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Quantum Query Complexity of Entropy Estimation

Tongyang Li and Xiaodi Wu

Abstract—Estimation of Shannon and Rényi entropies of
unknown discrete distributions is a fundamental problem in
statistical property testing. In this paper, we give the first
quantum algorithms for estimating «-Rényi entropies (Shannon
entropy being 1-Rényi entropy). In particular, we demonstrate a
quadratic quantum speedup for Shannon entropy estimation and
a generic quantum speedup for «-Rényi entropy estimation for
all o > 0, including tight bounds for the Shannon entropy, the
Hartley entropy (o« = 0), and the collision entropy (o = 2).
We also provide quantum upper bounds for estimating min-
entropy (o = +o00) as well as the Kullback-Leibler divergence.
We complement our results with quantum lower bounds on a-
Rényi entropy estimation for all « > 0.

Our approach is inspired by the pioneering work of Bravyi,
Harrow, and Hassidim (BHH) [1], however, with many new
technical ingredients: (1) we improve the error dependence of
the BHH framework by a fine-tuned error analysis together
with Montanaro’s approach to estimating the expected output of
quantum subroutines [2] for o = 0, 1; (2) we develop a procedure,
similar to cooling schedules in simulated annealing, for general
a > 0; (3) in the cases of integer « > 2 and o = +o0, we
reduce the entropy estimation problem to the a-distinctness and
the [log n|-distinctness problems, respectively.

Index Terms—statistical property testing, sampling, entropy
estimation, quantum information, query complexity.

I. INTRODUCTION

Motivations. Property testing is a rapidly developing field in
theoretical computer science (e.g. see the survey [3]). It aims
to determine properties of an object with the least number
of independent samples of the object. Property testing is
a theoretically appealing topic with intimate connections to
statistics, learning theory, and algorithm design. One important
topic in property testing is to estimate statistical properties
of unknown distributions (e.g., [4]), which are fundamental
questions in statistics and information theory, given that much
of science relies on samples furnished by nature. The Shannon
[5] and Rényi [6] entropies are central information-theoretical
quantities. In this paper, we focus on estimating these entropies
for an unknown distribution.

Specifically, given a distribution p over a set X of size n
(w.lo.g. let X = [n]) where p, denotes the probability of
x € X, the Shannon entropy H(p) of this distribution p is
defined by

H(p) = 1.1

Z Dz log (p%)

TEX:py>0

A natural question is to determine the sample complexity
(i.e., the necessary number of independent samples from p) to
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estimate H (p), with error € and high probability. This problem
has been intensively studied in the classical literature. For
multiplicative error ¢, Batu et al. [7, Theorem 2] provided
the upper bound of O(n(1°(1)/(1+9 1og 1), while an almost
matching lower bound of Q(n(1=°M)/(1+9)%) was shown by
Valiant [4, Theorem 1.3]. For additive errors, Paninski gave a
nonconstructive proof of the existence of sublinear estimators
in [8, 9], while an explicit construction using @(elg'én)
samples was shown by Valiant and Valiant in [10, 11] when
e =Q(n=99) and e = O(1); for the case ¢ = O(n="93), Wu
and Yang [12] and Jiao et al. [13] gave the optimal estimator
with ©( 2 + (10572”)2) samples.

A sequence of works in information theory [12-14] studied
the minimax mean-squared error, which becomes O(1) also
using ©(n/logn) samples.

One important generalization of Shannon entropy is the
Rényi entropy of order « > 0, denoted H,, (p), which is defined
by

. (L1.2)
limg,—,1 Ho(p), when o = 1.

Ho(p) = {ﬁa log) . cx Py, when a# 1.
The Rényi entropy of order 1 is simply the Shannon entropy,
ie., Hi(p) = H(p). General Rényi entropy can be used
as a bound on Shannon entropy, making it useful in many
applications (e.g., [15, 16]). Rényi entropy is also of interest
in its own right. One prominent example is the Rényi entropy
of order 2, Hs(p) (also known as the collision entropy),
which measures the quality of random number generators
(e.g., [17]) and key derivation in cryptographic applications
(e.g., [18, 19]). Motivated by these and other applications,
the estimation of Rényi entropy has also been actively stud-
ied [13, 14, 20]. In particular, Acharya et al. [20] have shown
almost tight bounds on the classical query complexity of
computing Rényi entropy. Specifically, for any non-integer
a > 1, the classical query complexity of a-Rényi entropy
is Q(n'=°M) and O(n). Surprisingly, for any integer o > 1,
the classical query complexity is ©(n'~'/%), i.e., sublinear
in n. When 0 < a < 1, the classical query complexity is
Q(nt/*=°M)) and O(n'/*), which is always superlinear.
The extreme case (o — o0) is known as the min-entropy,
denoted H,(p), which is defined by

H(p) :== lim H,(p) = flog?elz[mz](p,;. 1.3)

a—r 00

Min-entropy plays an important role in the randomness ex-
traction (e.g., [21]) and characterizes the maximum number of
uniform bits that can be extracted from a given distribution.
Classically, the query complexity of min-entropy estimation is
©(n/logn), which follows directly from [10].
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Another extreme case (o = 0), also known as the Hartley
entropy [22], is the logarithm of the support size of distribu-
tions, where the support of any distribution p is defined by

Supp(p) :=|{z : z € X, p, > 0} 1.4)

It is a natural and fundamental quantity of distributions with
various applications (e.g., [23-29]). However, estimating the
support size is impossible in general because elements with
negligible but nonzero probability, which are very unlikely
to be sampled, could still contribute to Supp(p). Two related
quantities (support coverage and support size) have hence been
considered as alternatives of 0-Rényi entropy with roughly
O(n/log(n)) complexity. (See details in Section VIII.)

Besides the entropic measures of a discrete distribution,
we also briefly discuss an entropic measure between two
distributions, namely the Kullback-Leibler (KL) divergence.
Given two discrete distributions p and ¢ with cardinality n,
the KL divergence is defined as

Z pi log

KL divergence is a key measure with many applications
in information theory [30, 31], data compression [32], and
learning theory [33]. Classically, under the assumption that
Bo< f(n) Vi [n] for some f(n), DkiL(p|lq) can be
approximated within constant additive error with high success
probability if ©(y;2) samples are taken from p and O( 7({ gz))
samples are taken from q.

kL(pllg) = @.5)

Main question. In this paper, we study the impact of quantum
computation on estimation of general Rényi entropies. Specifi-
cally, we aim to characterize quantum speed-ups for estimating
Shannon and Rényi entropies.

Our question aligns with the emerging topic called “quan-
tum property testing” (see the survey [34]) and focuses on
investigating the quantum advantage in testing classical statis-
tical properties. To the best of our knowledge, the first research
paper on distributional quantum property testing is by Bravyi,
Harrow, and Hassidim (BHH) [1], where they discovered
quantum speedups for testing uniformity, orthogonality, and
statistical difference on unknown distributions. Some of these
results were subsequently improved by Chakraborty et al. [35].
Reference [1] also claimed that Shannon entropy could be
estimated with query complexity O(y/n), however, without
details and explicit error dependence. Indeed, our framework
is inspired by [1], but with significantly new ingredients to
achieve our results. There is also a related line of research
on spectrum testing or tomography of quantum states [36—
40]; in particular, Ref. [40] studied the quantum sample
complexity of estimating von Neumann and Rényi entropies of
a quantum state. However, these works aim to test properties
of general quantum states, while we focus on using quantum
algorithms to test properties of classical distributions (i.e.,
diagonal quantum states)'.

"Note that one can also leverage the results of [36—40] to test properties of
classical distributions. However, they are less efficient because they deal with
a much harder problem involving general quantum states.

Distributions as oracles. The sampling model in the classical
literature assumes that a tester is presented with independent
samples from an unknown distribution. One of the contribu-
tions of BHH is an alternative model that allows coherent
quantum access to unknown distributions. Specifically, BHH
models a discrete distribution p = (p;)!_; on [n] by an oracle
O,: [S] — [n] for some S € N. The probability p; (i € [n]) is
proportional to the size of pre-image of ¢ under O,. Namely,
an oracle O,: [S] — [n] generates p if and only if for all
i€ [n],

= |{s € [S]: Op(s) =i}|/S. 1.6)

(note that we assume p;s to be rational numbers). If one
samples s uniformly from [S], then the output O,(s) is from
distribution p. Instead of considering sample complexity—
that is, the number of used samples—we consider the query
complexity in the oracle model that counts the number of
oracle uses. Note that a tester interacting with an oracle can
potentially be more powerful due to the possibility of learning
the internal structure of the oracle as opposed to the sampling
model. However, it is shown in [1] that the query complexity
of the oracle model and the sample complexity of the sampling
model are in fact the same classically.

A significant advantage of the oracle model is that it nat-
urally allows coherent access when extended to the quantum
case, where we transform O, into a unitary operator Op acting
on C¥ ® C"*! such that

Op|5)10) = 15)|Op(s))

Moreover, this oracle model can also be readily obtained
in some algorithmic settings, e.g., when distributions are
generated by some classical or quantum sampling procedure.
Thus, statistical property testing results in this oracle model
can be potentially leveraged in algorithm design.

VselS]. L7)

Our Results. Our main contribution is a systematic study of
both upper and lower bounds for the quantum query complexity
of estimation of Rényi entropies (including Shannon entropy
as a special case). Specifically, we obtain the following quan-
tum speedups for different ranges of a.

Theorem I.1. There are quantum algorithms that approximate
H,(p) of distribution p on [n] within an additive error 0 <
€ < O(1) with success probability at least 2/3 using®

. O( 15) quantum queries when o = 0, i.e., Hartley
entropy. See Theorem VIII.2.3

o O(”l/a 1/2) quantum queries* when 0 < o < 1. See
Theorem V.2.

. O(g) quantum queries when o = 1, i.e., Shannon

entropy. See Theorem III.1.
v(l—1/a
. O(¥) quantum queries when a > 1, € N for
some v < 2. See Theorem VI 1.

21t should be understood that the success probability 2/3 can be boosted
to close to 1 without much overhead, e.g., see Lemma V.5 in Section V-AS.
30-Rényi entropy estimation is intractable without any assumption, both
classically and quantumly. Here, the results are based on the assumption that
nonzero probabilities are at least 1/n. See Section VIII for more information.
40 hides factors that are polynomial in logn and log 1/e.
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nl-1/2a

B O( = ) quantum queries when o > 1, ¢ N. See
Theorem V.1.

. O(Q(PGL#W -distinctness)) quantum queries when
a = 0o, where Q( fﬂ#} -distinctness) is the quantum
query complexity of the {%}dimncmess problem.
See Theorem VII.1.

Our quantum testers demonstrate advantages over classical
ones for all 0 < a < oo; in particular, our quantum tester has
a quadratic speedup in the case of Shannon entropy. When
o = 00, our quantum upper bound depends on the quantum
query complexity of the [logn]-distinctness problem, which
is open to the best of our knowledge® and might demonstrate
a quantum advantage.

As a corollary, we also obtain quadratic quantum speedup
for estimating KL divergence:

Corollary 1.1 (see Theorem IV.1). Assuming p and q satisfies
B < f(n) Vi € [n] for some function f : N — R*, Dgr(p|lq),
there is a quantum algorithm that approximates Dk (pl|q)
within an additive error ¢ > 0 with success probability at
least % using O(g) quantum queries to p and O(@)
quantum queries 1o q.

On the other hand, we obtain corresponding quantum lower
bounds on entropy estimation using the polynomial method
[43, 44], which are then combined with a couple of lower
bounds shown in [45]. It is worth mentioning that lower
bounds in [45] are established when assuming ¢ = O(1),
whereas our lower bounds have precise error dependence.

We summarize both bounds in Table I and visualize them
in Figure 1.

Theorem L2 (See Theorem IX.1). Any quantum algorithm
that approximates H,(p) of distribution p on [n] within
additive error € with success probability at least 2/3 must use
o Q(\/n+n3 /ed) quantum queries when oo = 0, assuming
1/n <e<1/12.
o Q(n7a—°W /e?) quantum queries when 0 < o < 3.
o Q(n3 /€8 quantum queries when S<a<3anda#1,
assuming 1/n < e <1/2.
o Q(\/n+n3 /ev) quantum queries when oo = 1, assuming
1/n<e<1/2
e Q(n2"2s /€) quantum queries when 3 < a < oc.
o Q(y/n/€) quantum queries when o = oo.

Techniques. At a high level, our upper bound is inspired by
BHH [1], where we formulate a framework (in Section II) that
generalizes the technique in BHH and makes it applicable in
our case. Let F\(p) =Y p,f(p.) for some function f(-) and
distribution p. Similar to BHH, we design a master algorithm
that samples = from p and then use the quantum counting
primitive [48] to obtain an estimate p, of p, and outputs
f(Dz). Ttis easy to see that the expectation of the output of the
master algorithm is roughly® F'(p). By choosing appropriate

SExisting quantum algorithms for the k-distinctness problem (e.g., [41] has
query complexity O(k2nF/*+1) and [42] has query complexity O(Zkzn” )
for some v < 3/4) do not behave well for super-constant ks.

SThe accurate expectation is Y, pzE[f(P)]. Intuitively, we expect p to
be a good estimate of pg.

