions
563 in the Indian Ocean region (modified after Zhu et al., 2011a). The northward migration of
564 magmatism in the Lhasa terrane indicates a southward subducted Paleo-Tethyan plate
565 below the northern Lhasa terrane, which gradually rolled back between 220 and 160 Ma.
566 Meanwhile, the Meso-Tethyan Ocean opened as the trench retreated northward. A
567 northward subduction of Meso-Tethyan ocean plate initiated at the southern margin of

568 Eurasia following final suturing of the Lhasa terrane with Qiangtang (160-115 Ma). ML =
569 mantle lithosphere.

570

571 **Figure 3.** 2D model results at 160 Myr (from the start of model run). Left panel shows the
572 thermal fields and right panel represents viscosity fields. (a) Model N20 with an initially
573 north-dipping slab. Model S05 (b), Model S15 (c), and Model S17 (d) all have initially
574 south-dipping slabs. The models shown in (a) and (b) have parameters that are otherwise
575 identical except for the initial dip of the slab. The model shown in (c) has no excess
576 viscosity in the pile compared to the nominal case in (b), while that shown in (d) has a
577 larger increase in viscosity. Detailed model parameters are listed in Table S2. Initial model
578 setup is shown in Fig. S2.

579

580 **Figure 4.** Initial temperature and viscosity profiles in Model 1. (a) Non-dimensional
581 temperature profiles. (b) Viscosity structures. Black lines represent horizontally averaged
582 values. Blue dashed lines represent mantle outside thermochemical piles. Red dashed
583 lines denote the profiles that pass through thermochemical piles.

584

585 **Figure 5.** Initial setup of global mantle convection model. (a) Average temperature fields
586 between 350-750 km depths. The dashed line shows the spatial extend of the upper
587 portion of inserted slab. (b) Average temperature fields between 750-1,200 km depths.
588 The dashed line shows the spatial extend of the lower portion of inserted slab. (c) The
589 thermal field at 2,470 km depth. Two high-temperature anomalies are constructed to
590 simulate the African and Pacific thermochemical piles. The spatial positions are generally

591 based on tomography observations. (d) The cross section of temperature and viscosity
592 fields of mantle from the Kerguelen Plateau to Indonesia.

593

594 **Figure 6.** Result of Model 1 that shows the interaction between the synthetic Mesozoic
595 subducted slab and the African pile below the southern Indian Ocean. Left column shows
596 the plate reconstruction model of Zahirovic et al. (2016). Right column shows the cross
597 section of the non-dimensional temperature field of mantle. Black line represents the
598 extent of African thermochemical pile.

599

600 **Figure 7.** Temperature fields at the depths of 402 km, 791 km, 1,847 km and 2,470 km
601 at 0 Ma in Model 1.

602

603 **Figure 8.** Summary of global model results and compare with the seismic observation.
604 Contours represent mantle that is 10% lower than ambient mantle temperature caused
605 by the subducted slabs. Model parameters are listed in Table 2. The time-dependent
606 evolutions of mantle structures are shown in Figs. 6, S3 and S4. Background is LLNL-
607 G3D-JPS model (Simmons et al., 2015).

608

609

610 **Table 1** Invariant parameters in global models

Parameter	Value
Mantle density	3300 kg/m ³
Reference viscosity	10 ²¹ Pa s
Gravitational acceleration	9.8 m/s ²
Thermal expansion coefficient	3×10 ⁻⁵ C ⁻¹
Thermal diffusivity	10 ⁻⁶ m ² /s
Reference temperature	2800 °C
Surface temperature	0 °C
Earth radius	6371 km
Mantle height	2867 km

