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We present the first nonperturbatively renormalized determination of the glue momentum fraction (x),, in
the nucleon, based on lattice-QCD simulations at the physical pion mass using the cluster-decomposition
error reduction technique. We provide the first practical strategy to renormalize the gauge energy-
momentum tensor nonperturbatively in the regularization-independent momentum-subtraction (RI/MOM)
scheme and convert the results to the MS scheme with one-loop matching. The simulation results show that
the cluster-decomposition error reduction technique can reduce the statistical uncertainty of its
renormalization constant by a factor of O(300) in calculations using a typical state-of-the-art lattice
volume, and the nonperturbatively renormalized (x},, is shown to be independent of the lattice definitions of

g
the gauge energy-momentum tensor up to discretization errors. We determine the renormalized

(x>gM_S(2 GeV) to be 0.47(4)(11) at the physical pion mass, which is consistent with the experimentally

determined value.

DOI: 10.1103/PhysRevD.98.074506

I. INTRODUCTION

A longstanding problem raised by deep-inelastic scatter-
ing and Drell-Yan experiments on the nucleon is that the
gluons contribute almost as large a fraction of the nucleon
momentum as the quarks [1,2], contradicting the naive quark
model. The momentum fractions of the quarks and glue equal
the second moments of their respective parton distribution
functions (PDFs) f,(x) (p = u,it,d.d, s, ....g),

1
(), = [ sy o) (1
where the PDF can be determined from global fits of
experimental results with certain assumptions about their
functional forms. The recent CT14NNLO global PDF fit [2]

yields (x}QK(Z GeV) = 0.42(2), and the value at the TeV
scale will be around 0.5, which is irrespective of its value at
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lower scales. Besides the importance in understanding the
nucleon momentum, the value of (x), is also an important
input to obtain the glue contributions to the nucleon mass and
spin [3.,4], so calculating it from a first-principle lattice-QCD
simulation is of fundamental interest, in addition to providing
an independent input and check of the experimental PDF
determinations.

Lattice calculations of (x) , in the nucleon [4-7] have been
significantly refined in the last ten years. However, values of

(x)M5(2 GeV) vary widely; two quenched calculations
found 0.43(9) and 0.33(6) [4,5], and recent dynamical
N; = 2 calculation obtained 0.267(22)(30) [6,7].

The recent quenched (Refs. [4,5]) and dynamical
(Refs. [6,7]) lattice calculations of (x), used different lattice
definitions of the gauge energy-momentum tensor (EMT)
with the one-loop renormalization based on the lattice
perturbation theory (LPT). It is known that LPT is poorly
convergent at one-loop level without smearing of the gauge
EMT [8,9], and LPT calculations beyond one-loop level are
extremely difficult. Whether smearing of the gauge EMT can
improve the convergence of LPT remains an open question,
but it was found in Ref. [10] that hypercubic (HYP) smearing
[11] of the glue operator can change the bare glue matrix
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element by a factor of ~3. Nonperturbative renormalization
(NPR) of (x),, is thus essential to check whether different
lattice definitions of the gauge EMT and smearing can
provide a consistent prediction of (x),.

In this work, we present the first NPR of the gauge EMT
using the cluster-decomposition error reduction (CDER).
We confirm that nonperturbatively renormalized (x), is
independent of the lattice definition of the gauge EMT and
whether the HYP smearing is applied to it.

The glue NPR technique that we introduce will be
applicable for the quantities beyond the (x),. State-of-
the-art calculations of the glue spin contribution to the
proton spin [10] and the glue transversity in hadrons [12]
have been presented recently; the renormalization of the
glue operators in these calculations are determined at the
one-loop level or neglected entirely. Approaches that target
the entire glue PDF instead of the moments, like large-
momentum effective theory [13] and the lattice cross
section approach [14], have been explored recently. NPR
will be also essential to obtain accurate predictions for
those quantities.

