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Abstract
Profiling feedback is an important technique used by devel-
opers for performance debugging, where it is usually used to
pinpoint performance bottlenecks and also to find optimiza-
tion opportunities. Assessing the validity and potential bene-
fit of a program transformation requires accurate knowledge
of the data flow and dependencies, which can be uncovered
by profiling a particular execution of the program.
In this work we develop poly-prof, an end-to-end in-

frastructure for dynamic binary analysis, which produces
feedback about the potential to apply complex program
rescheduling. Our tool can handle both inter- and intraproce-
dural aspects of the program in a unified way, thus providing
interprocedural transformation feedback.

CCSConcepts • Software and its engineering→Com-
pilers; Interpreters;
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1 Introduction
The most effective program transformations for improving
performance or energy consumption are typically based
on rescheduling instructions so as to expose data locality
and/or parallelism. Optimizing compilers typically attempt,
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via static analysis, to build a representation of the program
precise enough to enable useful program transformations. A
key issue faced when analyzing general-purpose languages
is the ambiguities introduced by the language itself: for ex-
ample the use of pointers typically restricts the ability to
precisely characterize the data being accessed, in turn trig-
gering conservative and approximate dependence analysis
[27, 40, 68]. Such frameworks therefore rely on conservative
assumptions, limiting the ability to reason on the legality
of complex program restructuring. In this work we specif-
ically target structured transformations, that is, a (possibly
interprocedural) reordering of operations involving com-
plex sequences of multidimensional loop transformations,
including (partial) loop fusion/fission, loop tiling [11], etc.
When a region of the source program fits specific syn-

tactic and semantics restrictions, such as avoiding function
calls, using only arrays as data structures, and very simple
conditional statements with no indirections [16, 20], trans-
formation frameworks such as the polyhedral model [11]
showed that multidimensional loop nest rescheduling can be
successfully implemented, leading to significantly improved
performance [28, 53, 68]. The input program can bemassaged
manually via function inlining, loop rewriting/normaliza-
tion, etc. to enable such static analyses to succeed, but this
is a rare scenario: In full programs and in particular those
relying on external binaries visible only to the linker in com-
piled form, often data allocation and even the full call stack
is inaccessible to static analysis.
Dynamic analysis frameworks [9, 21, 47, 63] address this

limitation by reasoning on a particular execution of the pro-
gram, through the analysis of its execution trace. That is,
disambiguation of dependence information and accessed
data is addressed by monitoring the stream of operations
and accessed addresses. In general, the result is only valid
for that particular execution. Such systems provide some
feedback to the user, pinpointing the probable absence of
dependencies along some loop, thus highlighting potential
parallelism [37, 67, 70, 74] or SIMD vectorization [33].

The contributions of this work are: 1. The development of
an inter-procedural intermediate representation that com-
pacts program traces effectively while being amenable to
polyhedral optimization, and all associated algorithms and
implementation tomake the process scalable to full programs.
2. poly-prof, a tool that provides optimization feedback us-
ing binary translation and instrumentation. poly-prof is
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believe to be useful beyond the restricted scope of this paper,
for example to detect properties of tree-recursive calls. The
main data structure for treating recursive control flow is the
recursive-component-set which is for the call-graph what the
loop-nesting-tree is for the control-flow-graph.

Before providing more details, we go through the illustrat-
ing Ex. 2 of Fig. 3. Here, the edge from B3 to B0 (in orange) is
not a CFG-edge but a recursive call to B from call site B3. The
recursive-component-set computed from the CG contains
one SCC with a cycle made up of a single function B. This
example raises several questions: 1. Should C0 be part of the
associated recursive loop? It actually depends on the context:
It should, when called from B1, while it should not when
called from D0. 2.What about B5? One should observe that
B5 will be executed as many times as the number of recursive
calls to B: In other words, B5 should be part of a loop.
To conclude, while CG-cycles clearly represent potential

dynamic loop structures, a CG-edge does not have the same
semantic as a CFG-edge. In particular, a call will never exit
a recursive loop. For poly-prof, the recursive loop žL1ž of
Ex. 2 is a dynamic notion defined as follows: 1. Entering L1 is
characterized by a call to B (step 1). 2. L1 is exited when this
(first) call gets unstacked, that is, when the number of returns
reaches the number of calls (step 22). 3. Everything executed
in between is part of the loop and iteration, and the corre-
sponding increment of induction variables takes place when-
ever a call/return to/from B occurs (steps 10,15,20,and 21).
As one can see, once the recursive-component-set has been
computed from the CG, the only relevant information dy-
namically used to devise recursive-loop events corresponds
to the header functions, here B.