611

612

613

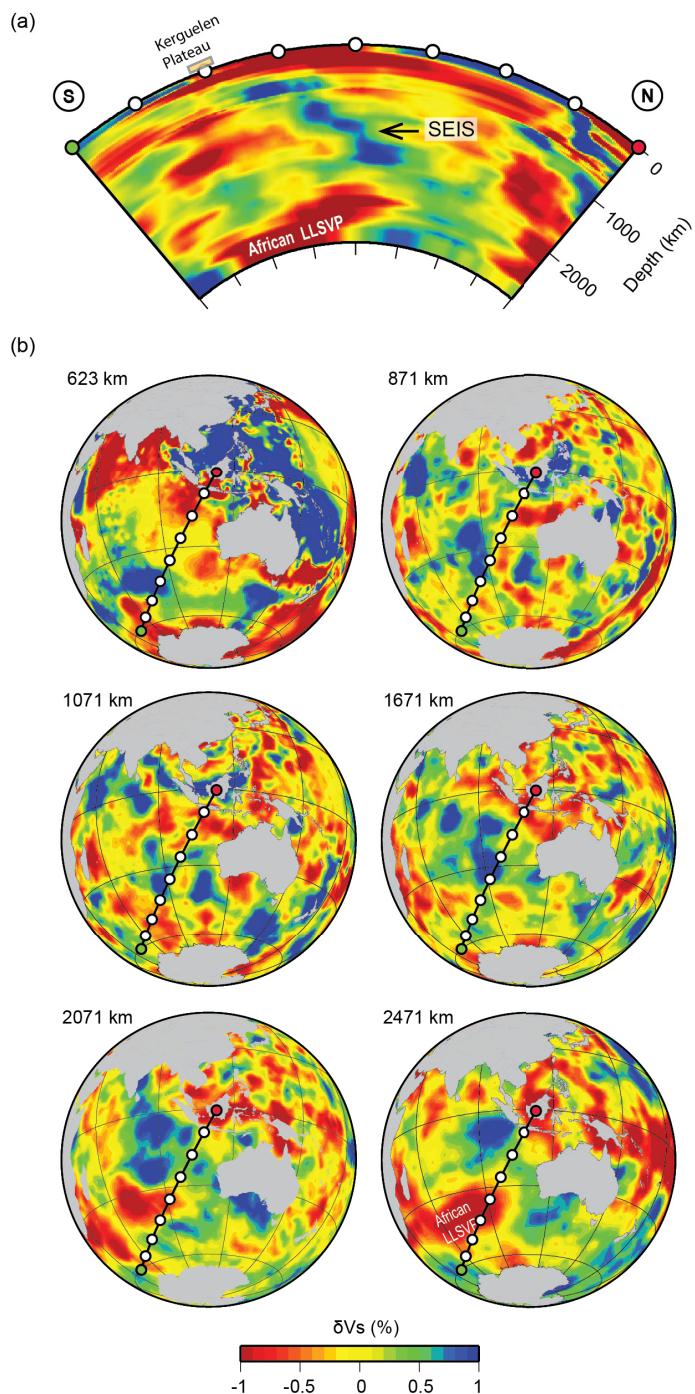
614

615

616

617 **Table 2.** Summary of global models

Model	Lower mantle η_0	Clapeyron slope at 660 km discontinuity	Age of inserted Slab	Thermochemical piles		Slab polarity reverse	Figure
				Density increase	Viscosity η_c		
1	50	-2 MPa K ⁻¹	40-80 Myr	100 kg/m ³	10	Y	Fig.6
2	50	-2 MPa K ⁻¹	-	100 kg/m ³	10	-	Fig.S3a
3	50	-2 MPa K ⁻¹	40-80 Myr	-	-	N	Fig.S3b
4	50	-2 MPa K ⁻¹	80-120 Myr	100 kg/m ³	10	Y	Fig.S3c
5	30	-2 MPa K ⁻¹	40-80 Myr	100 kg/m ³	10	Y	Fig.S3d
6	50	-	40-80 Myr	100 kg/m ³	10	Y	Fig.S3e
7	50	-2 MPa K ⁻¹	40-80 Myr	100 kg/m ³	1	Y	Fig.S4a
8	50	-2 MPa K ⁻¹	40-80 Myr	125 kg/m ³	10	Y	Fig.S4b

