
Visual Search Engine for Handwritten and Typeset
Math in Lecture Videos and LATEX Notes

Kenny Davila
Center for Unified Biometrics and Sensors

University at Buffalo

Buffalo, NY 14260

Email: kennydav@buffalo.edu

Richard Zanibbi
Department of Computer Science

Rochester Institute of Technology

Rochester, NY 14623

Email: rlaz@cs.rit.edu

Abstract—To fill a gap in online educational tools, we are
working to support search in lecture videos using formulas
from lecture notes and vice versa. We use an existing system to
convert single-shot lecture videos to keyframe images that capture
whiteboard contents along with the times they appear. We train
classifiers for handwritten symbols using the CROHME dataset,
and for LATEX symbols using generated images. Symbols detected
in video keyframes and LATEX formula images are indexed using
Line-of-Sight graphs. For search, we lookup pairs of symbols that
can ‘see’ each other, and connected pairs are merged to identify
the largest match within each indexed image. We rank matches
using symbol class probabilities and angles between symbol pairs.
We demonstrate how our method effectively locates formulas
between typeset and handwritten images using a set of linear
algebra lectures. By combining our search engine (Tangent-V)
with temporal keyframe metadata, we are able to navigate to
where a query formula in LATEX is first handwritten in a lecture
video. Our system is available as open-source. For other domains,
only the OCR modules require updating.

I. INTRODUCTION

Despite the continuous growth in production of lecture

videos, there has been limited attention to the problem of

effective indexing and retrieval for graphics such as math in

videos. Standard video search engines rely mostly upon text-

based search of manual annotations, which are rare because

of the effort needed to produce them.

To address this situation, we have created the visual search

engine illustrated in Figure 1. Here we use a LATEX formula im-

age to locate where the formula first appears on the whiteboard

in a matrix algebra lecture. Notice that this is a cross-modal

search: a typeset image is used to query images of handwritten
whiteboard contents. The system we use to extract keyframes

from video records metadata indicating when each connected

component on a keyframe appears [1], allowing us to navigate

to where the formula starts to be written using a single click.

Our search engine also supports the reverse search, from

handwritten query images selected from whiteboard keyframes

to LATEX formula images from course notes (see Figure 2).

We avoid indexing recognized formulas, as recognition

rates for isolated handwritten formulas are relatively low

[2]. Instead, we support image-based search of graphics in

typeset notes and handwriting within lecture videos using a

new retrieval model. This model is a generalization of our

previous method for math formula retrieval [3] in three key

ways: 1) math is represented in images rather than symbolic

representations such as LATEX code, and these images may

contain other content (e.g., text and diagrams), 2) we use a

non-hierarchical structure representation (Line-of-Sight (LOS)

graphs), and 3) we use no language models apart from that

represented in symbol recognizers, allowing extension to other

graphic types.

Our search engine is described in Sections III-V. Given a

binary image, handwritten or typeset symbol recognition is

applied. Detected symbols are then used to construct a Line-

of-Sight graph, with edges between pairs of symbols that ‘see’

one another along a straight line. Candidate symbol labels

and angles between LOS symbol pairs (edges) are used to

construct an inverted index from symbol pairs to formula

images. Formula image search is performed using a two-

layer model. In the first layer, candidate images are identified

using the LOS inverted index. In the second layer, matched

symbol pairs are aggregated to identify the largest matching

sub-graphs in each image. We present different metrics for

ranking matching sub-graphs using symbol class confidences

and the angles between matched symbol pairs in Section V.

In our experiments (Sections VI-VII), we use LATEX for-

mula images and handwritten formulas in video keyframes

to demonstrate that the proposed model is effective for both

within-modal and cross-modal search. A summary and op-

portunities for future work are provided in Section VIII.

Source code for our system (Tangent-V) and data used in our

experiments are available.1

II. RELATED WORK

Our search engine is similar in spirit to word-spotting

techniques, which avoid recognizing individual handwritten

characters to improve recall (e.g., [4]). We avoid direct recog-

nition of math because it is another hard problem: state-of-

the-art methods have achieved somewhat low recognition rates

(67.65%) for handwritten math with stroke data available [2].