As already stated, the recursive-component-set is for the
CG what the loop-nesting-tree is for the CFG. In a similar
way it can be recursively defined as follows:
1. Find all the top-level SCCs with at least one cycle in the

CG. Each gives rise to a distinct recursive-component.
2. For each component, determine all its entry nodes.
3. Repeat the following phases until no more cycles exist:
a. For a given SCC, choose an entry node and add it to the

headers-set of the recursive-component (top-level SCC)
it belongs to.

b. Remove all edges inside this SCC that point to this node.
Havlak’s loop-nesting-forest construction algorithm can eas-
ily be adapted to build the recursive-component-set in al-
most linear time. The end result of the algorithm is a possibly
empty set of recursive-components where each recursive-
component has a non-empty set of headers plus a non-empty
set of entries associated with it. Alg. 2 uses this data structure
to associate loop events (entry, iterate, and exit) to control
events (call and return). Here: 1. entering a recursive loop
is characterized by a call to a component’s entry function
(Line 4); 2. a new iteration is started whenever a call/return
to/from one of the components’ header occurs (Line 6); 3. an
exit occurs when all the iterating calls to the headers have
been unstacked, that is, when the number of returns equals
the number of calls, and we are returning from the original
function that entered the loop (Line 18). Tracking the state

of the call stack is done with the following two data struc-
tures: L.stackcount represents for a recursive-component
L a counter of the number of calls-to a header minus the
number of returns from it; L.entry represents the function
through which L was entered.

Algorithm2Different recursive-loop events generated from
a call or a return event.
Input:
• event, inLoops: same as for Alg. 1
Emitted events:
• EC(L, B): call-to a function header of recursive-component L and entry into

the corresponding loop. B is the current basic-block after the call.
• IC(L, B) / IR(L, B): call-to / return-from a function header of recursive-

component L and iteration of the corresponding loop. B is the current basic-
block after the call/return.

• XR(L, B): return from a function header of recursive-component L and exit
from that loop.

1 if event.type is call:

2 F := event.callee; B := event.dstBB

3 L := F.recursive_component

4 if F is recursive -component entry and L.entry==undef:

5 L.entry := F; inLoops.push(L); emit EC(L,B)

6 elif F is recursive -component header:

7 while L’:= inLoops.peek() and L’ in L:

8 L’.visiting := false; inLoops.pop();

9 emit X(L’,B)

10 L.stackcount ++; emit IC(L,B)

11 else: emit C(F,B)

12 if event.type is return:

13 F := event.callee; B := event.dstBB

14 while L’:= inLoops.peek() and L’.isCFG and L’ in F

15 L’.visiting := false; inLoops.pop(); emit X(L’,B)

16 L := F.recursive_component

17 if F is recursive -component entry and

18 L.stackcount == 0 and L.entry == F:

19 L.entry := undef; emit XR(L,B)

20 elif F is recursive -component header:

21 L := F.recursive_component; L.stackcount --;

22 emit IR(L,B)

23 else:

24 . . . # Alg. 1

4 DDG: Dynamic dependence graph
The objective of the second stage of poly-prof (łInstrumen-
tation IIž) is to profile the dynamic dependence graph of a
given execution, that is, to build a graph that has one vertex
for every dynamic instruction and one edge for every data
dependence. Because we want to enable feedback with struc-
tured loop transformations, we need to map this graph to
a łgeometricž space that reflects the structural properties of
the program. To this end, we tag each dynamic instruction
with its iteration vector (IV). The IVs uniquely identify each
dynamic instruction and naturally span a geometric space.
A data dependency is then simply represented as the pair of
the IVs of the producer and the consumer.
To handle interprocedural programs we also need a no-

tion of calling context that is scalable in the presence of
recursive calls. Our dynamic interprocedural iteration vector
(dynamic IIV) described in this section addresses those ob-
jectives by unifying two notions: 1. Kelly’s mapping which
describes intraprocedural IVs and is used by the polyhedral
framework [35]; 2. calling-context-paths used by profiling
feedback tools. We first briefly recall those two notions.
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Algorithm 3 Updating of dynamic IIV (diiv)
Input:
• event: Branch event.
• diiv: Current dynamic IIV.
Output:
• Updated dynamic IIV