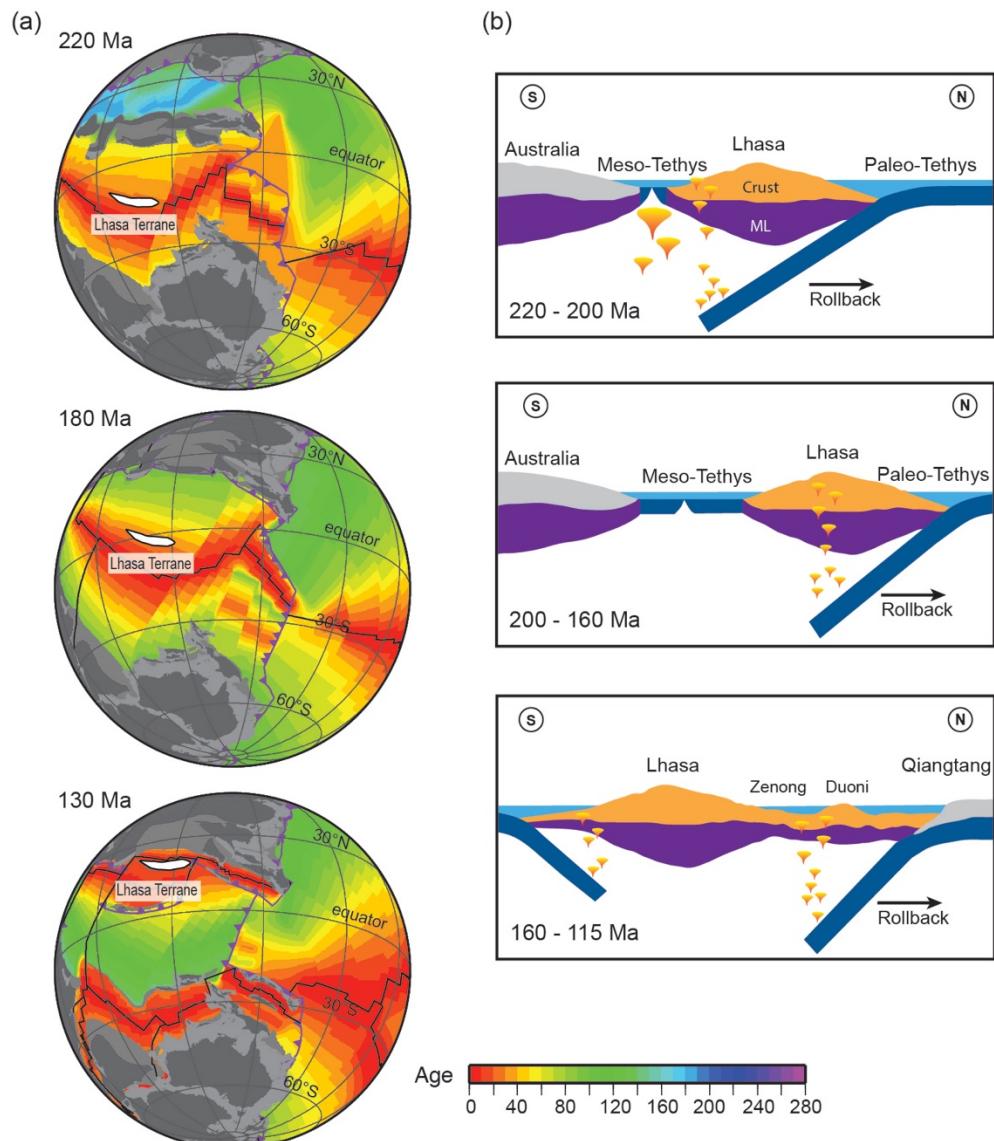

618 Grey shading represents the parameter that is different from Model 1

619

620

621 **Figure 1**

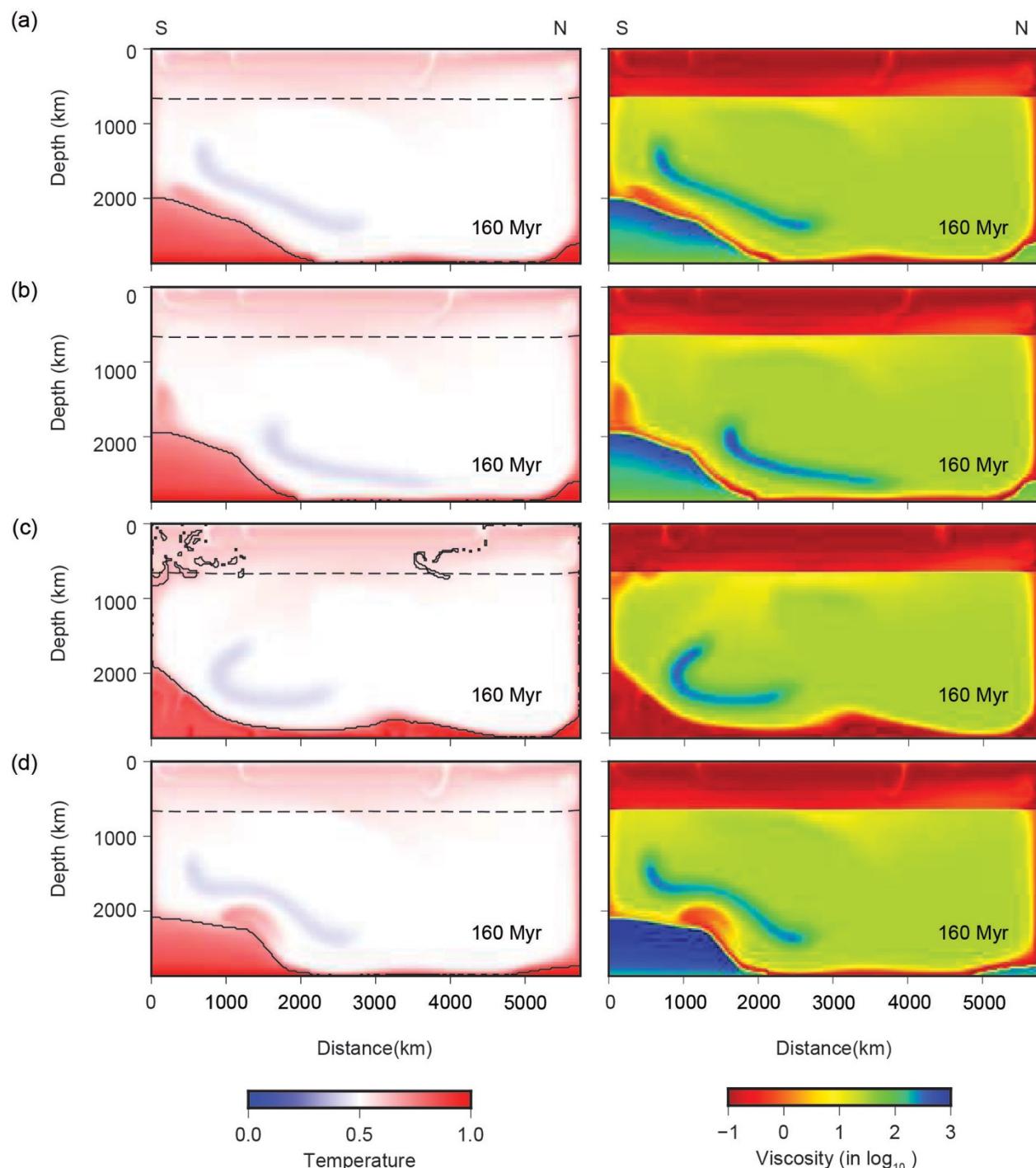
622



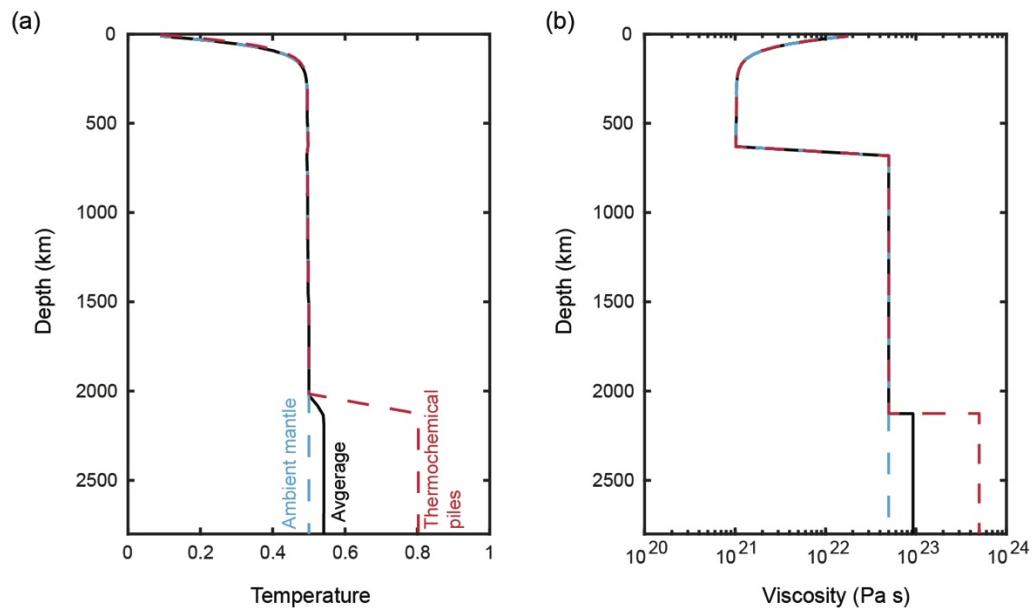
623

624

625 **Figure 2**


626

