
Runtime Analysis of Whole-System Provenance
Thomas Pasquier∗
University of Bristol

Xueyuan Han
Harvard University

Thomas Moyer
University of North
Carolina at Charlotte

Adam Bates
University of Illinois at
Urbana-Champaign

Olivier Hermant
MINES ParisTech

PSL Research University

David Eyers
University of Otago

Jean Bacon
University of Cambridge

Margo Seltzer
University of

British Columbia

ABSTRACT
Identifying the root cause and impact of a system intrusion remains
a foundational challenge in computer security. Digital provenance
provides a detailed history of the flow of information within a com-
puting system, connecting suspicious events to their root causes.
Although existing provenance-based auditing techniques provide
value in forensic analysis, they assume that such analysis takes
place only retrospectively. Such post-hoc analysis is insufficient for
realtime security applications; moreover, even for forensic tasks,
prior provenance collection systems exhibited poor performance
and scalability, jeopardizing the timeliness of query responses.

We present CamQuery, which provides inline, realtime prove-
nance analysis, making it suitable for implementing security appli-
cations. CamQuery is a Linux Security Module that offers support for
both userspace and in-kernel execution of analysis applications. We
demonstrate the applicability of CamQuery to a variety of runtime
security applications including data loss prevention, intrusion detec-
tion, and regulatory compliance. In evaluation, we demonstrate that
CamQuery reduces the latency of realtime query mechanisms, while
imposing minimal overheads on system execution. CamQuery thus
enables the further deployment of provenance-based technologies
to address central challenges in computer security.

CCS CONCEPTS
• Security and privacy → Operating systems security; Infor-
mation flow control; Intrusion detection systems;

KEYWORDS
Whole-system Provenance; Information Flow Tracking; Graph Pro-
cessing; Linux Kernel

ACM Reference Format:
Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Her-
mant, David Eyers, Jean Bacon, and Margo Seltzer. 2018. Runtime Analysis

∗Part of this work was completed at Harvard University and at the University of
Cambridge.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243776

of Whole-System Provenance. In 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’18), October 15–19, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3243734.3243776

1 INTRODUCTION
Timely investigation of system intrusions remains a notoriously
difficult challenge [66, 94, 96]. While security monitoring tools pro-
vide an initial notification of foul play [13, 41, 86, 91, 95, 97], these
indicators are rarely sufficient in and of themselves. Instead, craft-
ing an appropriate response to a security incident often requires
scouring terabytes of audit logs to determine an adversary’s method
of entry, how their reach spread through the system, and their ul-
timate mission objective. Such investigations not only require a
human-in-the-loop, but are excruciatingly slow, at times requiring
months of investigation and thousands of employee hours [56].
This delay between an event’s occurrence and its diagnosis repre-
sents a tremendous window of opportunity for attackers – as they
continue to exploit the system, defenders are still just getting their
bearings.

Digital provenance (or provenance for short) refers to the data
being used in a variety of ways to address the challenges of forensic
audits. By parsing individual records into causal relationship graphs
that describe a system’s execution, provenance enables defenders
to leverage the full historical context of a system and to reason
about the interrelationships between different events and objects.
With provenance, forensic investigations can trace back a given
security indicator (e.g., a port scan) to the attacker’s point of entry
(e.g., a malicious email attachment) [53] and then trace forward
from the entry point to determine what other actions the attacker
has taken on the system.

Unfortunately, provenance-based auditing’s growing popularity
has uncovered significant limitations in its performance and scala-
bility. Early efforts to integrate provenance querying into produc-
tion systems indicated that, even for modestly small organisations
(e.g., 150 workstations), forensic queries can take on the order of
hours or days to complete [61]. In an actual attack scenario, where
a timely incident response could make the difference between vic-
tory and defeat, such delays are unacceptable. Moreover, to date,
provenance-aware systems have supported causal reasoning only
as an after-the-fact forensic activity [54]; this is unfortunate, be-
cause provenance is also invaluable to a variety of runtime security
tasks such as access control [76, 77], integrity measurement [92],
and regulatory compliance [8, 15, 68, 81]. To date, the design of low
latency mechanisms for realtime provenance analysis has not been
given adequate consideration in the literature.

https://doi.org/10.1145/3243734.3243776
https://doi.org/10.1145/3243734.3243776
https://doi.org/10.1145/3243734.3243776

The goal of this work is to bridge the gap between runtime secu-
rity monitoring and post-hoc forensic analysis. In support of this
goal, we consider methods for the deep integration of provenance
capture and analysis within the operating system. We introduce
CamQuery, a framework that supports runtime analysis of prove-
nance and thus enables its practical use for a variety of security
applications. CamQuery pairs a runtime kernel-layer reference mon-
itor – expanding and modifying CamFlow [79] – with a novel query
module mechanism that enables runtime provenance analysis and
even mediation of system events. CamQuery modules present a
familiar vertex-centric API, as popularised by modern graph pro-
cessing systems such as GraphChi [57] and GraphX [40]. In these
vertex-centric platforms, full-graph analysis routines are expressed
in terms of a small program that runs in parallel on every vertex
(node) in the system. The graph-structured nature of provenance
data makes this model a good fit and permits use of a familiar
API. While these applications run directly over the live provenance
stream, provenance can be simultaneously persisted to facilitate
additional post-mortem and/or forensic analysis.

To demonstrate the generality of CamQuery, we consider sev-
eral exemplar query applications in § 5. 1) a data loss prevention
scheme [18] popular in provenance-security based community; 2)
a provenance based intrusion detection scheme; 3) a mechanism to
apply constraints on information flow; and 4) a provenance signa-
ture scheme. These case studies illustrate the rich space of design
possibilities that are enabled through runtime provenance analysis.
The source code for CamQuery, along with associated applications
and datasets, is available at http://camflow.org.

This paper makes the following contributions:
CamQuery: We present the design and implementation of CamQuery,
an analysis framework over a live provenance stream.
Whole-system provenance modelling: our work is the first to
provide automated modelling of whole-system provenance through
static analysis of the Linux kernel source code.
Exemplar Applications: We demonstrate CamQuery’s efficacy in
security-related applications, such as preventing loss of sensitive
data or assuring log integrity.
PerformanceEvaluation:We rigorously evaluate the performance
of CamQuery to demonstrate its effectiveness in realistic operating
environments.
Availability: We released an open-source implementation of Cam-
Query. Based on the Linux Security Modules framework, CamQuery
is immediately deployable on millions of systems worldwide.

2 BACKGROUND
To provide context for the rest of the paper, we first introduce
the concept of whole-system provenance and then outline some
shortcomings of existing systems.

2.1 Whole-System Provenance
TheW3C [19] defines provenance as a directed acyclic graph (DAG)
where vertices represent entities (data), activities (transformations
of data) and agents (persons or organisations), and edges represent
relationships between those elements. Fig. 1 presents a simple ex-
ample. In our context, entities are kernel objects, such as inodes,

PcktA

PcktB

Q1P1

P2

S1

S2

T1

T2

version

Flows
info.

Figure 1: A simple provenance DAG: two processes (P andQ)
exchange packets (PcktA and PcktB) through their respective
sockets (S and T).

messages, and network packets; activities are tasks; and agents are
users and groups.

In practice, it is impossible to represent a mutable process or file
as a single vertex while simultaneously ensuring that the graph
remains acyclic [21]. For example, in a naive representation, a pro-
cess that both reads and writes a file immediately creates a cycle,
because the process depends on the file (due to the read), and the file
depends on the process (due to the write). Cycles are problematic.
Edges in the provenance graph represent dependencies between the
states of different objects and express causal relationships. There-
fore, an object must depend only on the past (i.e., the state of an
object cannot depend on a future state). The most commonly used
cycle avoidance technique is to create multiple vertices per entity or
activity [72], each representing a version or state of the correspond-
ing object. We can see in Fig. 1 that new versions of the process P
and sockets S andT are created as information flows through these
objects.

Using provenance graphs, we can detect and provide attribu-
tion for malicious behaviour [43] or actively prevent attacks using
provenance-based access control [76]. However, using provenance
to prevent actions requires that provenance is “complete and faith-
ful to actual events” [82]. Missing events could sever connections,
resulting in failure to reveal an important information flow; er-
rant provenance could falsely implicate a benign process. Pohly et
al. [82] demonstrated that it was possible to satisfy such require-
ments by building provenance capture around the referencemonitor
concept [11] to mediate all events that should appear in the prove-
nance graph. They called this approach whole-system provenance,
which records events from system initialisation to shutdown.

2.2 Issues With Provenance Architectures
Existing provenance capture architectures were not designed with
realtime support for security applications in mind. Therefore, unsur-
prisingly, they have some fundamental limitations. The traditional
whole-system provenance capture stack, as first implemented in
PASSv1 [72], is built of the following five layers:

• the capture layer records system events;
• the collection layer transports provenance information to
where it may be used (e.g., using messaging middleware such
as Kafka [2] or Flume [1]);

• the storage layer transforms system events into a prove-
nance graph and persists it;

http://camflow.org

P1 G1 S1
w1 r5

v2

F1

P2 G2 Q2 S2

r3

Q1

w12w7

v6r4 v9

r10

r8

v11
Flows

info.
version

Figure 2: A demonstration of how path queries can be calcu-
lated through label propagation. The red (shaded) boxes in-
dicate those vertices (with versions in subscripts) to which
the “confidential” label is propagated. Confidential informa-
tion flows from file F to socket S , through process P , file G,
and processQ . ri ,vi , andwi stand for read, version, andwrite,
respectively. The subscripts i represent event ordering.

• the query layer extracts provenance through queries rele-
vant for a particular analysis;

• the analysis layer interprets the provenance in the context
of an application.

The use of whole-system provenance for runtime security appli-
cations is a relatively recent phenomenon. Bates et al. [18] demon-
strate provenance-based techniques to prevent loss of sensitive
data in an enterprise, while Han et al. [43] use provenance to de-
tect errant or malicious processes in a cloud environment. Both
of their systems were built on top of the conventional stack de-
scribed above. We argue that such an approach is suboptimal for
provenance-based security applications, incurring latency penalties
arising from the need to store data before querying or analysing
it. Specifically, when the goal of provenance analysis is mediation,
delaying that analysis until after the data has been stored is imprac-
tical. Therefore, while existing architectures may be appropriate
for post-mortem forensic investigations, they are not ideal for run-
time security applications. The goal of our work is to enable such
applications through the introduction of vertex-centric, real-time
analysis of streaming provenance.

3 RUNTIME ANALYSIS FRAMEWORK
In the previous section, we made the case for realtime analysis over
the provenance data stream. We now present the design of Cam-
Query, a framework for enabling such analysis to support runtime
provenance-based security applications.