1 if event == C(B) or EC(L,B):

2 diiv.innermost.CTX.push(L)

3 if event == E(L,B) or EC(L,B):

4 diiv.innermost.CTX.last := L

5 diiv.addDimension (0,B)

6 if event == X(L,B) or XR(L,B):

7 diiv.removeDimension ()

8 diiv.innermost.CTX.last:=B

9 if event == I(L,B) or IC(L,B) or IR(L,B):

10 diiv.innermost.IV++

11 diiv.innermost.CTX.last := B

12 if event == R(B):

13 diiv.innermost.CTX.pop()

14 diiv.innermost.CTX.last := B

I1 → I2 I2 → I4 I4→ I4
IV Label IV Label IV Label

(cj,ck) (cj’,ck’) (cj,ck) (cj’,ck’) (cj,ck) (cj’,ck’)

(0,0) (0,0) (0,0) (0,0)
(0,1) (0,1) (0,1) (0,1) (0,1) (0,0)
. . . . . . . . . . . . . . . . . .

Table 1. Dependency input stream from example in Fig. 6

difference that is based on a geometric approach and is able
to perform over-approximations as briefly described below.

Folding interface The output of the second stage of poly-
prof (Instrumentation II) that feeds the folding stage is a
stream of IIVs and labels. The IIV representation used at this
stage slightly differs from the previous section. IIVs are split
into two parts: 1. The context corresponds to the non-numer-
ical part of the vector; 2. The coordinates correspond to the
numerical part. Folding is then performed for each context
separately. The folding algorithm takes as input for each

dynamic instruction and each dynamic dependence: 1. ®I : its
iteration vector, which uniquely identifies it (i.e., its unique

coordinates). 2. Label: a vector a(®I ) of associated integer val-
ues. And as an output it produces: 1. a union of polyhedra

that represent the set of all ®I . 2. for each polyhedron P , an

affine function A such that for all ®I ∈ P , A(®I ) = a(®I ). For

dynamic instructions, a(®I ) are the integer and pointer values

produced by the instruction, if any. For dependencies, a(®I )
are the IV of the producer instruction.

Dependency recognition Some of the streams compres-
sed by the folding stage are dependencies. To illustrate its
functionality on dependencies, consider bpnn_layerforward,
a kernel of the backprop benchmark from the Rodinia bench-
mark suite. Part of the input stream and corresponding folded
output dependencies can be seen in Tables 1 and 2. Note that
iterators used by poly-prof are canonical ones (here cj and
ck) computed on the fly through program instrumentation,
that do not necessarily match the ones present in the original
code (e.g. j of the outer loop starts at one).

SCEV recognition At the machine code level, even very
regular programs contain a large amount of łunimportantž
code, such as instructions that increment loop counters or

1 for (j = 1; j <= n2)

2 sum = 0.0;

3 for (k = 0; k <= n1)

4 tmp1 = load(&conn + k)} // I1

5 tmp2 = load(tmp1 + j) // I2

6 tmp3 = load(&l1 + k) // I3

7 sum = sum + tmp2 * tmp3 // I4

8 k = k + 1 // I5

9 tmp4 = call squash(sum); // I6

10 store (&l2 + j, tmp4) // I7

11 j = j + 1 // I8

Figure 6. Pseudo-assembler for first kernel of backprop

benchmark

Id
Polyhedron Label expression
(cj,ck) f(cj,ck)