« classical bounds quantum bounds (this paper)
a=0 O (o2 146, 47] O(+/n) (this paper), Q(y/n) [45]
0<a<l O(];‘Ti), Qna—°W) 0] | O(na %), Q(max{n7a M) n3})
a=1 O(p2y) 110,12, 13] O(y/m) (this paper), (y/n) [45]
a>1LagN | O(), Qn'=°M) 20] | O(n'~2a), Q(max{ns,n2 35}

a=2 o(v/n) [20] &(n3)
a>2,a€eN O(n' /%) [20] O(nv(1=1/a)y, Q(n%*ﬁ), v <3/4
a=o0 O(1oa7) [10] O(Q([log n]-distinctness)), Q(v/n)

TABLE I: Summary of classical and quantum query complexity of
H.(p), assuming € = ©(1).

exponent of n

2.0H Classical tight bounds
— Quantum upper bounds

— Quantum lower bounds

* Quantum tight bounds

0.58

0 1 2 3 4 5 ¢
Fig. 1: Visualization of classical and quantum query complexity
of Hu(p). The z-axis represents o and the y-axis represents the
exponent of n. Red curves and points represent quantum upper
bounds. curves and points represent classical tight bounds.
Blue curve represents quantum lower bounds. Purple points represent
quantum tight bounds.

f()s, one can recover H(p) or H,(p) as well as the ones used
in BHH. It suffices then to obtain a good estimate of the output
expectation of the master algorithm, which was achieved by
multiple independent runs of the master algorithm in BHH.

The performance of the above framework (and its analysis)
critically depends on how close the expectation of the algo-
rithm is to F'(p) and how concentrated the output distribution
is around its expectation, which in turn heavily depends on
the specific f(-) in use. Our first contribution is a fine-
tuned error analysis for specific f(-)s, such as in the case
of Shannon entropy (i.e., f(p,) = —log(p.)) whose values
could be significant for boundary cases of p,. Instead of
only considering the case when p, is a good estimate of
p, as in BHH, we need to analyze the entire distribution
of p, using quantum counting. We also leverage a generic
quantum speedup for estimating the expectation of the output
of any quantum procedure with additive errors [2], which
significantly improves our error dependence as compared to
BHH. These improvements already give a quadratic quantum
speedup for Shannon (Section III) and 0-Rényi (Section VIII)
entropy estimation. As an application, it also gives a quadratic
speedup for estimating the KL-divergence between two distri-
butions (see Section IV).

For general a-Rényi entropy H,(p), we choose f(p,) =
p2~! and let P,(p) = F(p) so that H,(p) o< log Py(p).
Instead of estimating F'(p) with additive errors in the case
of Shannon entropy, we switch to working with multiplicative
errors which is harder since the aforementioned quantum
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algorithm [2] is much weaker in this setting. Indeed, by
following the same technique, we can only obtain quantum
speedups for a-Rényi entropy when 1/2 < o < 2.

For general o > 0, our first observation is that if one
knew the output expectation E[X] is within [a,b] such that
b/a = ©(1), then one can slightly modify the technique
in [2] (as shown in Theorem II.2) and obtain a quadratic
quantum speedup similar to the additive error setting. This
approach, however, seems circular since it is unclear how to
obtain such a,b in advance. Our second observation is that
for any close enough «y,as, P,,(p) can be used to bound
P,,(p). Precisely, when aj/as = 1 + 1/log(n), we have
P, (p) = O(P,,(p)*1/22) (see Lemma V.3). As a result,
when estimating P, (p), we can first estimate P,/ to provide
a bound on P,, where o/, « differ by a 1+ 1/log(n) factor
and o/ moves toward 1. We apply this strategy recursively on
estimating P, until o/ is very close to 1 from above when
initial &« > 1 or from below when initial a < 1, where a
quantum speedup is already known. At a high level, we recur-
sively estimate a sequence (of size O(logn)) of such as that
eventually converges to 1, where in each iteration we establish
some quantum speedup which leads to an overall quantum
speedup. We remark that our approach is in spirit similar to
the cooling schedules in simulated annealing (e.g. [49]). (See
Section V.)

For integer o > 2, we observe a connection between
P, (p) and the a-distinctness problem which leads to a more
significant quantum speedup. Precisely, let O, : [S] — [n] be
the oracle in (1.7), we observe that P, (p) is proportional to
the a-frequency moment of O,(1),...,0,(S) which can be
solved quantumly [50] based on any quantum algorithm for the
a-distinctness problem (e.g., [42]). However, there is a catch
that a direct application of [50] will lead to a dependence on
S rather than n. We remedy this situation by tweaking the
algorithm and its analysis in [50] to remove the dependence
on S for our specific setting. (See Section VI.)

The integer o algorithm fails to extend to the min-entropy
case (i.e., & = 400) because the hidden constant in O(-)
has a poor dependence on « (see Remark VI.1). Instead, we
develop another reduction to the [log n]-distinctness problem
by exploiting the so-called “Poissonized sampling” technique
[10, 13, 51]. At a high level, we construct Poisson distributions
that are parameterized by p;s and leverage the “threshold”
behavior of Poisson distributions (see Lemma VII.1). Roughly,
if max; p; passes some threshold, with high probability, these
parameterized Poisson distributions will lead to a collision of
size [logn] that will be caught by the [logn]-distinctness
algorithm. Otherwise, we run again with a lower threshold
until the threshold becomes trivial. (See Section VII.)

Some of our lower bounds come from reductions to existing
ones in quantum query complexity, such as the quantum-
classical separation of symmetric boolean functions [52], the
collision problem [44, 53], and the Hamming weight problem
[54], for different ranges of a. We also obtain lower bounds
with a better error dependence by the polynomial method,
which is inspired by the celebrated quantum lower bound for
the collision problem [44, 53]. (See Section IX.)

4

Open questions. Our paper raises a few open questions. A
natural question is to close the gaps between our quantum
upper and lower bounds. Our quantum techniques on both ends
are actually quite different from the state-of-the-art classical
ones (e.g., [10]). It is interesting to see whether one can
incorporate classical ideas to improve our quantum results. It
is also possible to achieve better lower bounds by improving
our application of the polynomial method or exploiting the
quantum adversary method (e.g., [55, 56]). Finally, our result
motivates the study of the quantum algorithm for the k-
distinctness problem with super-constant k, which might also
be interesting by itself.

Notations. Throughout the paper, we consider a discrete
distribution {p;}?_; on [n], and P, (p) := Y ., p$* represents
the a-power sum of p. In the analyses of our algorithms, ‘log’

is natural logarithm; ‘~’ omits lower order terms.

s

II. MASTER ALGORITHM

Let p = (p;)?; be a discrete distribution on [n] encoded
by the quantum oracle Op defined in (I.7). Inspired by [1]
(BHH) and [2], we develop the following master algorithm to
estimate a property F' with the form F(p) := Zie[n] i f(pi)
for a function f: (0,1] — R.

Algorithm 1: Estimate F(p) = >, p;f(p;) of a discrete

distribution p = (p;)7_; on [n].

1 Setl,M € N;

2 Regard the following subroutine as A:

3 Draw a sample i € [n] according to p ;

4 Use EstAmp or EstAmp’ with M queries to obtain

an estimation p; of p;;

s | Output X = f(5.);

6 Use A for | executions in Theorem II.1 or Theorem II.2
and output F(p) to estimate F(p);

Here we draw the sample ¢ € [n] following the distribution
p in Line 3 by applying Op to the uniform superposition
ﬁ > ses) [9)10) and measure the second register; see also
our discussions at (I.6) and (1.7).

Comparing to BHH, we introduce a few new technical
ingredients, which significantly improve the performance of
Algorithm 1 especially for specific f(-)s in our case, e.g.,
f(pz) = —log(p,) (Shannon entropy) and f(p.) = p5~"
(Rényi entropy).

The first one is a generic quantum speedup of Monte
Carlo methods [2], in particular, a quantum algorithm that
approximates the output expectation of a subroutine with
additive errors that has a quadratic better sample complexity
than the one implied by Chebyshev’s inequality.

Theorem II.1 (Additive error; Theorem 5 of [2]). Let
A be a quantum algorithm with output X such that
Var[X] < o2 Then for € where 0 < ¢ < 4o, by using
O((0/€)1og®/? (o /€)loglog(c/€)) executions of A and A=,
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Algorithm 3 in [2] outputs an estimate E[X] of E[X] such
that

Pr [|E[X] - E[X]| > €] < 1/5. (IL1)

It is worthwhile mentioning that classically one needs
to use 2(0?/e?) executions of A [57] to estimate E[X].
Theorem II.1 demonstrates a quadratic improvement on the
error dependence. In the case of approximating H,(p), we
need to work with multiplicative errors while existing results
(e.g. [2]) have a worse error dependence which is insufficient
for our purposes. Instead, inspired by [2], we prove the
following theorem (our second ingredient) that takes auxiliary
information about the range of E[X] into consideration, which
might be of independent interest.

Theorem II.2 (Multiplicative error; Appendix A). Let A be
a quantum algorithm with output X such that Var[X] <
o’E[X)? for a known o. Assume that E[X] € [a,b].
Then for ¢ where 0 < € < 240, by using A and A~!
for O((ob/ea)log®?(ob/ea)loglog(ob/ea)) executions, Al-
gorithm 10 (given in Appendix A) outputs an estimate INE[X ]
of E[X] such that

Pr [|E[X] — E[X]| > €E[X]] < 1/10. (IL.2)

The third ingredient is a fine-tuned error analysis due to the
specific f(-)s. Similar to BHH, we rely on quantum counting
(named EstAmp) [48] to estimate the pre-image size of a
Boolean function, which provides another source of quantum
speedup. In particular, we approximate any probability p, in
the query model ((I.7)) by p, by estimating the size of the pre-
image of a Boolean function x: [S] — {0,1} with x(s) =1
if O(s) =i and x(s) = 0 otherwise. However, for cases in
BHH, it suffices to only consider the probability when p, and
P, are close, while in our case, we need to analyze the whole
output distribution of quantum counting. Specifically, letting
t=|x"'(1)| and a =t/S = sin?(wr) for some w, we have

Theorem I1.3 ([48]). For any k, M € N, there is a quantum
algorithm (named EstAmp) with M quantum queries to x that
outputs @ = sin> (%) Sor some 1 € {0, ..., M — 1} such that

Ir sin2(MA7r) 1
Prla=sin’ ()] = < , (I3
M M2sin*(Ar) ~ (2MA)? {aL.3)
where A = |w — ﬁ| This promises |a — a| < 2wk@ 4
k2175722 with probability at least % for k = 1 and with

probability greater than 1 — ﬁ for k> 2. If a =0 then
a = 0 with certainty.

Moreover, we also need to slightly modify EstAmp to avoid
outputting p, = 0 in estimating Shannon entropy. This is
because f(p,) = log(p,) is not well-defined at p, = O.
Let EstAmp’ be the modified algorithm. It is required that
EstAmp’ outputs sin®(5%;) when EstAmp outputs 0 and
outputs EstAmp’s output otherwise.

By leveraging Theorem II.1 and Theorem II.2, and carefully
setting parameters in Algorithm 1 according to Theorem II.3,
we have the following corollaries that describe the complexity

of estimating any F'(p).

5

Corollary II.1 (additive error). Given ¢ > 0. If | =
o((9) log>/? (2)loglog (2)) where Var[X] < 02 and M is
large enough such that |IE[X] — F(p)| < ¢, then Algorithm 1
approximates F(p) with an additive error € and success
probability 2/3 using O(M - 1) quantum queries to p.

Corollary IL2 (multiplicative error). Assume a procedure
using Cgp quantum queries that returns an estimated
range [a,b], and that E[X]| € }a,b] with probability at
least 0.9. Let | = @((‘:—fl’)log3 2(‘6’—2)log10g(‘€’—§)) where
Var[X]/(E[X])? < 02 and € > 0. For large enough M such
that |E[X] — F(p)| < €E[X], Algorithm 1 estimates F(p)
with a multiplicative error ¢ and success probability 2/3 with
O(M -1+ Cqp) queries.

III. SHANNON ENTROPY ESTIMATION

We develop Algorithm 2 for Shannon entropy estimation
with EstAmp’ in Line 4, which provides quadratic quantum
speedup in n.

Algorithm 2: Estimate the Shannon entropy of p =
(Pi)iy on [n].

1 Setl = @(10g(’fé/€2) log3/2 (IOg(’fé/fz)) log log (10g(76l/€2) ))’

2 Regard the following subroutine as A:

3 Draw a sample ¢ € [n] according to p;

4 | Use EstAmp’ with M = 2[1°2(v7/9)1 queries to
obtain an estimation p; of p;;

5 Output Z; = log(1/p;);

6 Use A for | executions in Theorem II.1 and output an
estimation H (p) of H(p);

Theorem IIL.1. Algorithm 2 approximates H(p) within an
additive error 0 < € < O(1) with success probability at least
% using O(g) quantum queries to p.

Proof. We prove this theorem in two steps. The first step is
to show that the expectation of the subroutine A’s output
(denoted E := D icm) Pi - 1og(1/pi)) is close to E =
2icm Pi - log(1/p;) = H(p). To that end, we divide [n]
into partitions based on the corresponding probabilities. Let
= [logy(v/n/e)] and Sy = {i : p; < sin®(r/2mt1)},
Sy = {i : sin®(n/2m) < p; < sin®(n/2™)}, So =
{i :sin®(r/2™) < pi < sin®(7/2" Y}, .., 8, = {i:
sin?(7/4) < p; < sin®(7/2)}. For convenience, denote
So = |S()|781 = |51|7. ey Sm = |Sm| Then

m m

22i
Zsjzn, Z?—ms] =0(1).

