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Quantum Query Complexity of Entropy Estimation
Tongyang Li and Xiaodi Wu

Abstract—Estimation of Shannon and Rényi entropies of
unknown discrete distributions is a fundamental problem in
statistical property testing. In this paper, we give the first
quantum algorithms for estimating α-Rényi entropies (Shannon
entropy being 1-Rényi entropy). In particular, we demonstrate a
quadratic quantum speedup for Shannon entropy estimation and
a generic quantum speedup for α-Rényi entropy estimation for
all α ≥ 0, including tight bounds for the Shannon entropy, the
Hartley entropy (α = 0), and the collision entropy (α = 2).
We also provide quantum upper bounds for estimating min-
entropy (α = +∞) as well as the Kullback-Leibler divergence.
We complement our results with quantum lower bounds on α-
Rényi entropy estimation for all α ≥ 0.

Our approach is inspired by the pioneering work of Bravyi,
Harrow, and Hassidim (BHH) [1], however, with many new
technical ingredients: (1) we improve the error dependence of
the BHH framework by a fine-tuned error analysis together
with Montanaro’s approach to estimating the expected output of
quantum subroutines [2] for α = 0, 1; (2) we develop a procedure,
similar to cooling schedules in simulated annealing, for general
α ≥ 0; (3) in the cases of integer α ≥ 2 and α = +∞, we
reduce the entropy estimation problem to the α-distinctness and
the dlog ne-distinctness problems, respectively.

Index Terms—statistical property testing, sampling, entropy
estimation, quantum information, query complexity.

I. INTRODUCTION

Motivations. Property testing is a rapidly developing field in
theoretical computer science (e.g. see the survey [3]). It aims
to determine properties of an object with the least number
of independent samples of the object. Property testing is
a theoretically appealing topic with intimate connections to
statistics, learning theory, and algorithm design. One important
topic in property testing is to estimate statistical properties
of unknown distributions (e.g., [4]), which are fundamental
questions in statistics and information theory, given that much
of science relies on samples furnished by nature. The Shannon
[5] and Rényi [6] entropies are central information-theoretical
quantities. In this paper, we focus on estimating these entropies
for an unknown distribution.

Specifically, given a distribution p over a set X of size n
(w.l.o.g. let X = [n]) where px denotes the probability of
x ∈ X , the Shannon entropy H(p) of this distribution p is
defined by

H(p) :=
∑

x∈X: px>0

px log
( 1

px

)
. (I.1)

A natural question is to determine the sample complexity
(i.e., the necessary number of independent samples from p) to
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estimate H(p), with error ε and high probability. This problem
has been intensively studied in the classical literature. For
multiplicative error ε, Batu et al. [7, Theorem 2] provided
the upper bound of O(n(1+o(1))/(1+ε)2 log n), while an almost
matching lower bound of Ω(n(1−o(1))/(1+ε)2) was shown by
Valiant [4, Theorem 1.3]. For additive errors, Paninski gave a
nonconstructive proof of the existence of sublinear estimators
in [8, 9], while an explicit construction using Θ( n

ε logn )
samples was shown by Valiant and Valiant in [10, 11] when
ε = Ω(n−0.03) and ε = O(1); for the case ε = O(n−0.03), Wu
and Yang [12] and Jiao et al. [13] gave the optimal estimator
with Θ( n

ε logn + (log n)2

ε2 ) samples.
A sequence of works in information theory [12–14] studied

the minimax mean-squared error, which becomes O(1) also
using Θ(n/ log n) samples.

One important generalization of Shannon entropy is the
Rényi entropy of order α > 0, denoted Hα(p), which is defined
by

Hα(p) :=

{
1

1−α log
∑
x∈X p

α
x , when α 6= 1.

limα→1Hα(p), when α = 1.
(I.2)

The Rényi entropy of order 1 is simply the Shannon entropy,
i.e., H1(p) = H(p). General Rényi entropy can be used
as a bound on Shannon entropy, making it useful in many
applications (e.g., [15, 16]). Rényi entropy is also of interest
in its own right. One prominent example is the Rényi entropy
of order 2, H2(p) (also known as the collision entropy),
which measures the quality of random number generators
(e.g., [17]) and key derivation in cryptographic applications
(e.g., [18, 19]). Motivated by these and other applications,
the estimation of Rényi entropy has also been actively stud-
ied [13, 14, 20]. In particular, Acharya et al. [20] have shown
almost tight bounds on the classical query complexity of
computing Rényi entropy. Specifically, for any non-integer
α > 1, the classical query complexity of α-Rényi entropy
is Ω(n1−o(1)) and O(n). Surprisingly, for any integer α > 1,
the classical query complexity is Θ(n1−1/α), i.e., sublinear
in n. When 0 ≤ α < 1, the classical query complexity is
Ω(n1/α−o(1)) and O(n1/α), which is always superlinear.

The extreme case (α → ∞) is known as the min-entropy,
denoted H∞(p), which is defined by

H∞(p) := lim
α→∞

Hα(p) = − log max
i∈[n]

pi. (I.3)

Min-entropy plays an important role in the randomness ex-
traction (e.g., [21]) and characterizes the maximum number of
uniform bits that can be extracted from a given distribution.
Classically, the query complexity of min-entropy estimation is
Θ(n/ log n), which follows directly from [10].
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Another extreme case (α = 0), also known as the Hartley
entropy [22], is the logarithm of the support size of distribu-
tions, where the support of any distribution p is defined by

Supp(p) := |{x : x ∈ X, px > 0}|. (I.4)

It is a natural and fundamental quantity of distributions with
various applications (e.g., [23–29]). However, estimating the
support size is impossible in general because elements with
negligible but nonzero probability, which are very unlikely
to be sampled, could still contribute to Supp(p). Two related
quantities (support coverage and support size) have hence been
considered as alternatives of 0-Rényi entropy with roughly
Θ(n/ log(n)) complexity. (See details in Section VIII.)

Besides the entropic measures of a discrete distribution,
we also briefly discuss an entropic measure between two
distributions, namely the Kullback-Leibler (KL) divergence.
Given two discrete distributions p and q with cardinality n,
the KL divergence is defined as

DKL(p‖q) =
∑
i∈[n]

pi log
pi
qi
. (I.5)

KL divergence is a key measure with many applications
in information theory [30, 31], data compression [32], and
learning theory [33]. Classically, under the assumption that
pi
qi
≤ f(n) ∀ i ∈ [n] for some f(n), DKL(p‖q) can be

approximated within constant additive error with high success
probability if Θ( n

logn ) samples are taken from p and Θ(nf(n)logn )
samples are taken from q.

Main question. In this paper, we study the impact of quantum
computation on estimation of general Rényi entropies. Specifi-
cally, we aim to characterize quantum speed-ups for estimating
Shannon and Rényi entropies.

Our question aligns with the emerging topic called “quan-
tum property testing” (see the survey [34]) and focuses on
investigating the quantum advantage in testing classical statis-
tical properties. To the best of our knowledge, the first research
paper on distributional quantum property testing is by Bravyi,
Harrow, and Hassidim (BHH) [1], where they discovered
quantum speedups for testing uniformity, orthogonality, and
statistical difference on unknown distributions. Some of these
results were subsequently improved by Chakraborty et al. [35].
Reference [1] also claimed that Shannon entropy could be
estimated with query complexity O(

√
n), however, without

details and explicit error dependence. Indeed, our framework
is inspired by [1], but with significantly new ingredients to
achieve our results. There is also a related line of research
on spectrum testing or tomography of quantum states [36–
40]; in particular, Ref. [40] studied the quantum sample
complexity of estimating von Neumann and Rényi entropies of
a quantum state. However, these works aim to test properties
of general quantum states, while we focus on using quantum
algorithms to test properties of classical distributions (i.e.,
diagonal quantum states)1.

1Note that one can also leverage the results of [36–40] to test properties of
classical distributions. However, they are less efficient because they deal with
a much harder problem involving general quantum states.

Distributions as oracles. The sampling model in the classical
literature assumes that a tester is presented with independent
samples from an unknown distribution. One of the contribu-
tions of BHH is an alternative model that allows coherent
quantum access to unknown distributions. Specifically, BHH
models a discrete distribution p = (pi)

n
i=1 on [n] by an oracle

Op : [S]→ [n] for some S ∈ N. The probability pi (i ∈ [n]) is
proportional to the size of pre-image of i under Op. Namely,
an oracle Op : [S] → [n] generates p if and only if for all
i ∈ [n],

pi = |{s ∈ [S] : Op(s) = i}|/S. (I.6)

(note that we assume pis to be rational numbers). If one
samples s uniformly from [S], then the output Op(s) is from
distribution p. Instead of considering sample complexity—
that is, the number of used samples—we consider the query
complexity in the oracle model that counts the number of
oracle uses. Note that a tester interacting with an oracle can
potentially be more powerful due to the possibility of learning
the internal structure of the oracle as opposed to the sampling
model. However, it is shown in [1] that the query complexity
of the oracle model and the sample complexity of the sampling
model are in fact the same classically.

A significant advantage of the oracle model is that it nat-
urally allows coherent access when extended to the quantum
case, where we transform Op into a unitary operator Ôp acting
on CS ⊗ Cn+1 such that

Ôp|s〉|0〉 = |s〉|Op(s)〉 ∀ s ∈ [S]. (I.7)

Moreover, this oracle model can also be readily obtained
in some algorithmic settings, e.g., when distributions are
generated by some classical or quantum sampling procedure.
Thus, statistical property testing results in this oracle model
can be potentially leveraged in algorithm design.

Our Results. Our main contribution is a systematic study of
both upper and lower bounds for the quantum query complexity
of estimation of Rényi entropies (including Shannon entropy
as a special case). Specifically, we obtain the following quan-
tum speedups for different ranges of α.

Theorem I.1. There are quantum algorithms that approximate
Hα(p) of distribution p on [n] within an additive error 0 <
ε ≤ O(1) with success probability at least 2/3 using2

• Õ
(√n
ε1.5

)
quantum queries when α = 0, i.e., Hartley

entropy. See Theorem VIII.2.3

• Õ
(
n1/α−1/2

ε2

)
quantum queries4 when 0 < α < 1. See

Theorem V.2.
• Õ

(√n
ε2

)
quantum queries when α = 1, i.e., Shannon

entropy. See Theorem III.1.
• Õ

(
nν(1−1/α)

ε2

)
quantum queries when α > 1, α ∈ N for

some ν < 3
4 . See Theorem VI.1.

2It should be understood that the success probability 2/3 can be boosted
to close to 1 without much overhead, e.g., see Lemma V.5 in Section V-A5.

30-Rényi entropy estimation is intractable without any assumption, both
classically and quantumly. Here, the results are based on the assumption that
nonzero probabilities are at least 1/n. See Section VIII for more information.

4Õ hides factors that are polynomial in logn and log 1/ε.
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• Õ
(
n1−1/2α

ε2

)
quantum queries when α > 1, α /∈ N. See

Theorem V.1.
• Õ

(
Q(
⌈
16 log n
ε2

⌉
-distinctness)

)
quantum queries when

α =∞, where Q(
⌈
16 log n
ε2

⌉
-distinctness) is the quantum

query complexity of the
⌈
16 log n
ε2

⌉
-distinctness problem.

See Theorem VII.1.

Our quantum testers demonstrate advantages over classical
ones for all 0 < α <∞; in particular, our quantum tester has
a quadratic speedup in the case of Shannon entropy. When
α = ∞, our quantum upper bound depends on the quantum
query complexity of the dlog ne-distinctness problem, which
is open to the best of our knowledge5 and might demonstrate
a quantum advantage.

As a corollary, we also obtain quadratic quantum speedup
for estimating KL divergence:

Corollary I.1 (see Theorem IV.1). Assuming p and q satisfies
pi
qi
≤ f(n) ∀ i ∈ [n] for some function f : N→ R+, DKL(p‖q),

there is a quantum algorithm that approximates DKL(p‖q)
within an additive error ε > 0 with success probability at
least 2

3 using Õ
(√n
ε2

)
quantum queries to p and Õ

(√nf(n)
ε2

)
quantum queries to q.

On the other hand, we obtain corresponding quantum lower
bounds on entropy estimation using the polynomial method
[43, 44], which are then combined with a couple of lower
bounds shown in [45]. It is worth mentioning that lower
bounds in [45] are established when assuming ε = O(1),
whereas our lower bounds have precise error dependence.

We summarize both bounds in Table I and visualize them
in Figure 1.

Theorem I.2 (See Theorem IX.1). Any quantum algorithm
that approximates Hα(p) of distribution p on [n] within
additive error ε with success probability at least 2/3 must use
• Ω(

√
n+n

1
3 /ε

1
6 ) quantum queries when α = 0, assuming

1/n ≤ ε ≤ 1/12.
• Ω̃(n

1
7α−o(1)/ε

2
7 ) quantum queries when 0 < α < 3

7 .
• Ω(n

1
3 /ε

1
6 ) quantum queries when 3

7 ≤ α ≤ 3 and α 6= 1,
assuming 1/n ≤ ε ≤ 1/2.

• Ω(
√
n+n

1
3 /ε

1
6 ) quantum queries when α = 1, assuming

1/n ≤ ε ≤ 1/2.
• Ω(n

1
2−

1
2α /ε) quantum queries when 3 ≤ α <∞.

• Ω(
√
n/ε) quantum queries when α =∞.

Techniques. At a high level, our upper bound is inspired by
BHH [1], where we formulate a framework (in Section II) that
generalizes the technique in BHH and makes it applicable in
our case. Let F (p) =

∑
x pxf(px) for some function f(·) and

distribution p. Similar to BHH, we design a master algorithm
that samples x from p and then use the quantum counting
primitive [48] to obtain an estimate p̃x of px and outputs
f(p̃x). It is easy to see that the expectation of the output of the
master algorithm is roughly6 F (p). By choosing appropriate

5Existing quantum algorithms for the k-distinctness problem (e.g., [41] has
query complexity O(k2nk/k+1) and [42] has query complexity O(2k

2
nν)

for some ν < 3/4) do not behave well for super-constant ks.
6The accurate expectation is

∑
x pxE[f(p̃x)]. Intuitively, we expect p̃x to

be a good estimate of px.

α classical bounds quantum bounds (this paper)

α = 0 Θ( n
logn

) [46, 47] Õ(
√
n) (this paper), Ω̃(

√
n) [45]

0 < α < 1 O( n
1
α

logn
), Ω(n

1
α
−o(1)) [20] Õ(n

1
α
− 1

2 ), Ω(max{n
1
7α
−o(1), n

1
3 })

α = 1 Θ( n
logn

) [10, 12, 13] Õ(
√
n) (this paper), Ω̃(

√
n) [45]

α > 1, α /∈ N O( n
logn

), Ω(n1−o(1)) [20] Õ(n1− 1
2α
)
, Ω(max{n

1
3 , n

1
2
− 1

2α })

α = 2 Θ(
√
n) [20] Θ̃(n

1
3 )

α > 2, α ∈ N Θ(n1−1/α) [20] Õ(nν(1−1/α)), Ω(n
1
2
− 1

2α ), ν < 3/4

α =∞ Θ( n
logn

) [10] Õ(Q(dlog ne-distinctness)), Ω(
√
n)

TABLE I: Summary of classical and quantum query complexity of
Hα(p), assuming ε = Θ(1).

Quantum lower bounds

Quantum upper bounds

Classical tight bounds

Quantum tight bounds

0 1 2 3 4 5
α

0.5

1.0

1.5

2.0

exponent of n

Fig. 1: Visualization of classical and quantum query complexity
of Hα(p). The x-axis represents α and the y-axis represents the
exponent of n. Red curves and points represent quantum upper
bounds. Green curves and points represent classical tight bounds.
Blue curve represents quantum lower bounds. Purple points represent
quantum tight bounds.

f(·)s, one can recover H(p) or Hα(p) as well as the ones used
in BHH. It suffices then to obtain a good estimate of the output
expectation of the master algorithm, which was achieved by
multiple independent runs of the master algorithm in BHH.