I1→ I2 0 ≤ c j ≤ 15, 0 ≤ ck ≤ 42 c j′ = c j + 0ck , ck ′ = 0c j + ck

I2→ I4 0 ≤ c j ≤ 15, 0 ≤ ck ≤ 42 c j′ = c j + 0ck , ck ′ = 0c j + ck

I4→ I4 0 ≤ c j ≤ 15, 1 ≤ ck ≤ 42 c j′ = c j + 0ck , ck ′ = 0c j + ck − 1

Table 2. Output of the folding algorithm for the dependen-
cies stream shown in Table 1

calculate addresses relative to a base pointer. Those are identi-
fied by compilers as scalar evolution expressions (SCEVs) [54,
69], as they can be expressed as functions of the canonical
induction variables. Detecting SCEVs is important for two
reasons: First of all, the chains of dependencies associated to
their computation shall be ignored, as otherwise it greatly
and unnecessarily constrains possible code transformations;
Second, it allows to detect an important class of memory
access patterns, the strided accesses, that are used to evaluate
the profitability of some loop transformations.
If we detect during folding of an instruction that all the

Label values of a polyhedron can be expressed using a SCEV,
that is, if the folding succeeds in constructing an affine func-
tion to express them, the corresponding points in the folded
polyhedra of IIVs as well as the associated dependencies
are removed from the DDG. This happens for example for
instructions I5 and I8. For instruction I5, the folding algo-
rithm finds a SCEV with value a(cj, ck) = 0cj + 1ck + 1.

Over-approximations Even in programs where the hot
region is affine such as in PolyBench [56], profiling the en-
tire benchmark reveals a large amount of non-regular parts.
Keeping an accurate representation of non-regular parts
causes scalability issues both in the profiling part and in
the polyhedral back-end of poly-prof. Our idea to handle
such non-regular parts in a scalable fashion is through over-
approximation. This over-approximation, detailed in [29],
concerns labels for non-affine dependencies or non-affine
SCEVs and polyhedra for dependencies and instructions with
iteration domains with holes.

6 DDG Polyhedral Feedback
An essential motivation for folding DDGs into polyhedral
structures is to enable the use of advanced polyhedral compi-
lation systems, which are capable of finding a schedule that
maximizes parallelism, finds tiling opportunities, etc. [11].

Polyhedral compilation of folded-DDGs Typically, a
polyhedral compiler is applied to small numerical kernels
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have different arguments and do not profit from the trans-
formation. Applying the transformation improved, in our
case, bpnn_layerfoward from 0.5 GFlop/s to 2.8 GFlop/s and
bpnn_adjust_weights from 0.3 GFlop/s to 5.1 GFlop/s.

Case study II This case study illustrates an advanced feed-
back: providing exact dependence vector łdirectionsž allows ex-
posing data locality and coarse-grain parallelism through loop
skewing and tiling. For this study, we selected GemsFDTD, a fi-
nite difference time domain method from the SPEC CPU2006
benchmark suite [32] written in Fortran90. Analyzing For-
tran code is not a problem for poly-prof as it works at the
binary level. However, the compiler we used (gfortran-8.1.1)
messes up the debug information, making it necessary for
the user to shift the line numbers for the provided code ref-
erences by hand. This case study fully exploits poly-prof’s
ability to model (and compress in a polyhedral form) the data
dependencies, instead of simply checking their existence/ab-
sence. This knowledge about the structure of dependencies
allows poly-prof to check for tiling opportunities. First, poly-
prof detects that four functions from the benchmark are fat
(i.e. they execute a large amount of the program’s total num-
ber of dynamic instructions): updateH_homo, updateE_homo,
UPML_updateH, and UPML_updateE; Inside the first two of
those functions are the five hottest loop nests, so we focus
on them. As reported in Fig. 4, poly-prof annotates all five
loops as fully parallel and tilable. So to obtain a speedup we
tile each loop along all dimensions with a tile size of 32 and
mark the outermost loop parallel with an OMP PARALLEL DO

directive. We recall that tiled code can always be also coarse-
grain parallelized using wavefront parallelism, as exploited
by the Pluto polyhedral scheduler [11]. Tiling and paral-
lelizing the loops increased performance in updateE_homo

from 1.3 GFlop/s to 2.7 GFlop/s and updateH_homo from 1.3
GFlop/s to 3.7 GFlop/s

8 Experiments
The goal of this section is to demonstrate that poly-prof can
be systematically applied on a full benchmark suite, and find
potential for optimization. Note that the output of poly-prof
for each benchmark is extensive: flame graph, statistics on each
sub-region, potential structured transformation(s), simplified
annotated AST after the application of the transformation,
complete AST, etc. Consequently, we only illustrate here the
application of poly-prof on Rodinia by using aggregate met-
rics. These metrics are not meant to be used as is by the end
user: instead, the user is expected to work on one benchmark
at a time, and navigate the feedback we provide.