Jj=0 J=0

(IIL1)

Our main technical contribution is the following upper
bound on the expected difference between logp; and log p;

in terms of the partition S;, i =1,--- ,n:
- Qij .
> piE[|logp; —logpi|] < 7- San Vi €Elm]. (12
iESj
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By linearity of expectation, we have

|E— Bl < Y piE[|logp; —logpil] (IIL.3)
1€[n]
=2 > »E[|logp; —logp;|] (IIL.4)
j*O i€S;
< 72 222: : (IIL5)

As a result, by applylng (ITI.1) and Cauchy-Schwartz inequal-
ity to (IIL.5), we have

E-E| < 7Zm: ;—ij (IIL6)
j=0
1 92
<7 (Z QQ—msj) (Z o sj) (I11.7)
7=0 7=0
— 0(e). (IIL8)

Because a constant overhead does not influence the query
complexity, we may rescale Algorithm 2 by a large enough
constant so that |E — E| < ¢/2.

The second step is to bound the variance of the random
variable, which is

Z pi(log pi)? ( > b Ingz)

i€[n]

< Z pi(log pi)?

1€[n]

(I11.9)
Since for any 1, EstArglp’ outputs p; such that p;, >
51n2(2M) > ﬁ > {-. we have Z pl(logpl) <
Do el P . As a result, by Corol-

1) = (log )’

i (log‘i
lary II.1 we can approximate F up to additive error €¢/2 with
failure probability at most 1/3 using

O(log(z/EQ) log™/2 <log(761/62)) log log (log(z/62)>)

. gllogs(vin/e)] _ O(Lj)

€

(111.10)

quantum queries. Together with |E — E| < €/2, Algorithm 2
approximates £ = H(p) up to additive error ¢ with failure
probability at most 1/3. O

It remains to prove (II1.2). We prove:

Lemma III.1.

750
Z p;E ’ log p; — log p; H 2am (IIL11)
i€So
For j € {1,2,...,m} in (IIL.2), the proof is similar because

the dominating term has the angles of p; and p; fall into the
same interval of length 2%,1, and as a result | log p; — log pi| =
O(5)-

27

Proof of Lemma III.1. For convenience, denote h(z) :=
x(logt —logx) where 0 < t < 1 and = € (0,¢]. We notice
that h(xz) < t/e: because h'(xz) = logt — logax — 1, when
x € (0,t/e), h'(x) > 0 hence h(x) is an increasing function;
when z € (t/e,t), h'(x) < 0 hence h(x) is a decreasing
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function; when « = t/e, h'(x) = 0 and h reaches its maximum
t/e.

Since i € Sy, we can write p; = sin®(;w) where 0 < 6; <
1/2m+1. By Theorem 113, for any | € {1,...,2m71}, the
output of EstAmp’ when taking 2™ queries satisfies

.2
Lo T _ sin®(2M;mr) _
Pr [pz s (2m+1)] o 22m sin2(9 7T) =L (i)
Ly sk — 6)m)
Pr [pi = sin (271)} = Jamgin? ((27 ~09)m)
1 (IIL.13)

< :
T (@t (gm — 0))?

Combining (II1.12), (III.13), and the property of function h
discussed above, for any ¢ € Sy we have

E[|log p; — log pi|]
<1 -pi(log sin? (27:;1) - logpi>

p’L log SIII ( 27n ) log p’L)
+ 1114
Z 2m+1 b H )) ( )
) T 2m=
S (Tﬂ) 1 . ™
U e (55)
< . + ; e sin” { oo
T
o(logsm (2m) log sin® (W)) (II1.15)
gm-— 1 I
cTL L RN L (R
de22m = 22m 4 L (20— 1) sin (g )
(II1.16)
21 1 %L log2
T T og
< - - . e 1117
= 4e 22m + 22m 9 Z: (20 —1)2 ( )
7
< 2om’ (II1.18)

where (II1.14) comes from (II1.12) and (I11.13), (III.15) comes
from the properties of h (first term by h(xz) < t/e and
second term by the monotonicity of h on (0,t/e)), (II1.16)
holds because SiHQ(QM%) < 22?,%, (III.17) holds because

sin®(4%) < 41?sin® (5%+), and (IIL18) holds because

Py ;l)g?;2 < 1.2 and Z% 12# < 7. Consequently,
7 7
5" niE[|log pi ~logpil] < g 50 = 22% (IIL.19)
’LGSO
O

IV. APPLICATION: KL DIVERGENCE ESTIMATION

Classically, there does not exist any consistent estimator that
guarantees asymptotically small error over the set of all pairs
of distributions [58, 59]. These two papers then consider pairs
of distributions with bounded probability ratios specified by a
function f: N — R™, namely all pairs of distributions in the
set as follows:

= lg| = n, f<f( ) Vi€ [n]}.
IV.1)
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Denote the number of samples from p and ¢ to be M, and
M,, respectively. References [58, 59] shows that classically,
Dx1.(p|lq) can be approximated within constant additive error
with high success probability if and only if M, = €

and M, = Qi)

logn /°

logn)

Quantumly, we are given unitary oracles Op and Oq defined
by (I.7). Algorithm 3 below estimates the KL-divergence
between p and ¢, which is similar to Algorithm 2 that uses
EstAmp’, while adapts f to be mutually defined by p and g.

Algorithm 3: Estimate the KL divergence of p = (p;)’,
and ¢ = (g;)i, on [n].

1 Setl =

log2(:E(2n) ) 10g3/2 (logz(" 5(2"> ) ) log log (logZ(%) ))’
2 Regard the following subroutine as A:
3 Draw a sample ¢ € [n] according to p;
4 Use the modified amplitude estimation procedure

EstAmp’ with 2/'0g:(V/9)] apg 2Mog:(Vif(n)/e)]
quantum queries to p and ¢ to obtain estimates p;
and ¢;, respectively;

5 Output z; = log p; — log G;;

6 Use A for [ times in Theorem II.1 and outputs an
estimation Dp (pl||q) of Dkr(pllq);

Theorem IV.1. For (p,q) € U, ¢(n), Algorithm 3 approxi-

mates Dk (pllq) within an additive error € > 0 with success

probability at least % using O(g) quantum queries to p and
vnf(n)

O(T) quantum queries to q, where O hides polynomials

terms of logn, log1/¢, and log f(n).

Proof. If the estimates p; and ¢; were precisely accurate,
the expectation of the subroutine’s output would be FE :=
Zie[n] p; - (logp; —logq;) = DkL(p||g). On the one hand,
we bound how far the actual expectation of the subroutine’s
output E is from its exact value E. By linearity of expectation,

|E—E| <> pi[|(logp; —logp;) + (log §; — log ¢;)]]
i€[n]

(IV.2)
< %:]piEﬂlogﬁi — log p;]
1€[n
+ > piE[[log g — log gi] (IV.3)
i€[n]
< %:]piEﬂlogﬁi — log p;|]
1€[n
+f(n) Y qE[|logd —loggi|], (V)

i€[n]

where (IV.4) comes from the definition of U, f(,) in (IV.1).
By the proof of Theorem IIL.1, in particular equation (III.8),
2Mlog>(vVn/)1 apd 2Mleg2(Vaf(n)/e)] quantum queries to p and

7
q give
> iE[[logpi —logpi|] = O(e) (IV.5)
i€[n]
E[|log g —log g;|] = 0 =), V.6
g:[n]q (Jtogdi —togail] =0(505). Vo)

respectively. Plugging them into (IV.4) and rescaling Algo-
rithm 3 by a large enough constant, we get |E — E| < 5.

On the other hand, the variance of the random variable is
at most

> pillogpi —log@i)* = Y pilogq; —log )

i€[n] 2 pi<

Q

i

+ pi(log p; — log G;)°.
i Gi

=i
vV

7

IV.7)

For the first term in (IV.7), because EstAmp’ outputs p; such
~ .2 2 .
that Pi > sin (m) > 27 for any 1, we have

2
Z pi(log@i —logﬁi)2 < Z pi(logl—log an)Q

i pi<gi 1P <qi
4n\ 2
< (log —2) .

€

For the second term in (IV.7), we have

(IV.8)

> pilogpi —logd)> < > pilog f(n))* < (log f(n))*.
1P 2G; 1P 2Gi

(IV.9)

Plugging (IV.8) and (IV.9) into (IV.7), the variance of the
random variable is at most

(log %)2 + (log f(n))* = O((log n{gn)

)2). (IV.10)

As a result, by Corollary II.1 we can approximate E up to
additive error €/2 with success probability at least 2/3 using
O(1) - 2Mee(vi/al = O(e—‘/f) quantum queries to p and
O(L) - 2Mes(Vrim/al — O (X240 quantum queries to
q, respectively. Together with |E — E| < ¢/2, Algorithm 3
approximates £ = Dxp(p|lq) up to additive error ¢ with
success probability at least 2/3. O

V. NON-INTEGER RENYI ENTROPY ESTIMATION

Recall the classical query complexity of non-integer and in-
teger Rényi entropy estimations are different [20]. Quantumly,
we also consider them separately; in this section, we consider
a-Rényi entropy estimation for general non-integer o > 0.

Let P,(p) := Y1, p%. Since Ho(p) = 2= log Pu(p), to
approximate H,(p) within an additive error € > 0 it suffices to
approximate P, (p) within a multiplicative error e(®~1¢—1 =

O(e).
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Algorithm 4: Estimate the a-power sum P,(p) of p =
(pi)l-qy on [n], a>1,a ¢ N.

Regard the following subroutine as A:
Draw a sample ¢ € [n] according to p;
Use the amplitude estimation procedure EstAmp
with M = 20082 log(*2))]+1 queries to obtain an
estimate p; of p;;

Output Z; = ;ﬁf‘*l;

1 Input parameters («, €, d), where ¢ is the multiplicative
error and § is the failure probability;

2ifa<1l+ logn then
3 Take a = g and b = 1 as lower and upper bounds on
P, (p), respectively;
4 else
5 Recursively call Algorithm 4 with
o =a(l+ logn)_l’ e=1/4,and § = m

therein to give an estimate P, (p) of Py (p). For
simplicity, denote P := P,/(p). Take
logn

3P/4 P\ 1+ oan
_ (3p/ ) and b = (57) I
upper bounds on Pa (p), respectively;

as lower and

1 1 1 1 1
6 Set | =022 22 log3/2(7’262“)10g10g( 2));
7 Use A for [ executions in Theorem II.2 usmg a and b as
auxiliary information and output an estimation of P, (p);
8 Run Line 1 to Line 7 for [481log ;] executions and take
the median of all outputs in Line 7, denoted as Py (p).

Output P, (p);

1_
n2

A. Case I: a>1,a ¢ N

We develop Algorithm 4 to approximate P,(p) with a
multiplicative error e.

Theorem V.1. The output of Algorithm 4 approximates P, (p)
within a multiplicative error 0 < € < 1/4 with success

~ 1
probability at least 1 — & for some 6 > 0 using O("léf" )
quantum queries to p, where O hides polynomials terms of
logn, log1/e, and log1/4.

Proof of Theorem V.1. First, we design a subroutine A in Al-
gorithm 4 to approximate P, (p) following the same principle
as in Algorithm 2. If the estimate p; in A were precisely
accurate, its expectation would be F := ), en) Pi - Py L
P,(p). To be precise, we bound how far the actual ex-
pectation of the subroutine’s output E is from the exact
value P,(p). In Lemma V.1, we show that when taking
M = 2Mosa(37 log(¥))]+1 queries in EstAmp, we have
|E — E| = O(¢E).

As aresult, to approximate P, (p) within multiplicative error
O(e), it is equivalent to approximate E within multiplicative
error ©(e). Recall Theorem I1.2 showed that if the variance
of the random variable output by A is at most o2E? for a
known o, and if we can obtain two values a, b such that E e
[a,b], then O(cb/ea) executions of A suffice to approximate
E within multiplicative error € with success probability at least

9/10. In the main body of the algorithm (Line 1 to Line 8),

8

we use Theorem II.2 to approximate E.

On the one hand, in Lemma V.2, we show that for o« >
1 and large enough n, the variance is at most 5n!~1/@E?
with probability at least —. This gives o = = Vhnl-1l/a =
O( 1/2— 1/2a)

On the other hand, we need to compute the lower bound
a and upper bound b. A key observation (Lemma V.3) is that
for any 0 < oy < avg, we have

(Zpﬁw)%

1€[n]

o1

< Yot H () v
i1€[n]

1€[n]

Because n'/ 18" = ¢, if 2=1+0( then

logn)

o =o((L 7))

zE n zE n

(V.2)

As a result, we compute a and b by recursively calling
Algorithm 4 to estimate P,/ (p) for o/ = «/(1 + 1/logn),
which is used to compute the lower bound a and upper bound
b in L1ne 5; the recursive call keeps until o < 1+ log —, when
a = g and b = 1 (as in Line 3) are simply lower and upper
bounds on P, (p) by (V.1).

To be precise, in Lemma V.4, we prove that b/a < 4e =
O(1), and with probability at least 1/e*/'2 > 0.92, a and b
are indeed lower and upper bounds on P,(p), respectively;
furthermore, in Line 5, Algorithm 4 is recursively called by
at most lognloga times, and each recursive call takes at
most O(nl_i) queries. This promises that when we apply
Corollary I1.2, the cost Cjp is dominated by the query cost
from Algorithm 10.