In the rest of the paper, we will start from the simulation
strategy of NPR in Sec. II. Then, in Sec. III, this strategy is
tested in several cases including the quenched, 2-flavor, and
2 4 1-flavor ones. Based on those tests, a prediction of the
renormalized (x), is provided in Sec. IV, with controllable
systematic uncertainties from NPR. Our findings in this
work are summarized in Sec. V, and the additional
discussion on the cases with more than one step of HYP
smearing is presented in the Appendix.

II. NPR SIMULATION STRATEGY

At tree level, the gauge EMT 7, = F,,F,, — 1 9,,F*
includes nine Lorentz structures,
=(0
T‘E],/zy = (2p;tpygp‘r - puppgw: + ng/)ﬂgl/‘[ - p'[pyg/m
- pup/)g/,rr + ng/wg/n - p‘l'pﬂg/)l/
+ [ (p’l'p/) - ngr/)))A/)(p)Ar(_p)’ (2)

where p and v denote the external Lorentz indices of the
EMT and p (or 7) is the Lorentz index of the external gluon
state A,/;. As discussed in Ref. [15], 2p,p,g,. is the only
structure free of mixing with the unphysical terms of the
gauge EMT (gauge dependent term and ghost term) and is
thus the best choice to consider the renormalization of the
gauge EMT without the mixing calculation with unphys-
ical terms.

While taking the physical condition p, = p, =0, p>=0
[15] in the Minkowski space will isolate this term, the on-
shell condition p?> = 0 is not satisfied on the lattice. One
can, however, choose other conditions on the lattice to
isolate this term. More precisely, the RI/MOM renormal-
ization constant of the off-diagonal pieces of the gauge

EMT at the renormalization scale u% = p? can be defined
using the following approach, which is analogous to that
commonly used for the quark bilinear operators [16],

N1 -1
46) = (M o)

V(T 4, Tr[A,(P)A,(=P)])
2

gpv

2p;4pv<Tr[Ap< )Ap<_p)]> ’:;:g;
PT 4 Tr[A,(p)A,(=p)]) » 3)
2p,,py<Tr[ »(P)A,(=D)]) i;};%’

where the index p is not summed and V is the physical
volume of the lattice. The final expression on the right-hand
side of Eq. (3) does not depend on the renormalization
constant

(Tr[A,(P)A,(=p)]) _NZ-11
v 2 P

RI
Zg

(4)
in the RI/MOM scheme, as it is cancelled by the inverse of
the (Tr[A,(p)A,(—p)]) in its definition.

The Landau gauge-fixed gluon field A,(p) used above is
defined from the gauge links U,(x) as

Up(x)

_ 4 ip-(x+4 ) )
=a e
2 [ riea

Note that, even though the operator 7 may be HYP
smeared, no smearing will be applied to the gauge field
A,(p), since the gauge action is not smeared and no
reweighting is applied to the configurations. Similarly,
the RI/MOM renormalization constants of the traceless
diagonal pieces of the gauge EMT can be defined by

p2<(7—'mt - 'Z_'W)TI‘[A/,(p)A/,(—p)D
2p(Tr[A,(P)A,(=p)])

(5)

:| traceless

27 (3) = L (©

ﬂ#ﬂ#v.
I’p*
pv=0

The bare lattice gauge EMT can be defined by the clover
definition of the field tensor F, [4,5],

T, = 2a4ZTr [

Fpu(x)=

g,wF 2] (x),

8a 2 [P[ﬂ +P —/4]+7D—;4—v]+7)[—bﬂ]( ) (7)
where the plaquette P, , (x)=U,,(x)U, (x+af) U} (x+ap)x
Ui (x) with U_,(x)=Uj(x—ab) and Py =Pyu,=Pyy
The bare traceless diagonal component Tgw also has a
simpler definition (the plaquette definition) [6,7]:
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ZTr (X

P#v X

_.EI[,?//EM =— <ZTI’ /uz

VFEUX

a). ®

Different definitions and choices of smearing on the links
U, (x) in these definitions of 7 , yield different bare hadron
matrix elements, but the renormalized results should agree
up to O(a?) correction.