Experiment I In addition to the case studies, we evalu-
ate below our tool-chain using the latest revision (3.1) of
the Rodinia benchmark suite [14, 15]. As poly-prof does
not support multithreaded applications yet, each benchmark
is manually modified to run in a single thread, and com-
piled using the same compiler and flags as the case studies
(GCC 8.1.1, -g -O2 -msse3).

The dynamic analysis is based on the QEMU-plugin in-
strumentation interface [30]. We have extended the interface
itself to support multiple interacting C/C++ plugins. Plugins
primarily work at the level of the generic QEMU compiler

instructions, making them CPU architecture agnostic. The
choice of using QEMU for instrumenting the code is orthog-
onal to our contribution. There are some other candidates
(e.g. Valgrind [51] or pin [45]) for implementing a dynamic
binary analysis tool, each having their own advantages and
disadvantages. Since we use a shadow memory to track data
dependencies, dynamic analysis obviously does not come
for free. As an example, the total CPU time (summing for
all cores) on our server required by the first three stages of
poly-prof to analyze the full Rodinia benchmark suite is 3h
6’ (the full execution including libc was instrumented).
We have built our polyhedral feedback pass described

in Sec. 6 in the PoCC compiler [55] that implements the
PluTo scheduler [11], along with a new polyhedral DDG
analysis and optimization in PoCC/PolyFeat [55]. Extensions
for scalability have been implemented in the schedulers and
code generator, and in PolyFeat.

Experiment II To show problems static approaches en-
counter with the Rodinia suite we also ran the static LLVM-
based [40] polyhedral compiler Polly [28] over the entire
suite. We used Polly version 7.0.1 and the flags -O3 -ffast-
math -polly-process-unprofitable. Kernels that span multi-
ple functions were inlined to allow Polly to see the same
code region as poly-prof. Calls to functions from libc or
the OpenMP runtime were not inlined. Where such calls are
present this usually results in Polly being unable to analyze
the kernel, though it can handle calls to simple functions
such as exp or sqrt. Polly was unable to build a polyhedral
model of the whole region of interest for any of the 19 bench-
marks. It was able to model some smaller subregions, 1D or
2D loop nests, in most benchmarks, but in nearly all cases
its own profitability metric decided not to optimize them.
Two notable exceptions are the heartwall and lud bench-
marks. In heartwall Polly was able to model a sequence of
nine 2D loop nests which accounts for roughly two thirds
of the code in the body of the kernel. For lud it managed to
model the whole inner 3D loop nest of the kernel, but not
the outermost loop. In all benchmarks the inability to model
the outermost loops blocks Polly from exploiting the thread
level parallelism inherent in the Rodinia benchmark suite.

Summary statistics. Table 5 presents summary statistics
about the Rodinia 3.1 (CPU only) benchmarking suite, that
we computed/aggregated by processing the feedback from
poly-prof and Polly on each benchmark.
Column %Aff reports the percentage of dynamic oper-

ations that are part of a fully affine region without over-
approximation. The low proportion of affine code reported
for heartwall, hotspot, and lud is the consequence of not
supporting lattices at folding time: These programs contain
hand linearized nested loops whose bounds use modulo ex-
pressions and so are not recognized as fully affine. Note
that, even when parts of a benchmark are not affine, we can
still find affine over-approximations for those regions, and
potentially find transformations for the program as a whole.