Combining all points above, Corollary I1.2 approximates E
up to multiplicative error ©(¢) with success probability at least
£.0.92-9/10 > 2/3 using

de- Vv 5”1_1/“)  gfloga (L log())1 41

lognloga~0(
€

_on1-1/2a
€
quantum queries. Together with |[E — E| = O(eE) and

rescale [, M by a large enough constant, Line 1 to Line 7
in Algorithm 4 approximates £ = P, (p) up to multiplicative
error € with success probability at least 2/3.

Finally, in Lemma V.5, we show that after repeating the
procedure for [48log 17 executions and taking the median
P,(p) (as in Line 8), the success probability that P,(p)
approximates P, (p) within multiplicative error ¢ is boosted
to 1 —4. O

It remains to prove the lemmas mentioned above.
1) Expectation of A is e-close to P, (p):

Lemma V.1. |E — E| = O(¢E).
Proof of Lemma V.I. For convenience, denote
m = “OgQ(\/rﬁ/e log(\/ﬁ/e))—l + 1’ and S07 Sla ) Sm
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the same as in Section III. We still have (II.1). By linearity
of expectation,

E—El <> pE[p" —pf ] (V.4)
ze[n]
S S pEE ) )
j=01i€eS;

Therefore, to prove |E — E| = O(eE) it suffices to show

izszHf’? Py 1|]:O(€Zp?>.

j=04i€S; i€[n)

(V.6)

For each i € [n] we write p; = sin?(0;7). Assume k € 7Z
such that k¥ < 2™6, < k + 1. By Theorem I1.3, for any [ €
{1,2,...,max{k — 1,2™ — k — 1}} the output of EstAmp
taking 2™ queries satisfies

(k:l:(l+1))7T):| 1

< —.
om = e

Furthermore, because sin 0; = 0; — O(63), cos §; = 1—0(6?),
and (1 + 91‘)20‘71 =1+ (20[ — 1)01 + 0(01;),

Pr [ﬁi = sin? ( V.7)

(sin((@i + 7)71_))2(04—1) _ (Sil’l(eiﬁ))2(a_1)

= (i(am)‘lﬂ).

Combining (V.7), (V.8), and the fact that 212:1 % = O(m),
we have

> D pE[p - p ]

j=04i€S;

= O(isj
§=0

(V.8)

23 2(173
Z 4[2 2m 2m )

(V.9)

2c

:O(ﬂ

22am

(V.10)

. Z Sj2(2<¥—1)j)_

§=0
On the other side,
2a

e pr = @(ezmjsj : (f—iw)za) (5o

j=0 j=0
(V.11)

Therefore, to prove equation (V.6), by (V.10) and (V.11) it
suffices to prove

3201 = (£ 30000
=0 M50

Since m = [logQ(@ log(@)ﬂ +1, we have 2 > @, thus
i > 2\/—,:7 Therefore, it suffices to show

m \/ﬁ m .
28]2( 0(21%]-2_208]‘22 ‘7).

(V.12)

20—1)j _

(V.13)

i Sj22aj) .

9

If « > 3/2, by Holder’s inequality we have

(S0 () = S

j=
By equation (III.1), this gives
m m m a1
o () 2 (o) (S )™
j=0 j=0 j=0
(V.15)

By Holder’s inequality and also equation (III.1), we have

(S50 (S )™ > S -
j=0 j=0
(V.16)
This is equivalent to
2a—3 m . P
n2a-1) (Z Sj2(2a—1)J> Za—l > @(Qm) (V.17)
j=0
Combining (V.15) and (V.17), we get exactly (V.13).
If 1 < o < 3/2, by Holder’s inequality we have
(Lom) (L) 2o vy
j=0 j=0
) (VT—l m 3—220 m
(Lom) ™ (L) T =2 s o
j=0 j=0 Jj=0
By equation (III.1), the two inequalities above give
D 52209 > plrogiom (V.20)
j=0
Zsj2(2a71)j S nl.570¢2(20¢71)m’ (V21)
j=0
which give (V.13). L]

2) Bound the variance of A by the square of its expectation:

Lemma V.2. With probability at least 2, the variance of the
random variable output by A is at most 5n'~Y/*E?2,

Proof of Lemma V.2. The expectatlon and variance of the
output by Aare £ =" p;-p> " and Y icm Pit (B -
( Zie[n] pi- 131.04—1)2, respectively. Therefore, it suffices to show
that with probability at least %,

S p- (521?50’ V“(sz 5o 1) . (V22
i€[n]
By Theorem IL.3, with probability at least —, we have
- 2m\/pi _ €m\/D; .
s — | < < . V.23
i —pil < —5 N i € [n] (V.23)
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10
For convenience, denote p := p;= to be the maximal one we have
among pi, . . .,Pn, 1.6, P = MaX;c1,...,n} Pi- We also denote a1
p := pi~. Then we have Doicim D3t o2 2
pi=p S ) L Z ﬁ (V.33)
e ~a—1)2 ~a—1)2 n ~o— & 2 i€n €[n j
(X pi-087) (Crpi 087" S pi ! (Zye[n]pag) el \ Ikl
. a—1\2 — =a—1 ~a—1 Sa—1 o
Yiem P By )% T PO Yiem i By pV24 > p;? o (V.34)
(V.24) icn] Zje[n] p;
Furthermore, because z% is a convex function in [0, 1], by which is equivalent to the first inequality in (V.30). O

(V.23) and Jensen’s inequality we have

n ~a—1 ~a—1 ~a—1
i—1Pi " Dy P+ X i Dy
Z 1~a—1 = ~o¢—7i (VZS)
p p
—n— — a—1
oo (2R
~ np + emy/np
(V.26)

Therefore, it suffices to show that for large enough 7,

1—p—emy/1—py\o-1
pt (1 —p) (R YT 201,
np + emy/np

(V.27)

If p > 0.2n~ 1=/ equation (V.27) directly follows. If p <
0.2~ (1=1/a)

lim n'~Y. (1

—p)(l fp—ew\/H)a—l

n—00 np + emy/np

= lim (1 —0.2n~ 171/

n— o0

1/ 1-0.2 —(1-1/a) _ a—
. (n (1-0.2n 67'(')) (V.28)
0.2nt/e 4+ 1/0.2ernl/2a
—1 (1_”)a_1>1>02 (V.29)
B 0.2 - ’
where (V.29) is true because % > 1_3 22 /4 _ 1. Because

(V.26) only omits lower order terms and the limit in (V.29) is
a constant larger than 0.2, Lemma V.2 follows. O

3) Give tight bounds on P, (p) by P/ (p):

Lemma V.3. For any distribution (p;)?_, and 0 < a1 < o,

we have
a a1
(Zp“?)” <SoprEnTE(Y )T (Va0
i€[n] i€[n] i€[n]

Proof of Lemma V.3. On the one hand, by the generalized
mean inequality, we have
) ar

Zie[n]p?z (T2> Zie[n]p?l
n - n

(V.31)
which gives the second inequality in (V.30).
On the other hand, since % <1 and
Pl .
5> <1 Vi€ [n], (V.32)

ZJe[n] pa

4) Analyze the recursive calls:

Lemma V.4. With probability at least 0.92, the a and b in Line
3 or Line 5 of Algorithm 4 are indeed lower and upper bounds
on P, (p), respectively, and b/a = O(1); furthermore, in Line
5, Algorithm 4 is recursively called for at most lognloga
executions, and each recursive call takes at most O( a)
queries.

Proof of Lemma V.4. We decompose the proof into two parts:

o In Line 5, Algorithm 4 is recursively called for at most
log nlog o executions, and each recursive call takes at
most O(n'~2+) queries:

Because each recursive call of Algorithm 4 reduces « by
multiplying (1 + logn)_l and the recursion ends when
o<1+ Togn , the total number of recursive calls is at
most

log a

@ S lognlog .

When a < 1 + @, a and b are set in Line 3
and no extra queries are needed; when Line 5 calls
a(l + pr) " -power sum estimation for some k € N,
by induction onk k, we see that this call takes at most
O(nlfw) < O(nl’ﬁ) queries. As a result,
when we apply Corollary II.2, the cost C, ; is dominated
by the query cost from Algorithm 10.

« With probability at least 0.92, a and b are lower and
upper bounds on P, (p) respectively, and b/a = O(1):
When 1 < oo < 1+ logn’ on the one hand we have
Zl P& < 3% pi = 1; on the other hand, because
niEn = e, by Lemma V.3 we have

n n «
Y i 1
Sz iZimp) 1 (V35)
pt n e
Therefore, a = 1/e and b = 1 in Line 3 are
lower and upper bounds on P,(p) respectively,

and b/a = e = O(1).

for convenience denote
justified above, the total
in Line 5 is at most
0= in Line 5,

1
When a > 1 +1logn,
! _ —

o = ol + 10“) . As
number of recursive calls
log nlog a. Because we take

with probability at least

1
12lognlog a

> 0.92, (V.36)

lognlog
>
) - 1/12

1
1 — -
( 12lognlog
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the output of every recursive call is within 1/4-
multiplicative error. As a result, the P in Line 5 satis-
fies 3P/4 < Y°r_ p¥ < 5P/4. Combining this with
Lemma V.3 and using nloén = e, we have

3P/4)Hmn O 5P\t kn
BPATEE o< (20)77 0 v
i=1

e 4

In other words, a and b are indeed lower and upper
bounds on P, (p), respectively. Furthermore, b/a = O(1)
because

(V.38)
O

5) Boost the success probability:

Lemma V.5. By repeating Line 1 to Line 7 in Algorithm 4

for [48log %] executions and taking the median P, (p), the
success probability is boosted to 1 — 6.

Proof of Lemma V.5. Denote the outputs after running
Line 1 to Line 7 for [48log3] executions as
P,(p)D, ..., P,(p)[4818 5] respectively. Based on

the correctness of Lemma V.1, Lemma V.2, and Lemma V.4,
for each i € {1,..., [48log ]}, with probability at least 2/3
we have

|Pa(p) ¥ — Pa(p)| < €Pa(p). (V.39)

For each i € {1,...,[48log 3]}, denote X; to be a
Boolean random variable such that X, = 1 if (V.39) holds,
and X; = 0 otherwise. Then Pr[X; = 1] > 2/3. Be-
cause in Line 8 the output P,(p) is the median of all
Pa() D, Pa(p) 183D, | By(p) — Palp)| > ePalp)
leads to ZMSlOg 51 X; < [48log $]/2. On the other hand,
by Chernoff bound we have

[48log %]
481
Z X, < Og 51 }
2/37481og 17 - (1/4)2
gexp(— /3] 0g251 (/))éé. (V.40)
Therefore, with probability at least 1 — §, we have |13a (p) —
Po(p)| < €Pa(p). O

B. Case 2: 0 <a<1

When 0 < a < 1, our quantum algorithm follows the same
structure as Algorithm 4:
The main difference is that, in the case o > 1, Algorithm 4
makes o’ smaller and smaller by multiplying (1 + loén)_l
each time, whereas in the case 0 < o < 1, Algorithm 5 makes
o/ larger and larger by multiplying ( I én)*l each time;
nevertheless, both recursions end when « is close enough to
1. On the more technical level, they have different M in A,
different upper bounds on the variance of A, and different
expressions for a and b in Line 3 and Line 5.

Theorem V.2. The output of Algorithm 5 approximates P, (p)
within a multiplicative error 0 < € < O(1) with success

11

Algorithm 5: Estimate the a-power sum P,(p) of p =
(pi)lyon[n, 0 <a<l.

Regard the following subroutine as A:
Draw a sample ¢ € [n] according to p;
Use the amplitude estlmatlon ;)rocedure EstAmp
with M = 2[logs (=5
obtain an estimate p; of p;;

a—1

Output z; = p;" 3

NI+ queries to

1 Input parameters (a, €, ), where € is the multiplicative
error and § is the failure probability;

2ifa>1-— 1Ogn then

3 Take a = 1 and b = e as lower and upper bounds on
P, (p), respectively;

4 else

5 Recursively call Algorithm 5 with
o’ —a(l—logn)’l,ezl/l and i
0= m therein to give an estimate P,/ (p)

of P./(p). For simplicity, denote P := P,/ (p). Take

1 1
a=(P/2)" w7 and b= e(2P)' =7 as lower
and upper bounds on P, (p), respectively;

1 1 1
Set | = @("T‘jé 10g3/2("ﬁ77 ) loglog("m7§ )),
7 Use A for | executions in Theorem IL.2 using a and b as
auxiliary information and output an estimation of P, (p);
8 Run Line 1 to Line 7 for [481log §] executions and take
the median of all outputs in Line 7, denoted as P, (p).
Output P, (p);

=)

~ 1_1
probability at least 1 — § for some § > 0 using O(""62 2 )
quantum queries to p, where O hides polynomials terms of
logn, log1/e¢, and log1/4.