After the renormalization constant Z~!(u%) is obtained
perturbatively or nonperturbatively under the lattice regu-
larization at u% = p?, the matching factor to convert the
result to the MS scheme should be calculated using
dimensional regularization. At the up used in this work,
the one-loop corrections to match the MS scheme at 2 GeV
are at a few percent level [17]. The mixing with the quark
EMT is also small [17] and will be considered as a
systematic uncertainty; more detailed discussions of the
matching and mixing effects can also be found there.

Calculation of the correlation function

Cs(p) = »(P)A,(=p)])
_ < [ atsitvazersiz, or [A,,<x>A,,<y>1>
)

is numerically challenging, even when the gluon propagator
has been determined at better than the 1% level.
Figure 1 illustrates this difficulty: the light-colored bands
in the background show the direct calculations of
Z;'(a’p? = 4)_,sin> %) (with the condition that two
components of p are zero and Zﬂpﬂ/(zﬂpﬂ) < 0.55)
based on the definition in Eq. (9), on 356 configurations of the
2 + 1-flavor RBC/UKQCD domain-wall fermion Iwasaki
gauge ensemble “481” with lattice spacing a = 0.114 fm,
m, = 140 MeV and lattice volume L3 xV = 48%x 96

(T,,Tr[A

OHYP, r1_09fm r2_1 3fm T
- OHYP, ry=0 1= S
1HYP, r1_09fm r,=1.3 fm ——
L 1HYP, ry=0 | ry= 5

N W~ O

z"
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’.. 0000000000400,
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FIG. 1. The glue operator renormalization constants Z7! in MS
at 2 GeV with and without CDER (i.e., cutoffs on the distance
between the gauge fields/operator). Without CDER, the errors are
large, and the signal cannot be resolved (bands in the back-
ground). The errors can be reduced by a factor of ~300 with
ri = 0.9 fm, r, = 1.3 fm, shown by the red dots (blue boxes) for
77! with (without) HYP smearing.

(L = 5.5 fm) [18]. The statistical uncertainties are very large,
and Z7! cannot be resolved at any scale.

However, we can apply the CDER technique to reduce
the errors [19]. The cluster-decomposition principle enun-
ciates that correlerators fall off exponentially in the distance
between operator insertions and implies that integrating the
correlator over this distance beyond the correlation length
will only garner noise and not signal. The CDER technique
will cut off the volume integral beyond a characteristic
length, and then one can gain a factor of 1/V in the signal-
to-noise ratio [19]. Applying CDER to C3(p) in Eq. (9)
introduces two cutoffs, r; between the glue operator and
one of the gauge fields and r, between the gauge fields in
the gluon propagator, and then leads to the cutoff correlator:

p)= </ d4r/ d4r’/d4x
[r<ry [r']<ry

x e T, (x+r)Tr[A,(x)A,(x + r’)]>. (10)

CgDER (

For example, with cutoffs r; = 0.9 fm, r, = 1.3 fm, the
statistical uncertainty can be reduced by a factor of
approximately 300. This is close to the square root of
V2 over the product of four-dimensional spheres with radii
ry and ry, 2V /(7%r}r3) ~263. Using these parameters, a
very clear signal can be resolved, shown as the red dots
and blue boxes in Fig. 1, for Z;' with and without HYP
smearing, respectively. The values of Z7! differ by a factor
of ~3 for the calculations with or without the HYP
smearing, at a’p> ~ 1.

A naive cost estimate for the partial triple sum on the
volume V in Eq. (10) is O(Vr{r3), but the practical cost can
be reduced to O(VlogV) by applying the fast Fourier
transform several times [19] using the following strategy:

(1) Construct O}, (x) = 1<, d*’'T ,,(x + ') by Fou-
rier transformmg T,,(x) and f(x) = 6(r, = |x]),
multiply the transformed functions together in mo-
mentum space, and then perform the anti-Fourier
transform.

(2) Calculate Bl (x) = A,(x)7},(x).