The performance of the above framework (and its analysis)
critically depends on how close the expectation of the algo-
rithm is to F (p) and how concentrated the output distribution
is around its expectation, which in turn heavily depends on
the specific f(·) in use. Our first contribution is a fine-
tuned error analysis for specific f(·)s, such as in the case
of Shannon entropy (i.e., f(px) = − log(px)) whose values
could be significant for boundary cases of px. Instead of
only considering the case when p̃x is a good estimate of
px as in BHH, we need to analyze the entire distribution
of p̃x using quantum counting. We also leverage a generic
quantum speedup for estimating the expectation of the output
of any quantum procedure with additive errors [2], which
significantly improves our error dependence as compared to
BHH. These improvements already give a quadratic quantum
speedup for Shannon (Section III) and 0-Rényi (Section VIII)
entropy estimation. As an application, it also gives a quadratic
speedup for estimating the KL-divergence between two distri-
butions (see Section IV).

For general α-Rényi entropy Hα(p), we choose f(px) =
pα−1x and let Pα(p) = F (p) so that Hα(p) ∝ logPα(p).
Instead of estimating F (p) with additive errors in the case
of Shannon entropy, we switch to working with multiplicative
errors which is harder since the aforementioned quantum
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algorithm [2] is much weaker in this setting. Indeed, by
following the same technique, we can only obtain quantum
speedups for α-Rényi entropy when 1/2 < α < 2.

For general α > 0, our first observation is that if one
knew the output expectation E[X] is within [a, b] such that
b/a = Θ(1), then one can slightly modify the technique
in [2] (as shown in Theorem II.2) and obtain a quadratic
quantum speedup similar to the additive error setting. This
approach, however, seems circular since it is unclear how to
obtain such a, b in advance. Our second observation is that
for any close enough α1, α2, Pα1

(p) can be used to bound
Pα2

(p). Precisely, when α1/α2 = 1 ± 1/ log(n), we have
Pα1

(p) = Θ(Pα2
(p)α1/α2) (see Lemma V.3). As a result,

when estimating Pα(p), we can first estimate Pα′ to provide
a bound on Pα, where α′, α differ by a 1 ± 1/ log(n) factor
and α′ moves toward 1. We apply this strategy recursively on
estimating Pα′ until α′ is very close to 1 from above when
initial α > 1 or from below when initial α < 1, where a
quantum speedup is already known. At a high level, we recur-
sively estimate a sequence (of size O(log n)) of such αs that
eventually converges to 1, where in each iteration we establish
some quantum speedup which leads to an overall quantum
speedup. We remark that our approach is in spirit similar to
the cooling schedules in simulated annealing (e.g. [49]). (See
Section V.)

For integer α ≥ 2, we observe a connection between
Pα(p) and the α-distinctness problem which leads to a more
significant quantum speedup. Precisely, let Op : [S]→ [n] be
the oracle in (I.7), we observe that Pα(p) is proportional to
the α-frequency moment of Op(1), . . . , Op(S) which can be
solved quantumly [50] based on any quantum algorithm for the
α-distinctness problem (e.g., [42]). However, there is a catch
that a direct application of [50] will lead to a dependence on
S rather than n. We remedy this situation by tweaking the
algorithm and its analysis in [50] to remove the dependence
on S for our specific setting. (See Section VI.)

The integer α algorithm fails to extend to the min-entropy
case (i.e., α = +∞) because the hidden constant in O(·)
has a poor dependence on α (see Remark VI.1). Instead, we
develop another reduction to the dlog ne-distinctness problem
by exploiting the so-called “Poissonized sampling” technique
[10, 13, 51]. At a high level, we construct Poisson distributions
that are parameterized by pis and leverage the “threshold”
behavior of Poisson distributions (see Lemma VII.1). Roughly,
if maxi pi passes some threshold, with high probability, these
parameterized Poisson distributions will lead to a collision of
size dlog ne that will be caught by the dlog ne-distinctness
algorithm. Otherwise, we run again with a lower threshold
until the threshold becomes trivial. (See Section VII.)

Some of our lower bounds come from reductions to existing
ones in quantum query complexity, such as the quantum-
classical separation of symmetric boolean functions [52], the
collision problem [44, 53], and the Hamming weight problem
[54], for different ranges of α. We also obtain lower bounds
with a better error dependence by the polynomial method,
which is inspired by the celebrated quantum lower bound for
the collision problem [44, 53]. (See Section IX.)

Open questions. Our paper raises a few open questions. A
natural question is to close the gaps between our quantum
upper and lower bounds. Our quantum techniques on both ends
are actually quite different from the state-of-the-art classical
ones (e.g., [10]). It is interesting to see whether one can
incorporate classical ideas to improve our quantum results. It
is also possible to achieve better lower bounds by improving
our application of the polynomial method or exploiting the
quantum adversary method (e.g., [55, 56]). Finally, our result
motivates the study of the quantum algorithm for the k-
distinctness problem with super-constant k, which might also
be interesting by itself.

Notations. Throughout the paper, we consider a discrete
distribution {pi}ni=1 on [n], and Pα(p) :=

∑n
i=1 p

α
i represents

the α-power sum of p. In the analyses of our algorithms, ‘log’
is natural logarithm; ‘≈’ omits lower order terms.

II. MASTER ALGORITHM

Let p = (pi)
n
i=1 be a discrete distribution on [n] encoded

by the quantum oracle Ôp defined in (I.7). Inspired by [1]
(BHH) and [2], we develop the following master algorithm to
estimate a property F with the form F (p) :=

∑
i∈[n] pif(pi)

for a function f : (0, 1]→ R.

Algorithm 1: Estimate F (p) =
∑
i pif(pi) of a discrete

distribution p = (pi)
n
i=1 on [n].

1 Set l,M ∈ N;
2 Regard the following subroutine as A:
3 Draw a sample i ∈ [n] according to p ;
4 Use EstAmp or EstAmp′ with M queries to obtain

an estimation p̃i of pi;
5 Output X = f(p̃i);

6 Use A for l executions in Theorem II.1 or Theorem II.2
and output F̃ (p) to estimate F (p);

Here we draw the sample i ∈ [n] following the distribution
p in Line 3 by applying Ôp to the uniform superposition
1√
S

∑
s∈[S] |s〉|0〉 and measure the second register; see also

our discussions at (I.6) and (I.7).
Comparing to BHH, we introduce a few new technical

ingredients, which significantly improve the performance of
Algorithm 1 especially for specific f(·)s in our case, e.g.,
f(px) = − log(px) (Shannon entropy) and f(px) = pα−1x

(Rényi entropy).
The first one is a generic quantum speedup of Monte

Carlo methods [2], in particular, a quantum algorithm that
approximates the output expectation of a subroutine with
additive errors that has a quadratic better sample complexity
than the one implied by Chebyshev’s inequality.

Theorem II.1 (Additive error; Theorem 5 of [2]). Let
A be a quantum algorithm with output X such that
Var[X] ≤ σ2. Then for ε where 0 < ε < 4σ, by using
O((σ/ε) log3/2(σ/ε) log log(σ/ε)) executions of A and A−1,
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Algorithm 3 in [2] outputs an estimate Ẽ[X] of E[X] such
that

Pr
[∣∣Ẽ[X]− E[X]

∣∣ ≥ ε] ≤ 1/5. (II.1)

It is worthwhile mentioning that classically one needs
to use Ω(σ2/ε2) executions of A [57] to estimate E[X].
Theorem II.1 demonstrates a quadratic improvement on the
error dependence. In the case of approximating Hα(p), we
need to work with multiplicative errors while existing results
(e.g. [2]) have a worse error dependence which is insufficient
for our purposes. Instead, inspired by [2], we prove the
following theorem (our second ingredient) that takes auxiliary
information about the range of E[X] into consideration, which
might be of independent interest.

Theorem II.2 (Multiplicative error; Appendix A). Let A be
a quantum algorithm with output X such that Var[X] ≤
σ2E[X]2 for a known σ. Assume that E[X] ∈ [a, b].
Then for ε where 0 < ε < 24σ, by using A and A−1
for O((σb/εa) log3/2(σb/εa) log log(σb/εa)) executions, Al-
gorithm 10 (given in Appendix A) outputs an estimate Ẽ[X]
of E[X] such that

Pr
[∣∣Ẽ[X]− E[X]

∣∣ ≥ εE[X]
]
≤ 1/10. (II.2)

The third ingredient is a fine-tuned error analysis due to the
specific f(·)s. Similar to BHH, we rely on quantum counting
(named EstAmp) [48] to estimate the pre-image size of a
Boolean function, which provides another source of quantum
speedup. In particular, we approximate any probability px in
the query model ((I.7)) by p̃x by estimating the size of the pre-
image of a Boolean function χ : [S] → {0, 1} with χ(s) = 1
if O(s) = i and χ(s) = 0 otherwise. However, for cases in
BHH, it suffices to only consider the probability when px and
p̃x are close, while in our case, we need to analyze the whole
output distribution of quantum counting. Specifically, letting
t =

∣∣χ−1(1)
∣∣ and a = t/S = sin2(ωπ) for some ω, we have

Theorem II.3 ([48]). For any k,M ∈ N, there is a quantum
algorithm (named EstAmp) with M quantum queries to χ that
outputs ã = sin2

(
lπ
M

)
for some l ∈ {0, . . . ,M − 1} such that

Pr
[
ã = sin2

( lπ
M

)]
=

sin2(M∆π)

M2 sin2(∆π)
≤ 1

(2M∆)2
, (II.3)

where ∆ = |ω− l
M |. This promises |ã− a| ≤ 2πk

√
a(1−a)
M +

k2 π
2

M2 with probability at least 8
π2 for k = 1 and with

probability greater than 1 − 1
2(k−1) for k ≥ 2. If a = 0 then

ã = 0 with certainty.

Moreover, we also need to slightly modify EstAmp to avoid
outputting p̃x = 0 in estimating Shannon entropy. This is
because f(p̃x) = log(p̃x) is not well-defined at p̃x = 0.
Let EstAmp′ be the modified algorithm. It is required that
EstAmp′ outputs sin2( π

2M ) when EstAmp outputs 0 and
outputs EstAmp’s output otherwise.

By leveraging Theorem II.1 and Theorem II.2, and carefully
setting parameters in Algorithm 1 according to Theorem II.3,
we have the following corollaries that describe the complexity
of estimating any F (p).

Corollary II.1 (additive error). Given ε > 0. If l =
Θ
((
σ
ε

)
log3/2

(
σ
ε

)
log log

(
σ
ε

))
where Var[X] ≤ σ2 and M is

large enough such that
∣∣E[X]− F (p)

∣∣ ≤ ε, then Algorithm 1
approximates F (p) with an additive error ε and success
probability 2/3 using O

(
M · l) quantum queries to p.

Corollary II.2 (multiplicative error). Assume a procedure
using Ca,b quantum queries that returns an estimated
range [a, b], and that E[X] ∈ [a, b] with probability at
least 0.9. Let l = Θ

(
(σbεa ) log3/2(σbεa ) log log(σbεa )

)
where

Var[X]/(E[X])2 ≤ σ2 and ε > 0. For large enough M such
that

∣∣E[X] − F (p)
∣∣ ≤ εE[X], Algorithm 1 estimates F (p)

with a multiplicative error ε and success probability 2/3 with
O
(
M · l + Ca,b) queries.

III. SHANNON ENTROPY ESTIMATION

We develop Algorithm 2 for Shannon entropy estimation
with EstAmp′ in Line 4, which provides quadratic quantum
speedup in n.

Algorithm 2: Estimate the Shannon entropy of p =
(pi)

n
i=1 on [n].

1 Set l = Θ
( log(n/ε2)

ε log3/2
( log(n/ε2)

ε

)
log log

( log(n/ε2)
ε

))
;

2 Regard the following subroutine as A:
3 Draw a sample i ∈ [n] according to p;
4 Use EstAmp′ with M = 2dlog2(

√
n/ε)e queries to

obtain an estimation p̃i of pi;
5 Output x̃i = log(1/p̃i);

6 Use A for l executions in Theorem II.1 and output an
estimation H̃(p) of H(p);

Theorem III.1. Algorithm 2 approximates H(p) within an
additive error 0 < ε ≤ O(1) with success probability at least
2
3 using Õ

(√n
ε2

)
quantum queries to p.

Proof. We prove this theorem in two steps. The first step is
to show that the expectation of the subroutine A’s output
(denoted Ẽ :=

∑
i∈[n] pi · log(1/p̃i)) is close to E :=∑

i∈[n] pi · log(1/pi) = H(p). To that end, we divide [n]
into partitions based on the corresponding probabilities. Let
m = dlog2(

√
n/ε)e and S0 = {i : pi ≤ sin2(π/2m+1)},

S1 = {i : sin2(π/2m+1) < pi ≤ sin2(π/2m)}, S2 =
{i : sin2(π/2m) < pi ≤ sin2(π/2m−1)}, . . . , Sm = {i :
sin2(π/4) < pi ≤ sin2(π/2)}. For convenience, denote
s0 = |S0|, s1 = |S1|, . . . , sm = |Sm|. Then

m∑
j=0

sj = n,
m∑
j=0

22j

22m
sj = Θ(1). (III.1)

Our main technical contribution is the following upper
bound on the expected difference between log p̃i and log pi
in terms of the partition Si, i = 1, · · · , n:∑

i∈Sj

piE
[∣∣ log p̃i − log pi

∣∣] ≤ 7 · 2jsj
22m

∀ j ∈ [m]. (III.2)
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By linearity of expectation, we have

|Ẽ − E| ≤
∑
i∈[n]

piE
[∣∣ log p̃i − log pi

∣∣] (III.3)

=
m∑
j=0

∑
i∈Sj

piE
[∣∣ log p̃i − log pi

∣∣] (III.4)

≤ 7
m∑
j=0

2jsj
22m

. (III.5)

As a result, by applying (III.1) and Cauchy-Schwartz inequal-
ity to (III.5), we have

|Ẽ − E| ≤ 7
m∑
j=0

2jsj
22m

(III.6)

≤ 7

√√√√( m∑
j=0

1

22m
sj

)( m∑
j=0

22j

22m
sj

)
(III.7)

= O(ε). (III.8)

Because a constant overhead does not influence the query
complexity, we may rescale Algorithm 2 by a large enough
constant so that |Ẽ − E| ≤ ε/2.

The second step is to bound the variance of the random
variable, which is∑

i∈[n]

pi(log p̃i)
2 −

( ∑
i∈[n]

pi log p̃i

)2
≤
∑
i∈[n]

pi(log p̃i)
2.

(III.9)

Since for any i, EstAmp′ outputs p̃i such that p̃i ≥
sin2( π

2M ) ≥ 1
M2 ≥ ε2

4n , we have
∑
i∈[n] pi(log p̃i)

2 ≤∑
i∈[n] pi ·

(
log 4n

ε2

)2
=
(

log 4n
ε2

)2
. As a result, by Corol-

lary II.1 we can approximate Ẽ up to additive error ε/2 with
failure probability at most 1/3 using

O
( log(n/ε2)

ε
log3/2

( log(n/ε2)

ε

)
log log

( log(n/ε2)

ε

))
· 2dlog2(

√
n/ε)e = Õ

(√n
ε2

)
(III.10)

quantum queries. Together with |Ẽ − E| ≤ ε/2, Algorithm 2
approximates E = H(p) up to additive error ε with failure
probability at most 1/3.

It remains to prove (III.2). We prove:

Lemma III.1.∑
i∈S0

piE
[∣∣ log p̃i − log pi

∣∣] ≤ 7s0
22m

. (III.11)

For j ∈ {1, 2, . . . ,m} in (III.2), the proof is similar because
the dominating term has the angles of p̃i and pi fall into the
same interval of length 1

2m , and as a result | log p̃i− log pi
∣∣ =

O( 1
2j ).