Before we give the formal proof of Theorem V.2, we compare
the similarities and differences between Algorithm 4 and
Algorithm 5, listed below:

o In both algorithms, the subroutine .4 has the same struc-
ture, and is designed to estimate P, (p). However, to make
the expectation of A e-close to P,(p), the EstAmp in
Algorithm 4 suffices to take M = 2108237 log(¥3))]+1
queries (see Lemma V.1), whereas the EstAmp in Al-

gorithm 5 needs to take M = 2[loga (>~ log(*=— 2141
queries (see Lemma V.6);

o In both algorithms, we use Theorem I1.2 to approximate
the expectation of A (denoted E), hence they both need
to upper-bound the variance of A by a multiple of
E2. However, technically the proofs are different, and
we obtain different upper bounds in Lemma V.2 and
Lemma V.7, respectively;

o Since both algorithms use Theorem I1.2, they both need
to compute a lower bound @ and upper bound b on P, (p).
Both algorithms achieve this by observing Lemma V.3,
and they both compute a and b by recursively call the
estimation of P,/ (p) for some o’ closer to 1. However,
in the case o > 1, Algorithm 4 makes o’ smaller and

nl
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smaller by multrplymg 1+ Tozn ) each time, and ends
the recursion when o/ < 1+ logn’ inthecase 0 < o < 1,
Algorithm 5 makes o’ larger and larger by multiplying
(1- loén) ! each time, and ends the recursion when
o >1-— loén' This leads to different expressions for
a and b in Line 3 and Line 5 of both algorithms, and
technically the proofs for Lemma V.4 and Lemma V.8 is
different;

« Both algorithms boost the success probability to 1 — §
by repeating the algorithm for [48log 1] executions and
taking the median, and their correctness is both promised
by Lemma V.5.

Proof of Theorem V.2. First, if the estimate p; in the subrou-
tine A of Algorithm 5 were precisely accurate, the expecta-
tion of the subroutine’s output would be E := Zie[n] pi -
p¢~ ! = P,(p). To be precise, we bound how far the actual
expectation of the subroutine’s output E is from the exact
value P,(p). In Lemma V.6, we show that when taking
M = 2log,( e
|E— E| = O(eE).

As aresult, to approximate P, (p) within multiplicative error
O(e), it is equivalent to approximate E within multiplicative
error ©(e). Recall Theorem I1.2 showed that if the variance
of the random variable output by A is at most ¢2E? for a
known o, and if we can obtain two values a, b such that Ee
[a,b], then O(cb/ea) executions of A suffice to approximate
FE within multiplicative error e with success probability at least
9/10. In the main body of the algorithm (Line 1 to Line 8),
we use Theorem I1.2 to approximate E.

On the one hand, in Lemma V.7, we show that for any 0 <
o < 1, the variance is at most 2n'/*~ 1 E? with probability at
least . This gives 0 = V2nl/a~1 = O(n1/221/2),

On the other hand, we need to compute the lower bound a
and upper bound b. As stated in the proof of Theorem V.1,
for any 0 < a1 < g with 0‘2 =14 0(

> pit=
i€[n]

nl/2e n

NI+1 queries in EstAmp, we have

logn)

o((To)")

As a result, we compute a and b by recursively calling
Algorithm 5 to estimate P,/ (p) for o/ = a/(1 — 1/logn),
which is used to compute the lower bound a and upper bound
b in Line 5; the recursive call keeps until o > 1 — ﬂ’ when
a =1 and b = e (as in Line 3) are simply lower and upper
bounds on P, (p).

To be precise, in Lemma V.8, we prove that b/a < 4e =
O(1), and with probability at least 1/e'/'? > 0.92, a and b
are indeed lower and upper bounds on P, (p), respectively;
furthermore, in Line 5, Algorithm 5 is recursively called by
at most lognlogé times, and each recursive call takes at
most O(nE*%) queries. This promises that when we apply
Corollary I1.2, the cost C, 5 is dominated by the query cost
from Algorithm 10.

Combining all points above, Corollary II.2 approximates E
up to multiplicative error ©(e) with success probability at least

(V41)

12
£.0.92-9/10 > 2/3 using
1 ~/4e-V2nl/a-1
l%m%*rmgzL??g
a €
11
.2[10g2("1£ log(“22)]+1 _ O(nQQ : ) (V.42)
€
quantum queries. Together with |E — E| O(eE) and

rescale [, M by a large enough constant, Line 1 to Line 7
in Algorithm 5 approximates F = P, (p) up to multiplicative
error € with success probability at least 2/3.

Finally, following from Lemma V.5, after repeating the
procedure for [48 log 5] executions and taking the median
P,(p) (as in Line 8), the success probability that P (p)
approximates P, (p) within multiplicative error € is boosted
to1—4. O

It remains to prove the lemmas mentioned above.
1) Expectation of A is e-close to P, (p):

Lemma V.6. |E — E| = O(¢E).

Proof of Lemma V6. For convenience, we denote m =
[og, (2 log( n/? )] + 1, and Sp, Si,...,Sm the same
as prev1ous deﬁmtlons. We still have (III.1). By linearity of
expectation,

1
E-E|< Y pE H e el (V43)
ze[n] p;
= Z > pE[F T -] (V.44)
j=014€S;

Therefore, to prove |E — E)|

> pE[F T - pf

j=04€S;

= O(eE) it suffices to show

] :O<6ZP?)-

1€[n]

(V.45)

Similar to the proof of Lemma V.1, we have

Zzp" ‘pa t- ? 1|] = ( 22am 282(2a I)J)'

j=014€S;
(V.46)
On the other side,

i€[n]
v.a)

Therefore, to prove Equation (V.45), by (V.46) and (V.47) it
suffices to prove

Z Sj2(2(x—1)j = O(i Z 5j22aj)_
m
=0

Jj=0

(V48)

Since m = [logg( e log("lfa))] + 1, we have 2~ >
nl/2o , thus -= > ” Therefore it suffices to prove

1/2a m

Z sj 2204])

(V.49)

Zsz(zaq)j _ (
j=0
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Since s; €N, s; < s;/a; as a result,
m_ $.92J m_ §.020j 1/
%J—O J — - < Z];O( J ) - (V.50)
( ijo SJ’QQW) (ijo SJQQOU)
m Sj220zj ) 1/
> (= (V51)
jgo Zk:o SkQQak
m 5]2204
< Z ek = 1. (V52
Plugging (III.1) into the 1nequality above, we have
m 1
(Zsjzmj) o qem). (V.53)
§=0
On the other side, by Holder’s inequality we have
m 1 m 2a—1 m
()™ (os20) ™ 2 w2t (v
j=0 j=0 j=0

Combining (IIL.1), (V.53), and (V.54), we get exactly (V.49).
O

2) Bound the variance of A by the square of its expectation:

Lemma V.7. With probability at least = —2, the variance of the
random variable output by A is at most 2n'/*~ 12,

Proof of Lemma V.7. Because E = S b ﬁ;"_ and the
variance is 20, pi- (57 )2 — (L pie ) < iy pie

(pS~1)2, it suffices to show that
sz (pe1)? < 2nt/o- 1(2191 e 1)2. (V.55)
By Theorem II.3, with probability at least 2, we have
pi — pil < QZmpi < :z /21; L ien) (V.56)
As a result,
Zn:pi(f’?_l)Q < zn:pz' (Pz‘ - 4;72/2](9:-)—2(1—@ (V.57)
i=1 -

:me 1(1_ nl/;;r\/ﬁi)?(la) (V.58)

2a—1 e
~ ; (1+2(1—0¢)7)
Z nl/2a /pi

(V.59)
:Zn;p?“ - 1n:/2051€7TZ 2005
(V.60)
Furthermore,
(sza 1) > (Z\/E)(sza 1) (V.61)

I \%

Z \/]T] 200—1 Zl:p?a—Oﬁ. (V62)

1=5=1 =1

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

13

Plugging this into (V.60), we have

~0c 1 2a 1
Zpi 2< (1+ Ty 1/2 )Z (V63
Using similar techniques, we can show
2(1 — a)er = 2
(sz ) = (1= 2Ty () v
n .
i=1
Since 0 < v < 1,
. 2(1 — a)er . 2(1 — a)er
At e =L e g =
(V.65)

Because (V.59) only omits lower order terms and the limits in
(V.65) are both 1, to prove (V.55) it suffices to prove that for
large enough n,

n n 2
Zp?oz—l < nl/a_l<zp?) _ (V.66)
i=1 i=1
By generalized mean inequality, we have
i 1 o .
Therefore,
2a1 n 2a—1
Z Pt <t E (Yo we) (V.68)
i=1
n 2-1/a
- nl/a%(Zpg) (V.69)
i=1
n 2
< nl/a—l(ng) . (V.70)
i=1
Hence the result follows. O

3) Analyze the recursive calls:

Lemma V.8. With probability at least 0.92, the a and b in Line
3 or Line 5 of Algorithm 5 are indeed lower and upper bounds
on P, (p), respectively, and b/a = O(1); furthermore, in Line
5, Algorithm 5 is recursively called for at most lognlogé
executions, and each recursive call takes at most O(ni’%)
queries.

Proof of Lemma V.8. Similar to Lemma V.4, we decompose
the proof into two parts:

o In Line 5, Algorithm 5 is recursively called for at most
log n log é executions, and each recursive call takes at
most O(n="2) queries:

Because each recursive call of Algorithm 5 increases
a by multiplying (1 — =)' and the recursion ends

logn
when o > 1 — W the total number of recursive calls
log

log(1— 710; =)

is at most < lognlog % P

When ¢ > 1 — ﬂ, a and b are set in Line 3

and no extra queries are needed; when Line 5 calls
a(l — L_)~F_power sum estimation for some k € N,

by 1nduct10n on k, we see that this call takes at most
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~ (1—1/10gn)k_l
o

O(n 2) < O(n="2) queries. As a result,
when we apply Corollary II.2, the cost C, ; is dominated
by the query cost from Algorithm 10.

« With probability at least 0.92, o and b are lower and
upper bounds on P, (p) respectively, and b/a = O(1):
When 1 — Togn < a < 1, on the one hand we have
St p¥ > > pi = 1; on the other hand, because
nﬁ = e, by Lemma V.3 we have

n n

«@
> Snl_a( > Pi) <e
i=1 i=1

Therefore, a = 1 and b = e in Line 3 are lower and upper
bounds on P, (p) respectively, and b/a = e = O(1).

(V.71)

When o < 1 — @, for convenience denote
o = a(l— )71, As justified above, the total number
logn

of recursive calls in Line 5 is at most lognlogé.
Because we take § = ;—'——~— in Line 5, with

. gnlogl/a
probability at least

> —— > 0.92,

1 lognlogl/a 1
( ) ~ el/12
(V.72)

B 12lognlogl/a

the output of every recursive call is within 1/2-
multiplicative error. As a result, the P in Line 5 satisfies
P/2 <37 p¢ < 2P.Combining this with Lemma V.3
and using niEn = e, we have

(P/2)' " mm <37 pf < e(2P)' e

i=1

(V.73)

In other words, a and b are indeed lower and upper
bounds on P, (p), respectively. Furthermore, b/a = O(1)
because

g =e-4'" T < de = O(1). (V.74)

O

V1. INTEGER RENYI ENTROPY ESTIMATION

Recall the classical query complexity of a-Rényi entropy
estimation for o € N,a > 2 is ©(n'~/*) [20], which is
smaller than non-integer cases. Quantumly, we also provide a
more significant speedup.

Given the oracle Op,: [S] — [n] in (I7), we denote
the occurrences of 1,2,...,n among O,(1),..., Op(S) as

mi,..., My, respectively. A key observation is that by (I1.6),
we have
Palp) = (mi/S)* =87 “m¢. (VL1)
i=1 i=1
Therefore, it suffices to approximate Zie[n] mg’, which is
known as the a-frequency moment of Op(1),...,0,(S).

Based on the quantum algorithm for a-distinctness [42],
Montanaro [50] proved:

Fact VLI.1 ([50], Step 3b-step 3e in Algorithm 2; Lemma
4). Fix | where | € {1,...,n}. Let s1,...,8; € [S] be

14

picked uniformly at random, and denote the number of a-wise
collisions in {Op(s1),...,0,(s1)} as C(s1,...,s1). Then:

e C(s1,...,81) can be computed using O(I"log(l/€*))
queries to O, with failure probability at most O(e? /1),
where v:=1—272/(2% — 1) < 3;

e E[C(s1,...,8)] = (i)Pa(p) and Var[C(s1, ...
O(1).

781)] =

However, a direct application of [50] will lead to a com-
plexity depending on S (in particular, ! in Fact VI.1 can be
as large as S) rather than n. Our solution is Algorithm 6 that
is almost the same as Algorithm 2 in [50] except Line 1 and
Line 2, where we set 21982971 a5 an upper bound on [. We
claim that such choice of [ is valid because by the pigeonhole
principle, an elements O,(s1),...,Op(San) in [n] must have
an «-collision, so the first for-loop must terminate at some
i < [log, an]. With this modification, we have Theorem VI.1
for integer Rényi entropy estimation.

Algorithm 6: Estimate the a-power sum P,(p) of p =
(pi)l—y on [n], a > 1,a € N.