(3) Apply the cluster decomposition to
[ d*xd*ye’ By (x)A,(y) [19]: perform the
Fourier transform (FT) for both A and B, applying
the anti-FT to A(p)B(—p); apply the cut g(x) =
O(r; — |x|) in coordinate space; and then FT the
product.

The CDER with symmetric cutoffs

C p)z</ d4r/ d4r”/d4x
[r|<ry [7"|<rs

7 r[A p(x—r)Ap(x—l—r”)]> (11)

X etp (r4r" T ( )
can also be efficient if a V1og V implementation can be
obtained.
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III. TESTS ON CDER

Since the number of configurations in the 481 ensemble
at m, = 140 MeV is limited, we turn to three ensembles
with smaller volume and larger statistics to check the
systematic uncertainties of the CDER approach. To reduce
statistical uncertainties then provide a stronger check, we
will apply one step of HYP smearing on the gauge EMTs
used in this section.

A. Quenched ensemble 24Q

We calculated Z(1-HYP) without CDER on decorrelated
70,834 configurations of a quenched Wilson gauge ensem-
ble “24Q” with a = 0.098 fm and L* x V = 243 x 64 and
compared them with those on 708 of the 70,834 configu-
rations (pick 1 per 100 configuration numbers) with CDER.
The CDER results with r; > 0.8 fm and r, > 1.1 fm agree
with the CDER-free results for all a’® p*. Figures 2—4 show
the Z~! and ZT results with a2 p? = 2.00, 2.48, and 3.00,
respectively. In those figures, the red bands show the results
on 70,834 configurations without CDER, and the black
boxes show the results with ;| = 0.7 x r, = R agree with

ry=R, r2_ —e—

1 4=, r,=1.4R —*— b

ry=R, r,=1.4R —8—

100x statistics, r1_R r,=1.4R ——
100x statistics, rq=ry=

08
0.6 [

Z" (a%p® =2.00)

S o081 100x statistics, r{=R, fp=1,4R —— 7
N 100x statisics, [rq=ry=

06 b
3Y)
aQ.

s 047 7
02 L Ir
: 138
|i 2
02, 0.5 1 1.5 25

R(fm)

FIG. 2. The cutoff R dependence for r, , of the renormalization
constant Z~!(2 GeV) and Z;! (2 GeV) on the 24Q ensemble with
a’p? =2.00. Calculations on 300 configurations with r; >
0.7 fm and r, > 1.0 fm are consistent with those using 70,834
configurations without any cutoff. The result is less sensitive to
the cutoff | than r,; thus, most of the variance reduction comes
from reducing ry, while reducing r, is also useful. The green/
black/red data are shifted horizontally to enhance legibility.

the red bands for all the R’s not smaller than 0.7 fm. Results
with the cutoff on either r; or r, set to oo (the green
triangles and purple dots) are also shown in the figures,
and it is obvious from the leftmost data points that the
cutoff effects on r, are as strong as those on r; when
ri = 0.7 X r,. Thus, setting the r| , with this relation can be
a proper choice to simplify the parameter tuning. The
results also demonstrate that cutoffs on either | or r, also
reduce the statistical uncertainties of Z~!. As shown in
Figs. 24, the full-statistics CDER results (red crosses)
actually saturate at R > 0.8 fm or so and are consistent
with both the full-statistics non-CDER results and the
1%-statistics CDER results as expected.

B. Two-flavor ensembles 24C/12C

We also studied the dynamical case. We calculated

~1(1-HYP) with CDER on 2,123 configurations of the
two-flavor clover fermion Liischer-Weisz gauge ensemble
“24C” with lattice spacing a = 0.117 fm, m, = 450 MeV,
and L3 x V =243 x 64 [20]. For comparison, we repeat
the calculation of Z~! on 21,166 configurations on the 12C
ensemble (with the same lattice setup as 24C except a
smaller volume 123 x 24) without CDER. Figure 5 shows
similar R-dependence plots for the dynamical case with
24C and 12C lattices (a = 0.117 fm, m, = 450 MeV,
L3 xV equal to 24° x 64 and 123 x 24, respectively).