Proof of Lemma III.1. For convenience, denote h(x) :=
x(log t − log x) where 0 < t ≤ 1 and x ∈ (0, t]. We notice
that h(x) ≤ t/e: because h′(x) = log t − log x − 1, when
x ∈ (0, t/e), h′(x) > 0 hence h(x) is an increasing function;
when x ∈ (t/e, t), h′(x) < 0 hence h(x) is a decreasing

function; when x = t/e, h′(x) = 0 and h reaches its maximum
t/e.

Since i ∈ S0, we can write pi = sin2(θiπ) where 0 < θi ≤
1/2m+1. By Theorem II.3, for any l ∈ {1, . . . , 2m−1}, the
output of EstAmp′ when taking 2m queries satisfies

Pr
[
p̃i = sin2

( π

2m+1

)]
=

sin2(2mθiπ)

22m sin2(θiπ)
≤ 1; (III.12)

Pr
[
p̃i = sin2

( lπ
2m

)]
=

sin2(2m( l
2m − θi)π)

22m sin2(( l
2m − θi)π)

≤ 1

(2m+1( l
2m − θi))2

. (III.13)

Combining (III.12), (III.13), and the property of function h
discussed above, for any i ∈ S0 we have

piE
[∣∣ log p̃i − log pi

∣∣]
≤ 1 · pi

(
log sin2

( π

2m+1

)
− log pi

)
+

2m−1∑
l=1

pi
(

log sin2( lπ2m )− log pi
)

(2m+1( l
2m − θi))2

(III.14)

≤
sin2( π

2m+1 )

e
+

2m−1∑
l=1

1

(2l − 1)2
· sin2

( π

2m+1

)
·
(

log sin2
( lπ

2m

)
− log sin2

( π

2m+1

))
(III.15)

≤ π2

4e

1

22m
+

1

22m
· π

2

4

2m−1∑
l=1

1

(2l − 1)2
log
( sin( lπ2m )

sin
(

π
2m+1

))2
(III.16)

≤ π2

4e

1

22m
+

1

22m
· π

2

2

2m−1∑
l=1

log 2l

(2l − 1)2
(III.17)

≤ 7

22m
, (III.18)

where (III.14) comes from (III.12) and (III.13), (III.15) comes
from the properties of h (first term by h(x) ≤ t/e and
second term by the monotonicity of h on (0, t/e)), (III.16)
holds because sin2( π

2m+1 ) ≤ π2

22m+2 , (III.17) holds because
sin2( lπ2m ) ≤ 4l2 sin2

(
π

2m+1

)
, and (III.18) holds because∑∞

l=1
log 2l

(2l−1)2 < 1.2 and π2

4e + 1.2π2

2 < 7. Consequently,∑
i∈S0

piE
[∣∣ log p̃i − log pi

∣∣] ≤ 7

22m
· s0 =

7s0
22m

. (III.19)

IV. APPLICATION: KL DIVERGENCE ESTIMATION

Classically, there does not exist any consistent estimator that
guarantees asymptotically small error over the set of all pairs
of distributions [58, 59]. These two papers then consider pairs
of distributions with bounded probability ratios specified by a
function f : N→ R+, namely all pairs of distributions in the
set as follows:

Un,f(n) :=
{

(p, q) : |p| = |q| = n,
pi
qi
≤ f(n) ∀ i ∈ [n]

}
.

(IV.1)
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Denote the number of samples from p and q to be Mp and
Mq , respectively. References [58, 59] shows that classically,
DKL(p‖q) can be approximated within constant additive error
with high success probability if and only if Mp = Ω( n

logn )

and Mq = Ω(nf(n)logn ).

Quantumly, we are given unitary oracles Ôp and Ôq defined
by (I.7). Algorithm 3 below estimates the KL-divergence
between p and q, which is similar to Algorithm 2 that uses
EstAmp′, while adapts f to be mutually defined by p and q.

Algorithm 3: Estimate the KL divergence of p = (pi)
n
i=1

and q = (qi)
n
i=1 on [n].

1 Set l =

Θ
( log2(

nf(n)

ε2
)

ε log3/2
( log2(

nf(n)

ε2
)

ε

)
log log

( log2(
nf(n)

ε2
)

ε

))
;

2 Regard the following subroutine as A:
3 Draw a sample i ∈ [n] according to p;
4 Use the modified amplitude estimation procedure

EstAmp′ with 2dlog2(
√
n/ε)e and 2dlog2(

√
nf(n)/ε)e

quantum queries to p and q to obtain estimates p̃i
and q̃i, respectively;

5 Output x̃i = log p̃i − log q̃i;

6 Use A for l times in Theorem II.1 and outputs an
estimation D̃KL(p‖q) of DKL(p‖q);

Theorem IV.1. For (p, q) ∈ Un,f(n), Algorithm 3 approxi-
mates DKL(p‖q) within an additive error ε > 0 with success
probability at least 2

3 using Õ
(√n
ε2

)
quantum queries to p and

Õ
(√nf(n)

ε2

)
quantum queries to q, where Õ hides polynomials

terms of log n, log 1/ε, and log f(n).

Proof. If the estimates p̃i and q̃i were precisely accurate,
the expectation of the subroutine’s output would be E :=∑
i∈[n] pi · (log pi − log qi) = DKL(p‖q). On the one hand,

we bound how far the actual expectation of the subroutine’s
output Ẽ is from its exact value E. By linearity of expectation,

|Ẽ − E| ≤
∑
i∈[n]

piE
[∣∣(log p̃i − log pi) + (log q̃i − log qi)

∣∣]
(IV.2)

≤
∑
i∈[n]

piE
[∣∣ log p̃i − log pi

∣∣]
+
∑
i∈[n]

piE
[∣∣ log q̃i − log qi

∣∣] (IV.3)

≤
∑
i∈[n]

piE
[∣∣ log p̃i − log pi

∣∣]
+ f(n)

∑
i∈[n]

qiE
[∣∣ log q̃i − log qi

∣∣], (IV.4)

where (IV.4) comes from the definition of Un,f(n) in (IV.1).
By the proof of Theorem III.1, in particular equation (III.8),
2dlog2(

√
n/ε)e and 2dlog2(

√
nf(n)/ε)e quantum queries to p and

q give ∑
i∈[n]

piE
[∣∣ log p̃i − log pi

∣∣] = O(ε) (IV.5)

∑
i∈[n]

qiE
[∣∣ log q̃i − log qi

∣∣] = O
( ε

f(n)

)
, (IV.6)

respectively. Plugging them into (IV.4) and rescaling Algo-
rithm 3 by a large enough constant, we get |Ẽ − E| ≤ ε

2 .
On the other hand, the variance of the random variable is

at most∑
i∈[n]

pi(log p̃i − log q̃i)
2 =

∑
i: p̃i<q̃i

pi(log q̃i − log p̃i)
2

+
∑

i: p̃i≥q̃i

pi(log p̃i − log q̃i)
2.

(IV.7)

For the first term in (IV.7), because EstAmp′ outputs p̃i such
that p̃i ≥ sin2( π

2dlog2(
√
n/ε)e+1 ) ≥ ε2

4n for any i, we have

∑
i: p̃i<q̃i

pi(log q̃i − log p̃i)
2 ≤

∑
i: p̃i<q̃i

pi

(
log 1− log

ε2

4n

)2
≤
(

log
4n

ε2

)2
. (IV.8)

For the second term in (IV.7), we have∑
i: p̃i≥q̃i

pi(log p̃i − log q̃i)
2 ≤

∑
i: p̃i≥q̃i

pi(log f(n))2 ≤ (log f(n))2.

(IV.9)

Plugging (IV.8) and (IV.9) into (IV.7), the variance of the
random variable is at most(

log
4n

ε2

)2
+ (log f(n))2 = O

((
log

nf(n)

ε2

)2)
. (IV.10)

As a result, by Corollary II.1 we can approximate Ẽ up to
additive error ε/2 with success probability at least 2/3 using
Õ( 1

ε ) · 2dlog2(
√
n/ε)e = Õ

(√n
ε2

)
quantum queries to p and

Õ( 1
ε ) · 2dlog2(

√
nf(n)/ε)e = Õ

(√nf(n)
ε2

)
quantum queries to

q, respectively. Together with |Ẽ − E| ≤ ε/2, Algorithm 3
approximates E = DKL(p‖q) up to additive error ε with
success probability at least 2/3.

V. NON-INTEGER RÉNYI ENTROPY ESTIMATION

Recall the classical query complexity of non-integer and in-
teger Rényi entropy estimations are different [20]. Quantumly,
we also consider them separately; in this section, we consider
α-Rényi entropy estimation for general non-integer α > 0.

Let Pα(p) :=
∑n
i=1 p

α
i . Since Hα(p) = 1

1−α logPα(p), to
approximate Hα(p) within an additive error ε > 0 it suffices to
approximate Pα(p) within a multiplicative error e(α−1)ε−1 =
Θ(ε).
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Algorithm 4: Estimate the α-power sum Pα(p) of p =
(pi)

n
i=1 on [n], α > 1, α /∈ N.

Regard the following subroutine as A:
Draw a sample i ∈ [n] according to p;
Use the amplitude estimation procedure EstAmp
with M = 2dlog2(

√
n
ε log(

√
n
ε ))e+1 queries to obtain an

estimate p̃i of pi;
Output x̃i = p̃α−1i ;

1 Input parameters (α, ε, δ), where ε is the multiplicative
error and δ is the failure probability;

2 if α < 1 + 1
logn then

3 Take a = 1
e and b = 1 as lower and upper bounds on

Pα(p), respectively;
4 else
5 Recursively call Algorithm 4 with

α′ = α(1 + 1
logn )−1, ε = 1/4, and δ = 1

12 log n logα

therein to give an estimate P̃α′(p) of Pα′(p). For
simplicity, denote P := P̃α′(p). Take

a = (3P/4)
1+ 1

log n

e and b =
(
5P
4

)1+ 1
log n as lower and

upper bounds on Pα(p), respectively;

6 Set l = Θ
(
n

1
2
− 1

2α

ε log3/2(n
1
2
− 1

2α

ε ) log log(n
1
2
− 1

2α

ε )
)
;

7 Use A for l executions in Theorem II.2 using a and b as
auxiliary information and output an estimation of Pα(p);

8 Run Line 1 to Line 7 for d48 log 1
δ e executions and take

the median of all outputs in Line 7, denoted as P̃α(p).
Output P̃α(p);

A. Case 1: α > 1, α /∈ N
We develop Algorithm 4 to approximate Pα(p) with a

multiplicative error ε.

Theorem V.1. The output of Algorithm 4 approximates Pα(p)
within a multiplicative error 0 < ε ≤ 1/4 with success

probability at least 1 − δ for some δ > 0 using Õ
(
n1− 1

2α

ε2

)
quantum queries to p, where Õ hides polynomials terms of
log n, log 1/ε, and log 1/δ.

Proof of Theorem V.1. First, we design a subroutine A in Al-
gorithm 4 to approximate Pα(p) following the same principle
as in Algorithm 2. If the estimate p̃i in A were precisely
accurate, its expectation would be E :=

∑
i∈[n] pi · p

α−1
i =

Pα(p). To be precise, we bound how far the actual ex-
pectation of the subroutine’s output Ẽ is from the exact
value Pα(p). In Lemma V.1, we show that when taking
M = 2dlog2(

√
n
ε log(

√
n
ε ))e+1 queries in EstAmp, we have

|Ẽ − E| = O(εE).
As a result, to approximate Pα(p) within multiplicative error

Θ(ε), it is equivalent to approximate Ẽ within multiplicative
error Θ(ε). Recall Theorem II.2 showed that if the variance
of the random variable output by A is at most σ2Ẽ2 for a
known σ, and if we can obtain two values a, b such that Ẽ ∈
[a, b], then Õ(σb/εa) executions of A suffice to approximate
Ẽ within multiplicative error ε with success probability at least
9/10. In the main body of the algorithm (Line 1 to Line 8),

we use Theorem II.2 to approximate Ẽ.
On the one hand, in Lemma V.2, we show that for α >

1 and large enough n, the variance is at most 5n1−1/αẼ2

with probability at least 8
π2 . This gives σ =

√
5n1−1/α =

O(n1/2−1/2α).
On the other hand, we need to compute the lower bound

a and upper bound b. A key observation (Lemma V.3) is that
for any 0 < α1 < α2, we have( ∑

i∈[n]

pα2
i

)α1
α2 ≤

∑
i∈[n]

pα1
i ≤ n

1−α1
α2

( ∑
i∈[n]

pα2
i

)α1
α2
. (V.1)

Because n1/ logn = e, if α2

α1
= 1 +O( 1

logn ), then

∑
i∈[n]

pα1
i = Θ

(( ∑
i∈[n]

pα2
i

)α1
α2
)
. (V.2)

As a result, we compute a and b by recursively calling
Algorithm 4 to estimate Pα′(p) for α′ = α/(1 + 1/ log n),
which is used to compute the lower bound a and upper bound
b in Line 5; the recursive call keeps until α < 1 + 1

logn , when
a = 1

e and b = 1 (as in Line 3) are simply lower and upper
bounds on Pα(p) by (V.1).

To be precise, in Lemma V.4, we prove that b/a < 4e =
O(1), and with probability at least 1/e1/12 > 0.92, a and b
are indeed lower and upper bounds on Pα(p), respectively;
furthermore, in Line 5, Algorithm 4 is recursively called by
at most log n logα times, and each recursive call takes at
most Õ(n1− 1

2α ) queries. This promises that when we apply
Corollary II.2, the cost Ca,b is dominated by the query cost
from Algorithm 10.

Combining all points above, Corollary II.2 approximates Ẽ
up to multiplicative error Θ(ε) with success probability at least
8
π2 · 0.92 · 9/10 > 2/3 using

log n logα · Õ
(4e ·

√
5n1−1/α

ε

)
· 2dlog2(

√
n
ε log(

√
n
ε ))e+1

= Õ
(n1−1/2α

ε2

)
(V.3)

quantum queries. Together with |Ẽ − E| = O(εE) and
rescale l,M by a large enough constant, Line 1 to Line 7
in Algorithm 4 approximates E = Pα(p) up to multiplicative
error ε with success probability at least 2/3.

Finally, in Lemma V.5, we show that after repeating the
procedure for d48 log 1

δ e executions and taking the median
P̃α(p) (as in Line 8), the success probability that P̃α(p)
approximates Pα(p) within multiplicative error ε is boosted
to 1− δ.

It remains to prove the lemmas mentioned above.
1) Expectation of A is ε-close to Pα(p):

Lemma V.1. |Ẽ − E| = O(εE).

Proof of Lemma V.1. For convenience, denote
m = dlog2(

√
n/ε log(

√
n/ε))e + 1, and S0, S1, . . . , Sm



0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2883306, IEEE
Transactions on Information Theory

9

the same as in Section III. We still have (III.1). By linearity
of expectation,

|Ẽ − E| ≤
∑
i∈[n]

piE
[∣∣p̃α−1i − pα−1i

∣∣] (V.4)

=
m∑
j=0

∑
i∈Sj

piE
[∣∣p̃α−1i − pα−1i

∣∣]. (V.5)

Therefore, to prove |Ẽ − E| = O(εE) it suffices to show

m∑
j=0

∑
i∈Sj

piE
[∣∣p̃α−1i − pα−1i

∣∣] = O
(
ε
∑
i∈[n]

pαi

)
. (V.6)

For each i ∈ [n] we write pi = sin2(θiπ). Assume k ∈ Z
such that k ≤ 2mθi < k + 1. By Theorem II.3, for any l ∈
{1, 2, . . . ,max{k − 1, 2m − k − 1}} the output of EstAmp
taking 2m queries satisfies

Pr
[
p̃i = sin2

( (k ± (l + 1))π

2m
)]
≤ 1

4l2
. (V.7)

Furthermore, because sin θi = θi−O(θ3i ), cos θi = 1−O(θ2i ),
and (1 + θi)

2α−1 = 1 + (2α− 1)θi + o(θi),(
sin((θi +

l

2m
)π)
)2(α−1) − ( sin(θiπ)

)2(α−1)
= O

( l

2m
(θiπ)2α−3

)
. (V.8)

Combining (V.7), (V.8), and the fact that
∑2m

l=1
1
l = Θ(m),

we have
m∑
j=0

∑
i∈Sj

piE
[∣∣p̃α−1i − pα−1i

∣∣]
= O

( m∑
j=0

sj ·
( 2j

2m
π
)2 · 2 2m∑

l=1

1

4l2
l

2m
( 2j

2m
π
)2α−3)

(V.9)

= O
(π2α−1m

22αm
·
m∑
j=0

sj2
(2α−1)j

)
. (V.10)

On the other side,

ε
∑
i∈[n]

pαi = Θ
(
ε
m∑
j=0

sj ·
( 2j

2m
π
)2α)

= Θ
(ε · π2α

22αm

m∑
j=0

sj2
2αj
)
.