3.1 Threat Model & Assumptions
We design CamQuery with consideration for an adversary that has
gained remote access to a host. Once the adversary has gained ac-
cess to the machine, they may engage in typical attacker behaviour
such as installing malware, escalating their privilege level, or en-
gaging in anti-forensic activities to hide evidence of their misdeeds.
However, we make the common assumption that the adversary
does not have physical access to the machine. Broadly, the goal of
CamQuery is to securely facilitate the provenance-based analysis of
the adversary’s actions in real time.

Trusted Computing Base (TCB): The TCB of CamQuery includes
a capture mechanism to generate a provenance graph from sys-
tem events and a query mechanism to process the provenance at
runtime, which we discuss at greater length in the remainder of
this section. Because any loaded kernel module is granted unre-
stricted access to kernel memory, we assume that the entire kernel
is distributed and installed in a trusted state, which is a typical
assumption in kernel-layer security mechanisms. This assumption
is made more reasonable through the use of integrity measure-
ment techniques such as remote attestation and module signatures.
Protecting the capture mechanism from attackers who are able to
alter kernel behaviour is an important but orthogonal issue that we
discuss in § 7.
Secure Provenance Store: If we wish to store provenance for
post-mortem forensic analysis, an adversary must not be able to
corrupt it. We assume the availability of secure provenance storage,
which can be achieved through a variety of known techniques. For
example, Hasan et al. [45] present a hash-chain-based method for
protecting provenance, while Bates et al. [18] secure provenance
storage and transmission through the use of type enforcement. By
layering these systems, it becomes possible to ensure full-stack
trustworthy provenance.
Checkpointing: We assume that CamQuery is deployed on a host
that does not leverage checkpointing. Checkpointing systems pose
a challenge for all provenance systems, because restoring a check-
point effectively moves a system backwards in time. As a demon-
strative example of this problem, consider a policy to prevent con-
flicts of interest [22], e.g., a policy to prevent a user who has read
the Coca-Cola recipe from also reading the Pepsi recipe. If check-
pointing could be used to rollback the system to a state before the
Coca-Cola recipe was read, an adversary could easily violate the
policy.

3.2 Motivating Example
To identify the operational requirements of CamQuery, we ground
our discussion in a prior example of provenance-based runtime
security applications. Bates et al. [18] present a loss prevention
scheme (LPS) that disallows confidential information to be sent to
an external IP address by issuing provenance ancestry queries on all
network transmissions. Because this application was implemented
on a conventional provenance capture stack, query latency rapidly
became the bottleneck – even when the user queried a relatively
small graph stored in an in-memory database, the responses took
upward of 21ms. Worse, because response latency grew linearly
with the size of the graph, one would expect this application to
quickly grow unusable under realistic conditions.

In contrast to ancestry queries, an alternative method of im-
plementing LPS would be to propagate security labels along the
provenance graph in realtime, as demonstrated in Fig. 2. Because
each object will be associated with the correct security label at the
enforcement point, graph traversal is no longer necessary and an au-
thorization decision can be made in constant time. Note that while
this approach is akin to taint tracking, a provenance-based approach
allows for the expression of more complex queries than is possible
in a conventional taint-tracking system. With a provenance-based
approach, we can express subtle propagation constraints based on

Capture Module

RelayFS interface

Messaging MW

kernel

local

remote

Provenance records

LKM query

LKM query

user-space

Provenance Service User-space query

Remote Query

Provenance records

LSM hooks

NetFilter Hooks

Figure 3: An overview of the CamQuery framework.

properties of the graph (we demonstrate this in Example #1 in
§ 5). For example, Bates et al.’s LPS system propagates labels only
along certain edge types, which is not possible in a data-centric
taint-analysis system.

This approach to performing LPS can be generalized to a vari-
ety of other runtime security applications.1 For example, in access
control [76, 77], stream-based analysis can be used to express con-
straints on the properties of paths in the graph in a manner similar
to computation tree logic (e.g., all paths from an external socket
must not lead to disk until they have gone through an anti-virus
process) [28]. Such constraints can be evaluated by building primi-
tives above a value propagation algorithm. This allows, for example,
policies such as declassification and path disjointedness to be built
to enforce conflict-of-interest constraints [22]. With this in mind,
the goal of CamQuery is to facilitate runtime security applications
such as those considered above. In addition, as we show in § 5, the
framework is sufficiently rich to be used, for example, to generate
feature vectors in an intrusion detection setting.

3.3 Overview
Fig. 3 presents an overview of the CamQuery framework. CamQuery
captures system events using LSM and NetFilter hooks; those
events are transformed into a provenance graph within the cap-
ture module (i.e., CamFlow). The capture module feeds graph
elements (i.e., edges and vertices) to stacked CamQuery queries,
which are either built directly into the kernel or implemented as a
loadable kernel module. The kernel transfers these graph elements
to user space for 1) consumption by user space queries; 2) record-
ing for post-hoc analysis; or 3) transmission to a remote machine.
CamQuery embodies the design goal of ensuring a standard query
implementation mechanism, independent of the three deployment
options, discussed in § 4.

3.4 Provenance Monitor
Like prior kernel-layer provenance capture systems (e.g., LPM [18],
HiFi [82]), CamFlow introduces a provenance monitor in the kernel.
A provenance monitor is a provenance capture mechanism that

1We return to the subject of example provenance-based security applications in § 5.

satisfies the reference monitor concept [10], possessing the prop-
erties of complete mediation, tamperproofness, and verifiability.
The relevance of these guarantees in the context of provenance
capture is that they ensure that the provenance history is complete
and accurate, even in the presence of an active attacker. While
past provenance monitors generally only denied system accesses if
they were unable to generate a new record of the access (e.g., out
of memory), CamQuery exposes a general mechanism for system
mediation, allowing security applications to authorize or deny new
access based on the provenance history of the concerned principals.
Further details are in § 4.2.

3.5 CamQuery API
CamQuery provides an API, inspired by graph-processing frame-
works such as GraphChi [57] and GraphX [40], enabling straight-
forward implementation of value propagation applications. A query
application consists of three functions:

(1) init: called upon query initiation to initialise the query’s
variables;

(2) out_edge(v, e): called on every outgoing edge e of vertex v ;
(3) in_edge(e, v): called on every incoming edge e of vertex v .
CamQuery invokes out_edge and in_edge in a manner guar-

anteeing that edges are processed according to the partial order
implied in paths in the graph and in topological order of the vertices.

CamQuery calls the developer-defined out_edge and in_edge
functions with two parameters containing edge and node data
structures. These structures expose attributes of the underlying
kernel objects they represent (e.g., inode, process, shared memory),
allowing the developer to reference or modify the objects associ-
ated with the new system event. For example, the data structure
representing a process vertex contains information such as UID,
GID, namespaces, security context, system and user time, memory
consumption, etc.; in turn, the edge data structure contains infor-
mation such as offset, flags, mode, etc.. There are around two dozen
vertex types, e.g., path, network addresses, network packet, and
shared memory states (complete list online [7]). Similarly, there are
over three dozen different edge types covering families of system
calls (complete list online [6]). By specifying conditional constraints
on the processing of vertex/edge labels and values, developers can
express specific, complex queries.

In addition to the manipulation of the provenance objects and
existing kernel objects, CamQuery also provides functions that al-
low developers to associate new labels or values with edges and
vertices (e.g., add_label, add_ptr). Listing 1 shows a query that
implements a loss-prevention scheme, which we describe at greater
length in § 5. Associating labels with graph elements allows de-
velopers to easily implement, in a few lines of code, mechanisms
such as taint tracking, information flow control, or access control.
Futhermore, using data structure association it is possible to build
more complex graph analytics. For example, we show in § 5 how to
associate complex data structures with kernel objects and perform
inlined computation while traversing the graph. From that, we can
compute, at runtime, feature vectors used to perform intrusion
detection.

CamQuery explicitly decouples the graph analysis implementa-
tion from the underlying kernel infrastructure. The goal is to allow

1 # d e f i n e KERNEL_QUERY
2 # i n c l u d e " i n c l u d e / camquery . h "
3

4 s t a t i c l a b e l _ t c o n f i d e n t i a l ;
5

6 s t a t i c vo id i n i t (vo id) {
7 c o n f i d e n t i a l = g e t _ l a b e l (" c o n f i d e n t i a l ") ;
8 }
9

10 s t a t i c i n t out_edge (union prov_msg ∗ node , union prov_msg ∗
edge) {

11 sw i t ch (edge_ type (edge)) {
12 c a s e RL_WRITE :
13 c a s e RL_READ :
14 c a s e RL_SND :
15 c a s e RL_RCV :
16 c a s e RL_VERSION :
17 c a s e RL_VERSION_PROCESS :
18 c a s e RL_CLONE :
19 i f (h a s _ l a b e l (node , c o n f i d e n t i a l))
20 a d d _ l a b e l (edge , c o n f i d e n t i a l) ;
21 }
22 r e t u r n 0 ;
23 }
24

25 s t a t i c i n t in_edge (union prov_msg ∗ edge , union prov_msg ∗
node) {

26 i f (h a s _ l a b e l (edge , c o n f i d e n t i a l)) {
27 a d d _ l a b e l (node , c o n f i d e n t i a l) ;
28 i f (node_type (node) == ENT_INODE_SOCKET)
29 r e t u r n PROVENANCE_RAISE_WARNING ;
30 }
31 r e t u r n 0 ;
32 }
33

34 QUERY_NAME("My Example Query ") ;
35 QUERY_DESCRIPTION ("An example query ") ;
36 QUERY_AUTHOR(" John Doe ") ;
37 QUERY_VERSION (" 0 . 1 ") ;
38 QUERY_LICSENSE ("GPL ") ;
39 r e g i s t e r _ q u e r y (i n i t , in_edge , out_edge) ;

Listing 1: CamQuery query in C.

development of new provenance modules with a minimum of engi-
neering effort. For example, traditional taint tracking or informa-
tion flow control implementations require extensive engineering
effort [55, 85], while it is possible to implement these applications
in CamQuery using only a few dozen lines of code.

4 IMPLEMENTATION
We have implemented CamQuery for Linux 4.14.15 and validated its
use on Fedora 27. The work presented here is fully implemented,
used in multiple research projects, and is available online on GitHub
(https://github.com/CamFlow) under a GPL v2 license.

4.1 Capture Mechanism
We built CamQuery on top of the CamFlow provenance capture sys-
tem [3, 79, 80], our actively-maintained provenance monitor built as
a stackable Linux Security Module (LSM) [69]. Compared to other
existing capture techniques [34, 72], an LSM-based approach en-
sures that CamFlow can observe and mediate all information flows

between processes and kernel objects [27, 31, 36, 51] (see § 4.2 for
further discussion).