T

T
ry=R, ry= '—9—'
1T rn =oo, f 2 1.4R —A— b
r _R r,=1.4R —&—
08 r 100x statistics, r1_R ry P1.4R —+— 7
0.6 100x statlstlcs r =[fp=00

Z " (2%p? =2.48)

R(fm)
T T T
. =R, r2_ © i
1 r=o, ry=1.4R F—A—
— | ry=R, r,=1.4R —8— i
® 08 100x statistics, ry=R, r;=1.4R _—+—
N 100x statistics, r1_r=°°
0.6
go_
o 04
02
0
_0 2 | | | |
o 0.5 1 1.5 2 25
R(fm)
FIG. 3. The cutoff R dependence of the renormalization

constant Z~'(2 GeV) and Z;'(2 GeV) on the 24Q ensemble
with a’p? = 2.48.
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100x statistics, ry=ry=
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Z " (a%p? =2.96)
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0 0.5 1 1.5 2 2.5
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FIG. 4. The cutoff R dependence of the renormalization
constant Z~!(2 GeV) and Z;'(2 GeV) on the 24Q ensemble
with a’p? = 2.96.

The red bands show the results on 21,166 configurations
without any cutoff, and the data points show the CDER
results. They are all consistent for all the R’s not smaller
than 0.9 fm. The uncertainty of the full-statistics CDER
results are not much smaller than the non-CDER ones since
the volume is too small to make the CDER efficient.

For the cutoffs on the radii »; and r,, they should
correspond to the respective correlation lengths between
the relevant operators. r; is between the gauge field and the
EMT operator. Taking the vector meson @(780) as an
estimate, the correlation length 3/m,, ~0.76 fm (at three
times the Compton wavelength, the Yukawa potential has
fallen by 95%) is close to 0.9 fm that we take for r;. On
the other hand, the gluon has a “dynamical mass” m, ~
550 MeV in the small momentum region [21,22]. This gives
an estimate of the correlation length of 3/m,~ 1.2 fm,
which is close to the 1.3 fm cutoff used for r,.

As in Fig. 6, we should choose r; > 0.9 fm and r, >
1.3 fm on 24C (black crosses) to get the results consistent
with those on 12C without CDER (the red boxes). If we fit
the CDER result of Z~! on 24C with a polynomial form
including a®" p*" (n < 2) terms in the range a®p? € [1.5, 5],
the result is 2.63(5) with y?/d.o.f. = 0.80. Figure 6 also
shows Z~!(1-HYP) with either smaller r, (the purple band)
or r, (the green band). These two cases have distinct
systematic bias in the form of oscillation in a”p? although

T T —
4 r1=R, I’2=00 —e—
357 1=, ry=1.4R 4
B ri=R, r,=1.4R -
3 10x stat. with smaller V, r;=R, r,=].4R |~
2571

10x stat. with sm?er , [{=lly=0

5l
15 L < .@.i

1 i +¥"|"¥—$—1ﬂ% 1
A
051 &

Z" (a%p? =2.00)
B
-+

A

o Il Il Il Il
0 0.5 1 15 2
R(fm)
4 T T 3
|’1=R, |’2=00 —o—
357 ri=., r,=1.4R A—i
—~ i r=R, r,=1.4R —8— |
X 3 10x stat. with smaller V, r;=R, r,=1.4R
(.I\Ii 25 10x stat. with smaller V, ry=ry=c0
P2
©
~ 15r
N
05 @
o Il Il
0 0.5 1 1.5 2 25
R(fm)
FIG. 5. The cutoff R dependence of the renormalization

constant Z~!(2 GeV) on the 24C/12C ensembles with a”p* =
2.00 and 2.48.