(V.11)

Therefore, to prove equation (V.6), by (V.10) and (V.11) it
suffices to prove

m∑
j=0

sj2
(2α−1)j = O

( ε
m

m∑
j=0

sj2
2αj
)
. (V.12)

Since m = dlog2(
√
n
ε log(

√
n
ε ))e+ 1, we have 2m

m ≥
√
n
ε , thus

ε
m ≥

√
n

2m . Therefore, it suffices to show

m∑
j=0

sj2
(2α−1)j = O

(√n
2m

m∑
j=0

sj2
2αj
)
. (V.13)

If α ≥ 3/2, by Hölder’s inequality we have( m∑
j=0

sj

) 1
2α
( m∑
j=0

sj2
2αj
) 2α−1

2α ≥
m∑
j=0

sj2
(2α−1)j . (V.14)

By equation (III.1), this gives

n
1

2α−1

( m∑
j=0

sj2
2αj
)
≥
( m∑
j=0

sj2
(2α−1)j

)( m∑
j=0

sj2
(2α−1)j

) 1
2α−1

.

(V.15)

By Hölder’s inequality and also equation (III.1), we have( m∑
j=0

sj

) 2α−3
2α−1

( m∑
j=0

sj2
(2α−1)j

) 2
2α−1 ≥

m∑
j=0

sj2
2j = Θ(22m).

(V.16)

This is equivalent to

n
2α−3

2(2α−1)

( m∑
j=0

sj2
(2α−1)j

) 1
2α−1 ≥ Θ(2m). (V.17)

Combining (V.15) and (V.17), we get exactly (V.13).
If 1 < α < 3/2, by Hölder’s inequality we have( m∑

j=0

sj2
2αj
) 1
α
( m∑
j=0

sj

)α−1
α ≥

m∑
j=0

sj2
2j ; (V.18)

( m∑
j=0

sj2
2j
) 2α−1

2
( m∑
j=0

sj

) 3−2α
2 ≥

m∑
j=0

sj2
(2α−1)j . (V.19)

By equation (III.1), the two inequalities above give

m∑
j=0

sj2
2αj ≥ n1−α22αm (V.20)

m∑
j=0

sj2
(2α−1)j ≤ n1.5−α2(2α−1)m, (V.21)

which give (V.13).

2) Bound the variance of A by the square of its expectation:

Lemma V.2. With probability at least 8
π2 , the variance of the

random variable output by A is at most 5n1−1/αẼ2.

Proof of Lemma V.2. The expectation and variance of the
output by A are Ẽ =

∑n
i=1 pi · p̃

α−1
i and

∑
i∈[n] pi ·(p̃

α−1
i )2−(∑

i∈[n] pi·p̃
α−1
i

)2
, respectively. Therefore, it suffices to show

that with probability at least 8
π2 ,

∑
i∈[n]

pi · (p̃α−1i )2 ≤ 5n1−1/α
( n∑
i=1

pi · p̃α−1i

)2
. (V.22)

By Theorem II.3, with probability at least 8
π2 , we have

|p̃i − pi| ≤
2π
√
pi

2m
≤
επ
√
pi√
n

i ∈ [n]. (V.23)
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For convenience, denote p := pi∗ to be the maximal one
among p1, . . . , pn, i.e., p = maxi∈{1,...,n} pi. We also denote
p̃ := p̃i∗ . Then we have(∑n

i=1 pi · p̃
α−1
i

)2∑
i∈[n] pi · (p̃

α−1
i )2

≥
(∑n

i=1 pi · p̃
α−1
i

)2
p̃α−1 ·

∑
i∈[n] pi · p̃

α−1
i

=

∑n
i=1 pi · p̃

α−1
i

p̃α−1
.

(V.24)

Furthermore, because xα is a convex function in [0, 1], by
(V.23) and Jensen’s inequality we have∑n

i=1 pi · p̃
α−1
i

p̃α−1
=
p · p̃α−1 +

∑
i6=i∗ pi · p̃

α−1
i

p̃α−1
(V.25)

% p+ (1− p)
(1− p− επ

√
1− p

np+ επ
√
np

)α−1
.

(V.26)

Therefore, it suffices to show that for large enough n,

p+ (1− p)
(1− p− επ

√
1− p

np+ επ
√
np

)α−1
≥ 0.2n−(1−1/α).

(V.27)

If p ≥ 0.2n−(1−1/α), equation (V.27) directly follows. If p <
0.2n−(1−1/α),

lim
n→∞

n1−1/α · (1− p)
(1− p− επ

√
1− p

np+ επ
√
np

)α−1
= lim
n→∞

(1− 0.2n−(1−1/α))

·
(n1/α(1− 0.2n−(1−1/α) − επ)

0.2n1/α +
√

0.2επn1/2α

)α−1
(V.28)

= 1 ·
(1− επ

0.2

)α−1
> 1 > 0.2, (V.29)

where (V.29) is true because 1−επ
0.2 > 1−3.2/4

0.2 = 1. Because
(V.26) only omits lower order terms and the limit in (V.29) is
a constant larger than 0.2, Lemma V.2 follows.

3) Give tight bounds on Pα(p) by Pα′(p):

Lemma V.3. For any distribution (pi)
n
i=1 and 0 < α1 < α2,

we have( ∑
i∈[n]

pα2
i

)α1
α2 ≤

∑
i∈[n]

pα1
i ≤ n

1−α1
α2

( ∑
i∈[n]

pα2
i

)α1
α2
. (V.30)

Proof of Lemma V.3. On the one hand, by the generalized
mean inequality, we have(∑

i∈[n] p
α2
i

n

) 1
α2

≥

(∑
i∈[n] p

α1
i

n

) 1
α1

, (V.31)

which gives the second inequality in (V.30).
On the other hand, since α1

α2
≤ 1 and

0 ≤ pα2
i∑

j∈[n] p
α2
j

≤ 1 ∀ i ∈ [n], (V.32)

we have ∑
i∈[n] p

α1
i(∑

j∈[n] p
α2
j

)α1
α2

=
∑
i∈[n]

(
pα2
i∑

j∈[n] p
α2
j

)α1
α2

(V.33)

≥
∑
i∈[n]

pα2
i∑

j∈[n] p
α2
j

= 1, (V.34)

which is equivalent to the first inequality in (V.30).

4) Analyze the recursive calls:

Lemma V.4. With probability at least 0.92, the a and b in Line
3 or Line 5 of Algorithm 4 are indeed lower and upper bounds
on Pα(p), respectively, and b/a = O(1); furthermore, in Line
5, Algorithm 4 is recursively called for at most log n logα
executions, and each recursive call takes at most Õ(n1− 1

2α )
queries.

Proof of Lemma V.4. We decompose the proof into two parts:

• In Line 5, Algorithm 4 is recursively called for at most
log n logα executions, and each recursive call takes at
most Õ(n1− 1

2α ) queries:
Because each recursive call of Algorithm 4 reduces α by
multiplying (1 + 1

logn )−1 and the recursion ends when
α < 1 + 1

logn , the total number of recursive calls is at
most logα

log(1+ 1
log n )

≤ log n logα.

When α < 1 + 1
logn , a and b are set in Line 3

and no extra queries are needed; when Line 5 calls
α(1 + 1

logn )−k-power sum estimation for some k ∈ N,
by induction on k, we see that this call takes at most
Õ
(
n1−

(1+1/ log n)k

2α

)
≤ Õ(n1− 1

2α ) queries. As a result,
when we apply Corollary II.2, the cost Ca,b is dominated
by the query cost from Algorithm 10.

• With probability at least 0.92, a and b are lower and
upper bounds on Pα(p) respectively, and b/a = O(1):
When 1 < α < 1 + 1

logn , on the one hand we have∑n
i=1 p

α
i ≤

∑n
i=1 pi = 1; on the other hand, because

n
1

log n = e, by Lemma V.3 we have

n∑
i=1

pαi ≥
(∑n

i=1 pi
)α

nα−1
≥ 1

e
. (V.35)

Therefore, a = 1/e and b = 1 in Line 3 are
lower and upper bounds on Pα(p) respectively,
and b/a = e = O(1).

When α > 1 + 1
logn , for convenience denote

α′ = α(1 + 1
logn )−1. As justified above, the total

number of recursive calls in Line 5 is at most
log n logα. Because we take δ = 1

12 log n logα in Line 5,
with probability at least(

1− 1

12 log n logα

)logn logα

≥ 1

e1/12
> 0.92, (V.36)
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the output of every recursive call is within 1/4-
multiplicative error. As a result, the P in Line 5 satis-
fies 3P/4 ≤

∑n
i=1 p

α′

i ≤ 5P/4. Combining this with
Lemma V.3 and using n

1
log n = e, we have

(3P/4)1+
1

log n

e
≤

n∑
i=1

pαi ≤
(5P

4

)1+ 1
log n

. (V.37)

In other words, a and b are indeed lower and upper
bounds on Pα(p), respectively. Furthermore, b/a = O(1)
because

b

a
= e ·

(5

3

)1+ 1
log n

< 4e = O(1). (V.38)

5) Boost the success probability:

Lemma V.5. By repeating Line 1 to Line 7 in Algorithm 4
for d48 log 1

δ e executions and taking the median P̃α(p), the
success probability is boosted to 1− δ.

Proof of Lemma V.5. Denote the outputs after running
Line 1 to Line 7 for d48 log 1

δ e executions as
P̃α(p)(1), . . . , P̃α(p)(d48 log 1

δ e), respectively. Based on
the correctness of Lemma V.1, Lemma V.2, and Lemma V.4,
for each i ∈ {1, . . . , d48 log 1

δ e}, with probability at least 2/3
we have

|P̃α(p)(i) − Pα(p)| ≤ εPα(p). (V.39)

For each i ∈ {1, . . . , d48 log 1
δ e}, denote Xi to be a

Boolean random variable such that Xi = 1 if (V.39) holds,
and Xi = 0 otherwise. Then Pr[Xi = 1] ≥ 2/3. Be-
cause in Line 8 the output P̃α(p) is the median of all
P̃α(p)(1), . . . , P̃α(p)(d48 log 1

δ e), |P̃α(p) − Pα(p)| > εPα(p)

leads to
∑d48 log 1

δ e
i=1 Xi < d48 log 1

δ e/2. On the other hand,
by Chernoff bound we have

Pr
[ d48 log 1

δ e∑
i=1

Xi <
d48 log 1

δ e
2

]
≤ exp

(
−

2/3d48 log 1
δ e · (1/4)2

2

)
≤ δ. (V.40)

Therefore, with probability at least 1 − δ, we have |P̃α(p) −
Pα(p)| ≤ εPα(p).

B. Case 2: 0 < α < 1

When 0 < α < 1, our quantum algorithm follows the same
structure as Algorithm 4:
The main difference is that, in the case α > 1, Algorithm 4
makes α′ smaller and smaller by multiplying (1 + 1

logn )−1

each time, whereas in the case 0 < α < 1, Algorithm 5 makes
α′ larger and larger by multiplying (1 − 1

logn )−1 each time;
nevertheless, both recursions end when α′ is close enough to
1. On the more technical level, they have different M in A,
different upper bounds on the variance of A, and different
expressions for a and b in Line 3 and Line 5.

Theorem V.2. The output of Algorithm 5 approximates Pα(p)
within a multiplicative error 0 < ε ≤ O(1) with success

Algorithm 5: Estimate the α-power sum Pα(p) of p =
(pi)

n
i=1 on [n], 0 < α < 1.

Regard the following subroutine as A:
Draw a sample i ∈ [n] according to p;
Use the amplitude estimation procedure EstAmp
with M = 2dlog2(

n1/2α

ε log(n
1/2α

ε ))e+1 queries to
obtain an estimate p̃i of pi;

Output x̃i = p̃α−1i ;

1 Input parameters (α, ε, δ), where ε is the multiplicative
error and δ is the failure probability;

2 if α > 1− 1
logn then

3 Take a = 1 and b = e as lower and upper bounds on
Pα(p), respectively;

4 else
5 Recursively call Algorithm 5 with

α′ = α(1− 1
logn )−1, ε = 1/2, and

δ = 1
12 log n log 1/α therein to give an estimate P̃α′(p)

of Pα′(p). For simplicity, denote P := P̃α′(p). Take
a = (P/2)1−

1
log n and b = e(2P )1−

1
log n as lower

and upper bounds on Pα(p), respectively;

6 Set l = Θ
(
n

1
2α
− 1

2

ε log3/2(n
1
2α
− 1

2

ε ) log log(n
1
2α
− 1

2

ε )
)
;

7 Use A for l executions in Theorem II.2 using a and b as
auxiliary information and output an estimation of Pα(p);

8 Run Line 1 to Line 7 for d48 log 1
δ e executions and take

the median of all outputs in Line 7, denoted as P̃α(p).
Output P̃α(p);

probability at least 1 − δ for some δ > 0 using Õ
(
n

1
α
− 1

2

ε2

)
quantum queries to p, where Õ hides polynomials terms of
log n, log 1/ε, and log 1/δ.

Before we give the formal proof of Theorem V.2, we compare
the similarities and differences between Algorithm 4 and
Algorithm 5, listed below:

• In both algorithms, the subroutine A has the same struc-
ture, and is designed to estimate Pα(p). However, to make
the expectation of A ε-close to Pα(p), the EstAmp in
Algorithm 4 suffices to take M = 2dlog2(

√
n
ε log(

√
n
ε ))e+1

queries (see Lemma V.1), whereas the EstAmp in Al-
gorithm 5 needs to take M = 2dlog2(

n1/2α

ε log(n
1/2α

ε ))e+1

queries (see Lemma V.6);
• In both algorithms, we use Theorem II.2 to approximate

the expectation of A (denoted Ẽ), hence they both need
to upper-bound the variance of A by a multiple of
Ẽ2. However, technically the proofs are different, and
we obtain different upper bounds in Lemma V.2 and
Lemma V.7, respectively;

• Since both algorithms use Theorem II.2, they both need
to compute a lower bound a and upper bound b on Pα(p).
Both algorithms achieve this by observing Lemma V.3,
and they both compute a and b by recursively call the
estimation of Pα′(p) for some α′ closer to 1. However,
in the case α > 1, Algorithm 4 makes α′ smaller and
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smaller by multiplying (1 + 1
logn )−1 each time, and ends

the recursion when α′ < 1+ 1
logn ; in the case 0 < α < 1,

Algorithm 5 makes α′ larger and larger by multiplying
(1 − 1

logn )−1 each time, and ends the recursion when
α′ > 1 − 1

logn . This leads to different expressions for
a and b in Line 3 and Line 5 of both algorithms, and
technically the proofs for Lemma V.4 and Lemma V.8 is
different;

• Both algorithms boost the success probability to 1 − δ
by repeating the algorithm for d48 log 1

δ e executions and
taking the median, and their correctness is both promised
by Lemma V.5.