Recording exact interactions between shared states (e.g., mmap
files, shmem, etc.) is challenging. CamFlow records those interac-
tions by conservatively assuming that information always flows
between processes and shared states. We represent shared states as
entities. In the provenance graph, we add a relation from a process
to the associated shared states when it receives information (e.g.,
reading a file), and a relation from the associated shared states to
the process when it sends information (e.g., writing a file). We track
shared memory by parsing through the memory data structure
(mm_struct) associated with each task. Additionally, we extended
CamFlow to track provenance at the thread level rather than the
process level. Note that CamFlow is the first whole-system prove-
nance capture mechanism to do so. Process memory is represented
as a shared state between threads in the provenance graph. We
made these changes on top of the original design of CamFlow to
obtain more accurate provenance and consequently more accurate
results in security applications such as intrusion backtracking [53].
However, conservatively assuming the existence of information
flows can lead to false positives. We discuss this limitation and its
potential solutions in § 7.

To support runtime analysis, further changes to CamFlow were
necessary. Existing provenance capture mechanisms, including past
versions of CamFlow, do not directly generate graph elements in the
kernel but instead generate logs of events that are processed in user
space as part of the storage layer [18, 34, 71, 72, 82]. We extended
CamFlow to generate the graph directly at the point of capture for
two reasons: 1) event ordering is easier, as opposed to previous
systems’ complex computations to reconstruct kernel states and
event orderings in user space; 2) more importantly, event ordering
is made a precondition of the graph analysis in kernel space.

We modified the capture mechanism to embed limited prove-
nance metadata alongside kernel objects to perform cycle avoidance
in the kernel [71, 72]. The cycle avoidance algorithm is entirely
based on local properties of a node (i.e., information about incoming
and outgoing information flows) and does not require maintenance
of any global state. Fundamentally, we create a new version any
time an object that sent information receives new information. This
guideline guarantees global acyclicity and avoids the creation of a
new state of an object that depends on the future.

Finally, we modified CamFlow to publish graph components (i.e.,
edges and vertices) as the system executes, while providing the
following two partial ordering properties: 1) all incoming edges
to a vertex are published before any outgoing ones; 2) edges and
vertices along a path are published in order. CamQuery processes
edges and vertices as they are published.

4.2 Ensuring Completeness and Accuracy
The design and implementation of CamQuery extend the guarantees
of past provenance monitors to support runtime provenance anal-
ysis. The introduction of a query mechanism, which is described
below, can be used to further restrict system access. The standard
mechanisms used to secure the deployment of past provenance
monitors are applicable to our system. It naturally follows that Cam-
Query possesses the same security properties as do past provenance

https://github.com/CamFlow

path

process_memory

named_process

inode

namedtask

memory_read

version_entity

version_activity

xattr

setxattr

setxattr_inode

Figure 4: Provenance model for the inode_post_setxattr
hook.

monitors, Therefore, we omit a complete security analysis, and in-
stead refer interested readers to the work of Bates et al. [18] for a
detailed analysis of the security properties of provenance monitors.

Past provenance monitor implementations (e.g., Hi-Fi [82] and
LPM [18]) derive security properties from the guarantees provided
by the formal verification of LSM placement [27, 31, 51, 99], en-
suring that they capture all interactions between kernel objects.
We extend this prior assessment of provenance completeness and
accuracy:
Completeness: We want to ensure that all flows of information
between kernel objects are properly recorded. The LSM frame-
work [69] was originally implemented to support Mandatory Ac-
cess Control (MAC) schemes but not information flow tracking.
Recent work by Georget et al. [35, 36] demonstrated, through static
analysis of the kernel code base, that the LSM framework is ap-
plicable to information flow tracking, and that by adding a small
number of LSM hooks, it was possible to properly intercept all in-
formation flows between kernel objects. Building on their work, we
maintain a patch [5] to the LSM framework that allows CamFlow,
and by extension CamQuery, to provide stronger guarantees than
do previous whole-system provenance capture mechanisms.
Accuracy:We also provide accuracy guarantees for the recorded
provenance. We automatically analyse kernel source code to model
the provenance generated by any CamFlow-supported LSM hook
(see Fig. 4 and Fig. 5 for an example of such a model). We then
manually verify that all models meet our expectations.2 Finally,
through static analysis, we identify the LSM hooks associated with
each system call and generate the associated provenance model,

2Unfortunately, manual verification currently requires significant knowledge of the
Linux kernel.

task Xmemory W file Zxattr Y

memory read set xattr set xattr inode

Figure 5: A whole-system provenance subgraph represent-
ing a valid instance of the model shown in Fig. 4.

which we again manually verify. This process is embedded in our
continuous integration testing, with results automatically updated
in our Git repository [4] so that as the capture mechanism and the
underlying kernel evolve, we ensure the accuracy of our provenance
capture. We welcome meaningful scrutiny by third parties. We
believe this work is the first attempt towards formalisation of whole-
system provenance.

We continue work on automated and formal analysis of whole-
system provenance capture. Our future plans include combining
static analysis techniques with dynamic provenance model bench-
marking, as described in e.g., Chan et al. [23]. Althoughwe currently
just assume a correct implementation of the ordering properties
described in § 4.1, our goal is to formalise these as well.

4.3 CamQuery Query Configurations
Depending on the security and performance requirements of a
deployment, it may not always be practical to embed analysis ap-
plications in the kernel. For example, computationally expensive
analysis may affect system stability, or a proprietary analysis tool
may need to be run on a separate host from the capture point.
Therefore, our implementation supports a variety of different con-
figuration options that enable built-in kernel level analysis, loadable
kernel module analysis, local user-level analysis, and remote user-
level analysis on a machine subscribed to the provenance stream.
While all of the deployment options run the same code, only the
in-kernel implementations can prevent policy violations; like previ-
ous systems, the user space and remote implementations can only
detect violations after the fact.
Kernel-Based Configurations: CamQuery implements in-kernel
queries using either Loadable Kernel Modules (LKMs) or directly
linked objects. LKMs are dynamically loaded object files that run in
kernel space and have access to a subset of the kernel API. Directly
linked objects allow for shipping queries as part of the kernel.

Loading a query LKM invokes the register_query function,
which in turn invokes the init function. After registration, the
kernel invokes out_edge and in_edge whenever CamFlow records
a new event. Given the partial ordering property of our collection,
a vertex v will receive all values propagated through an in-edge
before out_edge runs on its outgoing edges. If several queries
are loaded, they execute sequentially in their load order. These
functions are actually executed before the actions they describe,
because they are executed from LSM framework hooks designed
to implement Mandatory Access Control schemes. This enables
CamQuery to prevent policy violations rather than merely detecting
them.

CamQuerymaintains approximately 20 bytes of provenance state
for kernel objects, e.g., inode, cred. By associating provenancewith
the kernel objects themselves, queries have access to the kernel
objects, granting them visibility into kernel states. Provenance for

long-lived kernel states, such as inodes, persists across reboots
through the use of extended attributes.

While the focus of this paper is enabling runtime query and
analysis, we observe that our framework creates opportunities at
other layers of the provenance stack as well. For example, we were
able to rewrite CamFlow’s optional selective capturemechanism [79]
using CamQuery to reflect the modular nature of this component.
This mechanism makes it possible to limit provenance captured to
a process, an object, or characteristics of the provenance graph, e.g.,
recording the actions of only those processes belonging to a specific
SELinux context e.g., to track the actions of an httpd server.
User space Configurations: The user space implementations
of CamQuery operate similarly to the kernel one. Rather than pro-
ducing an LKM, user-level queries produce a service that reads
provenance records from either relayfs or a messaging middle-
ware. Queries process the stream by placing records into a sorted
in-memory edge list and a persistent vertex map.

The CamQuery capture mechanism writes records to per-core re-
layfs files that are read in per-core batches, producing a collection
of partially-ordered edge lists that are not necessarily totally or-
dered. To facilitate ordered processing of edges, a user space utility
performs a merge of the per-core lists as follows – for an out-edge
e received at time t , all in-edges must have been received by t +T ,
where T is the QoS threshold. At regular time intervals, the query
processes all the edges satisfying t < now −T .

Rather than using timestamps to order edges, we use edge IDs;
the capture mechanism guarantees that edge ID ordering respects
the ordering properties described in § 4.1. In a similar manner, we
use provenance DAG causality relationships on network packets
to produce a partial order across machines. We then merge the
per-core edge lists and the network packets to produce a sorted
edge list. The query processes each edge sequentially by invoking
the in_edge and out_edge functions.

In addition to maintaining a list of edges, a user space query
maintains a map of vertices. We discard an edge after it is processed;
we discard a vertex either after processing an edge referencing a
new version of the vertex or after terminating events specific to
the object (e.g., a network packet will not be referenced after it has
been received or a process will not be referenced after it has been
terminated). We show in § 6 that, in practice, this represents a small
memory footprint.

Vertex garbage collection relies on the semantics of system
events. We therefore record events relating to the life cycle of long-
lived objects (e.g., representing in the graph process kernel data
structures being freed). These events are not necessarily pertinent
to the tracking of information flows, but greatly help with garbage
collection. If the framework were to be applied to other types of
provenance (e.g., Spark provenance [50]), the garbage collection
algorithm would require different domain knowledge.

Converting the code in Listing 1 to its user space equivalent
is trivial. We modify Line 1 to reflect the proper target, currently
one of MW_QUERY or RELAY_QUERY, indicating from where the ser-
vice will obtain data (a middleware-provided data stream or re-
layfs, respectively). We add two more query attributes after line
39. QUERY_MSG specifies the messaging middleware broker address
and topic. Note that although the kernel transmits information to
relayfs before executing the action corresponding to the query,

A

C

D E

B

in = 0in = 0

in = 0 in = 2

in = 2

ID = {{2}, {0, 0}}

ID = {{2}, {0, 2}}

ID = {{0}}ID = {{0}}

ID = {{0}}

Figure 6: Calculating vertices’ structural identity (Depth=1).

Algorithm 1 Encoding Structure Identity (pseudo code).
1: function out_edge(vertex, edge)
2: Calculate DTW between its own ID and parent ID
3: Publish feature vector
4: Write to the edge its own ID
5: function in_edge(edge, vertex)
6: Increment vertex in-degree counter
7: Read and save parent ID
8: Merge parent ID to build own ID

as we do not control when user processes are scheduled, we cannot
guarantee that the query service has an opportunity to process the
provenance before the corresponding action is taken. As such, the
user level implementation, and by extension the distributed one,
can guarantee only violation detection, not prevention.
Discussion: The different guarantees available from different Cam-
Query configurations provide a rich set of trade-offs. While in-
kernel queries have access to the underlying kernel data structures
and can prevent events from occurring, they incur overhead on
every system call. § 6 illustrates this power/performance trade-off.
On the other hand, user space queries can perform runtime moni-
toring only, raising alerts relatively quickly, but not quickly enough
to prevent events from occurring. However, such queries can build
on existing libraries to e.g., perform log analysis [79]. Additionally,
the scheduler is responsible for scheduling user space queries, so it
can more easily adjust to system workload as shown in § 6.