2.5 \ \ \ \ \
L=2.8 fm, 2113 cfgs., r;=0.6 fm, r,=1.3 fm M=
L=2.8 fm, 2113 cfgs., r;=0.9 fm, r,=0.9 fm ===
2 L=2.8 fm, 2113 cfgs., ry=0.9 fm, r;=1.3 fm H—+— 7
sgl=141m, 19570 cfgs., ry=0 , fp=0 —a—
151 % -
/
- I/
N 1F/
z
0.5 [*
O 1
0 1

FIG. 6. The MS renormalization constant Z~!(2 GeV) on the
24C ensemble as a function of a? p?, with different cutoffs on the
gluon field-operator correlation (r) and propagator (r;). A high-
statistics calculation without cutoff on a lattice with smaller
volume but the same paramters is also presented (red boxes) for
comparison.

the statistical uncertainties are smaller. If we fit the corre-
sponding data with previous fitting setup, the y*/d.o.f. will be
6.1 and 28.9 in two cases respectively and then are not
acceptable. Thus, whether y?/d.o.f. is around 1 can provide
consistent criteria on the systematic uncertainties introduced
by CDER, especially in the case (likes 48I) we cannot resolve
any signal without CDER.
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C. 2 +1-flavor ensembles 481

Before the end of this section, a few R-dependence tests
on 48I, the ensemble we will use for the final result, are
provided in Fig. 7.

In the upper panel of Fig. 7, the Z7'(2 GeV) case with
a’p? =2.00 is presented using a similar style as the
previous plots in this section, while the bands are based
on the results with the CDER cutoffs r; =0.7xr,=0.9fm.
It is obvious that the cutoffs on r, are necessary as the
errors with either an rq or r, cutoff only are very large. The
central panel of Fig. 7 shows the cutoff R dependence with
r, =07 xr, =R at a*p> =2.00, 2.48, 2.97, and 3.48.
All the data points with R > 0.9 fm are consistent with the
band based on the data point at R = 0.9. In the lower panel

1.4

1.2
;
0.8
x 0.6
N 0.4
0.2

0

2p% =2.00)

0.8
07
06
05
04 r
03
02
01

0.8
0.7
0.6 [
05
04 r
03 [
02
01

R(fm)

FIG. 7. The cutoff R dependence of the renormalization
constant Z;! (2 GeV) on the 481 ensemble.

of Fig. 7, the cutoff R = 0.7 x r, dependences at different
a’p?* are presented with fixed r; = 0.9 fm. Thus, the
uncertainty with larger r, is smaller, and then consistency
is more obvious. As an estimate of the systematic uncer-
tainty due to the choice of r,, we take the 2% fluctuation of
the gluon propagator at r, = 1.3 fm as the systematic error
in our final prediction.

IV. RENORMALIZED <x>g ON 481

Given the success of CDER in resolving a clean signal of
Z7', it is nevertheless important to confirm that the
renormalized (x), is independent of the lattice definition
of 7, or whether the HYP smearing is applied, up to O(a?)
corrections. Figure 8 gives the CDER results on the 48I
ensemble as the functions of a”p>. The red dots and blue
boxes show Z7! with and without HYP smearing, respec-
tively, using the clover definition in Eq. (7); the green
triangles show the HYP-smeared case using the plaquette
definition in Eq. (8), Z;'. The a*p? dependence and the
a’p? — 0 limit of the renormalization constants are differ-
ent between the different definitions, while the presumed
rotation symmetry breaking between Z~! (black triangles)
and Z7! is consistent with zero within the uncertainties.
With the functional form Z7! (a®p?) = Z7'(0) + C,a*p> +
C,a*p*, we fit the range a’p* € [1.5,5] (the lighter
area in Fig. 8) and obtain Z7!'(0-HYP)=0.257(25)(5),
Z7'(1-HYP) = 0.946(26)(19), and  Z7'(1-HYP) =
1.05(35)(21), where the second error is an estimate of
the systematic uncertainty from the 2% truncation error of
the gluon propagator at r, ~ 1.3 fm. The y/d.o.f. for all the
cases are smaller than 1.