Proof of Theorem V.2. First, if the estimate p̃i in the subrou-
tine A of Algorithm 5 were precisely accurate, the expecta-
tion of the subroutine’s output would be E :=

∑
i∈[n] pi ·

pα−1i = Pα(p). To be precise, we bound how far the actual
expectation of the subroutine’s output Ẽ is from the exact
value Pα(p). In Lemma V.6, we show that when taking
M = 2dlog2(

n1/2α

ε log(n
1/2α

ε ))e+1 queries in EstAmp, we have
|Ẽ − E| = O(εE).

As a result, to approximate Pα(p) within multiplicative error
Θ(ε), it is equivalent to approximate Ẽ within multiplicative
error Θ(ε). Recall Theorem II.2 showed that if the variance
of the random variable output by A is at most σ2Ẽ2 for a
known σ, and if we can obtain two values a, b such that Ẽ ∈
[a, b], then Õ(σb/εa) executions of A suffice to approximate
Ẽ within multiplicative error ε with success probability at least
9/10. In the main body of the algorithm (Line 1 to Line 8),
we use Theorem II.2 to approximate Ẽ.

On the one hand, in Lemma V.7, we show that for any 0 <
α < 1, the variance is at most 2n1/α−1Ẽ2 with probability at
least 8

π2 . This gives σ =
√

2n1/α−1 = O(n1/2α−1/2).
On the other hand, we need to compute the lower bound a

and upper bound b. As stated in the proof of Theorem V.1,
for any 0 < α1 < α2 with α2

α1
= 1 +O( 1

logn ),

∑
i∈[n]

pα1
i = Θ

(( ∑
i∈[n]

pα2
i

)α1
α2
)
. (V.41)

As a result, we compute a and b by recursively calling
Algorithm 5 to estimate Pα′(p) for α′ = α/(1 − 1/ log n),
which is used to compute the lower bound a and upper bound
b in Line 5; the recursive call keeps until α > 1− 1

logn , when
a = 1 and b = e (as in Line 3) are simply lower and upper
bounds on Pα(p).

To be precise, in Lemma V.8, we prove that b/a ≤ 4e =
O(1), and with probability at least 1/e1/12 > 0.92, a and b
are indeed lower and upper bounds on Pα(p), respectively;
furthermore, in Line 5, Algorithm 5 is recursively called by
at most log n log 1

α times, and each recursive call takes at
most Õ(n

1
α−

1
2 ) queries. This promises that when we apply

Corollary II.2, the cost Ca,b is dominated by the query cost
from Algorithm 10.

Combining all points above, Corollary II.2 approximates Ẽ
up to multiplicative error Θ(ε) with success probability at least

8
π2 · 0.92 · 9/10 > 2/3 using

log n log
1

α
· Õ
(4e ·

√
2n1/α−1

ε

)
· 2dlog2(

n1/2α

ε log(n
1/2α

ε ))e+1 = Õ
(n 1

α−
1
2

ε2

)
(V.42)

quantum queries. Together with |Ẽ − E| = O(εE) and
rescale l,M by a large enough constant, Line 1 to Line 7
in Algorithm 5 approximates E = Pα(p) up to multiplicative
error ε with success probability at least 2/3.

Finally, following from Lemma V.5, after repeating the
procedure for d48 log 1

δ e executions and taking the median
P̃α(p) (as in Line 8), the success probability that P̃α(p)
approximates Pα(p) within multiplicative error ε is boosted
to 1− δ.

It remains to prove the lemmas mentioned above.
1) Expectation of A is ε-close to Pα(p):

Lemma V.6. |Ẽ − E| = O(εE).

Proof of Lemma V.6. For convenience, we denote m =

dlog2(n
1/2α

ε log(n
1/2α

ε ))e + 1, and S0, S1, . . . , Sm the same
as previous definitions. We still have (III.1). By linearity of
expectation,

|Ẽ − E| ≤
∑
i∈[n]

piE
[∣∣∣ 1

p̃1−αi

− 1

p1−αi

∣∣∣] (V.43)

=
m∑
j=0

∑
i∈Sj

piE
[∣∣p̃α−1i − pα−1i

∣∣]. (V.44)

Therefore, to prove |Ẽ − E| = O(εE) it suffices to show
m∑
j=0

∑
i∈Sj

piE
[∣∣p̃α−1i − pα−1i

∣∣] = O
(
ε
∑
i∈[n]

pαi

)
. (V.45)

Similar to the proof of Lemma V.1, we have
m∑
j=0

∑
i∈Sj

piE
[∣∣p̃α−1i − pα−1i

∣∣] = O
(π2α−1m

22αm
·
m∑
j=0

sj2
(2α−1)j

)
.

(V.46)

On the other side,

ε
∑
i∈[n]

pαi = Θ
(
ε
m∑
j=0

sj ·
( 2j

2m
π
)2α)

= Θ
(ε · π2α

22αm

m∑
j=0

sj2
2αj
)
.

(V.47)

Therefore, to prove Equation (V.45), by (V.46) and (V.47) it
suffices to prove

m∑
j=0

sj2
(2α−1)j = O

( ε
m

m∑
j=0

sj2
2αj
)
. (V.48)

Since m = dlog2(n
1/2α

ε log(n
1/2α

ε ))e + 1, we have 2m

m ≥
n1/2α

ε , thus ε
m ≥

n1/2α

2m . Therefore, it suffices to prove
m∑
j=0

sj2
(2α−1)j = O

(n1/2α
2m

m∑
j=0

sj2
2αj
)
. (V.49)
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Since sj ∈ N, sj ≤ s1/αj ; as a result,∑m
j=0 sj2

2j(∑m
j=0 sj2

2αj
)1/α ≤

∑m
j=0(sj2

2αj)1/α(∑m
j=0 sj2

2αj
)1/α (V.50)

=
m∑
j=0

( sj2
2αj∑m

k=0 sk22αk

)1/α
(V.51)

≤
m∑
j=0

sj2
2αj∑m

k=0 sk22αk
= 1. (V.52)

Plugging (III.1) into the inequality above, we have( m∑
j=0

sj2
2αj
) 1

2α

= Ω(2m). (V.53)

On the other side, by Hölder’s inequality we have( m∑
j=0

sj

) 1
2α
( m∑
j=0

sj2
2αj
) 2α−1

2α ≥
m∑
j=0

sj2
(2α−1)j . (V.54)

Combining (III.1), (V.53), and (V.54), we get exactly (V.49).

2) Bound the variance of A by the square of its expectation:

Lemma V.7. With probability at least 8
π2 , the variance of the

random variable output by A is at most 2n1/α−1Ẽ2.

Proof of Lemma V.7. Because Ẽ =
∑n
i=1 pi · p̃

α−1
i and the

variance is
∑n
i=1 pi ·(p̃

α−1
i )2−

(∑n
i=1 pi · p̃

α−1
i

)2 ≤∑n
i=1 pi ·

(p̃α−1i )2, it suffices to show that
n∑
i=1

pi · (p̃α−1i )2 ≤ 2n1/α−1
( n∑
i=1

pi · p̃α−1i

)2
. (V.55)

By Theorem II.3, with probability at least 8
π2 , we have

|p̃i − pi| ≤
2π
√
pi

2m
≤
επ
√
pi

n1/2α
i ∈ [n]. (V.56)

As a result,
n∑
i=1

pi(p̃
α−1
i )2 ≤

n∑
i=1

pi

(
pi −

επ
√
pi

n1/2α

)−2(1−α)
(V.57)

=

n∑
i=1

p2α−1i

(
1− επ

n1/2α
√
pi

)−2(1−α)
(V.58)

≈
n∑
i=1

p2α−1i

(
1 + 2(1− α)

επ

n1/2α
√
pi

)
(V.59)

=
n∑
i=1

p2α−1i +
2(1− α)επ

n1/2α

n∑
i=1

p2α−0.5i .

(V.60)

Furthermore,

√
n
( n∑
i=1

p2α−1i

)
≥
( n∑
j=1

√
pj

)( n∑
i=1

p2α−1i

)
(V.61)

≥
n∑

i=j=1

√
pjp

2α−1
i =

n∑
i=1

p2α−0.5i . (V.62)

Plugging this into (V.60), we have
n∑
i=1

pi(p̃
α−1
i )2 ≤

(
1 +

2(1− α)επ

n1/2α−1/2

) n∑
i=1

p2α−1i . (V.63)

Using similar techniques, we can show( n∑
i=1

pi · p̃α−1i

)2
≥
(

1− 2(1− α)επ

n1/α−1

)( n∑
i=1

pαi

)2
. (V.64)

Since 0 < α < 1,

lim
n→∞

1 +
2(1− α)επ

n1/2α−1/2
= 1, lim

n→∞
1− 2(1− α)επ

n1/α−1
= 1.

(V.65)

Because (V.59) only omits lower order terms and the limits in
(V.65) are both 1, to prove (V.55) it suffices to prove that for
large enough n,

n∑
i=1

p2α−1i ≤ n1/α−1
( n∑
i=1

pαi

)2
. (V.66)

By generalized mean inequality, we have( 1

n

n∑
i=1

p2α−1i

) 1
2α−1 ≤

( 1

n

n∑
i=1

pαi

) 1
α

. (V.67)

Therefore,
n∑
i=1

p2α−1i ≤ n1−
2α−1
α

( n∑
i=1

pαi

) 2α−1
α

(V.68)

= n1/α−1
( n∑
i=1

pαi

)2−1/α
(V.69)

≤ n1/α−1
( n∑
i=1

pαi

)2
. (V.70)

Hence the result follows.

3) Analyze the recursive calls:

Lemma V.8. With probability at least 0.92, the a and b in Line
3 or Line 5 of Algorithm 5 are indeed lower and upper bounds
on Pα(p), respectively, and b/a = O(1); furthermore, in Line
5, Algorithm 5 is recursively called for at most log n log 1

α

executions, and each recursive call takes at most Õ(n
1
α−

1
2 )

queries.

Proof of Lemma V.8. Similar to Lemma V.4, we decompose
the proof into two parts:

• In Line 5, Algorithm 5 is recursively called for at most
log n log 1

α executions, and each recursive call takes at
most Õ(n

1
α−

1
2 ) queries:

Because each recursive call of Algorithm 5 increases
α by multiplying (1 − 1

logn )−1 and the recursion ends
when α > 1 − 1

logn , the total number of recursive calls
is at most logα

log(1− 1
log n )

≤ log n log 1
α .

When α > 1 − 1
logn , a and b are set in Line 3

and no extra queries are needed; when Line 5 calls
α(1 − 1

logn )−k-power sum estimation for some k ∈ N,
by induction on k, we see that this call takes at most
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Õ
(
n

(1−1/ log n)k

α − 1
2

)
≤ Õ(n

1
α−

1
2 ) queries. As a result,

when we apply Corollary II.2, the cost Ca,b is dominated
by the query cost from Algorithm 10.

• With probability at least 0.92, a and b are lower and
upper bounds on Pα(p) respectively, and b/a = O(1):
When 1 − 1

logn < α < 1, on the one hand we have∑n
i=1 p

α
i ≥

∑n
i=1 pi = 1; on the other hand, because

n
1

log n = e, by Lemma V.3 we have
n∑
i=1

pαi ≤ n1−α
( n∑
i=1

pi

)α
≤ e. (V.71)

Therefore, a = 1 and b = e in Line 3 are lower and upper
bounds on Pα(p) respectively, and b/a = e = O(1).

When α < 1 − 1
logn , for convenience denote

α′ = α(1− 1
logn )−1. As justified above, the total number

of recursive calls in Line 5 is at most log n log 1
α .

Because we take δ = 1
12 log n log 1/α in Line 5, with

probability at least(
1− 1

12 log n log 1/α

)logn log 1/α

≥ 1

e1/12
> 0.92,

(V.72)

the output of every recursive call is within 1/2-
multiplicative error. As a result, the P in Line 5 satisfies
P/2 ≤

∑n
i=1 p

α′

i ≤ 2P . Combining this with Lemma V.3
and using n

1
log n = e, we have

(P/2)1−
1

log n ≤
n∑
i=1

pαi ≤ e(2P )1−
1

log n . (V.73)

In other words, a and b are indeed lower and upper
bounds on Pα(p), respectively. Furthermore, b/a = O(1)
because

b

a
= e · 41−

1
log n ≤ 4e = O(1). (V.74)

VI. INTEGER RÉNYI ENTROPY ESTIMATION

Recall the classical query complexity of α-Rényi entropy
estimation for α ∈ N, α ≥ 2 is Θ(n1−1/α) [20], which is
smaller than non-integer cases. Quantumly, we also provide a
more significant speedup.

Given the oracle Op : [S] → [n] in (I.7), we denote
the occurrences of 1, 2, . . . , n among Op(1), . . ., Op(S) as
m1, . . . ,mn, respectively. A key observation is that by (I.6),
we have

Pα(p) =
n∑
i=1

(mi/S)α = S−α
n∑
i=1

mα
i . (VI.1)

Therefore, it suffices to approximate
∑
i∈[n]m

α
i , which is

known as the α-frequency moment of Op(1), . . . , Op(S).
Based on the quantum algorithm for α-distinctness [42],
Montanaro [50] proved:

Fact VI.1 ([50], Step 3b-step 3e in Algorithm 2; Lemma
4). Fix l where l ∈ {1, . . . , n}. Let s1, . . . , sl ∈ [S] be

picked uniformly at random, and denote the number of α-wise
collisions in {Op(s1), . . . , Op(sl)} as C(s1, . . . , sl). Then:

• C(s1, . . . , sl) can be computed using O(lν log(l/ε2))
queries to Ôp with failure probability at most O(ε2/l),
where ν := 1− 2α−2/(2α − 1) < 3

4 ;
• E[C(s1, . . . , sl)] =

(
l
α

)
Pα(p) and Var[C(s1, . . . , sl)] =

O(1).

However, a direct application of [50] will lead to a com-
plexity depending on S (in particular, l in Fact VI.1 can be
as large as S) rather than n. Our solution is Algorithm 6 that
is almost the same as Algorithm 2 in [50] except Line 1 and
Line 2, where we set 2dlog2 αne as an upper bound on l. We
claim that such choice of l is valid because by the pigeonhole
principle, αn elements Op(s1), . . . , Op(sαn) in [n] must have
an α-collision, so the first for-loop must terminate at some
i ≤ dlog2 αne. With this modification, we have Theorem VI.1
for integer Rényi entropy estimation.

Algorithm 6: Estimate the α-power sum Pα(p) of p =
(pi)

n
i=1 on [n], α > 1, α ∈ N.

1 Set l = 2dlog2 αne;
2 for i = 0, . . . , dlog2 αne do
3 Pick s1, . . . , s2i ∈ [S] uniformly at random and let S

be the sequence Op(s1), . . . , Op(s2i);
4 Apply the α-distinctness algorithm in [42] to S with

failure probability 1
10dlog2 αne

;
5 If it returns a set of α equal elements, set l = 2i and

terminate the loop;

6 Set M = dK/ε2e for some K = Θ(1) ;
7 for r = 1, . . . ,M do
8 Pick s1, . . . , sl ∈ [S] uniformly at random;
9 Apply the first bullet in Fact VI.1 to give an estimate

C(r) of the number of α-wise collisions in
{Op(s1), . . . , Op(sl)};

10 Output P̃α(p) = 1

M( lα)

∑M
r=1 C

(r);

Theorem VI.1. Assume α > 1, α ∈ N. Algorithm 6 approx-
imates Pα(p) within a multiplicative error 0 < ε ≤ O(1)

with success probability at least 2
3 using Õ

(
nν(1−1/α)

ε2

)
=

o
(
n

3
4
(1−1/α)

ε2

)
quantum queries to p, where ν := 1 −

2α−2/(2α − 1) < 3
4 .

Our proof of Theorem VI.1 is inspired by the proof of
Theorem 5 in [50].