5 EXAMPLE APPLICATIONS
We designed CamQuery to enable development of important security
and compliance applications, such as intrusion detection [43, 44],
enforcement of software licenses, and compliance with data reg-
ulation [78, 81]. During development, we implemented several al-
gorithms inspired by the literature to validate the suitability of
the framework. In this way, we ensured that we could implement
meaningful provenance analysis at runtime in widely different use
cases. We provide the examples below to illustrate the range of
applications that can be implemented with CamQuery.
Example #1: Data Loss Prevention. We first demonstrate how
the framework works with a relatively simple graph processing
algorithm implementing the loss prevention scheme of Bates et
al. [18], which prevents sensitive data from leaving a system (as
discussed in § 3.2 and shown in Fig. 2).

Listing 1 shows the implementation of this application. The
query contains four main components: the init function (lines
6–8), the out_edge function (lines 10–23), the in_edge function
(lines 25–32), and a set of query attribute statements (lines 34–39).
Before query registration, CamQuery executes the query attribute
statements to set the query’s properties exactly once. Then, during
registration, it calls the init function exactly once. Subsequently,
CamQuery invokes in_edge and out_edge for every edge in every
active query.

The LPS scheme considers only certain flows of information as
meaningful in the context of the policy. Therefore, it propagates
labels (lines 19–20) only over the relevant flows (line 11–18), raising
a warning if the label ever reaches a socket (lines 26–29). In more
complex scenarios, developers can maintain global states within
a query or associate more complex data structures with edges or
vertices. Notably, we emphasise that Listing 1 contains all of the
required runtime logic for a label-based loss-prevention system,
demonstrating the efficiency with which security applications can
be expressed in CamQuery. Outside of this application, our LPS
scheme assumes only: 1) a labelling state that tags sensitive in-
formation sources with the confidential label, 2) that correctness
requires handling explicit information flow only, not side channels,
and 3) that sensitive information that reaches a system exit point
(e.g., a socket) raises a warning.

We can design more complex algorithms around programmable
label propagation. An example extension uses label propagation
to detect abnormal behaviour in a system. For example, one can
easily use CamQuery to track the origin of executables and sensi-
tive data as previously labelled. An indicative abnormal system
behaviour might be an executable that did not originate from a
trusted repository manipulating sensitive data. Once a potentially
harmful pattern is detected, techniques such as intrusion backtrack-
ing [53] can be used to manually assess the situation. Other more
sophisticated, automated techniques are also available; we refer
interested readers to the work by Eshete et al. [30], which describes,
in more depth, use cases of provenance for label-based intrusion
detection techniques.
Example #2: Intrusion Detection. Recent work explores how to
improve the efficacy of Intrusion Detection Systems (IDS) using
provenance [43]. With this work as inspiration, we show how to
implement anomaly detection using CamQuery. Provenance-based
intrusion detection is still a nascent field that has not yet been
demonstrated to be robust against a realistic active adversary; we
use it merely as a demonstration of CamQuery’s ability to allow for
the construction of complex feature vectors.

Our proposed approach to provenance-based intrusion detection
is based on unsupervised learning techniques. Our goal is to learn
how the system normally behaves, build a model of such behaviour,
and detect large deviations from the model. We generate prove-
nance graphs from the executions of our system in a controlled
environment under normal conditions. As in previous work [43, 44],
we capture provenance data during multiple runs of a cloud applica-
tion under a representative workload and build a model of normal
behaviour.

Our example IDS uses a replicator neural network [47] (RNN,
also known as an autoencoder) to detect anomalies in a graph. An
RNN consists of an encoder and a decoder. The encoder performs

Vulnerability ID Detection rate False positive
MariaDB race condition exploit [37] 100% 0%
MySQL root privilege escalation [38] 50% 0%
Nagios core root privilege escalation [39] 90% 0%

Table 1: Preliminary results for our CamQuery IDS mecah-
nism.

compression of the feature vector. The decoder then reconstructs
the input feature vector from the compressed vector. The objective
of training is to minimise the distance between the input of the
encoder and the output of the decoder. RNNs are often used for
outlier detection, as they often have difficulty reconstructing feature
vectors that diverge significantly from the training dataset. In our
case, we leverage this behavior to detect abnormal structures in the
provenance graph. Using CamQuery, we construct a feature vector
for every vertex, which is composed of the following three parts: 1)
vertex attributes (e.g., vertex type, security context, UID, namespace,
etc.); 2) changes of some attributes over time (e.g., UID, memory or
CPU usage for processes, etc.); and 3) the structural identity [84] of
the vertex, which represents the graph structure surrounding the
vertex.

Structural identity is a vectorisation of the graph neighborhood,
which represents the context in which a vertex exists, and is critical
for anomaly identification in outlier detection [49] and intrusion
detection [24]. We define a neighborhood as the n − ancestry of
a vertex, because descendants are unknown when we generate
feature vectors at runtime. The structural identity is built from
ancestor in-degrees. For each vertex, we maintain a list, L, of length
n+1. Let i be the 0-based index of each element of this list. L0 is the
in-degree of the vertex itself and Li , i > 0 is an in-degree sequence,
a list consisting of the in-degrees of the ith generation ancestors.
Thus, a vertex with two parents, each of which has no ancestors,
is associated with the following list: {{2}, {0, 0}}; Fig. 6 shows a
concrete example.

Following Ribeiro et al. [84], we use Dynamic Time Warping
(DTW), a technique for calculating the similarity between two
temporal sequences [20], to calculate the distance between two
in-degree sequences. We then populate the feature vector of a vertex
with each of the DTW distances between a vertex and its ancestry.
This set of distance is the structural identity of the vertex.

CamQuery propagates in-degree sequences along each path of
a provenance graph. Using the out_edge function, each vertex
passes its in-degree sequence to its descendants. A child vertex
receives sequences from all of its parent vertices and updates its
own sequences using the in_edge function. Algorithm 1 illustrates
this. When the out_edge function runs, the vertex contains enough
information to calculate its structural identity.

Table 1 shows some preliminary results of the intrusion detec-
tion scheme. We generate training data by executing unexploited
instances of each vulnerable application. We then test the IDS by
running a collection of normal and abnormal application executions.
While a full-fledged evaluation of our IDS mechanism is beyond the
scope of this paper, we measure the computational cost of feature
vector generation in § 6.
Example #3: Information Flow. CamQuery can execute single-
pass algorithms that rely on value propagation along paths in the

Q1) path existence
∃p : A ⇒ B;
Q2) existence of a vertex on all paths between two vertices
∀p : A ⇒ B,∃v ∈ p,v , A AND v , B;
Q3) absence of a vertex on all paths between two vertices
∀p : A ⇒ B,v < p;
Q4) path disjointedness
∀v ∈ p,v < p′;
Q5) constraints on properties and types in a path
∀v ∈ p, if vtype = T then P (v), for a specified property P and type T.

Figure 7: CamQuery can be used to query a variety of informa-
tion flow properties. Here, we denote a path from vertex A
to vertex B as p : A ⇒ B.

graph. For example, we implemented the simple primitives sum-
marised in Figure 7. Each implementation required just a few dozen
lines of C code. The data loss prevention scheme introduced in
Example #1, for example, tests for path existence (Q1).

Using these queries, CamQuery can aid in the enforcment or
auditing of regulatory compliance. The Sarbanes-Oxley act (SOX)
applies to publicly held US corporations. The intent of the law
is to establish security controls and accountability of personnel
to protect against data tampering to hide fraud. While the law
itself does not specifically address computing systems, every major
corporation today relies heavily on computers to process financial
data and report to the Securities and Exchange Commission (SEC).
Specifically, Sections 302 and 404 detail the required safeguards
for data to ensure accuracy in financial reporting and required
disclosures. To be SOX compliant, an organization must carefully
consider and have policies for data creation, publishing, retention,
access, distribution, and lifecycle.

We consider here just three of the cases mentioned above. The
first control is data access (Section 302.4.B), which requires that
companies have controls in place to track accesses to data and
ensure that company officers are aware of all relevant data. The
provenance records kept as forensic evidence ensure full compliance
with the requirement to track data access. A report detailing all the
data entities appearing in the captured provenance could inform
company officers of the “relevant” data. Additionally, corporations
could instantiate policies to detect accesses that do not comply with
the act.

The second control we consider is data creation and the ability
for a reporting officer to attest that the reported information is
valid. This requires that data must not be tampered with before
reports are created and filed with the SEC. We can write CamQuery
policies that restrict data access to only those users and activities
involved in report generation. There are multiple ways to express
this, one of which would be to label activities that are known to
be acceptable, then write policies that verify that all activities be-
tween data generation and the SEC filing are labelled as such. This
is a query of type Q5. An alternative is to label all unacceptable
techniques, e.g., using a text editor on the data, and check that no
such activities appear in the path between the data and SEC filing.
This is a Q3 type of query.

V1

V2 V3 V4

V5 V6 V7 V8

E1

E2 E3

E4 E5

E6

E7

E8

h5 = H(V5)

h6 = H(V6) h7 = H(V7)

h8 = H(V8)

h2 = H(V2, E4, h5)

h1 = H(V1, E1, h2, E2, h3, E3, h4)

h4 = H(V4, E7, h7, E8, h8)

h3 = H(V3, E5, h6, E6, h7)

Figure 8: CamQuery can be used to assure integrity by gener-
ating a signed provenance graph.

Sarbanes-Oxley Title V deals with analyst conflicts of interest. It
requires financial analysts to disclose conflicts of interest, ensuring
that investors are not being misled by the biases of a financial an-
alyst. These conflicts of interest can be avoided using separation
of concerns policies [22] that create information barriers prevent-
ing the exchange of information that would produce a conflict of
interest. As a specific example, consider a financial analyst who
is working with one company (Company A) as part of a hostile
takeover of another company (Company B). Information concerning
the takeover must not be transmitted to the brokerage department
that could use the information to alter customer investments to
increase profits for the financial company. This is a Q4 type of
query.
Example #4: Graph Integrity. To ensure the integrity of our
provenance graph, we implemented the directed acyclic graph sig-
nature scheme proposed by Aldeco-Pérez et al. [9]. This technique
is often cited in the literature as a solution to provenance integrity.