More broadly, our approach is related to Content-Based

Image Retrieval (CBIR). Many CBIR approaches are derived

from the Bags-of-Visual Words (BoVW) model [5], with

candidates selected by matching shared local descriptors like

1https://www.cs.rit.edu/∼dprl/Software.html

50

2018 16th International Conference on Frontiers in Handwriting Recognition

978-1-5386-5875-8/18/$31.00 ©2018 IEEE
DOI 10.1109/ICFHR-2018.2018.00018

Fig. 1. Finding a LATEX Formula within a Lecture Video. When the user clicks on the first hit in the search interface at left, the lecture video navigates to
where the leftmost ‘A’ is first drawn (we have advanced the video). Extracted whiteboard keyframes [1] that we use for video indexing are shown at right.

SIFT [6]. It is possible to learn local features or fixed-

length vector representations for retrieval of images using

different techniques including Deep Learning [7]. In math,

the spatial position of a symbol affects its meaning, and there

are multiple CBIR techniques that consider spatial constraints.

Spectral matching can be used at first, and spatial verifica-

tion techniques like RANSAC [8] can be applied later. It

is also possible to identify affine transformations that align

multiple images of a single object, and then select the most

likely transformation as the match [9], [10], [11]. Additional

robustness to elastic deformation can be achieved by applying

topological verifications [12]. The final number of candidates

to verify spatially is reduced if the index encodes some spatial

information to ensure that initial candidates have some spatial

consistency with the query [13].

Our work also falls within the field of Mathematical In-

formation Retrieval (MIR) [14]. Math expressions are hier-

archical, and thus hard to represent or match using text-

based representations. We distinguish two MIR modalities:

Symbolic and Image-based. Symbols and structure are known

in symbolic formula representations (e.g., LATEX, MathML),

while they are initially unknown for formula images. Math

retrieval tasks held at conferences have supported the im-

provement of symbolic MIR systems (e.g., [15]). However,

few approaches have been proposed for image-based MIR,

and none have used standard benchmarks for evaluation. In

the work of Marinai et al.[16], isolated mathematical symbol

images are indexed and retrieved using a BoVW approach.

Zanibbi and Yu [17] used dynamic time warping over pixels

projections to search for typeset formula images in rendered

PDF documents using handwritten queries. Chatbri et al. [18]

use connected component matching to cast votes for query

matches in images.

In our work, we apply an open-source math symbol recog-

nition system [19] to obtain candidate labels for Handwritten

and LATEX-rendered math symbols, and use angles between

matched symbol pairs to match visual structure. An initial

topology encoding is stored in the index, and an additional

spatial verification step is applied during retrieval.

III. CHARACTER RECOGNITION

Our visual search engine retrieves formulas based on pairs

of symbols and their identities, as detected within binary

images. In this Section we describe how we train our clas-

sifiers, and construct symbol class probability vectors for use

in indexing and retrieval.

Classifiers. We have adapted our open-source handwritten

math symbol classifier [19] to work with binary images. The

classifiers are constructed using Random Forests that return

probabilities sorted in decreasing order of class likelihood.

Classes are selected from the top of each list using a min-

imum cumulative probability (80%), taking at most n class

labels (n = 10). The classifier is shape descriptor-based,

including line crossings, 2D fuzzy histograms, 2D orientation

histograms, and more general trace features [19]. We adapted

(a) Whiteboard LOS Graph (b) Pruned LOS Graph

(c) LATEX Image (d) LATEX → Whiteboard

(e) Handwritten Formula (f) Whiteboard → LATEX

Fig. 2. Visual Formula Search using Line-of-Sight (LOS) Graphs. A typeset
query and a handwritten query cropped from a whiteboard image are shown.

51

Fig. 3. 3D Symbol Displacement Vectors. Bottom: overlapping symbols have
the child’s center projected onto a sphere around the parent symbol.

this method for off-line data by using connected component

contours as the input traces.