Proof. Because Op takes values in [n], by pigeonhole princi-
ple, for any s1, . . . , sαn ∈ [S] there exists a α-wise collision
among Op(s1), . . . , Op(sαn). Therefore, Line 5 terminates the
first loop with some l ≤ 2dlog2 αne with probability at least
(1− 1/10dlog2 αne)dlog2 αne ≥ e−1/10 > 0.9.

Moreover, tighter bounds on l are established next. On
the one hand, by Chebyshev’s inequality and Fact VI.1, the
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probability that the first for-loop fails to terminate when
l ≤ B

Pα(p)1/α
for some constant B > 0 is at most

Pr
[
C(s1, . . . , sl) = 0

]
≤ Var[C(s1, . . . , sl)]

E[C(s1, . . . , sl)]2
(VI.2)

= O
( 1

l2αPα(p)2

)
(VI.3)

= O
( 1

B2α

)
. (VI.4)

Therefore, taking a large enough B ensures that l =
O
(

1
Pα(p)1/α

)
with failure probability at most 1/20. On the

other hand, by Markov’s inequality and Fact VI.1, we have

Pr
[
C(s1, . . . , sl) ≥ 1

]
≤ E[C(s1, . . . , sl)] = O(lαPα(p)).

(VI.5)

As a result, the probability that the first for-loop terminates
when l ≤ A

Pα(p)1/α
for some constant A > 0 is at most

O(Pα(p)) ·

blog2(
A

Pα(p)1/α
)c∑

i=0

2iα = O(Aα). (VI.6)

Therefore, taking a small enough A > 0 ensures that l =
Ω
(

1
Pα(p)1/α

)
with failure probability at most 1/20. In all, we

have l = Θ
(

1
Pα(p)1/α

)
with probability at least 0.9.

By Fact VI.1, the output E[P̃α(p)] in Line 10 of Algorithm 6
satisfies

E[P̃α(p)] =
1

M
(
l
α

) M∑
r=1

E[C(r)] = Pα(p), (VI.7)

Var[P̃α(p)] =
1

(M
(
l
α

)
)2

M∑
r=1

Var[C(r)] = O
( 1

Ml2α

)
.

(VI.8)

Therefore, by Chebyshev’s inequality and recall l =
Θ
(

1
Pα(p)1/α

)
, we have

Pr
[
|P̃α(p)− Pα(p)| ≥ εPα(p)

]
≤ O

( 1

Ml2αε2Pα(p)2

)
= O

( 1

K

)
. (VI.9)

Taking a large enough constant K in Line 6 of Algorithm 6,
we have Pr

[
|P̃α(p) − Pα(p)| ≤ εPα(p)

]
≥ 0.9. In all, with

probability at least 0.9×0.9×0.9 > 2/3, P̃α(p) approximates
Pα(p) within multiplicative error ε.

For the rest of the proof, it suffices to compute the quantum
query complexity of Algorithm 6. Because the α-distinctness
algorithm on m elements in [42] takes O(mν log(1/δ)) quan-
tum queries when the success probability is 1 − δ, the first
for-loop in Algorithm 6 takes

∑log2 l
i=0 O(2νi logdlog2 αne) =

Õ(lν) = Õ(nν(1−1/α)) quantum queries because

l = Θ
( 1

Pα(p)1/α

)
= O(n1−1/α), (VI.10)

following from Pα(p) ≥ n1−α. The second for-loop takes
dK/ε2e ·O(lν log(l/ε2)) = Õ(n

ν(1−1/α)

ε2

)
quantum queries by

Fact VI.1 and (VI.10). In total, the number of quantum queries
is Õ(n

ν(1−1/α)

ε2

)
.

Remark VI.1. In Theorem VI.1, we regard α as a constant,
i.e., the query complexity Õ(n

ν(1−1/α)

ε2

)
hides the multiple in

α. In fact, by analyzing the dependence on α carefully in the
above proof, the query complexity of Algorithm 6 is actually

Õ
(
α8α2

· n
ν(1−1/α)

ε2

)
. (VI.11)

The dependence on α is super-exponential; therefore, Algo-
rithm 6 is not good enough to approximate min-entropy (i.e.,
α = ∞). As a result, we give the quantum algorithm for
estimating min-entropy separately (see Section VII).

VII. MIN-ENTROPY ESTIMATION

Since the min-entropy of p is H∞(p) = − log maxi∈[n] pi
by (I.3), it is equivalent to approximate maxi∈[n] pi within
multiplicative error ε. We propose Algorithm 7 below to
achieve this task.

Algorithm 7: Estimate maxi∈[n] pi of a discrete distribu-
tion p = (pi)

n
i=1 on [n].

1 Set λ = 1;
2 while λ ≤ n do
3 Take M ∼ Poi( 16λ logn

ε2 ). Pick s1, . . . , sM ∈ [S]
uniformly at random and let S be the sequence
Op(s1), . . . , Op(sM );

4 Apply a d 16 log n
ε2 e-distinctness quantum algorithm to

S with failure probability at most ε
2 log n ;

5 If Line 4 outputs a d 16 log n
ε2 e-collision of elements

i∗ ∈ [n], apply Theorem II.3 to approximate pi∗
with multiplicative error ε and output its result; if
not, set λ← λ ·

√
1 + ε and jump to the start of the

loop;

6 If λ > n and no output has been given, output 1/n;

A key property of the Poisson distribution is that if we take
M ∼ Poi(ν) samples from p (as in Line 3), then for each j ∈
[n], the number of occurrences of j in Op(s1), . . . , Op(sM )
follows the Poisson distribution Mj ∼ Poi(νpj), and Mj ,Mj′

are independent for all j 6= j′. Furthermore:

Lemma VII.1. Let X ∼ Poi(µ). Then, if µ < 1√
1+ε
· 16 log n

ε2 ,
we have

Pr
[
X ≥ 16 log n

ε2

]
≤ 1

n2
; (VII.1)

If µ ≥ 16 log n
ε2 , we have

Pr
[
X ≥ 16 log n

ε2

]
> 0.15. (VII.2)

Based on Lemma VII.1, our strategy is to set 16 log n
ε2 as

a threshold, take ν = 16λ logn
ε2 as in Line 3, and gradually

increase the parameter λ. For convenience, denote pi∗ =
maxi pi. As long as ν · pi∗ < 16 log n

ε2 , with high probability
there is no d 16 log n

ε2 e-collision in S , the distinctness quantum
algorithm in Line 4 rejects, and λ increases by multiplying√

1 + ε in Line 5; right after the first time when ν · pi∗ ≥
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16 log n
ε2 , with probability at least 0.15, i∗ has a d 16 log n

ε2 e-
collision in S , while all other entries in [n] do not (with failure
probability at most 1/n2). In this case, with probability at least
Ω(1), the distinctness quantum algorithm in Line 4 captures i∗,
and the quantum counting (Theorem II.3) in Line 5 computes
pi∗ within multiplicative error ε.

Theorem VII.1. Algorithm 7 approximates maxi∈[n] pi within
a multiplicative error 0 < ε ≤ 1 with success probability
at least Ω(1) using Õ

(
Q(d 16 log n

ε2 e-distinctness)
)

quantum
queries to p, where Q(d 16 log n

ε2 e-distinctness) is the quantum
query complexity of the d 16 log n

ε2 e-distinctness problem.

We first prove Lemma VII.1. output

Proof of Lemma VII.1. First, we prove (VII.1)7. In [61], it is
shown that if λ > 0 and X ∼ Poi(λ), then for any ν > 1 we
have

Pr[X ≥ νλ] ≤ e−λλνλ

(νλ)!(1− 1/ν)
. (VII.3)

Taking λ = 1√
1+ε
· 16 log n

ε2 and ν =
√

1 + ε, by Sterling’s
formula we have

Pr
[
X ≥ 16 log n

ε2

]
≤ e−λλνλ

(νλ)!(1− 1/ν)
(VII.4)

≈ 2

ε

e−λλνλ√
2πνλ(νλ/e)νλ

(VII.5)

≈
√

2

π

1

ε
√
λ

(
eε/2

(1 + ε
2 )1+ε/2

)λ
. (VII.6)

Because

lim
ε→0

(
eε/2

(1 + ε
2 )1+ε/2

)8/ε2

= lim
ε→0

exp
[4

ε
−
( 8

ε2
+

4

ε

)
ln
(

1 +
ε

2

)]
(VII.7)

= lim
ε→0

exp
[4

ε
−
( 8

ε2
+

4

ε

)( ε
2
− ε2

8
+O(ε3)

)]
(VII.8)

= lim
ε→0

exp[−1 +O(ε)] = e−1, (VII.9)

we have (
eε/2

(1 + ε
2 )1+ε/2

)λ
≈ e− ε

2

8 λ ≈ 1

n2
. (VII.10)

Plugging (VII.10) into (VII.6), we have

Pr
[
X ≥ 16 log n

ε2

]
.

√
2

π

1√
16 log n

1

n2
≤ 1

n2
. (VII.11)

Now we prove (VII.2). A theorem of Ramanujan [62,
Question 294] states that for any positive integer M ,

1

2
eM =

M−1∑
m=0

Mm

m!
+ θ(M) · M

M

M !
, (VII.12)

7The tail bound of Poisson distributions is also studied elsewhere, for
example, in [60, Exercise 4.7].

where 1
3 ≤ θ(M) ≤ 1

2 ∀M ∈ N. Because
∑∞
m=0

Mm

m! = eM ,
by (VII.12) we have

∞∑
m=M+1

Mm

m!
+

2

3
· M

M

M !
≥ 1

2
eM . (VII.13)

By Stirling’s formula, M ! ≥
√

2πM
(
M
e

)M
. As a result,

∞∑
m=M+1

Mm

m!
≥ 1

2
eM − 2

3
· MM

√
2πM

(
M
e

)M (VII.14)

=
(1

2
− 1√

4.5πM

)
eM . (VII.15)

We take M = b 16 log n
ε2 c. By (VII.15), we have

Pr
[
X ≥ 16 log n

ε2

]
= e−

16 log n

ε2

∞∑
m=M+1

( 16 log n
ε2 )m

m!

(VII.16)

≥ e−M−1
∞∑

m=M+1

Mm

m!
(VII.17)

≥ 1

2e
− 1

e
√

4.5πM
. (VII.18)

Because 0 < ε ≤ 1, we have M ≥ b16 log 2c = 11. Therefore,

Pr
[
X ≥ 16 log n

ε2

]
≥ 1

2e
− 1

e
√

4.5π · 11
> 0.15. (VII.19)

Proof of Theorem VII.1. Denote σ to be the permutation on
[n] such that pσ(1) ≥ pσ(2) ≥ · · · ≥ pσ(n). Without loss of
generality, we assume that pσ(2) ≤

pσ(1)
1+ε ; otherwise, pσ(2)

is close enough to pσ(1) in the sense that applying quantum
counting to pσ(2) within multiplicative error ε gives an approx-
imation to pσ(1) within multiplicative error 2ε. We may assume
that every call of the d 16 log n

ε2 e-distinctness quantum algorithm
in Line 4 of Algorithm 7 succeeds if and only if a d 16 log n

ε2 e-
collision exists, because this happens with probability at least(
1 − ε

2 log n

)log√1+ε n ≥ e−1 = Ω(1); for convenience, this is
always assumed in the result of the proof.

On the one hand, when

pσ(1) · 16λ log n

ε2
<

1√
1 + ε

· 16 log n

ε2
, (VII.20)

by Lemma VII.1 we have Pr
[
Mi ≥ 16 log n

ε2

]
≤ 1

n2 ∀ i ∈ [n],
where Mi is the occurences of i. Therefore, by the union
bound, with probability at least 1 − n · 1

n2 = 1 − 1
n , there

is no 16 log n
ε2 -collision in S . Since the while loop only has

at most log√1+ε n = O( logn
ε ) rounds and (1 − 1

n )logn/ε =
1− o(1), we may assume that as long as (VII.20) holds, Line
4 of Algorithm 7 always has a negative output and Line 5
enforces λ ← λ ·

√
1 + ε and jumps to the start of the while

loop.
The while loop keeps iterating until (VII.20) is violated. In

the second iteration after (VII.20) is violated, we have

16 log n

ε2
≤
pσ(1) · 16λ log n

ε2
<
√

1 + ε · 16 log n

ε2
; (VII.21)



0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2883306, IEEE
Transactions on Information Theory

17

since pσ(2) ≤
pσ(1)
1+ε , we have

pσ(2) · 16λ log n

ε2
<

1√
1 + ε

16 log n

ε2
. (VII.22)

As a result, by Lemma VII.1 we have

Pr
[
Mσ(1) ≥

16 log n

ε2

]
> 0.15; (VII.23)

Pr
[
Mi ≥

16 log n

ε2

]
≤ 1

n2
∀ i ∈ [n]/{σ(1)}. (VII.24)

Therefore, the probability that Line 4 outputs σ(1) in the
second iteration after (VII.20) is violated is at least 0.15 ·(
1− n−1

n2

)n−1
. In the first iteration after (VII.20) is violated,

we still have Pr
[
Mi ≥ 16 log n

ε2

]
≤ 1

n2 ∀ i ∈ [n]/{σ(1)}.
Therefore, the probability that Line 4 outputs σ(1) in the first
or second iteration after (VII.20) is violated is at least

0.15 ·
(

1− n− 1

n2

)n−1
·
(

1− n− 1

n2

)n−1
≥ 0.15

e2
= Ω(1).

(VII.25)

In all, with probability Ω(1), Line 4 of Algorithm 7 outputs
σ(1) correctly in the first or second iteration after (VII.20) is
violated; after that, the quantum counting in Line 5 approxi-
mates pσ(1) = maxi∈[n] pi within multiplicative error ε. This
establishes the correctness of Algorithm 7.

It remains to show that the quantum query complexity of
Algorithm 7 is Õ

(
Q(d 16 log n

ε2 e-distinctness)
)
. Because there

are at most log√1+ε n = O( logn
ε ) iterations in the while loop,

the d 16 log n
ε2 e-distinctness algorithm in Line 4 is called for at

most O( logn
ε ) times; if it gives a d 16 log n

ε2 e-collision, because
maxi∈[n] pi ≥ 1/n, the quantum query complexity caused by
Line 5 is O(

√
n
ε ) by Theorem II.3, which is smaller than the

Ω(n2/3) quantum lower bound on the distinctness problems
[44]. As a result, the query complexity of Algorithm 7 in total
is at most

O
( log n

ε

)
·Q
(⌈16 log n

ε2

⌉
-distinctness

)
+O

(√n
ε

)
= Õ

(
Q
(⌈16 log n

ε2

⌉
-distinctness

))
. (VII.26)

Remark VII.1. In some special cases, Algorithm 7 already
demonstrates provable quantum speedup. Recall the state-of-
the-art quantum algorithm for k-distinctness is [42] by Belovs,
which has query complexity O(2k

2

n1−2
k−2/(2k−1)); however,

this is superlinear when k = Θ(log n). Nevertheless, if we are
promised that H∞(p) ≤ f(n) for some f(n) = o(

√
log n),

then we can replace the n in Line 2 of Algorithm 7 by ef(n)

and replace every d 16 log n
ε2 e by d 16f(n)ε2 e, and it can be shown

that the quantum query complexity of min-entropy estimation is
Õ
(
e(

3
4+o(1))·f(n)

)
, whereas the best classical algorithm takes

Θ̃(ef(n)) queries. In this case, we obtain a ( 3
4 +o(1))-quantum

speedup, but the classical query complexity is already small
(e
√
logn = n1/

√
logn = o(nc) for any c > 0).

VIII. 0-RÉNYI ENTROPY ESTIMATION

Motivations. Estimating the support size of distributions (i.e.,
the 0-Rényi entropy) is also important in various fields, rang-
ing from vocabulary size estimation [23, 24], database attribute
variation [25], password and security [26], diversity study in
microbiology [27–29], etc. The study of support estimation
was initiated by naturalist Corbet in 1940s, who spent two
years at Malaya for trapping butterflies and recorded how
many times he had trapped various butterfly species. He then
asked the leading statistician at that time, Fisher, to predict
how many new species he would observe if he returned to
Malaya for another two years of butterfly trapping. Fisher
answered by alternatively putting plus or minus sign for the
number of species that showed up one, two, three times, and
so on, which was proven to be an unbiased estimator [63].