The system generates a chain of hashes according to the graph
structure, as shown in Fig. 8. The capture mechanism then signs
these hashes. The analysis engine can re-calculate the hashes for a
graph to verify that they correspond to the signed value. An advan-
tage of this scheme is efficient verification, as it is not necessary to
verify the entire graph to verify vertex V .

We leverage a kernel keyring infrastructure for key management
(we took inspiration from eCryptfs [42]) and the cryptographic API
to perform related operations. The resulting solution is a heavy-
weight, in-kernel query in the evaluation in § 6. While it was easy
to implement graph signing in CamQuery, unsurprisingly, creating
signatures on every system call incurs significant overhead, even
when the cryptographic algorithm itself is relatively lightweight.
Our measurements suggest that the provenance graph signature
scheme [9] is impractical at scale and inadequate when whole-
system provenance capture is considered. It also serves as a cau-
tionary tale: while it is easy to implement a variety of applications
using CamQuery, not all such applications will exhibit acceptable
performance. Creating provenance integrity schemes that are prac-
tical at scale is an important open problem beyond the scope of this
paper.

stat write open/close file fork+exit pipe UNIX socket
0

2

4

6

tim
e x

tim
e v
an

ill
a

vanilla capture nil lps sign lpm

Figure 9: Normalised overhead of queries (LPM capture overhead as reported in [18] is given when available).

Test Type vanilla capture nil lps sign
Process tests, times in µs , smaller is better

stat 1.20 2.44 2.48 2.46 3.24
read 0.22 0.35 0.35 0.36 1.05
write 0.15 0.31 0.32 0.31 1.01
open/close file 2.04 3.21 3.24 3.28 4.00
fork+exit 87.6 85.5 86.6 85.7 89.8
fork+shell 862 860 866 855 861

Latencies in µs , smaller is better
pipe 3.47 3.92 4.05 3.88 4.91
UNIX socket 3.70 6.44 6.61 6.47 7.28

Table 2: LMbench measurements.

6 EXPERIMENTAL EVALUATION
We evaluate both the in-kernel and local user-space implementa-
tions to determine how much overhead CamQuery introduces and
how that overhead is split between provenance capture and query
support.

We use workloads derived from those found in the whole-system
provenance literature to provide meaningful points of comparison.
We run the benchmarks on a bare metal Fedora 27 machine, with
Linux kernel 4.14.15 and CamFlow 0.3.10 with an Intel i7-7700 2.8
GHz CPU and 32 GiB of RAM. Due to space constraints, we present
only a subset of our results. Instructions on obtaining our code and
reproducing all our results are available online (http://camflow.org)
following recommendations by Collberg et al. [26]. Throughout the
evaluation, we refer to the following setup:
vanilla: unmodified Linux 4.14.15 kernel;
capture: whole-system provenance capture;
nil: nil in-kernel query (in_edge and out_edge simply return zero);
lps: the loss prevention scheme in-kernel query described in § 5
Example #1;
sign: the provenance signature in-kernel query described in § 5
Example #4;
ids: the user-space query building feature vectors for the IDS de-
scribed in § 5 Example #2.

6.1 In-kernel Queries
Micro-benchmark: We used LMbench [67] to illustrate the im-
pact of the provenance capture and query on system call perfor-
mance. Table 2 and Fig. 9 present a subset of LMbench results. Our
provenance capture overhead is comparable to that reported for
other systems [18, 82]. This is as expected and provides a sanity

check. More interesting is that the addition of online querying
introduces relatively little overhead.

Indeed, execution time of a single system call is equal to Vs +
ns (C +Q) +msC , whereVs is the execution time of the system call
s on a vanilla kernel. ns is the number of edges in the graph corre-
sponding to the system call s (e.g., a socket send event contains
at least 2 edges, one from the process to the socket, and the other
from the socket to the packet, and potentially edges corresponding
to kernel object versions).ms is the number of vertices in the graph
corresponding to the system call s . C is the cost of capture and Q
is the cost of the query. The relative overhead is higher when Vs
is small, as C and Q are independent of the underlying system call
execution time. The overhead of LPM [18] (and of other previous
provenance capture systems e.g., [72, 82]) is Vs +Cs where Cs is
the cost of capturing the event corresponding to s , as LPM records
system events rather than directly producing the graph structure
(see § 4.1).

One of the advantages CamQuery provides over prior work is a
drastic reduction in the time between an attack and its detection.
Bates et al. [18] reported that it took their system 21ms to evaluate
the same policy and further noted that “these results are highly de-
pendent on the size of the graph. [Their] test graph, while large [6.5
million vertices, and 6.8 million edges], would inevitably be dwarfed
by the size of the provenance on long-lived systems” [18]. The au-
thors suggested that the performance could be further improved
by using deduplication [93] and pre-pruning techniques [14, 79].
However, they did not evaluate the performance impact of such
improvements. They did, however, report that graph size can be re-
duced by up to 89% through pre-pruning techniques [14, 17]. Even
if we assume that the reduction produces a proportional improve-
ment in query time, the resulting 2.31ms per query is several orders
of magnitude larger than the overhead imposed by CamQuery for a
similar application (lps in Table 2).
Macro-benchmark:We contextualise the significance of the over-
head measured in the micro-benchmarks using the Phoronix test
suite [58]. We select benchmarks commonly used in the system
provenance literature. Consistent with the micro-benchmark re-
sults, the macro-benchmark results (Table 3) show that provenance
capture introduces negligible overhead for the kernel build bench-
mark and up to 15% overhead for Postmark. For reference, we also
include reported overheads for prior systems (PASS and LPM). As
the Linux kernel versions (2.6.x for the two mentioned systems vs
4.14.15 for CamQuery) and the underlying hardware vary greatly
across these evaluations, the results simply provide context and
suggest that CamQuery exhibits capture overhead comparable to

http://camflow.org

Test Type vanilla capture nil lps sign PASS LPM
Execution time in seconds, smaller is better

unpack 14.98 15.48 (3%) 15.63 (4%) 15.76 (5%) 16.68 (11%) NA NA
build 402 411 (2%) 416 (3%) 417 (3%) 448 (11%) 15.6% 2.7%

4kB to 1MB file, 10 subdirectories,
4k5 simultaneous transactions, 1M5 transactions

postmark 127 145 (14%) 144 (13%) 146 (15%) 226 (78%) 11.5% 7.5%
Table 3: Macro-benchmark results. PASS [71] and LPM [18] overhead as reported by the authors.

0 50 100 150 200
0
10
20
30
40

0 50 100 150 200
0

50

100

O
ve
rh
ea
d
(in

%)

0 50 100 150 200
0

500

1,000

Number of queries

Figure 10: Benchmark results (unpack in green/top, build in
red/middle and postmark in blue/bottom) as a function of the
number of active queries (we run 0 to 200 concurrent lps
queries). Note the difference in the y axes for the different
benchmarks.

prior systems. The overhead is higher for benchmarks where the
number of system calls per unit of time is larger, as the overhead
is only incurred on interactions between a process and the system
call interface.
Query stacking: The prior results show that a single query in-
troduces acceptable overhead; next we assess the impact of an
increasing number of queries executing concurrently. We run the
macro-benchmarks from Table 3 with a varying number of active
queries and show the results in Fig. 10. On the positive side, over-
head increases linearly with the number of queries. On the negative
side, the Postmark overhead is particularly high, because it is a
system-intensive workload, and system calls trigger query evalua-
tion. While build and unpack spend approximately 10% and 18%
of their time, respectively, in the kernel, Postmark spends 85% of
its time in the kernel, making 253,000 system calls per second (over
twice the rate of the other benchmarks). It should be noted that pro-
duction systems running hundreds of queries is unrealistic. Further,
we plan to explore the possibility of merging a set of queries into a

0 100 200 300 400

0

5

10

id
s
qu

er
y
(%

cp
u
us
ag
e)

0 100 200 300 400

0

5

10

Seconds

ni
l
qu

er
y
(%

cp
u
us
ag
e)

Figure 11: Percentage ofCPUusage per core (each colour rep-
resents one of the eight cores) used by the ids (top) and nil
(bottom) queries during a kernel compilation.

single module, with the goal of reducing the number of redundant
operations. This is a non-trivial task left for future work.

6.2 User space queries
Next, we want to evaluate the performance impact of running
queries in user space. We compare the overhead of the vanilla
and lps in-kernel configurations from the previous section to that

Test Type vanilla in-kernel overhead userspace overhead
(over capture) (over capture)

Execution time in seconds, smaller is better
unpack 14.98 15.76 5% 15.91 6%
build 402 417 4% 427 6%

4kB to 1MB file, 10 subdirectories,
4k5 simultaneous transactions, 1M5 transactions

postmark 127 146 15% 147 15%

Table 4: Overhead of the lps query when compiling the
Linux kernel.

0 100 200 300 400

0

100

200

300

Seconds

M
eg
ab
yt
es

Figure 12: Memory used by the ids (blue/square) and nil
(red/triangle) queries during a kernel compilation.

of the lps user space configuration, where the query is run as a
systemd managed service running on the same machine as the
workload, reading provenance from relayfs. Table 4 shows the
results for the Linux kernel unpack and build benchmark and
Postmark. Note that the user space overhead is only minimally
larger than the in-kernel overhead.

We next investigate how user space queries impact system work-
load by running the nil query and the complex ids query. The
ids query generates feature vectors used by a machine learning
algorithm to perform intrusion detection. We run the kernel build
benchmark as our system workload, as it generates a relatively
large and complex graph (just over 25 million edges were processed
by each query) when compared with the other two benchmarks.
At regular intervals, we record the memory and per-core CPU
consumption of the two queries.

In contrast to kernel queries, the user space query runs at regular
intervals, processing all the newly arrived edges. Relayfs creates
a ring buffer mapped to a pseudofile per CPU core to transmit data
to the query service. The service runs one reader thread per core,
reading the data from its relayfs file and populating the edge list
and the vertex map. Another thread, the processing thread, sorts
the edge list and performs the query at regular time intervals. As
shown in Table 4, the core running the processing thread reaches
about 9% utilisation for the ids query and 4% for the nil query,

while the other cores, which are running reader threads, have a CPU
utilisation between 0% and 2%. The user space query competes with
other workloads on the system for CPU time, which may degrade
application performance. The multi-coloured nature of the lines in
Table 4 shows that the processing thread moves among the cores.

Fig. 12 illustrates the memory consumption for the same queries.
The memory used by the user space query corresponds to the list
of edges and vertices (which includes the propagated values). The
memory usage stabilises, as vertices are garbage collected, to around
305 MB for the ids query and 125 MB for the nil query.