1 Set [ = 2[lgz anl.

2 for i =0,...,[log, an] do

3 Pick $1,..., 80 € [S] uniformly at random and let S
be the sequence O, (s1),...,0p(s2:);

4 Apply the a-distinctness algorithm in [42] to S with
failure probability m;

5 If it returns a set of « equal elements, set [ = 2% and
terminate the loop;
et M = [K/e?] for some K = O(1) ;
for r=1,...,M do
Pick s1,...,5 € [S] uniformly at random;
Apply the first bullet in Fact VI.1 to give an estimate
C") of the number of a-wise collisions in

{Op(51), -+, Op(s0)};

Output P, (p) = ﬁ >l O

W

e e 9

—
>

Theorem VIL.1. Assume o > 1, € N. Algorithm 6 approx-

imates P, (p) within a multiplicative error 0 < ¢ < O(1)
~ v(l—-1/a
with success probability at least % using O(%)

3(1-1/e) .
("4672) quantum queries to p, where v = 1 —

2072 /(2> = 1) < 3.

Our proof of Theorem VI.1 is inspired by the proof of
Theorem 5 in [50].

Proof. Because O,, takes values in [n], by pigeonhole princi-
ple, for any si,...,8an € [S] there exists a a-wise collision
among O,(s1), ..., Op(San). Therefore, Line 5 terminates the
first loop with some [ < 201982971 with probability at least
(1 —1/10[log, an])Meszon] > =1/10 5 .9,

Moreover, tighter bounds on [ are established next. On
the one hand, by Chebyshev’s inequality and Fact VI.1, the
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probability that the first for-loop fails to terminate when

[ < W for some constant B > 0 is at most

Var[C(s1, ..., 1))
Pr|C(sy,... =0| < V1.2
O o) =0 S g, O

1
= 0( ) VI3
120 P, (p)2 (VL3)
1

— o<732a ) (VL4)
Therefore, taking a large enough B ensures that [ =

O(W) with failure probability at most 1/20. On the
other hand, by Markov’s inequality and Fact VI.1, we have

Pr[C(s1,...,s) > 1] <E[C(s1,...,5)] = O(*Pu(p)).
(VL5)

As a result, the probability that the first for-loop terminates

when [ < W for some constant A > 0 is at most

A
Lo (A7)

OFp)- Y. 2

=0

= O(A%). (VL6)

Therefore, taking a small enough A > 0 ensures that [ =
Q(W) with failure probability at most 1/20. In all, we

have | = @(W) with probability at least 0.9.

By Fact VL1, the output E[P, (p)] in Line 10 of Algorithm 6
satisfies

3 M
E[Pa(p Pu(p), (VL7)
=t 1
Var[P,(p)] = ——— Y Var[C™] =0 .
(M(L))2 ; (MP )
(VL)
Therefore, by Chebyshev’s inequality and recall | =

@(W), we have

Pr [|Pa(p) = Pa(p)| = €Pa(p)]
1 1
<Osmmargn) =) O

Taking a large enough constant K in Line 6 of Algorithm 6,
we have Pr [|]5a(p) — P.(p)| < €Pu(p)] > 0.9. In all, with
probability at least 0.9 x 0.9 x 0.9 > 2/3, P, (p) approximates
P, (p) within multiplicative error .

For the rest of the proof, it suffices to compute the quantum
query complexity of Algorithm 6. Because the «-distinctness
algorithm on m elements in [42] takes O(m” log(1/§)) quan-
tum queries when the success probablhty is 1 — 4, the first
for-loop in Algorithm 6 takes Zlogz 0O(2"%1og[log, an]) =
O(1*) = O(n*('=1/®)) quantum queries because

1=6(5pwm) = 0m' ),

following from P,(p) > n'~®. The second for-loop takes
v(l—1
[K/e?] - ey ) quantum queries by

(VL.10)

O log(1/%)) = O

Fact VI.1 and (VI.10). In total, the number of quantum queries
1/(1 1/a)

is O(2 Y

15

Remark VI.1. In Theorem VLI, we regard o as a constant,
u(l 1/a) . . .

i.e., the query complexity 0(7) hides the multiple in

a. In fact, by analyzing the dependence on « carefully in the

above proof, the query complexity of Algorithm 6 is actually
v(l—1/a)

O<a8a2 . n672>

The dependence on « is super-exponential; therefore, Algo-
rithm 6 is not good enough to approximate min-entropy (i.e.,
a = o). As a result, we give the quantum algorithm for
estimating min-entropy separately (see Section VII).

(VL11)

VII. MIN-ENTROPY ESTIMATION

Since the min-entropy of p is Hoo(p) = — log max;cy) p;
by (L.3), it is equivalent to approximate max;c[,) p; Within
multiplicative error e. We propose Algorithm 7 below to
achieve this task.

Algorithm 7: Estimate max;¢[,,) p; of a discrete distribu-
tion p = (p;)’_; on [n].

1 Set A=1;

2 while A <n do

3 | Take M ~ Poi(£82R8"). Pick sy, ..., 51 € [S]
uniformly at random and let S be the sequence

Op(s1),...,0p(sm);

4 Apply a [161"“] -distinctness quantum algorithm to
S with failure probability at most 210gn’

5 If Line 4 outputs a [ww-colhslon of elements

i* € [n], apply Theorem II.3 to approximate p;-
with multiplicative error € and output its result; if
not, set A < A -+/1+ € and jump to the start of the
loop;

6 If A > n and no output has been given, output 1/n;

A key property of the Poisson distribution is that if we take
M ~ Poi(v) samples from p (as in Line 3), then for each j €
[n], the number of occurrences of j in Op(s1),...,0p(snm)
follows the Poisson distribution M, ~ Poi(vp;), and M;, M
are independent for all j # j'. Furthermore:

Lemma VILL. Let X ~ Poi(j1). Then, if p < = - 181552,
we have
161 1
Pr [X > ‘;g”} < = (VIL1)
€ n?
If u> 1616#, we have
161
Pr {X > Zg”} > 0.15. (VIL2)
€
Based on Lemma VIL1, our strategy is to set 1616# as
a threshold, take v = % as in Line 3, and gradually

increase the parameter A. For convenience, denote p;x =
max; p;. As long as v - pjx < wlﬁ#, with high probability
there is no [@#]-collision in S, the distinctness quantum
algorithm in Line 4 rejects, and A increases by multiplying
v 1+ € in Line 5; right after the first time when v - p;« >
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1616#, with probability at least 0.15, :* has a (1616#] -
collision in S, while all other entries in [n] do not (with failure
probability at most 1/n2). In this case, with probability at least
Q(1), the distinctness quantum algorithm in Line 4 captures *,
and the quantum counting (Theorem II.3) in Line 5 computes

pi+ within multiplicative error e.

Theorem VIL.1. Algorithm 7 approximates max;c|,) p; within
a multiplicative error 0 < € < 1 with success probability
at least (1) using O(Q(flﬁlogﬂ-distinctness)) quantum
queries to p, where Q([wlogﬂ -distinctness) is the quantum
query complexity of the [16 leog”] -distinctness problem.

We first prove Lemma VII.1. output

Proof of Lemma VII.I. First, we prove (VIL1)7. In [61], it is
shown that if A > 0 and X ~ Poi(\), then for any v > 1 we
have
—)\)\V)\
Pr[X > v\ < ——

< GV (VIL3)

Taking A = \/ﬁ 161623"" and v = /1 +¢, by Sterling’s
formula we have
16logn e ANA
Pr|X > VIL.4
Tt =T }— (1 —1/v) (VLD
2 — A\ VA
O (VIL5)
€ V2mvA(vA/e)
2 1 /2 ’
66
~— . (VIL6
\ﬁgﬁ <(1 - ;>1+6/2> o
Because
5/2 8/¢*
!1_12% <(1 Ty )1+e/2>
4 4
= lim exp [ (§ + *) In (1 + E)} (VIL.7)
€0 € e ¢ 2
. 4 8 4\ re € 3
=limewp |~ (5 +) (55 +0@)] Vs
= limexp[—1+O(e)] = e 1, (VILY)
e—0
we have
A
€/2 2 1
Plugging (VII.10) into (VIL.6), we have
1610gn \/7 1
P [X> < —. (VILII
: V16logn n2 - ( )

Now we prove (VIL2). A theorem of Ramanujan [62,
Question 294] states that for any positive integer M,

M-1 M™ M

=Y —

m=0

) S (VIL12)

"The tail bound of Poisson distributions is also studied elsewhere, for
example, in [60, Exercise 4.7].

16
where 1 < 0(M) < 1 VM € N. Because 3 ov_, 17 =M,
by (VIL.12) we have
> Mm99 MM 1
- - > M. )
2 ml T3 =3¢ (VIL13)
m=M-+1
By Stirling’s formula, M! > v/ 27TM(%)M. As a result,
Yoo =z ——— (VILI4)
m! 2¢ 3 ( )
m=M-+1
= ( ) M, (VIL15)
Va.5r M
We take M = |18198™ | By (VIL15), we have
16logn _16logn (161€3gn)m
Pr[XZ 2 }: gy B0
m=M-+1
(VIL16)
—M-1
>e Y. o (VILI)
m=M-+1
1 1
> (VIL18)

=2  eVasrM
Because 0 < € < 1, we have M > |16log 2| = 11. Therefore,

16logn 1 1
Pr [X > ] > . 5015 (VILI9
=& 172 o/imr 11 ( )
0

Proof of Theorem VII.1. Denote o to be the permutation on
[n] such that py(1) > Po(2) >+ > Po(n)- Without loss of
generality, we assume that p, () < 1)1:(_12; otherwise, p,(2)
is close enough to p,(1) in the sense that applying quantum
counting to py(2) within multiplicative error € gives an approx-
imation to p, (1) within multiplicative error 2¢. We may assume
that every call of the (%] -distinctness quantum algorithm
in Line 4 of Algorithm 7 succeeds if and only if a (%]-
collision exists, because this happens with probability at least
(1 — 21§gn)logmn > e~1 = Q(1); for convenience, this is
always assumed in the result of the proof.
On the one hand, when

16X logn - 1 16logn
62 /1 Te 62 ?

by Lemma VII.1 we have Pr [Mz > 1616#] < n% Vi € [n],
where M; is the occurences of ¢. Therefore, by the union
bound, with probability at least 1 — n - % =1- %, there
is no wlﬁ#-collision in §. Since the while loop only has
at most log, gzn = O(lo%) rounds and (1 — L1)lesn/e =
1—o0(1), we may assume that as long as (VIL.20) holds, Line
4 of Algorithm 7 always has a negative output and Line 5
enforces A <— X\ - /1 + € and jumps to the start of the while
loop.

The while loop keeps iterating until (VIL.20) is violated. In
the second iteration after (VII.20) is violated, we have

161 »(1) - 161 161
%gn  Po(l) R e VTge 81,
€

2 - €2

DPo(1) -

(VIL.20)

(VIL21)

€
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since p,(2) < pl"fe), we have
oo - 161 1 161
Po@ %8 _ Glogn (VIL22)
62 1 + ¢ 62
As a result, by Lemma VII.1 we have
161
Pr [Mg(l) > 16 Zg”} > 0.15: (VIL23)
€
161 1
Pr [Miz 6 Og”} < — Vien/{o()}. (VIL24)
€ n

Therefore, the probability that Line 4 outputs (1) in the
second iteration after (VII.20) is violated is at least 0.15 -
(1—25t )n_l. In the first iteration after (VIL.20) is violated,
we still have Pr [Mi > M} < L Vi e [n)/{oc(1)}.
Therefore, the probability that Line 4 outputs o (1) in the first
or second iteration after (VII.20) is violated is at least

0.15 - (1 - ”n;l)"_l : (1 - ”n;l)n_l > 0; = Q(1).
(VIL25)

In all, with probability Q(1), Line 4 of Algorithm 7 outputs
o(1) correctly in the first or second iteration after (VIL.20) is
violated; after that, the quantum counting in Line 5 approxi-
mates p,(1) = MaX;c[,] p; Within multiplicative error e. This
establishes the correctness of Algorithm 7.

It remains to show that the quantum query complexity of
Algorithm 7 is O (Q([ %52 ]-distinctness)). Because there
are at most log ;- n = O( IOE”) iterations in the while loop,
the [wle#}—distinctness algorithm in Line 4 is called for at
most O(k’%) times; if it gives a [%]-collision, because
max;e(,) p; > 1/n, the quantum query complexity caused by
Line 5 is O(@) by Theorem IL.3, which is smaller than the
Q(n?/3) quantum lower bound on the distinctness problems
[44]. As a result, the query complexity of Algorithm 7 in total
is at most

O(loi;n> -Q(Pmognw-distinctness) + O(@)

€2

=0 (Q( [16 lec;g nw -distinctness)) .

(VIL.26)

O

Remark VIL.1. In some special cases, Algorithm 7 already
demonstrates provable quantum speedup. Recall the state-of-
the-art quantum algorithm for k-distinctness is [42] by Belovs,
which has query complexity O(2k2n172k_2/(2k71)),' however,
this is superlinear when k = ©(logn). Nevertheless, if we are
promised that Ho(p) < f(n) for some f(n) = o(y/logn),
then we can replace the n in Line 2 of Algorithm 7 by ef(™)
and replace every [*° gg 1 by [16{2(71)] and it can be shown
that the quantum query complexity of min-entropy estimation is
O(e(%‘“’(l))‘f(”)), whereas the best classical algorithm takes
O(ef ™) queries. In this case, we obtain a (3+0(1))-quantum

speedup, but the classical query complexity is already small
(eViosn = pl/vioen — 4(n®) for any ¢ > 0).