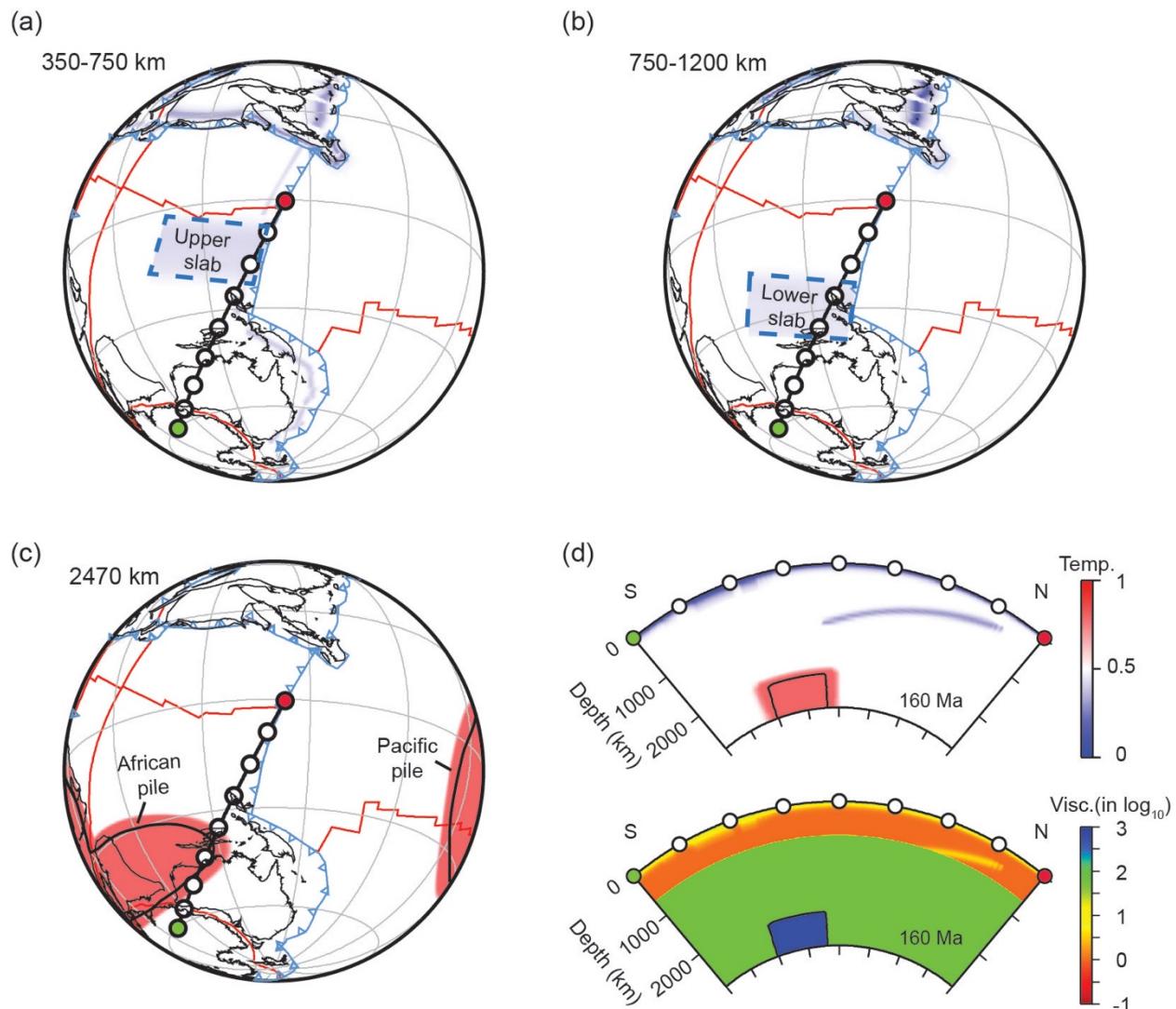
627


628 **Figure 3**

629

631

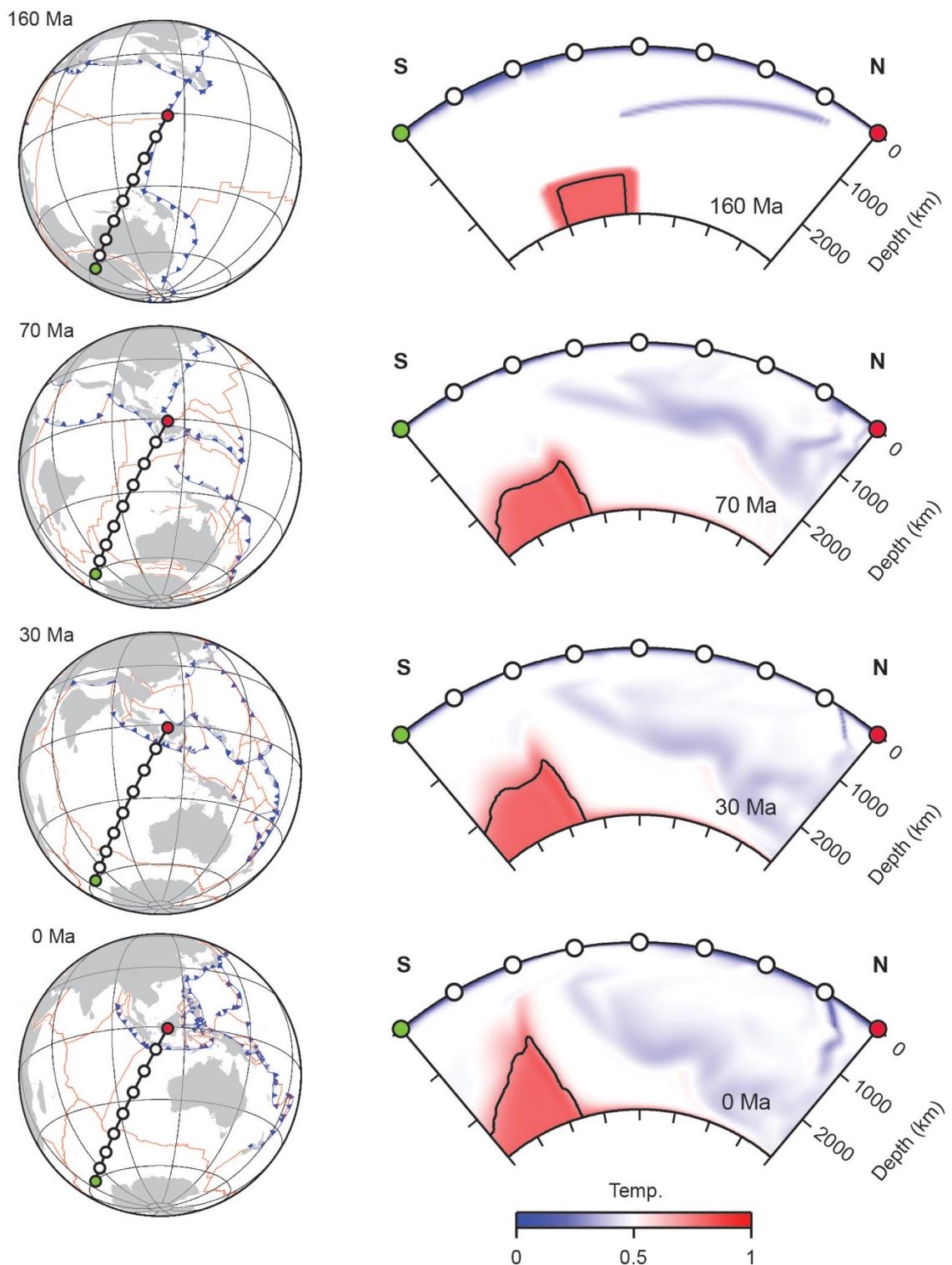
632 **Figure 4**



633

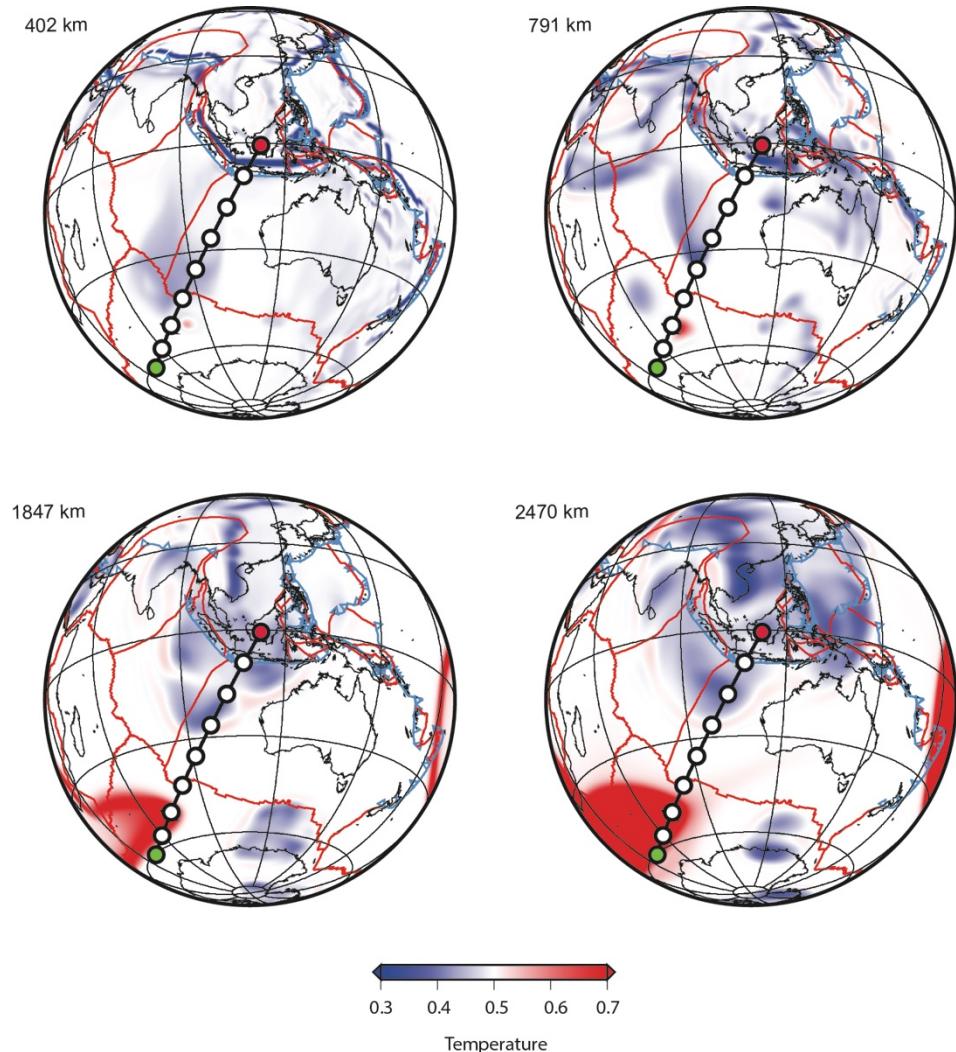
634

635 **Figure 5**


636

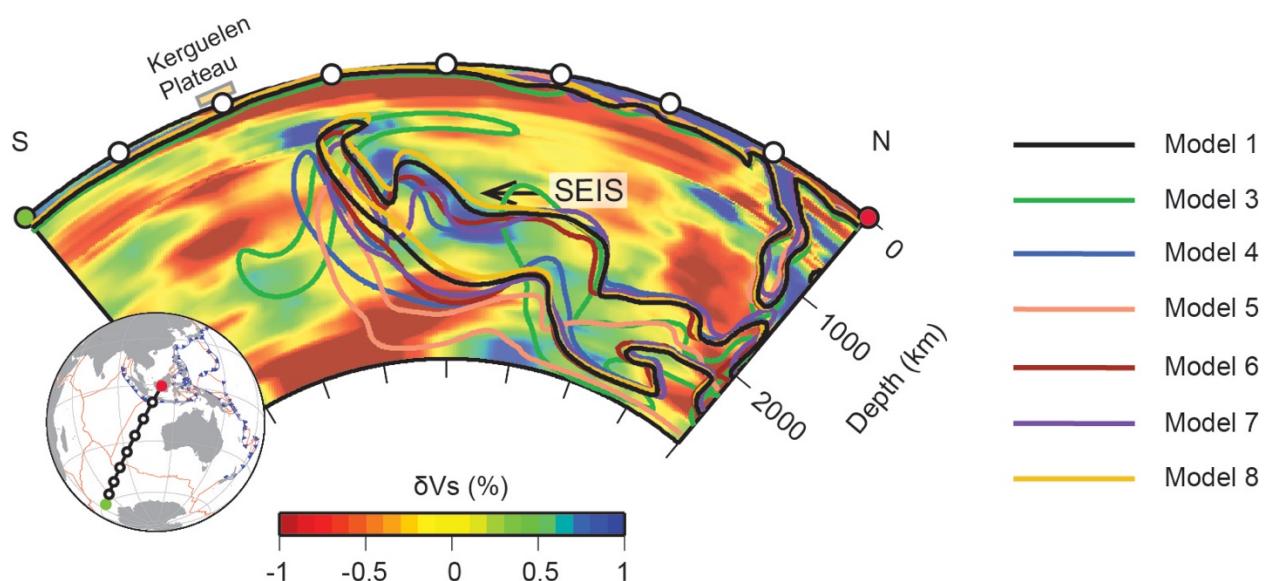
637

638


639 **Figure 6**

640

641


642 **Figure 7**

643

644

645 **Figure 8**

647

648 **Supplementary Material**

649

650 **1. Model setup for 2D models**

651 We compute two-dimensional mantle convection models in a Cartesian coordinate
652 system in which the equations are solved with code *Citcom2D* to solve mass, momentum
653 and energy equations (Moresi and Solomatov, 1995). The model domain is 5,740 km ×
654 2,870 km (horizontal × vertical) with 256×128 elements and 16 markers per element. The
655 top and bottom boundaries are free-slip, and temperatures are set to be T=0.5 (non-
656 dimensional) at the top and T=1 at the bottom boundaries. Besides the fundamental
657 properties like the viscosity jump and Clapeyron slope at 660 km discontinuity, we also
658 test the properties of the isolated slab and thermochemical piles in models.