To determine the bare (x),, the following ratio is calcu-
lated in the rest frame of the nucleon on 81 configurations of
the 481 ensemble with a partially quenched valence overlap
fermion for the pion mass m, € [135,372] MeV,

T T T

T T
CLV, Z{, OHYP —=— |
CLV, Z", 1HYP ——
CLV, Z;, 1HYP —=—
PLQ, Z;, 1HYP =

0.6

0.4

FIG. 8. The MS at 2 GeV renormalization constants as
functions of a®p?, for the gauge EMT operators. The red dots
and blue boxes show the Z7! with and without HYP smearing
using the clover definition (CLV), and the green triangles show
the HYP-smeared case using the plaquette definition (PLQ). The
result of Z~! with HYP smearing and the clover definition (purple
triangles) are also plotted for the comparison.
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ry=0.9 fm, r,=1.4R
T
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FIG. 9. The renormalized R(7;) with and without the HYP
smearing (the red dots and blue boxes, respectively) using the
clover definition and also the HYP-smeared case with the
plaquette definition (the green triangles). The HYP-smeared data
are shifted horizontally to enhance the legibility, and a black line
at 0.38 is placed on the figure to guide the eyes. All results agree
with each other within 2¢ for 7, > 4.

R(t,. 1) = MO S G 1) 444(07(0,0)|0) (12)
a 3My (0T [ dyx(5.1,)7(0,0)[0)

where y is the nucleon interpolation field, I is the unpo-
larized projection operator of the proton, and My is the
nucleon mass. When 7, is large enough, the derivative of the
t-summed ratio R(ts,t) becomes the glue momentum
fraction in the nucleon, as applied in the recent high-accuracy
nucleon matrix element calculation [23],

R(ty)= Y R(tp.t)= > R(tp—L.1)

O<t<ty O<it<t;—1

— <x>gare 4 O(e_émtf), (13)

up to the excited-state contamination at O(e=%"'r). The
calculation setup is the same as for our previous work on the
glue spin [10]: a 4 x 4 x 4 smeared grid source with low
mode substitution [24] is used for the nucleon two-point
functions, and all the time slices are looped over to increase
statistics. We followed the same strategy in Ref. [19] to apply
CDER to the numerator of R(t, ). With a cutoff around
1 fm, which is enough as demonstrated in the NPR cases
studied here, the statistical uncertainties of R(z;) can be
reduced by a factor of ~10. The systematic uncertainties in
bare R(z;) due to CDER will be investigated in the future
following the strategy in Ref. [19]. The renormalized R(1;) at
m, = 372 MeV is shown in Fig. 9 as a check with the best
signals we have. The errors from Z; and the bare R(z;) are
combined in quadrature. As shown in that figure, even
though the renormalization constants with or without
HYP smearing differ by a factor of ~3 as we saw in
Fig. 8, the renormalized R®(1;) = Z;R(1;) are consistent
within 2o for 1, > 4.

ry=0.9 fm, r,=1.4R
0.8 \ \

T T T
HYPO, CLV —l— |
HYP1, CLV —@—
HYP1, PLQ —&—

+—+

<X>g

0 I I I I I I
0 0.02 0.04 0.06 008 0.1 0.12 0.14

m.2 (GeV?)

FIG. 10. The renormalized glue momentum fraction (x), as a
function of m2. The HYP-smeared data are slightly shifted
horizontally to enhance the legibility. The results with different
definitions are consistent with each other, and the m2 dependence
is mild. The dark and light gray bands show the statistical and
total uncertainties, respectively, at a combined linear fit of the m2
dependence.

We fit R(t/) to a constant in the range 7, > 7a to obtain
(x), and plot its m} dependence in Fig. 10. With a linear fit to

m2 for m, < 400 MeV on the 1-HYP-smeared data with the

clover definition, we obtain (x)}5(2 GeV) at the physical
pion mass as 0.47(4)(11). The variance of the values from
three definitions, the uncertainties of the renormalization
constants, and the mixing effect from the quark momentum
fraction (x), (which is estimated by 1 — (x), times the
one-loop mixing coefficient 0.1528 [17]) are combined in
quadrature as the systematic uncertainty. The prediction is
consistent with the global fitting result CT14 [2] 0.42(2) in
MS at the same scale. The major systematic uncertainty is the
mixing from the quark and can be eliminated with a similar
nonperurabtive calculation with the quark external states.