17

VIII. 0-RENYI ENTROPY ESTIMATION

Motivations. Estimating the support size of distributions (i.e.,
the 0-Rényi entropy) is also important in various fields, rang-
ing from vocabulary size estimation [23, 24], database attribute
variation [25], password and security [26], diversity study in
microbiology [27-29], etc. The study of support estimation
was initiated by naturalist Corbet in 1940s, who spent two
years at Malaya for trapping butterflies and recorded how
many times he had trapped various butterfly species. He then
asked the leading statistician at that time, Fisher, to predict
how many new species he would observe if he returned to
Malaya for another two years of butterfly trapping. Fisher
answered by alternatively putting plus or minus sign for the
number of species that showed up one, two, three times, and
so on, which was proven to be an unbiased estimator [63].

Formally, assuming n independent samples are drawn from
an unknown distribution, the goal of [63] is to estimate the
number of hitherto unseen symbols that would be observed if ¢-
n (t being a pre-determined parameter) additional independent
samples were collected from the same distribution. Reference
[63] solved the case t = 1, which was later improved to ¢t < 1
[64] and t = O(logn) [47]; the last work also showed that
t = O(logn) is the largest possible range to give an estimator
with provable guarantee.

However, such estimation always assumes n samples; a
more natural question is, can we estimate the support of a
distribution per se? Specifically, given a discrete distribution
p over a finite set X where p, denotes the probability of
x € X, can we estimate its support, defined by

Supp(p) := {z : x € X, p, > 0}, (VIIL1)

with high precision and success probability?

Unfortunately, this is impossible in general because ele-
ments with negligible but nonzero probability will be very
unlikely to appear in the samples, while still contribute to
Supp(p). As an evidence, Supp(p) is the exponent of the 0-
Rényi entropy of p, but the sample complexity of a-Rényi
entropy goes to infinity when o« — 0" by Theorem IX.1, both
classically and quantumly.

To circumvent this difficulty, two related properties have
been considered as an alternative to estimate 0-Rényi entropy:

o Support coverage: Sp(p) ==Y oy (1—(1—ps)"), the
expected number of elements observed when taking n
samples. To estimate S, (p) within £en, [64] showed that
n/2 samples from p suffices for any constant €; recently,
[65] improved the sample complexity to O(@), and
[47, 66] also considered the dependence in € by showing
that @(IOZH . log%) is a tight bound, as long as € =
Q(n=02),

o Support size: Supp(p), under the assumption that for
any © € X, p, = 0 or p, > 1/m for some given
m € N. Reference [67] proposed the problem and gave a

lower bound Q(m!~°()), and [10] gave an upper bound

O(lo’g”m . E%) Recently, [46] and [47] both proved that
@(lo’gm -log? %) is the tight bound for the problem (both

optimal in m and ¢).
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Problem ‘ classical bounds ‘ quantum bounds (this paper) ‘

O(=2- -log 1) [47, 66] N /:

Support coverage (10[2"_ Qn i)o 2)] O(elig)v Q(fll/(?)
1 46, 47 ~ :

Support size 6(105{:_ Ogl/n)l[ ] O(ﬁ), Q<7:il//:)

TABLE II: Summary of the classical and quantum query complexity
of support coverage and size estimation.

Quantumly, we give upper and lower bounds on both
support coverage and support size estimation, summarized in
Table II.

Support coverage estimation. We give the following upper
bound on support coverage estimation; its lower bound is given
in Proposition IX.2.

Algorithm 8: Estimate the support coverage .S, (p).

1 Regard the following subroutine as A:
2 Draw a sample ¢ € X according to p;

3 | Use EstAmp with M = 2/82(v/7/91 queries to
obtain an estimation p; of p;;
4 Output Z; = 1(17“ if p; # 0; otherwise, output
n;
s Use A for ©(L1og®? (1) loglog (1)) executions in
Theorem II.1 and output an estimation S, (p) of S, (p);

Theorem VIII.1. Algorithm 8 approximates Snlp) .=

Soex(1-(1=p)™) " 0()

n
uantum

within an additive error 0 < € <
with success probability at least 2/3 using O( ‘F) qu
queries to p.

Proof. We prove this theorem in two steps. The first step is
to show that the expectation of the subroutine A’s output (de-
noted £ := 3",y pi - 1_(17’“) satisfies |E — E| = O(en),

where E:= 3,y p; - (11)7,, = S, (p).
To achieve this, it suffices to prove that for each ¢ € X,
1-1-p)" 1—(1—-p;)"
]EH ( P 1= -p)
Di Di

H — O(en).  (VIIL2)

We write p; = sin2(91-7r). Assume k € Z such that k < M6, <
k+1. By Theorem IL.3, for any | € {1,2,..., max{k—1, M —
k — 1}}, the output of EstAmp taking M queries satisfies

k(e )r
Pr [pi — sin (T)} < (VIIL3)
We first consider the case when p; > p;, and p; =

sin? (W) for some [ € N. For convenience, denote

flz) = # where z € (0,1]. Because

nr(l—z)" 1+ (1 —2)" -
)
ner+(l—nx)—1
)

f(z)= (VIIL4)

IN

=0, (VIIL5)

18
f is a decreasing function on (0, 1]. Therefore,
‘1 —(-p)" 1-(1—p)"
Di Di
kr 1— g2n (k+14+1)7 T
2 . M _ _ 2n M0
< sin U il (k+§\}r1)ﬂ 1 —cos M)
(VIIL6)
7 sin? 7(]”5\;1)” cos2" % — sin? ’x; cos2? 7(k+5;1)77
- n2 (k+l+D7
M
2 kw 2 (k+l+1)7r
Sin M Sin —w
(VIIL7)
sin? 7(k+§;[r1)ﬂ
By Taylor expansion, we have
kr  k2m? kS
2 _— = [
sin? =7 =~ 0( MG) (VIILS)
s (k+1+D)m  (k+1+1)%n? (k+1)8
v = O );
(VIILY)
and
km k2m? Et \2n
2 —
cos? 2= (1= 25+ 0(17)) (VIIL10)
k2m2e k2e? \2n
=(1- 0(“5)) VIIL1
( 2n +0( n2 ) ( )
=1-kn’e+ O(*k?); (VIIL12)
similarly
E+1+1
2n % = 1— (k+1+1)2n2%+ O((k +1)2).
(VIIL.13)

Plugging (VIIL.9), (VIII.12), and (VIIL.13) into (VIIL.7) and
noticing that the tail in (VIIL.9) has 1/M6, much smaller than
that of (VIII.12) and (VIII.13), we have

1-(-p)" 1-(-p)"
Di pi
_ (k+141)2(1 — K*r%e) — K*(1 — (k + 1 4+ 1)%n%)
B (k+1+1)
k2 — (k+1+1)2 -
(k+1+1)2 +O(€F)
k2 , ,
- mo(e (k+1)%) (VIIL14)
=0+0(&(k +1)%) (VIIL15)
< Oen), (VIIL16)

where (VIIL16) holds because k+1 < M and M = ©(y/n/e).
Similarly, for the case p; < p;, we have
’1_(1~_p1) 71_(1_271) (en)
Di Di
In all, summing all [ € {1,2,..., max{k—1,M —k—1}} in
cases p; > p; and p; < p; and by (VIIL.3), the expectation of
the deviation in (VIIL.2) is at most

(VIIL17)

Eul—(l—ﬁi)” 1= —p)" }
Di Di
M 9
<2 ZZ % -O(en) < % - O(en) = O(en). (VIIL1S)
=1
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Therefore, (VIIL.2) follows and |E—E| = O(en). By rescaling
M by a constant, without loss of generality we have |E— E| <
en/2.

The second step is to bound the variance of the random

variable, which is
) (Z 1-(1- pz) )
Di -

sz (Ni i€X

i€X

< Zpi'n2:”27

ieX

(VIIL19)

because 1 — (1 — ;)" < np; by 0 < pi < 1. As a result
of Theorem II.1, we can approximate F up to additive error
en/2 with failure probability at most 1/3 using
o(%)
1.5

O(ﬁl 3/2( )loglog( )) 9Mlog> (v/n/)] —
" (VIIL.20)

quantum queries. Together with |E — E| < en/2, Algorithm 8
approximates £ = S,(p) up to additive error en with
failure probability at most 1/3; in other words, Algorithm 8
approximates E = S,,(p)/n up to e with success probability
at least 2/3. O

Support size estimation. We give the following upper bound
on support size estimation; its lower bound is given in Propo-
sition IX.3.

Algorithm 9: Estimate Supp(p), under the promise that
pz =0 or p, > 1/m for any z € X.

1 Call Algorithm 8 with n = [mlog(2/€)] and error
m, and denote the output as S, (p);

2 Denote Supp( ) := [S,.(p)]. Output Supp(p) as an
estimation of Supp(p);

Theorem VIIL.2. Under the promise that for any ©r € X,
pe = 0 or p, > 1/m, Algorithm 9 approximates Supp(p)/m
within an additive error 0 < € < O(1) with success probability
at least 2/3 using O( ) quantum queries to p.

Proof. For convenience, denote X/, := {z € X : p, >
1/m}. Then Supp(p) = [X1/m| by the promise, and

1— % S1—(1=p)" <1  VaeXyy (VIL2I)
1—(1—p)" =0 Vao¢Xy,,; (VIL22)
As a result,
€
=Y 1-(1-p)e [(1 -3) Supp(p),Supp(p)]
rzeX

(VIIL23)

Furthermore, by the correctness of Algorithm 8, with proba-
bility at least 2/3 we have

19(p) = Sn(p) = % (VIIL.24)

< Sg@rg "

19
Together with (VIIL.23),
~ € € me
Sulp) € [ (1= 5) Supp(p) — 2%, Supp(p) + ]
- {Supp(p) — me, Supp(p) + %} (VIIL.25)

Therefore, with probability at least 2/3, ré”# approximates
SHPTP(I’) up to e with success probability at least 2/3. O

IX. QUANTUM LOWER BOUNDS

In this section, we prove Theorem 1.2, which is rewritten
below:

Theorem IX.1. Any quantum algorithm that approximates
H,(p) of distribution p on [n] within additive error € with
success probability at least 2/3 must use
. Q(f—i—n%/e%) quantum queries when o = 0, assuming
L/n <e < 1/12.
o Qn7e W) /e7) quantum queries when 0 < « <3
. Q(n%/eﬁ) quantum queries when 3 < o < 3 and « 7$ 1,
assuming 1/n < e <1/2.
o Q(\/n+n3 /ev) quantum queries when oo = 1, assuming
1/n<e<1/2
e Q(n2"2 /€) quantum queries when 3 < a < .
o Q(y/n/€) quantum queries when o = oo.

Because we use different techniques for different ranges of
«, we divide the proofs into three categories.

A. Reduction from classical lower bounds (0 < o < 2 )

We prove that the quantum lower bound when 0 < o < 2
is indeed Q(n7a—°(1) /e7), as claimed in Theorem IX.1.

Proof. First, by [20], we know that Q(ns —°(1) /€2) is a lower
bound on the classical query complexity of a-Rényi entropy
estimation. On the other hand, reference [52] shows that for
any problem that is invariant under permuting inputs and
outputs and that has sufficiently many outputs, the quantum
query complexity is at least the seventh root of the classical
randomized query complexity (up to poly-logarithmic factors).
Our query oracle O,: [S] — [n] has n outputs with tend to
infinity when n is large; the distribution p is invariant under
permutations on [S] since p; = |[{s € [S] : Op(s) = i}|/S
is invariant for all ¢; Rényi entropy is invariant under permu-
tations on [n] since it does not depend on the order of p;.
Therefore, our problem satisfies the requirements from [52],
and Q(n7a—°(1) /e7) is a lower bound on the quantum query
complexity of a-Rényi entropy estimation. O

B. Exploitation of the collision lower bound (o« = 0 and % <
a<3)
We prove lower bounds on entropy estimation by further

exploiting the famous collision lower bound [44, 53]. First,
we define the following problem:

Definition IX.1 (/-pairs distinctness). Given positive integers
n and | such that 1 <1 <n/2, and a function f: [n] — [n].
Under the promise that either f is I-to-1 or their exists |
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pairwise different pairs (i, Yi,),---,(Ti,y;,) € [n] X [n]
such that x;; # y;, but f(x;;) = f(yi;) for all j € [l], the
l-pairs distinctness problem is to determine which is the case,
with success probability at least 2/3.

Note that when [ = 1, [-pairs distinctness reduces to the el-
ement distinctness problem, whose quantum query complexity
is ©(n?/3) [41, 44]; when | = n /2, I-pairs distinctness reduces
to the collision problem, whose quantum query complexity is
O(n'/?) [44, 53]. Inspired by the reduction from the collision
lower bound to the element distinctness lower bound in [44],
we prove a more general quantum lower bound for [-pairs
distinctness:

Proposition IX.1. The quantum query complexzty of l-pairs

distincmness is at least Q(n®), where [* = ni—e,

Proof. Assume the contrary that the quantum query com-
plexity of [-pairs distinctness is o(n®). Consider a function
f: [n] = [n] that is promised to be either 1-to-1 or 2-to-1. By
[53], it takes ©(n'/3) quantum queries to decide whether f is
1-to-1 or 2-to-1.