659 The Rayleigh Number $Ra = \frac{\alpha \rho g \Delta T h^3}{\kappa \eta_r}$ of the ambient mantle equals 3.31×10^7 based
660 on the buoyancy and viscosity parameters in the Table S1. For the Rayleigh number of
661 the chemical pile ($Rc = \frac{\Delta \rho g h^3}{\kappa \eta_r}$, where $\Delta \rho$ is the density contrast), we use the buoyancy
662 number $\frac{Rc}{Ra}$ to describe the density difference between the thermochemical pile and
663 ambient mantle (Table S2).

664 The viscosity in models depends on temperature, depth and composition:

665
$$\eta(T) = \eta_0 \exp \left(\frac{E}{T^* + \text{visT}} - \frac{E}{0.5 + \text{visT}} \right)$$

666
$$\eta(C, T) = \eta(T) \exp (C \cdot \ln \text{Viscc0})$$

667 where $T^* = \min[\max(T, 0), 1]$, T is the non-dimensional temperature. η_0 is pre-factor for
668 depth. $\eta_0 = 1$ for the upper mantle, and has different values for the lower mantle in

669 different cases (see details in Table S2). In all models, visT equals 0, and E (active
670 energy) equals 6.90. C is composition factor varying between 0 and 1. Viscc0 is the
671 compositional dependent parameter, controlling the viscosity contrast between
672 thermochemical pile and ambient mantle.

673 To approximate the temperature profile of the subducted slab, we use a Gaussian
674 function to describe the cross section of the rectangular slab,

675

$$T = 0.5 - \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{\sigma^2}}$$

676 where x is the distance from the perpendicular bisector of the slab width. The standard
677 deviation σ is always eighth of slab width, in order to cut off Gaussian curve in a proper
678 length.

679 In a realistic slab, the temperature structure is not symmetrical, but similar to an
680 error function in the situation of instantaneous cooling of a semi-infinite half-space, which
681 relates to the age of oceanic lithosphere. When calculating the equivalent amount of
682 buoyancy between a hypothetical slab and a realistic slab, the relationship between width
683 and age of Gaussian slab can be obtained as

684

$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2\sigma^2}} dx = \int_0^{+\infty} erfc\left(\frac{y}{2\sqrt{\kappa t}}\right) dy$$

685

$$\sigma = \frac{\text{width}}{8}$$

686 60-Myr-old and 130-Myr-old hypothetical slabs correspond to the width value 0.0563 and
687 0.08, respectively.

688 For the temperature field of thermochemical piles, we connect initial temperature
689 with its initial composition field. We apply a hyperbolic tangent function to construct the
690 upper boundary (*Cline*) of the thermochemical piles

691
$$Cline(x) = \frac{in}{2} + \frac{h-in}{2} \{1 + \tanh[20(w-in-x)]\}$$

692 where we take *in* as 0.015. *w* is the width of the LLSVP, and *h* is the height of the LLSVP.

693 The temperature field for the LLSVP is constructed as

694
$$T(x, z) = \frac{1}{2} + \frac{1}{4} \{1 + \tanh[5(z_0(x) - z)]\}$$

695
$$z_0(x) = in + \frac{h-in}{2} \{1 + \tanh[20(w-x)]\}$$

696

697 **2. Viscosity structure in global models**

698 In the global models, the viscosity depends on the temperature, depth and
699 composition

700
$$\eta = \eta_r \eta_0 \eta_c \exp [E \times (0.5 - T)]$$

701 where η_r is the reference viscosity listed in Table 1. η_0 is the non-dimensional viscosity
702 prefactor depending on depths, with value equals to 1 in the lithosphere and upper mantle.

703 The value of η_0 in lower mantle varies in models (listed in Table 2). η_c is the viscosity pre-
704 factor depending on composition. The value of η_c of the thermochemical piles is listed in
705 Table 2, and $\eta_c = 1$ for other materials. *E* is non-dimensional activation energy. *E*=7 in
706 the upper mantle and equals zero in the lower mantle. *T* is non-dimensional temperature.

707

708

709 **Table S1** Constant parameters in 2D models

Symbol	Description	Value
α	Thermal expansion coefficient	$2.5 \times 10^{-5} K^{-1}$
ρ	Density	$4 \times 10^3 kg/m^3$
g	Gravity acceleration	$10 m/s^2$
ΔT	Temperature contrast	$1400 K$
h	Mantle depth	$2870 km$
κ	Thermal diffusion constant	$10^{-6} m^2/s$
η_r	Reference viscosity	$10^{21} Pa \cdot s$

710

711