Based on the statistics provided by poly-prof, the biggest
region for which the optimizer suggests a transformation
has been selected by hand. The code reference is reported
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Fat regions % ops interchange+SIMD parallel permutable % stride 0/1 speedup
backprop_kernel.c:52 (Llayer) 14% backprop.c:(254,253) (yes,no) (yes,yes) (100%, 50%) 5.3 x
backprop_kernel.c:57 (Ladjust) 46% backprop.c:(322,320) (yes,yes) (yes,yes) (100%, 50%) 7.8 x

Table 3. backprop case study. Reported lines (e.g. 52, 253, . . . ) are from debug information. Suggested interchange is represented
using a permutation of code lines. Statistics/properties per loop dimension as follows: (outer, inner).

Fat regions op tiling speedup
update.F90:106 20% update.F90:{106,107,121} 2.6 x
update.F90:240 18% update.F90:{240,241,244} 1.9 x

Table 4. GemsFDTD case study. Reported lines are shifted
debug info.

in the column Region. We considered a region to be inter-
procedural (column interproc.) if inlining was required to
perform the transformation or if it contained a call to libc or
the OpenMP runtime. Column %ops reports the percentage
of dynamic operations of the program executed inside the
region, while %Mops and %FPops reports the percentage of
memory (resp. floating point) operations of the region itself.
Note that the sum of %Mops and %FPops can be greater
than 100% since on x86 a single instruction can both load
and store to/from memory and perform an operation.

The column Reasons why Polly failed lists the reasons why
LLVM Polly was unable to model the whole region as an
affine program. They are coded as: R. unhandled function
call; C. complex CFG (break/return); B. non-affine loop
bound or non-affine conditional statements; F. non-affine
access function (includes pointer indirection); A. unhandled
possible pointer aliasing; P. base pointer not loop invariant.
The next group of metrics shows what can be achieved

via semantics-preserving structured transformations. skew
displays whether skewing is used in the proposed transfor-
mation, we tend to avoid skewing unless it really provides
improvements in parallelism and tilability. %| |ops gives the
percentage of dynamic operations that can be parallelized us-
ing OpenMP parallel pragmas. If a non-inner loop dimension
is detected as parallel, then all its operations are considered
to be parallelizable. As a loop has at least two iterations, at
least two parallel blocks can be exposed when a loop is re-
ported parallel. Similarly, %simdops reports the percentage
of operations that occur in parallel innermost loops.
The %reuse/%Preuse metrics report space locality that is

available in the program: %reuse is the percentage of load/s-
tores that are stride-0 or stride-1 in the existing innermost
loops in the program, while %Preuse reports the maximal
percentage of load/store operations that can be made stride-0
or stride-1 via a sequence of loop permutations.
We report the maximal loop depth of the region in the

source code (ld-src) and in the binary code (ld-bin). This
shows whether the compiler performed any transformation
that modifies the loop depth (e.g., full loop unrolling for cfd).
Next the maximal tiling depth (TileD) is reported, along with
%Tilops, the percentage of operations that can be tiled.

As soon as a region can be tiled, coarse-grain (wavefront)
parallelism is possible, and data reuse could be improved.
poly-prof does not currently provide feedback on temporal
locality potential, but as illustrated in the backprop case
study %reuse allows to evaluate spatial locality improve-
ments through tiling/interchange.

Finally, metrics C/Comp./fusion outline the complexity of
the loop fusion/distribution structure that originates from
the structured transformation proposed, and is an indication
of the difficulty to manually implement a transformed code.
Any outermost loop with more than 5% of the total region
operation counts as one łcomponentž. For example, if the
region is made of two consecutive loop nests executing each
half of the operations, then 2 components will be reported. C
reports the number of components in the binary code; Comp.
the number of components after applying the proposed struc-
tured transformation, using the fusion heuristic reported in
fusion (M for maximal loop fusion, and S for smartfuse, a
somewhat balanced fusion/distribution strategy).

Note that streamcluster exhaustedmemory at the sched-
uling stage, and therefore no result is displayed.