Formally, assuming n independent samples are drawn from
an unknown distribution, the goal of [63] is to estimate the
number of hitherto unseen symbols that would be observed if t·
n (t being a pre-determined parameter) additional independent
samples were collected from the same distribution. Reference
[63] solved the case t = 1, which was later improved to t ≤ 1
[64] and t = O(log n) [47]; the last work also showed that
t = Θ(log n) is the largest possible range to give an estimator
with provable guarantee.

However, such estimation always assumes n samples; a
more natural question is, can we estimate the support of a
distribution per se? Specifically, given a discrete distribution
p over a finite set X where px denotes the probability of
x ∈ X , can we estimate its support, defined by

Supp(p) := |{x : x ∈ X, px > 0}|, (VIII.1)

with high precision and success probability?
Unfortunately, this is impossible in general because ele-

ments with negligible but nonzero probability will be very
unlikely to appear in the samples, while still contribute to
Supp(p). As an evidence, Supp(p) is the exponent of the 0-
Rényi entropy of p, but the sample complexity of α-Rényi
entropy goes to infinity when α→ 0+ by Theorem IX.1, both
classically and quantumly.

To circumvent this difficulty, two related properties have
been considered as an alternative to estimate 0-Rényi entropy:
• Support coverage: Sn(p) :=

∑
x∈X

(
1− (1− px)n

)
, the

expected number of elements observed when taking n
samples. To estimate Sn(p) within ±εn, [64] showed that
n/2 samples from p suffices for any constant ε; recently,
[65] improved the sample complexity to O

(
n

logn

)
, and

[47, 66] also considered the dependence in ε by showing
that Θ

(
n

logn · log 1
ε

)
is a tight bound, as long as ε =

Ω(n−0.2).
• Support size: Supp(p), under the assumption that for

any x ∈ X , px = 0 or px ≥ 1/m for some given
m ∈ N. Reference [67] proposed the problem and gave a
lower bound Ω(m1−o(1)), and [10] gave an upper bound
O
(

m
logm ·

1
ε2

)
. Recently, [46] and [47] both proved that

Θ
(

m
logm · log2 1

ε

)
is the tight bound for the problem (both

optimal in m and ε).
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Problem classical bounds quantum bounds (this paper)

Support coverage
Θ
(

n
logn

· log 1
ε

)
[47, 66]

[ε = Ω(n−0.2)]
Õ
( √n
ε1.5

)
, Ω
(
n1/3

ε1/6

)
Support size

Θ
(

m
logm

· log2 1
ε

)
[46, 47]

[ε = Ω(1/m)]
Õ
(√m
ε1.5

)
, Ω
(
m1/3

ε1/6

)
TABLE II: Summary of the classical and quantum query complexity
of support coverage and size estimation.

Quantumly, we give upper and lower bounds on both
support coverage and support size estimation, summarized in
Table II.

Support coverage estimation. We give the following upper
bound on support coverage estimation; its lower bound is given
in Proposition IX.2.

Algorithm 8: Estimate the support coverage Sn(p).

1 Regard the following subroutine as A:
2 Draw a sample i ∈ X according to p;

3 Use EstAmp with M = 2dlog2(
√
n/ε)e queries to

obtain an estimation p̃i of pi;
4 Output x̃i = 1−(1−p̃i)n

p̃i
if p̃i 6= 0; otherwise, output

n;

5 Use A for Θ
(
1
ε log3/2

(
1
ε

)
log log

(
1
ε

))
executions in

Theorem II.1 and output an estimation S̃n(p) of Sn(p);

Theorem VIII.1. Algorithm 8 approximates Sn(p)
n

:=∑
x∈X(1−(1−px)n)

n within an additive error 0 < ε ≤ O(1)

with success probability at least 2/3 using Õ
(√n
ε1.5

)
quantum

queries to p.

Proof. We prove this theorem in two steps. The first step is
to show that the expectation of the subroutine A’s output (de-
noted Ẽ :=

∑
i∈X pi ·

1−(1−p̃i)n
p̃i

) satisfies |Ẽ − E| = O(εn),
where E :=

∑
i∈X pi ·

1−(1−pi)n
pi

= Sn(p).
To achieve this, it suffices to prove that for each i ∈ X ,

E
[∣∣∣1− (1− p̃i)n

p̃i
− 1− (1− pi)n

pi

∣∣∣] = O(εn). (VIII.2)

We write pi = sin2(θiπ). Assume k ∈ Z such that k ≤Mθi <
k+1. By Theorem II.3, for any l ∈ {1, 2, . . . ,max{k−1,M−
k − 1}}, the output of EstAmp taking M queries satisfies

Pr
[
p̃i = sin2

( (k ± (l + 1))π

M

)]
≤ 1

4l2
. (VIII.3)

We first consider the case when p̃i > pi, and p̃i =
sin2

( (k+l+1)π
M

)
for some l ∈ N. For convenience, denote

f(x) = 1−(1−x)n
x where x ∈ (0, 1]. Because

f ′(x) =
nx(1− x)n−1 + (1− x)n − 1

x2
(VIII.4)

≤ nx+ (1− nx)− 1

x2
= 0, (VIII.5)

f is a decreasing function on (0, 1]. Therefore,∣∣∣1− (1− p̃i)n

p̃i
− 1− (1− pi)n

pi

∣∣∣
≤ sin2 kπ

M
·

1− cos2n (k+l+1)π
M

sin2 (k+l+1)π
M

−
(

1− cos2n
kπ

M

)
(VIII.6)

=
sin2 (k+l+1)π

M cos2n kπ
M − sin2 kπ

M cos2n (k+l+1)π
M

sin2 (k+l+1)π
M

+
sin2 kπ

M − sin2 (k+l+1)π
M

sin2 (k+l+1)π
M

. (VIII.7)

By Taylor expansion, we have

sin2 kπ

M
=
k2π2

M2
+O

( k6
M6

)
(VIII.8)

sin2 (k + l + 1)π

M
=

(k + l + 1)2π2

M2
+O

( (k + l)6

M6

)
,

(VIII.9)

and

cos2n
kπ

M
=
(

1− k2π2

2M2
+O

( k4
M4

))2n
(VIII.10)

=
(

1− k2π2ε

2n
+O

(k2ε2
n2
))2n

(VIII.11)

= 1− k2π2ε+O
(
ε2k2

)
; (VIII.12)

similarly

cos2n
(k + l + 1)π

M
= 1− (k + l + 1)2π2ε+O

(
ε2(k + l)2

)
.

(VIII.13)

Plugging (VIII.9), (VIII.12), and (VIII.13) into (VIII.7) and
noticing that the tail in (VIII.9) has 1/M6, much smaller than
that of (VIII.12) and (VIII.13), we have∣∣∣1− (1− p̃i)n

p̃i
− 1− (1− pi)n

pi

∣∣∣
=

(k + l + 1)2(1− k2π2ε)− k2(1− (k + l + 1)2π2ε)

(k + l + 1)2

+
k2 − (k + l + 1)2

(k + l + 1)2
+O(ε2k2)

− k2

(k + l + 1)2
O(ε2(k + l)2) (VIII.14)

= 0 +O
(
ε2(k + l)2

)
(VIII.15)

≤ O(εn), (VIII.16)

where (VIII.16) holds because k+l ≤M and M = Θ(
√
n/ε).

Similarly, for the case p̃i < pi, we have∣∣∣1− (1− p̃i)n

p̃i
− 1− (1− pi)n

pi

∣∣∣ ≤ O(εn). (VIII.17)

In all, summing all l ∈ {1, 2, . . . ,max{k− 1,M − k− 1}} in
cases p̃i > pi and p̃i < pi and by (VIII.3), the expectation of
the deviation in (VIII.2) is at most

E
[∣∣∣1− (1− p̃i)n

p̃i
− 1− (1− pi)n

pi

∣∣∣]
≤ 2 ·

M∑
l=1

1

4l2
·O(εn) ≤ π2

3
·O(εn) = O(εn). (VIII.18)
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Therefore, (VIII.2) follows and |Ẽ−E| = O(εn). By rescaling
M by a constant, without loss of generality we have |Ẽ−E| ≤
εn/2.

The second step is to bound the variance of the random
variable, which is∑

i∈X
pi ·
(1− (1− p̃i)n

p̃i

)2
−
(∑
i∈X

pi ·
1− (1− p̃i)n

p̃i

)2
≤
∑
i∈X

pi · n2 = n2, (VIII.19)

because 1 − (1 − p̃i)
n ≤ np̃i by 0 ≤ p̃i ≤ 1. As a result

of Theorem II.1, we can approximate Ẽ up to additive error
εn/2 with failure probability at most 1/3 using

O
( n
εn

log3/2
( n
εn

)
log log

( n
εn

))
· 2dlog2(

√
n/ε)e = Õ

(√n
ε1.5

)
(VIII.20)

quantum queries. Together with |Ẽ−E| ≤ εn/2, Algorithm 8
approximates E = Sn(p) up to additive error εn with
failure probability at most 1/3; in other words, Algorithm 8
approximates E = Sn(p)/n up to ε with success probability
at least 2/3.

Support size estimation. We give the following upper bound
on support size estimation; its lower bound is given in Propo-
sition IX.3.

Algorithm 9: Estimate Supp(p), under the promise that
px = 0 or px ≥ 1/m for any x ∈ X .

1 Call Algorithm 8 with n = dm log(2/ε)e and error
ε

2 log(2/ε) , and denote the output as S̃n(p);

2 Denote S̃upp(p) := dS̃n(p)e. Output S̃upp(p) as an
estimation of Supp(p);

Theorem VIII.2. Under the promise that for any x ∈ X ,
px = 0 or px ≥ 1/m, Algorithm 9 approximates Supp(p)/m
within an additive error 0 < ε ≤ O(1) with success probability
at least 2/3 using Õ

(√m
ε1.5

)
quantum queries to p.

Proof. For convenience, denote X1/m := {x ∈ X : px ≥
1/m}. Then Supp(p) = |X1/m| by the promise, and

1− ε

2
≤ 1− (1− px)n ≤ 1 ∀x ∈ X1/m; (VIII.21)

1− (1− px)n = 0 ∀x /∈ X1/m; (VIII.22)

As a result,

Sn(p) =
∑
x∈X

1− (1− px)n ∈
[(

1− ε

2

)
Supp(p), Supp(p)

]
.

(VIII.23)

Furthermore, by the correctness of Algorithm 8, with proba-
bility at least 2/3 we have

|S̃n(p)− Sn(p)| ≤ ε

2 log(2/ε)
· n =

mε

2
. (VIII.24)

Together with (VIII.23),

S̃n(p) ∈
[(

1− ε

2

)
Supp(p)− mε

2
, Supp(p) +

mε

2

]
⊆
[

Supp(p)−mε, Supp(p) +
mε

2

]
. (VIII.25)

Therefore, with probability at least 2/3, dS̃n(p)em approximates
Supp(p)
m up to ε with success probability at least 2/3.

IX. QUANTUM LOWER BOUNDS

In this section, we prove Theorem I.2, which is rewritten
below:

Theorem IX.1. Any quantum algorithm that approximates
Hα(p) of distribution p on [n] within additive error ε with
success probability at least 2/3 must use
• Ω(

√
n+n

1
3 /ε

1
6 ) quantum queries when α = 0, assuming

1/n ≤ ε ≤ 1/12.
• Ω̃(n

1
7α−o(1)/ε

2
7 ) quantum queries when 0 < α < 3

7 .
• Ω(n

1
3 /ε

1
6 ) quantum queries when 3

7 ≤ α ≤ 3 and α 6= 1,
assuming 1/n ≤ ε ≤ 1/2.

• Ω(
√
n+n

1
3 /ε

1
6 ) quantum queries when α = 1, assuming

1/n ≤ ε ≤ 1/2.
• Ω(n

1
2−

1
2α /ε) quantum queries when 3 ≤ α <∞.

• Ω(
√
n/ε) quantum queries when α =∞.

Because we use different techniques for different ranges of
α, we divide the proofs into three categories.

A. Reduction from classical lower bounds (0 < α < 3
7 )

We prove that the quantum lower bound when 0 < α < 3
7

is indeed Ω(n
1
7α−o(1)/ε

2
7 ), as claimed in Theorem IX.1.

Proof. First, by [20], we know that Ω(n
1
α−o(1)/ε2) is a lower

bound on the classical query complexity of α-Rényi entropy
estimation. On the other hand, reference [52] shows that for
any problem that is invariant under permuting inputs and
outputs and that has sufficiently many outputs, the quantum
query complexity is at least the seventh root of the classical
randomized query complexity (up to poly-logarithmic factors).
Our query oracle Op : [S] → [n] has n outputs with tend to
infinity when n is large; the distribution p is invariant under
permutations on [S] since pi = |{s ∈ [S] : Op(s) = i}|/S
is invariant for all i; Rényi entropy is invariant under permu-
tations on [n] since it does not depend on the order of pi.
Therefore, our problem satisfies the requirements from [52],
and Ω(n

1
7α−o(1)/ε

2
7 ) is a lower bound on the quantum query

complexity of α-Rényi entropy estimation.

B. Exploitation of the collision lower bound (α = 0 and 3
7 ≤

α ≤ 3)

We prove lower bounds on entropy estimation by further
exploiting the famous collision lower bound [44, 53]. First,
we define the following problem:

Definition IX.1 (l-pairs distinctness). Given positive integers
n and l such that 1 ≤ l ≤ n/2, and a function f : [n]→ [n].
Under the promise that either f is 1-to-1 or their exists l
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pairwise different pairs (xi1 , yi1), . . . , (xil , yil) ∈ [n] × [n]
such that xij 6= yij but f(xij ) = f(yij ) for all j ∈ [l], the
l-pairs distinctness problem is to determine which is the case,
with success probability at least 2/3.

Note that when l = 1, l-pairs distinctness reduces to the el-
ement distinctness problem, whose quantum query complexity
is Θ(n2/3) [41, 44]; when l = n/2, l-pairs distinctness reduces
to the collision problem, whose quantum query complexity is
Θ(n1/3) [44, 53]. Inspired by the reduction from the collision
lower bound to the element distinctness lower bound in [44],
we prove a more general quantum lower bound for l-pairs
distinctness:

Proposition IX.1. The quantum query complexity of l-pairs
distinctness is at least Ω(nα), where lα = n

2
3−α.

Proof. Assume the contrary that the quantum query com-
plexity of l-pairs distinctness is o(nα). Consider a function
f : [n]→ [n] that is promised to be either 1-to-1 or 2-to-1. By
[53], it takes Ω(n1/3) quantum queries to decide whether f is
1-to-1 or 2-to-1.