7 CHALLENGES & DISCUSSION
CamQuery has limitations and raises interesting questions that go
beyond the particular framework presented here.
Query Language: CamQuery uses a programmable graph process-
ing framework to express policies, rather than the seemingly more
user-friendly DSL approach. A DSL would undoubtedly need to be
designed with a particular application in mind (e.g., compliance en-
forcement, access control, etc.) and it would be challenging to make
it amenable to queries such as the intrusion detection feature vector
computation. We believe that such languages are important but are
part of individual applications rather than a general framework.
We plan to explore the design and development of a DSL for the
provenance-based access-control scenario. We note also that, con-
current to this study, Gao et al. introduced SAQL [32] and AIQL [33]
which both introduce a domain-specific query language to aid in
forensic investigation. They are implemented over data streams and
persistent storages respectively. We plan to explore how a similar
language could be expressed through our vertex-centric query API.
Distributed Systems: A challenge for CamQuery is the ability to
reason about computations that occur in a distributed system. The
user space implementation can be extended to support these sys-
tems with relative ease, but doing so eliminates the possibility of
performing policy enforcement (see § 4.3). Supporting enforcement
in a distributed system requires that the query be partitioned into
per-machine segments combined into a kernel enforcement mech-
anism. This partitioning necessitates the ability for the system to
validate that the other machines in the system will accurately en-
force the policy, i.e., they are high-integrity and have the necessary
enforcement mechanisms and provenance policies loaded. Once a
machine validates the integrity and suitability of a system, it must
generate a “proof” that the policy has been enforced.

The ability to perform policy enforcement would open up new
opportunities for CamQuery in distributed settings, but also new
challenges. For example, it enables CamQuery to function as the
building block for a secure distributed taint propagation system
with the potential to allow sophisticated logic using complex labels.
To implement such a system, however, two important considera-
tions must be taken into account, among others. First, we must
ensure that CamQuery is: minimally invasive, fully integrated into
the existing network stack; and is compatible with non-provenance-
aware hosts, especially if we hope to insert arbitrarily complex taint
information in network packets. Second, transmission must be au-
thenticated and tamperproof to e.g., man-in-the-middle attack. The
latter might be addressed by existing secure network protocols such
as IPSec, but technical challenges remain.

Trust: The ability for a system to prove statements about its in-
tegrity and processing state is best suited to trusted computing, e.g.,
trusted hardware and remote attestation. In the above distributed
system setting, there is a need for systems to generate “proofs” of
their current state. These proofs need to account for several system
characteristics, including 1) the current integrity state of the sys-
tem (hardware, firmware, software, etc.); 2) the currently loaded
policies and; 3) the current state of the data being processed. To
prove the current integrity state of the system and the currently
loaded policies, we can turn to techniques such as the Linux In-
tegrity Measurement Architecture (IMA) [87]. IMA measures the
load-time integrity of user space applications and files read by root.
These measurements are stored in the Trusted Platform Module
(TPM) to support remote attestation, i.e., generating an unforgeable
proof of the measurements stored in the TPM. The TPM is an inex-
pensive trusted hardware component that provides a small amount
of protected storage for measurements and cryptographic keys.
These measurements can be signed by a key loaded into the TPM
to support remote attestation, proving the current integrity state
of the loaded system. IMA will measure the policies being loaded
as an LKM as long as the policy loading is done by root since the
default policy measures all files read by root. The remote attestation
allows a remote verifier to determine the current state of the kernel
and user-space applications. What is still needed are mechanisms
that enable a remote verifier to validate that the currently loaded
policies are correctly enforced.
Storage: The issue of storing provenance is orthogonal to the topic
of this paper. However, we believe that the work presented here
represents a paradigm shift in provenance systems. Whole-system
provenance implementations have been faced with the issue of
building a back-end that can ingest high throughput [70], provide
integrity and non-repudiability [12], and handle large volumes of
data while providing low latency queries. Decoupling query perfor-
mance from storage overhead introduces myriad new architectures
for such systems.
False positives from flow tracking: A well-understood limita-
tion of the proposed approach is the potential for false positives
when information flows are inferred. For example, if a task reads
from a file and writes to another, whole-system provenance capture
systems conservatively assume that information was transferred,
even though it is not necessarily always the case. Conservatively in-
ferring information flow via sharedmemory is anothermajor source
of false positives. Similar issues also arise in most system-level infor-
mation flow control or taint tracking systems. A potential solution
to reduce the number of false inferences is to capture information
flow within applications, using techniques such as bitcode transfor-
mation [90], binary rewriting [25, 59], or static analysis [74]. Such
techniques are related to provenance layering [71], the capture of
internal application provenance alongside system level provenance
to improve the accuracy of provenance records. While the capture
of such provenance is a well-understood problem, its analysis and
scalability remain relatively unexplored.

8 RELATEDWORK
We place this work both in the context of prior work on whole-
system provenance capture and more general information flow

tracking approaches, as techniques such as Information Flow Con-
trol and Taint Tracking share many characteristics with provenance
collection systems.
Provenance Systems. There have been several provenance cap-
ture mechanisms implemented in the Linux kernel [18, 65, 72, 82].
LPM [18] uses provenance DAGs to enforce information flow con-
straints by querying graphs at sink points (e.g., at the network inter-
face). The authors verify that paths from a source A to a sink B re-
spect somewell-defined properties expressed in the query. However,
their approach requires performing database queries where query
latency is a function of the graph size, which increases linearly
over time. Therefore, it suffers from a lack of scalability, slowing
down over time as provenance accumulates. CamQuery addresses
this issue by executing queries at runtime over the provenance
stream, introducing bounded overhead independent from the graph
size as shown in § 6.
Provenance Reduction. Recently, the issue of provenance storage
and query performance has received considerable attention in the
literature. LogGC performs garbage collection on redundant events
that have no forensic value [60], while BEEP [59] and MPI [64] im-
prove post-mortem analysis by solving the problem of dependency
explosion. PrioTracker [61] accelerates forensic queries by prioritis-
ing the traversal of rare events in large provenance graphs. These
systems primarily exist at either the storage and query layer of the
provenance stack; in tackling the issue of log reduction through
taint tracking, ProTracer employs a similar approach to CamQuery
by merging the capture and storage layers [65]. While this work
has led to dramatic improvement in the efficiency of provenance,
CamQuery achieves the orthogonal but interrelated goal of improv-
ing provenance performance through deep integration of analysis
routines with the underlying capture framework. An interesting
avenue for future research would be considering how the above
reduction techniques could be incorporated into the flattened prove-
nance stack that CamQuery envisions.
Provenance Applications. Provenance has been leveraged in the
service of a variety of security applications. Because provenance
can be used to generate a model of known good executions of a sys-
tem, recent work has considered using provenance data to perform
anomaly detection [43, 46]. Han et al. [43] use machine learning
(ML) algorithms to detect outlier graph structures. Hassan et al. [46]
use a graph grammar to build deterministic finite state automata
and verify that the graph can be parsed. Unlike the example shown
in § 5, where we generate data as the graph is being produced, they
accumulate provenance to generate “windows” that are then anal-
ysed. We have shown in § 5 that it was possible to generate feature
vectors for the ML-based approach. It should also be possible to
implement the graph parsing stage (i.e., detection stage) of Bates et
al.’s work using the CamQuery framework.

Park et al. [77] formalise the notion of provenance-based access
control (PBAC) systems along three dimensions: 1) the type of data
used to make decisions (observed vs. disclosed provenance [21]);
2) object dependencies (information flow between objects) vs. user
dependencies (information flow between users); and 3) whether
policies are available to the system or learnt through the traversal
of provenance graphs; CamQuery, like most PBAC systems in the
literature ([16, 89]), uses observed provenance, although it could
be augmented by disclosed provenance. Layering of provenance

systems [71] could enable such a capability, although we are not
aware of any layered PBAC enforcement model. We plan to explore
this approach in future work, with both application level [71] and
network level provenance [102].
Information Flow Control Systems. Previous work on informa-
tion flow control enforcement at the OS level, such as HiStar [98],
Flume [55], and Weir [75], uses labels to define security and in-
tegrity contexts that constrain information flows between kernel
objects. Labels map to kernel objects, and a process requires de-
centralised management capabilities to modify its labels. Point-to-
point access control decisions are made to evaluate the validity
of an information flow. Through transitivity, it is possible to ex-
press constraints on a workflow (e.g., collected user information
can only be shared with third parties as an aggregate). SELinux [88]
provides a similar information flow control mechanism but with-
out decentralised management. A typical way of representing and
thinking about information flow in a system is through a directed
graph. However, current object labelling abstractions do not take
advantage of this representation, and it is difficult to reason about
when defining policies. CamQuery differs from these systems in that
it allows the implementation of such mechanisms directly on the
graph abstraction.
Taint Tracking Systems. Techniques such as “colouring” [48]
or tainting [73] of data and resources have been proposed as a
means to detect data misuse. TaintDroid [29] implements such
an approach in the Android OS to detect applications disclosing
personal information to an unexpected third party (e.g., disclosing
the owner’s contact list to advertisers). CamQuery can be used to
achieve similar results as taint tracking systems but provides more
control through its expressive query mechanism on how taints
are propagated within the system. Furthermore, the provenance
records, kept as forensic evidence, provide a rich resource that
can be mined to identify, understand, and explain the source of a
disclosure.
Security Monitoring. In today’s enterprise environments, secu-
rity incidents occur when a primary indicator of compromise is
triggered from security monitoring software such as an anti-virus
detection alert or a blacklisted URL in the organisation’s network
logs [62]. In current security products, such indicators report only
limited context as to the circumstances under which the alert oc-
curred, e.g., process ID or packet header information, but do not
report the historical chain of events that led to the suspicious activ-
ity. Past work has attempted to compensate for this lack of lineage
through the fusion [13, 41] or correlation [86, 91, 95, 97] of multiple
indicators of the compromise. However, it does not address the fun-
damental limitation that security monitoring tools lack the ability
to reason over the entire context of a system execution. Thus, attack
reconstruction has typically been relegated to (offline) forensic anal-
ysis [52, 53, 60, 63–65, 83, 100, 101]. In contrast, CamQuery provides
a mechanism to build runtime security monitoring based on the
entire history of system execution, thus representing a significant
step forward compared to the state-of-the-art.