Denote S to be a subset of [n], where |S| = [2v/nl] and the
elements in S are chosen uniformly at random. If f is 1-to-1,
then f restricted on S, denoted f|s, is still 1-to-1 on S. If f
is 2-to-1, denote the set of its images as {ay,...,a,/2}. For
any j € [n/2], denote X; to be a binary random variable that
equals to 1 when the collision pair of a; appears in S, and
equals to 0 otherwise. Then for any j, k € [n],j # k,

PriX; =1] = @, Pr[X; X, = 1] = (li‘)

(3) (7)
Denote X = Zn/ > X; j» which is the number of collision pairs
in S. By llnearlty of expectation,

n SIS = 1)
5 * m Z 2l. (IX.Z)

(IX.1)

E[X] =

On the other hand,

Var[X] = E[X?] - E[X]? (IX.3)
n/2
= ZE ]+ ) E[X;X:] - E[X]? (IX.4)
J#k
2
_n. ('?) NI ('?) 2 (“3')2
2 (5 2\2 1 4 @
(IX.5)
<2l (IX.6)
Therefore, by Chebyshev’s inequality,
PriX <] <Pr[X <E[X]-2V2]| <1/4  (IX.7)

In other words, with probability at least 3/4, f|s on S
has at least [ collision pairs. By our assumption, it takes
o(|S|*) = o(n®/? - nl/3=2/2) = o(n'/3) quantum queries
to decide whether f|s is 1-to-1 or has [ collision pairs, which
suffices to decide whether f is 1-to-1 or 2-to-1. However, this
contradicts with the Q(n'/?) quantum lower bound for the
collision problem [53]. O

20

1) a = 0: For 0-Rényi entropy estimation, we use Propo-
sition IX.1 to give quantum lower bounds for both support
coverage estimation and support size estimation (both defined
in Section VIII).

Proposition IX.2. The quantum query complexity of support
coverage estimation is Q(\f + 1/6) for all 1 <e< %

Proof. On the one hand, [45, Theorem 55] proved that for
e = O(1), the quantum query complexity of support coverage
estimation is €(y/n). Therefore, it suffices to prove that
Q(le—//s) is a quantum lower bound when % <e< %
Because 1 < e < {5, we may denote € = n” where
r € [—1,0]. Consider two distributions p; and ps encoded
by Op,,0p, [n] - X (S = n in (1.7)), where the
nonzero probabilities in p; are 1/n for n times, and the
nonzero probabilities in p, are 2/n for [ = [6ne| times and
1/n for n — 21 times. In other words, O,, is injective, and
Oy, has [ collision pairs but otherwise injective. On the one
hand, by Proposition IX.1, it takes 2(n®) quantum queries to
distinguish between O, and O,,, where

2
[*=n3"¢%

2 1 1 r
— >-—- V -1
- 3(2+r)+0(1ogn)*3 6 =101
(IX.8)
As a result, n® > nt/3-7/6 = 2117//:)
On the other hand,
(1—(1-1/n)"
Sn(pr) _m-(1-(-1/m)") & (IX.9)
n n €
Sulpa) _ 1 (1= (1=2/m)") + (n—20)- (1-(1-1/n)")
n n
_ 2
o1t _W1-1/e)f (IX.10)
e n
As a result,
B 2
Sn(pl) - Sn(P2) ~ l(l 1/6) > %. (IX.11)
n n n

Therefore, if a quantum algorithm can estimate support cover-
age with error e, it can distinguish between p; and ps with suc-
cess probability at least 2/3. In conclusion, the quantum query
complexity of support coverage estimation is Q( 1//2 ) [

Similar to the proof of Proposition IX.2, we can prove (with
details omitted):

Proposition IX.3. The uantum query complexity of support
size estimation is Q( v ) for all 1 <e< 1

2) < a < 3: Using Proposition IX.1, we show that the
quantum query Complex1ty of entropy estimation when 2 z <
o < 3 is also Q(n3 /ed ), as long as L<e<l

Proof. We consider the case o = 1, i.e., Shannon entropy
estimation; the proof for other o € [%, 3] is basically identical.

Consider two distributions p; and p, encoded by O, O, :
[n] = X (S =n in (I.7)), where the nonzero probabilities in
p1 are 1/n for n times, and the nonzero probabilities in py
are 2/n for | = [ne/log?2] times and 1/n for n — 21 times.
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In other words, O,, is injective, and O, has [ collision pairs « 0<Q(c,d) < 1if ¢|nd. Only if c|nd, S - (£ + (2=94)
but otherwise injective. On the one hand, similar to the proof is an integer and the distribution {p;}7 ; is valid under
of Proposition IX.2, it takes it takes Q(n'/3~</%) quantum our model in (1.7).
queries to distinguish between O,, and O,,. Furthermore, we consider the property testing problem of

On the other hand, determining whether max; p; = % or max; p; > % where

1 the accept probability should be at most 1/3 for the former
H(py) =n- n logn = logn; (IX.12)  case and at least 2/3 for the latter case. As a result,
2 n 1 21 e 0<Q(c,0) <1/3: In this case pZ: L for all i € [n).
H(pz)_l-glogg—&—(n—ﬂ)-glogn—logn—glogz e 2/3 < Qe d)<11fc|nd 2% In this case, 314
(IX.13) such that p; = + (n 5) > 1+e
As a result, . 2/3 < Qe,d) < 1if cInd, d 'S —<5: In this case, 3i
_ 1 d 1+e
9 such that p; = - — ¢ > ==.
|H(p1) — H(p2)| = —log2 > 2e. (IX.14)  Therefore, we have
. o ‘ c 0<Q(d) < 1forde{—|725],.... 5k
Therefore, if a quantum algorithm can estimate support cover- « 0<Q(1,0) < 1/3;
ith , it distinguish bet d ith suc- e

age with error ¢, it can distinguish between p; and p, with suc «2/3<Q(1,d) <1forde {- Ln(n 1)J ’_[FSH U
cess probability at least 2/3. In conclusion, the quantum query { [ S ] s
complexity of support coverage estimation is Q( 1//2) O nn—1) 12707 m 0

Using Paturi’s lower bound [68], we have
Note that when o = 1 (Shannon entropy), [45, Corollary L S J 5
64] showed that the quantum query CQmplexity is at least deg, Q(1,d) > Q D LR Q( @) (IX.15)
Q(y/n) when ¢ = O(1). Together with the proof above, [eS/n(n —1)]
Q 5/ev) i tum 1 bound for Sh
(v/n + n3/es) is a quantum lower bound for Shannon Therefore, deg Q(c, d) > deg, Q(1,d) = (/7 /e). L)

entropy estimation.
Proof of Proposition IX.5. The proof is similar to that of
Proposition IX.4. Following the symmetrization technique, we

. still obtain a bivariate polynomial Q)(c,d) where such that
We use the polynomial method [43] to show quantum the degree of @ is at most two times the query complexity

C. Polynomial method (3 < o < 00)

lower bounds for entropy estimation when 3 < o < oo. of min-entropy estimation, and ¢ € {1,...,n — 1},d €
Inspired by the symmetrization technique in [53], we obtain {_L (Sc )J7 ...,2},0 < Q(¢,d) <1 if ¢|nd. Furthermore,

a bivariate polynomial whose degree is at most two times we consider the property testing problem of determining
the corresponding quantum query complexity. Next, similar to  \yhether Zie[n] P < na2—1 or Zie[n] Py > 72;5_25’ where the

[54], we apply Paturi’s lemma [68] to give a lqwer bound on  accept probability should be at most 1/3 for the former case
the degree of the polynomial. To be more specific, we prove:  anq at least 2/3 for the latter case. We also assume ¢ = 1.

1/ _
Proposition IX.4. The quantum query complexity of estimat- On the one hand, when 0 < d < Lnni,ll : %J’ we have

ing min-entropy with error € is Q(¥=). 1y (n—L)d 1)d < ﬁ, and
Proposition IX.5. When the constant o satisfies 1 < a < 00, Z o< ( 1 >a - 1)( 1 (1 1 ))a
the quantum query C(l)mlzlexity of estimating a-Rényi entropy et t = \pl-1/a n—1 nl-1/e
with error € is Q(@) 2
< . (IX.16)
noa—1

Without loss of generality, we assume that the oracle O, in
(1.7) satisfies n|S, otherwise consider the oracle O,,: [Sn] — On the other hand, because (1 + m)® ~ 1+ ma when m =
[n] such that O}, (s 4 S1) = O,(s) for all s € [S] and I € [n]; o(1), we have

this gives an oracle for the same distribution. 1 1 3e o

We consider the special case where the probabilities {p; }1_, (n—1) (n 1 (1 T oi-lja  gpi-1/a ))
takes at most two different values; to integrate the proba- 2+ % 1 3e a
bilities, we assume the existence of two integers ¢, d where T ot ( pl-1/a T opl-1 /a)
c€e{l,...,n— 1}, such that p; = % —§ for n — ¢ different 1 1 3e @
’sin {1,...,n}, and p; = % + % for the other ¢ 7’s in - (n—1)a-1 ( T opl-t/a anlfl/a)
{1,...,n}. —% %(1_’_%)(1 (1X.17
Proof of Proposition IX.4. Following the symmetrization 1n 3 + 3¢
technique in [53], we obtain a bivariate polynomial Q(c,d) N (6 e /a) (IX.18)
where such that the degree of () is at most two times the >0 (IX.19)
query complexity of min-entropy estimation, and: -

ece{l,...,n—1}andd € {— Ln(n C)J .,2}. Thisis for large enough n. As a result, when d > [% :

because p; Z 0 for all i € [n]. S] we have Zze (] pe > 72;25
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Therefore, we have
¢« 0<Q(1,d) <1forde{0,...,2};

'nlt?

e 0<Q(1,d) < 1/3 for d € {0,..., |2 S}

n—1 n
c2/3 < Q(Ld) < 1 ford e {[Utidainloot
s1,..,5).

Using Paturi’s lower bound [68], we have

nt/e—1 S|(S _ |n/*=1 S
deg, Q(1,d) ZQ<\/L n—1 nJ(n L n—1 nJ))

{M.EW

n—1 n

1_
2

~o(™ )

Therefore, deg Q(c,d) > deg, Q(1,d) = Qanz~2s [¢). O

(IX.20)

Technically, our proofs only focus on the degree in d for
c = 1, but in general it is possible to prove a better lower
bound when analyzing the degree of the polynomial in ¢ and
d together. We leave this as an open problem.
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APPENDIX A
THEOREM I1.2: MULTIPLICATIVE QUANTUM CHEBYSHEV
INEQUALITY

The main technique that we use is Lemma 4 in [2], which
approximates a random variable with an additive error as long
as its second-moment is bounded:

Lemma A.1 (Lemma 4 in [2]). Assume A is a quan-
tum algorithm that outputs a random variable X. Then for
€ where 0 < € < 1/2 (multiplicative error), by using
O((1/€)log®?(1/€) loglog(1/€)) executions of A and A=Y,
Algorithm 2 in [2] outputs an estimate E[X] of E[X] such
that®

Pr [|E[X] - E[X]| > e(vE[X?] +1)?] < 1/50.

Based on Lemma A.l and inspired by Algorithm 3 and
Theorem 5 in [2], we propose Algorithm 10.

Proof of Theorem I1.2. Because Var[X] < o?E[X]? < 022,
by Chebyshev’s inequality we have

Pr[|m — E[X/ob]| > 4] < 1/16.

(A1)

(A2)

Therefore, with probability at least 15/16 we have |m —
E[X/ob]| < 4. Denote X5 = 2; — m, which is the random
variable output by B; Xp . = max{Xp,0} is then the

8The original error probability in (A.1) is 1/5, but it can be improved to
1/50 by rescaling the parameters in Lemma 4 in [2] up to a constant.

22

Algorithm 10: Estimate E[X] within multiplicative error
€.

1 Run the algorithm that gives a, b such that E[X] € [a, ];

2 Set A" = A/ob;

3 Run A’ once and denote m to be the output. Set
B=A —m;

4 Let B_ be the algorithm that calls 5 once; if B outputs
x > 0 then B_ outputs 0, and if B outputs x < 0 then
B_ outputs z. Similarly, let B4 be the algorithm such
that if B outputs z < 0 then B outputs 0, and if B
outputs x > 0 then B outputs x;

5 Apply Lemma A.1 to —B_/6 and B, /6 with error ;%
and failure probability 1/50, and obtain estimates fi_
and i, respectively;

6 Output E[X] = ob(i — 6Ji_ + 67i4);

output of B4 and Xp _ := min{Xp,0} is the output of B_.
Assuming [m — E[X/ob]| < 4, we have

E[X2] :E[((% —E[%] + (E[%} —m))z] (A3)
<28 (5 -~ Elzy)) ] + e[ (Rl - 7) ]

o o o (Ad)

< 2(12 +4?) = 34. (A.5)

Therefore, E[(Xp/6)?] < 34/36 < 1, hence

E[(Xp.+/6)2] <
Lemma A.1, we have

1 and E[(—Xp_/6)?] < 1. By

€a

fie — E[-Xp,—/6]| < 57 (A.6)
~ €a
iy —E[Xp,4/6]] < T20b (A7)

both with failure probability at most 1/50. Because

E[X] = ob(m + E[Xp]) = ob(m + E[Xp 4] — E[-X5,_]),
(A.8)

with probability at least 15/16 - (1 — 1/50)% > 9/10, we have
[E[X] — E[X]| < ob- (6]fi- — E[-Xp,_ /6]

+ 6|y —E[Xp 4 /6]]) (A9)
e€a
<ob-2-6-— =eca < . (A.
<ob-2-6 1200 ea < eE(X). (A.10)
O
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