Denote S to be a subset of [n], where |S| = d2
√
nle and the

elements in S are chosen uniformly at random. If f is 1-to-1,
then f restricted on S , denoted f |S , is still 1-to-1 on S . If f
is 2-to-1, denote the set of its images as {a1, . . . , an/2}. For
any j ∈ [n/2], denote Xj to be a binary random variable that
equals to 1 when the collision pair of aj appears in S , and
equals to 0 otherwise. Then for any j, k ∈ [n], j 6= k,

Pr[Xj = 1] =

(|S|
2

)(
n
2

) , Pr[XjXk = 1] =

(|S|
4

)(
n
4

) . (IX.1)

Denote X =
∑n/2
j=1Xj , which is the number of collision pairs

in S . By linearity of expectation,

E[X] =
n

2
· |S|(|S| − 1)

n(n− 1)
& 2l. (IX.2)

On the other hand,

Var[X] = E[X2]− E[X]2 (IX.3)

=

n/2∑
j=1

E[Xj ] +
∑
j 6=k

E[XjXk]− E[X]2 (IX.4)

≤ n

2
·
(|S|

2

)(
n
2

) +
n

2

(n
2
− 1
)
·
(|S|

4

)(
n
4

) − n2

4
·
(|S|

2

)2(
n
2

)2
(IX.5)

. 2l. (IX.6)

Therefore, by Chebyshev’s inequality,

Pr[X < l] ≤ Pr
[
X ≤ E[X]− 2

√
2l
]
≤ 1/4. (IX.7)

In other words, with probability at least 3/4, f |S on S
has at least l collision pairs. By our assumption, it takes
o(|S|α) = o(nα/2 · n1/3−α/2) = o(n1/3) quantum queries
to decide whether f |S is 1-to-1 or has l collision pairs, which
suffices to decide whether f is 1-to-1 or 2-to-1. However, this
contradicts with the Ω(n1/3) quantum lower bound for the
collision problem [53].

1) α = 0: For 0-Rényi entropy estimation, we use Propo-
sition IX.1 to give quantum lower bounds for both support
coverage estimation and support size estimation (both defined
in Section VIII).

Proposition IX.2. The quantum query complexity of support
coverage estimation is Ω

(√
n+ n1/3

ε1/6

)
, for all 1

n ≤ ε ≤
1
12 .

Proof. On the one hand, [45, Theorem 55] proved that for
ε = O(1), the quantum query complexity of support coverage
estimation is Ω(

√
n). Therefore, it suffices to prove that

Ω
(
n1/3

ε1/6

)
is a quantum lower bound when 1

n ≤ ε ≤
1
12 .

Because 1
n ≤ ε ≤ 1

12 , we may denote ε = nr where
r ∈ [−1, 0]. Consider two distributions p1 and p2 encoded
by Op1 , Op2 : [n] → X (S = n in (I.7)), where the
nonzero probabilities in p1 are 1/n for n times, and the
nonzero probabilities in p2 are 2/n for l = d6nεe times and
1/n for n − 2l times. In other words, Op1 is injective, and
Op2 has l collision pairs but otherwise injective. On the one
hand, by Proposition IX.1, it takes Ω(nα) quantum queries to
distinguish between Op1 and Op2 , where

lα = n
2
3−α

⇒ α =
2

3(2 + r)
+O

( 1

log n

)
≥ 1

3
− r

6
∀ r ∈ [−1, 0].

(IX.8)

As a result, nα ≥ n1/3−r/6 = n1/3

ε1/6
.

On the other hand,

Sn(p1)

n
=
n ·
(
1− (1− 1/n)n

)
n

≈ 1− 1

e
; (IX.9)

Sn(p2)

n
=
l ·
(
1− (1− 2/n)n

)
+ (n− 2l) ·

(
1− (1− 1/n)n

)
n

≈ 1− 1

e
− l(1− 1/e)2

n
. (IX.10)

As a result,∣∣∣Sn(p1)

n
− Sn(p2)

n

∣∣∣ ≈ l(1− 1/e)2

n
> 2ε. (IX.11)

Therefore, if a quantum algorithm can estimate support cover-
age with error ε, it can distinguish between p1 and p2 with suc-
cess probability at least 2/3. In conclusion, the quantum query
complexity of support coverage estimation is Ω

(
n1/3

ε1/6

)
.

Similar to the proof of Proposition IX.2, we can prove (with
details omitted):

Proposition IX.3. The quantum query complexity of support
size estimation is Ω

(
m1/3

ε1/6

)
, for all 1

m ≤ ε ≤
1
4 .

2) 3
7 ≤ α ≤ 3: Using Proposition IX.1, we show that the

quantum query complexity of entropy estimation when 3
7 ≤

α ≤ 3 is also Ω(n
1
3 /ε

1
6 ), as long as 1

n ≤ ε ≤
1
2 .

Proof. We consider the case α = 1, i.e., Shannon entropy
estimation; the proof for other α ∈ [ 37 , 3] is basically identical.

Consider two distributions p1 and p2 encoded by Op1 , Op2 :
[n]→ X (S = n in (I.7)), where the nonzero probabilities in
p1 are 1/n for n times, and the nonzero probabilities in p2
are 2/n for l = dnε/ log 2e times and 1/n for n − 2l times.
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In other words, Op1 is injective, and Op2 has l collision pairs
but otherwise injective. On the one hand, similar to the proof
of Proposition IX.2, it takes it takes Ω(n1/3−ε/6) quantum
queries to distinguish between Op1 and Op2 .

On the other hand,

H(p1) = n · 1

n
log n = log n; (IX.12)

H(p2) = l · 2

n
log

n

2
+ (n− 2l) · 1

n
log n = log n− 2l

n
log 2.

(IX.13)

As a result,

|H(p1)−H(p2)| = 2l

n
log 2 ≥ 2ε. (IX.14)

Therefore, if a quantum algorithm can estimate support cover-
age with error ε, it can distinguish between p1 and p2 with suc-
cess probability at least 2/3. In conclusion, the quantum query
complexity of support coverage estimation is Ω

(
n1/3

ε1/6

)
.

Note that when α = 1 (Shannon entropy), [45, Corollary
64] showed that the quantum query complexity is at least
Ω(
√
n) when ε = O(1). Together with the proof above,

Ω(
√
n + n

1
3 /ε

1
6 ) is a quantum lower bound for Shannon

entropy estimation.

C. Polynomial method (3 ≤ α ≤ ∞)

We use the polynomial method [43] to show quantum
lower bounds for entropy estimation when 3 ≤ α ≤ ∞.
Inspired by the symmetrization technique in [53], we obtain
a bivariate polynomial whose degree is at most two times
the corresponding quantum query complexity. Next, similar to
[54], we apply Paturi’s lemma [68] to give a lower bound on
the degree of the polynomial. To be more specific, we prove:

Proposition IX.4. The quantum query complexity of estimat-
ing min-entropy with error ε is Ω(

√
n
ε ).

Proposition IX.5. When the constant α satisfies 1 < α <∞,
the quantum query complexity of estimating α-Rényi entropy
with error ε is Ω(αn

1
2
− 1

2α

ε ).

Without loss of generality, we assume that the oracle Op in
(I.7) satisfies n|S, otherwise consider the oracle O′p : [Sn]→
[n] such that O′p(s+ Sl) = Op(s) for all s ∈ [S] and l ∈ [n];
this gives an oracle for the same distribution.

We consider the special case where the probabilities {pi}ni=1

takes at most two different values; to integrate the proba-
bilities, we assume the existence of two integers c, d where
c ∈ {1, . . . , n− 1}, such that pi = 1

n −
d
S for n− c different

i’s in {1, . . . , n}, and pi = 1
n + (n−c)d

cS for the other c i’s in
{1, . . . , n}.

Proof of Proposition IX.4. Following the symmetrization
technique in [53], we obtain a bivariate polynomial Q(c, d)
where such that the degree of Q is at most two times the
query complexity of min-entropy estimation, and:
• c ∈ {1, . . . , n−1} and d ∈ {−

⌊
Sc

n(n−c)
⌋
, . . . , Sn}. This is

because pi ≥ 0 for all i ∈ [n].

• 0 ≤ Q(c, d) ≤ 1 if c|nd. Only if c|nd, S ·
(
1
n + (n−c)d

cS

)
is an integer and the distribution {pi}ni=1 is valid under
our model in (I.7).

Furthermore, we consider the property testing problem of
determining whether maxi pi = 1

n or maxi pi ≥ 1+ε
n , where

the accept probability should be at most 1/3 for the former
case and at least 2/3 for the latter case. As a result,
• 0 ≤ Q(c, 0) ≤ 1/3: In this case, pi = 1

n for all i ∈ [n].
• 2/3 ≤ Q(c, d) ≤ 1 if c|nd, (n−c)d

Sc ≥ ε
n : In this case, ∃ i

such that pi = 1
n + (n−c)d

cS ≥ 1+ε
n .

• 2/3 ≤ Q(c, d) ≤ 1 if c|nd, d ≤ − εSn : In this case, ∃ i
such that pi = 1

n −
d
S ≥

1+ε
n .

Therefore, we have
• 0 ≤ Q(1, d) ≤ 1 for d ∈ {−

⌊
S

n(n−1)
⌋
, . . . , Sn};

• 0 ≤ Q(1, 0) ≤ 1/3;
• 2/3 ≤ Q(1, d) ≤ 1 for d ∈ {−

⌊
S

n(n−1)
⌋
, . . . ,−

⌈
εS
n

⌉
} ∪

{
⌈

εS
n(n−1)

⌉
, . . . , Sn}.

Using Paturi’s lower bound [68], we have

degdQ(1, d) ≥ Ω

(√⌊ S
n(n−1)

⌋
· Sn⌈

εS/n(n− 1)
⌉ ) = Ω

(√n
ε

)
. (IX.15)

Therefore, degQ(c, d) ≥ degdQ(1, d) = Ω(
√
n/ε).

Proof of Proposition IX.5. The proof is similar to that of
Proposition IX.4. Following the symmetrization technique, we
still obtain a bivariate polynomial Q(c, d) where such that
the degree of Q is at most two times the query complexity
of min-entropy estimation, and c ∈ {1, . . . , n − 1}, d ∈
{−
⌊

Sc
n(n−c)

⌋
, . . . , Sn}, 0 ≤ Q(c, d) ≤ 1 if c|nd. Furthermore,

we consider the property testing problem of determining
whether

∑
i∈[n] p

α
i ≤ 2

nα−1 or
∑
i∈[n] p

α
i ≥ 2+2ε

nα−1 , where the
accept probability should be at most 1/3 for the former case
and at least 2/3 for the latter case. We also assume c = 1.
On the one hand, when 0 ≤ d ≤

⌊
n1/α−1
n−1 · Sn

⌋
, we have

1
n + (n−1)d

S ≤ 1
n1−1/α , and∑

i∈[n]

pαi ≤
( 1

n1−1/α

)α
+ (n− 1)

( 1

n− 1

(
1− 1

n1−1/α

))α
≤ 2

nα−1
. (IX.16)

On the other hand, because (1 + m)α ≈ 1 + mα when m =
o(1), we have

(n− 1)
( 1

n− 1

(
1− 1

n1−1/α
− 3ε

αn1−1/α

))α
− 2 + 2ε

nα−1
+
( 1

n1−1/α
+

3ε

αn1−1/α

)α
=

1

(n− 1)α−1

(
1− 1

n1−1/α
− 3ε

αn1−1/α

)α
− 2 + 2ε

nα−1
+

1

nα−1

(
1 +

3ε

α

)α
(IX.17)

≈ 1

nα−1

(
ε− α+ 3ε

n1−1/α

)
(IX.18)

≥ 0 (IX.19)

for large enough n. As a result, when d ≥
⌈ (1+3ε/α)n1/α−1

n−1 ·
S
n

⌉
, we have

∑
i∈[n] p

α
i ≥ 2+2ε

nα−1 .
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Therefore, we have
• 0 ≤ Q(1, d) ≤ 1 for d ∈ {0, . . . , Sn};
• 0 ≤ Q(1, d) ≤ 1/3 for d ∈ {0, . . . ,

⌊
n1/α−1
n−1 · Sn

⌋
};

• 2/3 ≤ Q(1, d) ≤ 1 for d ∈ {
⌈ (1+3ε/α)n1/α−1

n−1 ·
S
n

⌉
, . . . , Sn}.

Using Paturi’s lower bound [68], we have

degdQ(1, d) ≥ Ω

(√⌊n1/α−1
n−1 · Sn

⌋(
S
n −

⌊
n1/α−1
n−1 · Sn

⌋)
⌈ (3ε/α)n1/α

n−1 · Sn
⌉ )

= Ω
(αn 1

2−
1
2α

ε

)
. (IX.20)

Therefore, degQ(c, d) ≥ degdQ(1, d) = Ω(αn
1
2−

1
2α /ε).

Technically, our proofs only focus on the degree in d for
c = 1, but in general it is possible to prove a better lower
bound when analyzing the degree of the polynomial in c and
d together. We leave this as an open problem.
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APPENDIX A
THEOREM II.2: MULTIPLICATIVE QUANTUM CHEBYSHEV

INEQUALITY

The main technique that we use is Lemma 4 in [2], which
approximates a random variable with an additive error as long
as its second-moment is bounded:

Lemma A.1 (Lemma 4 in [2]). Assume A is a quan-
tum algorithm that outputs a random variable X . Then for
ε where 0 < ε < 1/2 (multiplicative error), by using
O((1/ε) log3/2(1/ε) log log(1/ε)) executions of A and A−1,
Algorithm 2 in [2] outputs an estimate Ẽ[X] of E[X] such
that8

Pr
[∣∣Ẽ[X]− E[X]

∣∣ ≥ ε(√E[X2] + 1)2
]
≤ 1/50. (A.1)

Based on Lemma A.1 and inspired by Algorithm 3 and
Theorem 5 in [2], we propose Algorithm 10.

Proof of Theorem II.2. Because Var[X] ≤ σ2E[X]2 ≤ σ2b2,
by Chebyshev’s inequality we have

Pr
[∣∣m̃− E[X/σb]

∣∣ ≥ 4
]
≤ 1/16. (A.2)

Therefore, with probability at least 15/16 we have |m̃ −
E[X/σb]| ≤ 4. Denote XB = X

σb − m̃, which is the random
variable output by B; XB,+ := max{XB , 0} is then the

8The original error probability in (A.1) is 1/5, but it can be improved to
1/50 by rescaling the parameters in Lemma 4 in [2] up to a constant.

Algorithm 10: Estimate E[X] within multiplicative error
ε.

1 Run the algorithm that gives a, b such that E[X] ∈ [a, b];
2 Set A′ = A/σb;
3 Run A′ once and denote m̃ to be the output. Set
B = A′ − m̃;

4 Let B− be the algorithm that calls B once; if B outputs
x ≥ 0 then B− outputs 0, and if B outputs x < 0 then
B− outputs x. Similarly, let B+ be the algorithm such
that if B outputs x < 0 then B+ outputs 0, and if B
outputs x ≥ 0 then B+ outputs x;

5 Apply Lemma A.1 to −B−/6 and B+/6 with error εa
48σb

and failure probability 1/50, and obtain estimates µ̃−
and µ̃+, respectively;

6 Output Ẽ[X] = σb(m̃− 6µ̃− + 6µ̃+);

output of B+ and XB,− := min{XB , 0} is the output of B−.
Assuming |m̃− E[X/σb]| ≤ 4, we have

E[X2
B ] = E

[((X
σb
− E

[X
σb

])
+
(
E
[X
σb

]
− m̃

))2]
(A.3)

≤ 2E
[(X
σb
− E

[X
σb

])2]
+ 2E

[(
E
[X
σb

]
− m̃

)2]
(A.4)

≤ 2(12 + 42) = 34. (A.5)

Therefore, E
[
(XB/6)2

]
≤ 34/36 < 1, hence

E
[
(XB,+/6)2

]
< 1 and E

[
(−XB,−/6)2

]
< 1. By

Lemma A.1, we have∣∣µ̃− − E[−XB,−/6]
∣∣ ≤ εa

12σb
(A.6)∣∣µ̃+ − E[XB,+/6]

∣∣ ≤ εa

12σb
, (A.7)

both with failure probability at most 1/50. Because

E[X] = σb
(
m̃+ E[XB ]

)
= σb

(
m̃+ E[XB,+]− E[−XB,−]

)
,

(A.8)

with probability at least 15/16 · (1− 1/50)2 > 9/10, we have∣∣Ẽ[X]− E[X]
∣∣ ≤ σb · (6∣∣µ̃− − E[−XB,−/6]

∣∣
+ 6
∣∣µ̃+ − E[XB,+/6]

∣∣) (A.9)

≤ σb · 2 · 6 · εa

12σb
= εa ≤ εE(X). (A.10)
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