9 CONCLUSION
More than a decade ago, PASS [72] represented a paradigm shift in
how we think about provenance capture, moving from application-
specific capture, to a system-wide holistic mechanism. In this paper,
CamQuery rethinks how we envision provenance applications, sev-
ering the always-present, implicit link to database back-ends. We
make the distinction between runtime detection applications which
should be built above live streams of provenance data to identify
policy violations or anomalies, and forensic applications that run
post-mortem, leveraging database support to provide explanations.
By drastically rethinking the conventional provenance architecture,
we are able to reduce the time between an event (such as an attack,
data leakage, non-compliance with regulation, etc.) and its detec-
tion, by several orders of magnitude, while simultaneously storing
the data for post-mortem forensic investigation. We continue to
actively develop CamFlow and CamQuery as we investigate prove-
nance applications. The work is entirely open-source and we invite
others to build upon it.

AVAILABILITY
The work presented in this paper is open-source and available for
download at http://camflow.org/ under a GPL v2 license.

ACKNOWLEDGMENTS
This work was supported by the US National Science Foundation
under grants SSI-1450277 End-to-End Provenance, CNS-1750024
CAREER and CNS-1657534 Transparent Capture and Aggregation
of Secure Data Provenance for Smart Devices. Early versions of
CamFlow open source software were supported by UK Engineering
and Physical Sciences Research Council grant EP/K011510 Cloud-
SafetyNet.

REFERENCES
[1] Accessed August 25, 2018. Apache Flume. https://flume.apache.org/.
[2] Accessed August 25, 2018. Apache Kafka. https://kafka.apache.org/.
[3] Accessed August 25, 2018. CamFlow. http://camflow.org/.
[4] Accessed August 25, 2018. CamFlow automated reports. https://github.com/

CamFlow/camflow-dev/tree/master/docs.
[5] Accessed August 25, 2018. CamFlow information flow patch. https://github.

com/CamFlow/information-flow-patch.
[6] Accessed August 25, 2018. CamFlow relations list. https://github.com/CamFlow/

camflow-dev/blob/master/docs/RELATIONS.md.
[7] Accessed August 25, 2018. CamFlow vertices list. https://github.com/CamFlow/

camflow-dev/blob/master/docs/VERTICES.md.
[8] Rocio Aldeco-Perez and Luc Moreau. 2009. Information Accountability sup-

ported by a Provenance-based Compliance Framework. (December 2009). http:
//eprints.soton.ac.uk/268305/ Event Dates: Monday 7th – Wednesday 9th De-
cember 2009.

[9] Rocío Aldeco-Pérez and Luc Moreau. 2010. Securing provenance-based audits.
In International Provenance and Annotation Workshop. Springer, 148–164.

[10] J. P. Anderson. 1972. Computer Security Technology Planning Study. Technical
Report ESD-TR-73-51. ESD/AFSC, Hanscom AFB, Bedford, MA.

[11] James P Anderson. 1972. Computer Security Technology Planning Study. Volume
2. Technical Report. Anderson (James P) and Co Fort Washington PA.

[12] Nikilesh Balakrishnan, Lucian Carata, Thomas Bytheway, Ripduman Sohan, and
Andy Hopper. 2017. Non-repudiable disk I/O in untrusted kernels. InAsia-Pacific
Workshop on Systems. 24:1–24:6.

[13] Tim Bass. 2000. Intrusion Detection Systems and Multisensor Data Fusion.
Commun. ACM 43, 4 (2000), 99–105.

[14] Adam Bates, KR Butler, and Thomas Moyer. 2015. Take only what you need:
leveraging mandatory access control policy to reduce provenance storage costs.
In Workshop on Theory and Practice of Provenance (TaPP’15). USENIX, 7–7.

[15] Adam Bates, Ben Mood, Masoud Valafar, and Kevin Butler. 2013. Towards
Secure Provenance-based Access Control in Cloud Environments. In Proceedings

http://camflow.org/
https://flume.apache.org/
https://kafka.apache.org/
http://camflow.org/
https://github.com/CamFlow/camflow-dev/tree/master/docs
https://github.com/CamFlow/camflow-dev/tree/master/docs
https://github.com/CamFlow/information-flow-patch
https://github.com/CamFlow/information-flow-patch
https://github.com/CamFlow/camflow-dev/blob/master/docs/RELATIONS.md
https://github.com/CamFlow/camflow-dev/blob/master/docs/RELATIONS.md
https://github.com/CamFlow/camflow-dev/blob/master/docs/VERTICES.md
https://github.com/CamFlow/camflow-dev/blob/master/docs/VERTICES.md
http://eprints.soton.ac.uk/268305/
http://eprints.soton.ac.uk/268305/

of the Third ACM Conference on Data and Application Security and Privacy
(CODASPY ’13). ACM, New York, NY, USA, 277–284. https://doi.org/10.1145/
2435349.2435389

[16] Adam Bates, Ben Mood, Masoud Valafar, and Kevin Butler. 2013. Towards secure
provenance-based access control in cloud environments. In Conference on Data
and Application Security and Privacy. ACM, 277–284.

[17] Adam Bates, Dave Jing Tian, Grant Hernandez, Thomas Moyer, Kevin RB Butler,
and Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance through
Policy Reduction. Transactions on Internet Technology 17, 4 (2017), 34.

[18] Adam M Bates, Dave Tian, Kevin RB Butler, and Thomas Moyer. 2015. Trust-
worthy Whole-System Provenance for the Linux Kernel. In USENIX Security.
319–334.

[19] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cresswell,
Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon
Miles, James Myers, Satya Sahoo, Luc Moreau, and Paolo et al. Missier. 2013.
Prov-DM: The PROVDataModel. Technical Report.WorldWideWeb Consortium
(W3C). https://www.w3.org/TR/prov-dm/.

[20] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find
patterns in time series. In KDD workshop, Vol. 10. Seattle, WA, 359–370.

[21] Uri Braun, Simson Garfinkel, David A Holland, Kiran-Kumar Muniswamy-
Reddy, and Margo I Seltzer. 2006. Issues in automatic provenance collection. In
Provenance and annotation of data. Springer, 171–183.

[22] David FC Brewer and Michael J Nash. 1989. The Chinese Wall security policy.
In Symposium on Security and Privacy. IEEE, 206–214.

[23] Sheung Chi Chan, Ashish Gehani, James Cheney, Ripduman Sohan, and Hassaan
Irshad. 2017. Expressiveness Benchmarking for System-Level Provenance. In
Workshop on the Theory and Practice of Provenance (TaPP’17). USENIX.

[24] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.

[25] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. 2006. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. In Computers and Communications,
2006. ISCC’06. Proceedings. 11th IEEE Symposium on. IEEE, 749–754.

[26] Christian Collberg and Todd A Proebsting. 2016. Repeatability in computer
systems research. Commun. ACM 59, 3 (2016), 62–69.

[27] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime verification
of authorization hook placement for the Linux security modules framework. In
Conference on Computer and Communications Security (CCS’02). ACM, 225–234.

[28] E Allen Emerson and Joseph Y Halpern. 1982. Decision procedures and expres-
siveness in the temporal logic of branching time. In Symposium on Theory of
Computing. ACM, 169–180.

[29] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
2014. TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS)
32, 2 (2014), 5.

[30] Birhanu Eshete, Rigel Gjomemo, Md Nahid Hossain, Sadegh Momeni, R Sekar,
Scott Stoller, VN Venkatakrishnan, and Junao Wang. 2016. Attack Analysis
Results for Adversarial Engagement 1 of the DARPA Transparent Computing
Program. arXiv preprint arXiv:1610.06936 (2016).

[31] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2005. Automatic placement of
authorization hooks in the Linux security modules framework. In Conference
on Computer and Communications Security (CCS’05). ACM, 330–339.

[32] Peng Gao, Xusheng Xiao, Din Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Whan Kim, Sanjeev R. Kulkarni, and Prateek Mittal. 2018. SAQL: A
Stream-based Query System for Real-Time Abnormal System Behavior De-
tection. In Proceedings of the 27th USENIX Security Symposium (Security’18).
Baltimore, MD, USA.

[33] Peng Gao, Xusheng Xiao, Zhichun Li, Kangkook Jee, Fengyuan Xu, Sanjeev R
Kulkarni, and PrateekMittal. 2018. AIQL: Enabling Efficient Attack Investigation
from System Monitoring Data. USENIX Annual Technical Conference (ATC’18)
(2018).

[34] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for provenance au-
diting in distributed environments. In International Middleware Conference.
ACM/IFIP/USENIX, 101–120.

[35] Laurent Georget, Mathieu Jaume, Guillaume Piolle, Frédéric Tronel, and Valérie
Viet Triem Tong. 2017. Information Flow Tracking for Linux Handling Concur-
rent System Calls and Shared Memory. In International Conference on Software
Engineering and Formal Methods. Springer, 1–16.

[36] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle, and Valérie
Viet Triem Tong. 2017. Verifying the reliability of operating system-level in-
formation flow control systems in Linux. In International Workshop on Formal
Methods in Software Engineering (FormaliSE’17). IEEE/ACM, 10–16.

[37] Dawid Golunski. 2016. CVE-2016-6663: MySQL / MariaDB / PerconaDB
5.5.x/5.6.x/5.7.x - ’mysql’ System User Privilege Escalation / Race Condition.
https://www.exploit-db.com/exploits/40678/.

[38] Dawid Golunski. 2016. CVE-2016-6664: MySQL / MariaDB / PerconaDB
5.5.x/5.6.x/5.7.x - ’root’ System User Privilege Escalation. https://www.
exploit-db.com/exploits/40679/.

[39] Dawid Golunski. 2016. CVE-2016-9566: Nagios < 4.2.4 - Privilege Escalation.
https://www.exploit-db.com/exploits/40921/.

[40] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Conference on Operating Systems Design and Implemen-
tation (OSDI’14), Vol. 14. 599–613.

[41] Guofei Gu, Alvaro A. Cárdenas, and Wenke Lee. 2008. Principled Reasoning and
Practical Applications of Alert Fusion in Intrusion Detection Systems. In Sym-
posium on Information, Computer and Communications Security (ASIACCS’17).
ACM, 136–147.

[42] Michael Austin Halcrow. 2005. eCryptfs: An enterprise-class encrypted filesys-
tem for Linux. In Proceedings of the 2005 Linux Symposium, Vol. 1. 201–218.

[43] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. 2017. FRAPpuccino: Fault-detection through Runtime Analysis of Prove-
nance. In Workshop on Hot Topics in Cloud Computing (HotCloud’17). USENIX.

[44] Xueyuan Han, Thomas Pasquier, and Margo Seltzer. 2018. Provenance-based
Intrusion Detection: Opportunities and Challenges. In Workshop on Theory and
Practice of Provenance (TaPP’18). ACM.

[45] Ragib Hasan, Radu Sion, and Marianne Winslett. 2009. The Case of the Fake
Picasso: Preventing History Forgery with Secure Provenance. In Conference on
File and Storage Technologies (FAST 09). USENIX.