Symbol Classes. Our lecture videos have associated

LATEX notes; the LATEX formulas define the symbol classes

expected in the corresponding video. We train a specialized

symbol classifier with no more than 50 classes per lecture.

Remaining symbols are added to a rejection class (“Junk”) for

shapes unlikely to belong to math expressions in that lecture.

Training. We train one handwritten and one typeset clas-

sifier per video. To train handwritten symbol classifiers, we

use expressions from the CROHME 2016 handwritten formula

dataset [2]. To improve recognition results for matrices, we

expand the dataset by adding the matrix recognition subtask

test set. To reduce the index size and improve retrieval

performance, we group classes with similar shapes (e.g., ‘x’

and ‘X’), reducing the original 101 classes in CROHME to at

most 91 classes.

We train one typeset symbol classifier per video (up to 50

classes, without a reject class). For each of our 91 CROHME

symbol classes, we generate 1000 LATEX images, using small

random aspect ratio distortions (±10%) for characters drawn

in different fonts, for a total of 91,000 training symbols.

Segmentation. For our first prototype, we used a simple

segmentation technique. Initially all connected component are

classified. We then try to join pairs of components into single

symbols (e.g., ‘=’, ‘i’). We use a k-nearest neighbour graph

(k = 2) to identify candidate merges. Two components are

joined if their combined classification confidence is higher

than that for each individual component.

IV. VISUAL CONTENT EXTRACTION AND INDEXING

In this work we assume that lecture videos are recorded

from a single, stationary camera (single-shot). These videos

are preprocessed to extract handwritten whiteboard contents.

We have used our open-source lecture summarization system

[1] to create binary image keyframes containing the extracted

whiteboard contents in a video. Formulas are extracted from

LATEX course notes using LaTeXML2 and rendered as binary

images.

Displacement Vectors. We define the relative position of

two symbol centers using a 3D unit vector 〈dx, dy, dz〉. Most

displacements can be modeled by just 〈dx, dy〉. However, this

does not represent when one symbol partially or completely

2https://dlmf.nist.gov/LaTeXML

contains the other (see Figure 3). We add a third dimension dz
to capture overlap. dz is non-zero when the symbol centers are

at a distance smaller than that from the center of parent symbol

u to its enscribing circle. We normalize all displacement

vectors to make them unit vectors.

Graph Construction and Indexing. We construct a Line-

of-Sight (LOS) graph over symbols (see Figure 2a), and then

prune edges between symbols more than twice the median

distance apart (see Figure 2b). This pruning reduces both

the index size and retrieval times. Displacement vectors for

edges (see Figure 3) are indexed by their lexicographically

sorted symbols. For example, the symbol displacement vectors

for b → a and a → b are both stored at (a, b), reversing

the vector for b → a. Each edge has a unique identifie to

allow aggregating matches for symbols with multiple OCR

hypotheses. Each symbol pair for an edge is stored using

all possible class combinations. For example, displacement

vectors and class confidences for two symbols with hypothesis

lists 〈b, 6〉 and 〈w〉 are stored in postings for (b, w) and (6, w).

V. VISUAL RETRIEVAL MODEL

Our system uses a two-stage retrieval model. The first stage

quickly finds candidate matches in the inverted index, and the

second stage finds the largest query subgraphs in candidates,

ranking hits based on symbol confidences and angles between

symbol pairs.

Stage 1: Lookup. Query LOS edges are retrieved by

lexicographically sorted symbol pairs (e.g., (a, b), (0, a)). For

binary image queries, OCR results are converted to a set

of (parent, child) symbol alternatives. Symbol pairs with

matching labels, consistent spatial alignment, and similar rel-

ative sizes are returned. Different symbol hypotheses for each

candidate edge are aggregated using the unique edge identifiers

stored in the posting lists. For example, after applying OCR

to ‘x2’ we obtain one LOS edge with parent and child symbol

hypotheses 〈x,X〉 and 〈2〉. We retrieve postings for both (2, x)
and (2, X) in the index with similar size ratios and spatial

arrangement. We aggregate matches for candidate edges with

an entry in both posting lists.