9 Related Work
This section describes previous work related to profiling,
performance debugging, and trace compression.

Performance feedback tools Using profiling feedback
is a widely used technique both for performance debug-
ging and for guiding optimization [64] (FDO). Tools such as
Perf [18] or Intel VTune [59] gather hardware counter values
and, using sampling, provide statistics (such as instruction
throughput or cache miss rate) at the granularity of machine
instruction. Various interfaces such as HPCToolKit [1] allow
navigating through the gathered statistics thanks to a best-
effort mapping from binary to source code. Compiler based
profiling tools, such as gprof [25], make it possible to pro-
vide complementary statistics (such as branch probabilities).
While these allow pin-pointing important parts of the code
where the programmer or compiler should focus his atten-
tion on, the metrics they report are very low level and conse-
quently they leave the role of finding optimizing code trans-
formations to the programmer or compiler heuristics [65].
Recent work such as in MAQAO [13, 19], AutoSCOPE [65]
or MIAMI [46] combines these metrics with static analysis of
binary/source code. Intel IACA [17], a purely static analysis
tool, uses a precise machine model, which the vendor does
not publish, to pin-point resource bottlenecks and predict
performance of snippets of binary code.
Dynamic data-flow analyses have been presented to pro-

vide useful performance feedback. The detection of paral-
lelism (such as vectorization) along canonical directions has
particularly been investigated [3, 12, 21, 37, 38, 41, 67, 70, 74],
as it requires only relatively localized information. Another
use case is the evaluation of effective reuse [8, 10, 44, 46]
with the objective of pinpointing data-locality problems.

The APOLLO [34, 47] framework uses an interesting tech-
nique that corresponds to detecting dynamic regularities
(affine expressions) of memory accesses in nested loops, and
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backprop 10 M 10 M 85% facetrain.c:25 67% 30% 76% Y A N 100% 100% 50% 100% 2D 2D 2D 100% 6 4 S
bfs 2 M 1 M 21% bfs.cpp:137 55% 66% 18% N BF N 100% 100% 1% 1% 3D 3D 2D 100% 1 1 M
b+tree 23 M 24 M 49% main.c:2345 26% 99% 0% N BF N 100% 100% 44% 44% 3D 3D 3D 100% 15 4 S
cfd 251 M 372 M 98% *3d_cpu.cpp:480 98% 42% 99% Y F N 100% 61% 18% 42% 5D 4D 3D 100% 1 3 S
heartwall 4 G 8 G 1% main.c:536 99% 38% 56% Y RCBF N 100% 100% 0% 0% 7D 6D 5D 100% 1 3 S
hotspot 11 M 16 M 0% *_openmp.cpp:318 81% 35% 89% Y B Y 100% 100% 3% 3% 4D 4D 2D 100% 1 1 S
hotspot3D 210 M 256 M 99% 3D.c:261 49% 28% 81% N BF N 100% 99% 11% 11% 4D 4D 3D 100% 1 1 M
kmeans 513 M 647 M 97% *_clustering.c:160 97% 56% 98% Y RFA N 100% 100% 46% 53% 4D 4D 4D 100% 1 3 S
lavaMD 879 M 1 G 0% kernel_cpu.c:123 99% 69% 92% N BF N 100% 100% 0% 0% 4D 4D 3D 100% 1 2 S
leukocyte 4 G 9 G 39% detect_main.c:51 37% 64% 64% Y RCBFAP N 100% 100% 63% 63% 4D 4D 3D 100% 11 5 S
lud 42 M 71 M 4% lud.c:121 99% 44% 70% Y BF N 99% 98% 0% 1% 5D 5D 3D 99% 3 3 S
myocyte 1 M 866 K 89% main.c:283 99% 80% 80% Y CBA N 100% 99% 47% 47% 4D 3D 1D 99% 1 3 S
nn 1 M 2 M 1% nn_openmp.c:119 31% 42% 71% Y RF N 100% 0% 0% 0% 1D 1D 1D 100% 1 1 M
nw 80 M 93 M 99% needle.cpp:308 79% 73% 27% Y RF Y 100% 100% 77% 77% 4D 4D 2D 100% 2 2 S
particlefilter 628 M 678 M 27% *_seq.c:593 99% 5% 14% N CF N 99% 100% 55% 55% 3D 3D 2D 100% 22 2 S
pathfinder 62 M 48 M 67% pathfinder.cpp:99 31% 83% 16% N BP Y 100% 0% 0% 40% 2D 2D 2D 100% 1 1 M
srad_v1 1 G 2 G 99% main.c:241 99% 31% 93% Y RF N 99% 100% 18% 18% 3D 3D 2D 100% 1 1 S
srad_v2 600 M 864 M 98% srad.cpp:114 96% 31% 92% Y RF N 100% 100% 14% 14% 3D 3D 2D 100% 1 1 S
streamcluster 779 M 1 G 97% *_omp.cpp:1269 99% 6% 13% Y RCBFAP - - - - - 6D 6D - - 52 - -

Table 5. Summary statistics computed from poly-prof’s feedback on the Rodinia benchmark suite.

use this information to perform speculative loop transforma-
tion, which differs in scope and challenges from the profiling
feedback tool developed in this paper.