[46] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Network and Distributed Systems Security Symposium.
Internet Society.

[47] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. 2002.
Outlier detection using replicator neural networks. In International Conference
on Data Warehousing and Knowledge Discovery. Springer, 170–180.

[48] Kai Hwang and Deyi Li. 2010. Trusted cloud computing with secure resources
and data coloring. Internet Computing, IEEE 14, 5 (2010), 14–22.

[49] Dino Ienco, Ruggero G Pensa, and Rosa Meo. 2017. A semisupervised approach
to the detection and characterization of outliers in categorical data. IEEE Trans-
actions on Neural Networks and Learning Systems 28, 5 (2017), 1017–1029.

[50] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data provenance support in Spark. Proceedings of the VLDB Endowment 9, 3
(2015), 216–227.

[51] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. 2004. Consistency analysis of
authorization hook placement in the Linux security modules framework. ACM
Transactions on Information and System Security (TISSEC) 7, 2 (2004), 175–205.

[52] Xuxian Jiang, A. Walters, Dongyan Xu, E.H. Spafford, F. Buchholz, and Yi-Min
Wang. 2006. Provenance-Aware Tracing of Worm Break-in and Contamina-
tions: A Process Coloring Approach. In International Conference on Distributed
Computing Systems (ICDCS’06). IEEE, 38–38.

[53] Samuel T King and Peter M Chen. 2003. Backtracking intrusions. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 223–236.

[54] Ryan KL Ko, Markus Kirchberg, and Bu Sung Lee. 2011. From system-centric
to data-centric logging-accountability, trust & security in cloud computing. In
Defense Science Research Conference and Expo (DSR), 2011. IEEE, 1–4.

[55] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information flow control for standard OS
abstractions. In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 321–334.

[56] George Kurtz. 2010. Operation Aurora Hit Google, Others. Available at
http://securityinnovator.com/index.php?articleID=42948§ionID=25.

[57] Aapo Kyrola, Guy E Blelloch, Carlos Guestrin, et al. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Conference on Operating Systems Design
and Implementation (OSDI’12), Vol. 12. 31–46.

[58] Michael Larabel and Matthew Tippett. [n. d.]. Phoronix test suite. http:
//www.phoronix-test-suite.com.

[59] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Proceedings of NDSS ’13.

[60] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage
Collecting Audit Log. In Conference on Computer and Communications Security
(CCS’13). ACM, 1005–1016.

[61] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysisfor
Enterprise Security. In Proceedings of the 25th ISOC Network and Distributed
System Security Symposium (NDSS’18). San Diego, CA, USA.

[62] John Lyle, Andrew P Martin, et al. 2010. Trusted Computing and Provenance:
Better Together. In Workshop on Theory and Practice of Provenance (TaPP’10).
USENIX.

[63] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu
Zhang, and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-Free
Security Audit Logging for Windows. In Annual Computer Security Applications
Conference. ACM, 401–410.

[64] ShiqingMa, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In USENIX Security Symposium.

https://doi.org/10.1145/2435349.2435389
https://doi.org/10.1145/2435349.2435389
https://www.w3.org/TR/prov-dm/
https://www.exploit-db.com/exploits/40678/
https://www.exploit-db.com/exploits/40679/
https://www.exploit-db.com/exploits/40679/
https://www.exploit-db.com/exploits/40921/
http://securityinnovator.com/index.php?articleID=42948§ionID=25
http://www. phoronix-test-suite. com
http://www. phoronix-test-suite. com

[65] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards
Practical Provenance Tracing by Alternating Between Logging and Tainting. In
Network and Distributed System Security Symposium (NDSS’16). Internet Society.

[66] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing: Dynamic
causal monitoring for distributed systems. In Symposium on Operating Systems
Principles (SOSP’15). ACM, 378–393.

[67] Larry W McVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Perfor-
mance Analysis. In USENIX Annual Technical Conference (ATC’96). 279–294.

[68] Luc Moreau and Mufajjul Ali. 2014. A provenance-based policy control frame-
work for cloud services. (May 2014). http://eprints.soton.ac.uk/364997/

[69] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux security
modules: General security support for the Linux kernel. In USENIX Security
Symposium.

[70] Thomas Moyer and Vijay Gadepally. 2016. High-throughput ingest of data
provenance records into Accumulo. In High Performance Extreme Computing
Conference (HPEC’16). IEEE, 1–6.

[71] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A Holland, Peter Macko, Di-
ana L MacLean, Daniel W Margo, Margo I Seltzer, and Robin Smogor. 2009. Lay-
ering in Provenance Systems. In USENIX Annual Technical Conference (ATC’09).

[72] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. 2006. Provenance-aware storage systems. In USENIX Annual Technical
Conference (ATC’06). 43–56.

[73] Divya Muthukumaran, Dan O’Keeffe, Christian Priebe, David Eyers, Brian
Shand, and Peter Pietzuch. 2015. FlowWatcher: Defending against Data Dis-
closure Vulnerabilities in Web Applications. In Conference on Computer and
Communications Security (CCS’15). ACM, 603–615.

[74] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 228–241.

[75] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Prac-
tical DIFC enforcement on Android. In USENIX Security Symposium. 1119–1136.

[76] Dang Nguyen, Jaehong Park, and Ravi Sandhu. 2013. A provenance-based access
control model for dynamic separation of duties. In International Conference on
Privacy, Security and Trust (PST’13). IEEE, 247–256.

[77] Jaehong Park, Dang Nguyen, and Ravi Sandhu. 2012. A provenance-based access
control model. In International Conference on Privacy, Security and Trust (PST’13).
IEEE, 137–144.

[78] Thomas Pasquier and David Eyers. 2016. Information Flow Audit for Trans-
parency and Compliance in the Handling of Personal Data. InWorkshop on Legal
and Technical Issues in Cloud Computing and the Internet of Things (CLAW’16).
IEEE.

[79] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical Whole-System Provenance
Capture. In Symposium on Cloud Computing (SoCC’17). ACM, ACM.

[80] Thomas Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. 2015. Cam-
Flow: Managed Data-Sharing for Cloud Services. IEEE Transactions on Cloud
Computing (2015).

[81] Thomas Pasquier, Jatinder Singh, Julia Powles, David Eyers, Margo Seltzer, and
Jean Bacon. 2017. Data provenance to audit compliance with privacy policy in
the Internet of Things. Springer Personal and Ubiquitous Computing (2017).

[82] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: collecting high-fidelity whole-system provenance. In Annual Computer
Security Applications Conference. ACM, 259–268.

[83] Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. 2002. A Mission-Impact-
Based Approach to INFOSEC Alarm Correlation. In International Symposium on
Recent Advances in Intrusion Detection. Springer, 95–114.

[84] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017.
struc2vec: Learning Node Representations from Structural Identity. In Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, 385–394.

[85] Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn SMcKinley, and Emmett
Witchel. 2009. Laminar: Practical fine-grained decentralized information flow
control. In Conference on Programming Language Design and Implementation,
Vol. 44. ACM.

[86] Alireza Sadighian, José M. Fernandez, Antoine Lemay, and Saman T Zargar.
[n. d.]. ONTIDS: A Highly Flexible Context-Aware and Ontology-Based Alert
Correlation Framework. In International Symposium on Foundations and Practice
of Security. Springer, 161–177.

[87] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004.
Design and Implementation of a TCG-based IntegrityMeasurement Architecture.
In USENIX Security Symposium, Vol. 13. 223–238.

[88] Stephen Smalley, Chris Vance, andWayne Salamon. 2001. Implementing SELinux
as a Linux security module. NAI Labs Report 1, 43 (2001), 139.

[89] Wai Kit Sze and R Sekar. 2015. Provenance-based Integrity Protection for
Windows. In Annual Computer Security Applications Conference. ACM, 211–220.

[90] Dawood Tariq, Maisem Ali, and Ashish Gehani. 2012. Towards Automated
Collection of Application-Level Data Provenance.. InWorkshop on Theory and
Practice of Provenance (TaPP’12).

[91] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer. 2004. Comprehensive ap-
proach to intrusion detection alert correlation. IEEE Transactions on Dependable
and Secure Computing 1, 3 (2004), 146–169.

[92] Frank Wang, Yuna Joung, and James Mickens. 2017. Cobweb: Practical Remote
Attestation Using Contextual Graphs. InWorkshop on System Software for Trusted
Execution (SysTEX’17). ACM.

[93] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell DE
Long. 2013. Evaluation of a hybrid approach for efficient provenance storage.
ACM Transactions on Storage (TOS) 9, 4 (2013), 14.

[94] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Symposium
on Operating Systems Principles (SOSP’09). ACM, 117–132.

[95] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robert-
son, Ari Juels, and Engin Kirda. 2013. Beehive: Large-scale Log Analysis for
Detecting Suspicious Activity in Enterprise Networks. In Annual Computer
Security Applications Conference. ACM, 199–208.

[96] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012.
Improving software diagnosability via log enhancement. ACM Transactions on
Computer Systems (TOCS) 30, 1 (2012), 4.

[97] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Conference on Networked Systems Design and Implementation
(NSDI’12). USENIX.

[98] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
2006. Making information flow explicit in HiStar. In Symposium on Operating
Systems Design and Implementation (OSDI’06). USENIX Association, 263–278.

[99] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for
Static Analysis of Authorization Hook Placement. In Proceedings of the 11th
USENIX Security Symposium.

[100] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016. Non-
Intrusive Performance Profiling for Entire Software Stacks Based on the Flow
Reconstruction Principle. In Symposium on Operating Systems Design and Imple-
mentation (OSDI’16). USENIX, 603–618.

[101] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding
Yuan, and Michael Stumm. 2014. Lprof: A Non-intrusive Request Flow Pro-
filer for Distributed Systems. In Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX, Berkeley, CA, USA, 629–644.

[102] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,
and Micah Sherr. 2011. Secure network provenance. In Symposium on Operating
Systems Principles (SOSP’11). ACM, 295–310.

http://eprints.soton.ac.uk/364997/

	Abstract
	1 Introduction
	2 Background
	2.1 Whole-System Provenance
	2.2 Issues With Provenance Architectures

	3 Runtime analysis framework
	3.1 Threat Model & Assumptions
	3.2 Motivating Example
	3.3 Overview
	3.4 Provenance Monitor
	3.5 CamQuery API

	4 Implementation
	4.1 Capture Mechanism
	4.2 Ensuring Completeness and Accuracy
	4.3 CamQuery Query Configurations

	5 Example Applications
	6 Experimental Evaluation
	6.1 In-kernel Queries
	6.2 User space queries

	7 Challenges & discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References