V. SUMMARY

In summary, we have presented a systematic implemen-
tation of NPR for the glue momentum fraction (x),.
We demonstrated that the CDER technique can provide
an unbiased improvement on the lattice with the cutoffs
ri ~0.9 fmand r, ~ 1.3 fm and that the renormalized (x),,
is insensitive to the lattice definition of the gauge EMT or
HYP smearing within uncertainties.

Our calculation also shows that HYP smearing can make
the a® p? dependence of the renormalization constant much
stronger than the case without HYP smearing, even though
the a”p>-extrapolated value can be closer to 1. The cases
with more steps of HYP smearing are shown in the
Appendix.
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APPENDIX: THE DISCRETIZATION ERROR
WITH MORE STEPS OF HYP SMEARING

In this section, we repeat the NPR and matrix elements
calculation on 48I, but with two and five steps of HYP
smearing.

As shown in the left panel of Fig. 11, Z7! becomes
increasingly nonlinear on ap? when more HYP-smearing

oLy orivp

steps are applied on the gauge EMT. Without HYP
smearing, the a’p? dependence of Z7! can be well
described by a linear term, and the coefficient of the next
order a*p* term is consistent with zero. With more HYP-
smearing steps, the coefficients of the a?p? and a* p* terms
increase significantly. Since all momenta p on the external
legs of the gauge EMT will be integrated in the hadron
matrix element, a?"p>" corrections will result in O(a*")
discretization errors at finite lattice spacing. From the
renormalized R(z;) in the right panel of Fig. 11, the results
with two steps of HYP smearing still agree with the results
with 1 step of HYP smearing, but if we jump to the five-
step HYP smearing used by some previous studies, the
a® p*" corrections will be much larger, and the renormal-
ized result will have large systematic uncertainties from
determining Z7! (green triangles and blue boxes).

In the 5-HYP case, with the same range a* f?z €[1.5,5]and
the polynomial form up to the a*p* term, Z7!(5-HYP) =
0.663(35) is obtained with y*> = 0.8 (the default fit). If the
a®p® termis added and the range is switched to a® p? € [1, 4],
Z7'(5-HYP) will jump to 1.11(11) with y*> = 0.4 (the tuned
fit). The data of Z7!(5-HYP) (the green triangles) with the
band from the default fit (the green band) and tuned fit
(the blue band) are plotted in the left panel of Fig. 11, and the
renormalized R(z;) with both fits of Z7' are shown in the
right panel. The errors from Z; and the bare R(r;) are
combined in quadrature. It is obvious that the renormalized
R(ty) with five-step HYP smearing (green triangles) based
on the default fit of Z7! is much higher than those with one
and two steps of HYP smearing. Even though the consistency
can be improved if the tuned fit of Z7! is applied (the blue
boxes), the systematic uncertainties from the fit of Z7! will
make the final uncertainties in the five-step HYP-smearing
case larger than the cases with fewer steps of HYP smearing.

ry=0.9 fm, r,=1.4R

T T
1 F CLV, THYP —— -
\ CLEV,2HYP

CLV, 5HYP —— |

T T T
I ‘ HYP1, CLV —@—
HYP2, CLV —¥—

0.8 i HYP5, CLV —&— |
i 7 i YP5, Tuned H—ilH

0.6 H A 7
i A } }

-
o

2 4 6 8 10 12
tra

FIG. 11. The MS 2 GeV renormalization constants Z;‘ and renormalized R(t f) with one, two, and five steps of HYP smearing are shown
as the red dots, purple reversed triangles, and green triangles, respectively. Both the blue and green bands are the fit of the 5S-HYP data, with
the regions a”p? € [1, 4] and [1.5,5], respectively. The renormalized R(7;) in the 2-HYP case is still consistent with the 1-HYP case even
though the a® p? dependence of Z7! is quite different for ty > 3, butthe 5-HYP case will be very sensitive to the fit of 77! and then has a large
systematic uncertainties.
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