Polyhedral compilation Integer linear algebra is a natu-
ral formalism for representing the computation space of a
loop nest. The polyhedral framework [23] leverages, among
others, operators on polyhedrons (e.g. union, intersection,
projection), enumeration (for code generation [6]), and para-
metric integer linear programming [22] (for dependence
analysis [16]). Historically, it has been designed to work on
restricted programming languages, and was used as a frame-
work to perform source-to-source transformations. More
recently, efforts have been made to integrate the technology
in mainstream compilers (e.g. Graphite [53, 68] for GCC [27]
and Polly [28] for LLVM [40]). The set of loop transforma-
tions (known as affine transformations) that the polyhedral
model can perform is wide and covers most of the important
ones for exposing locality and parallelism to improve perfor-
mance [11]. Tools such as PoCC [55] provide a convenient
interface to the numerous existing state-of-the-art schedul-
ing heuristics and polyhedral libraries such as ISL [71].

Dynamic dependence graph Shadow memory [76]
records a piece of information for each storage location used
in a program. For dependency tracking this is usually the last
statement or dynamic instruction that modified that location.
But shadow memories are also a core component of memory
error debugging tools [51, 62].

Like poly-prof, Redux [50] builds a data-flow graph from
binary level programs. It has, however, no notion of loops or
calling contexts and does not try to compress the produced
graph and is consequently only able to handle very small pro-
grams. A few techniques exist to address the high overhead
of monitoring data dependencies. The most common is the
use of static analysis so as to remove redundant instrumen-
tation [42], or to avoid monitoring must-dependencies [37].
Another approach that leads to over-approximation, consists
of reducing the size of the shadow memory through the use
of signature based addressing [43]. The most sophisticated
technique is the one developed in SD3 [39] that amounts to
detecting strided memory accesses to compress the shadow-
ing. A last technique that could be used for our purposes is
the parallelization of shadowing as done in [42, 49].

Calling context tree Using calling context trees to dis-
ambiguate instructions in different calling contexts is an idea
from Ammons, Ball and Larus [2]. But in the presence of re-
cursive functions the size of their CCTs grows proportionally
with the depth of the recursion, leading to an unreasonably
high memory overhead. Loop-call context trees [60] sim-
ply encode the calling context of intraprocedural loops and
suffer from the same size problems in recursive programs.

10 Conclusion and Future Work
In this paper we introduced poly-prof, a profiling-based
polyhedral optimization feedback tool. poly-prof tackles
the problem of dynamic data dependence profiling and poly-
hedral optimization from binary programs, while addressing
the associated scalability challenges of handling traces with
billions of operations, as we demonstrated. Our tool handles
non-regular programs with recursive function calls. Numer-
ous technical contributions as presented in this paper were
required to enable structured transformation feedback on bi-
nary programs, a significant step in complexity compared
to prior approaches typically limited to unstructured trans-
formations. We implemented numerous feedback reporting
schemes for the user in poly-prof: flame graphs, statistics
on each sub-region, proposed potential structured transfor-
mation, simplified annotated AST after the application of
the transformation, complete AST, etc.
While this represents an important step towards being

able to provide polyhedral feedback on full-scale applications
there are issues that still need to be addressed. This includes
the development of under-approximation schemes in the
DDG, as well as overall scalability enhancements, like using
approximate (non-optimal) polyhedral scheduling strategies.
Lastly, the process of mapping our results back from the

machine code back to the source code is in itself a research
topic, and currently we do not provide much more than what
objdump does. Our ongoing efforts in this direction leverage
polyhedral program equivalence techniques [5, 61, 73].
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