Stage 2: Structural Alignment. Next we combine indi-

vidual LOS edge matches on a candidate into a subgraph

aligned with the query (see Figure 2). First, connected LOS

subgraphs are computed and then joined if they are spatially

consistent with the query. Finally, a greedy selection for the

highest scoring alignment is produced (scoring functions are

defined below). Due to space restrictions, we provide just a

brief summary here (see [20] for details).

The initial connected subgraph matches are obtained by iter-

atively merging edge sets sharing at least one symbol that also

preserve a one-to-one query/candidate symbol mapping. Then,

connected subgraph matches on the candidate are merged if

they do not share symbols and there is a path of length ≤ 4
connecting them.

A drawback of using paths to connect matches is that the

compound match may be spatially inconsistent with the query

layout. We restrict match growing using a spatial distortion

52

cost. This cost is based on an estimated translation and

scale ratio between aligned query and candidate nodes. After

projecting the candidate into the query space, we compute the

average displacement for corresponding query and candidate

nodes (symbols). If this cost exceeds a threshold, matched

nodes sharing a path will not be joined. Next, subgraph

matches on a candidate are pruned by greedily keeping at

most the best scoring match per candidate symbol.
The LOS-graph refining step described in Section IV some-

times eliminates relevant connections from the graph. This

might lead to queries matching disjoint subgraphs from a can-

didate. In order to recover from such errors, we greedily merge

disconnected matches which might not have a path connecting

them, but that preserve a strict one-to-one query/candidate

symbol mapping as well as a low spatial distortion cost.
Note that in the case of lecture videos, it is possible to

find identical matches for the same query across contiguous

keyframes representing the same content from the whiteboard.

In such cases, the last step is to group matches across

contiguous keyframes of the same video that have an area

overlap above 50%. For rendered LATEX, matches should be

grouped for images associated with the same LATEX string.
Ranking. A candidate subgraph match is scored based

on corresponding symbol pairs from the query and a can-

didate formula (M). A matched symbol pair is represented

by (Q,C), where Q = ((Ωq1 , q1), (Ωq2 , q2)) and C =
((Ωc1 , c1), (Ωc2 , c2)). Ωq1 is a set of possible symbol identities

for q1. The corresponding three-dimensional displacement

vectors between query and candidate symbol pairs are the

unit vectors �q and �c. The conditional probability of symbol

class ω given visual features for query symbol q1 is denoted

by p(ω|q1). We consider two ways to combine conditional

probabilities for matching labels, using their minimum m = ∧
or their product m =

∏
, as defined by f :

f(ω, q, c) =

{
p(ω|q) p(ω|c) if m =

∏
min (p(ω|q), p(ω|c)) otherwise

(1)

Optionally, a pair of elements will only be matched if their

size ratio is similar as defined by sr(Q,C) ≥ 0.5:

sp(u, v) =
diagonal (u)

diagonal (v)
(2)

sr(Q,C) =
min (sp (q1, q2) , sp (c1, c2))

max (sp (q1, q2) , sp (c1, c2))
(3)

We consider two match scoring functions. First, function

α(M) simply adds the product of symbol confidences and

angular differences, summing over symbol classes shared

between matched query and candidate symbols. We restrict

angular differences between ±45◦.

αΩ(Q,C) =
∑

ωi ∈ Ωq1 ∩ Ωc1

ωj ∈ Ωq2 ∩ Ωc2

f(ωi, q1, c1) f(ωj , q2, c2)

(4)

s∠(Q,C) =

{
�q·�c−cos(45◦)
1−cos(45◦) , if �q · �c ≥ cos(45◦)

0 otherwise
(5)

α(M) =
∑

(Q,C)∈M

αΩ(Q,C) s∠(Q,C) (6)

Our second scoring function h(M) generalizes the Max-

imum Subtree Similarity (MSS [21]). MSS is the harmonic

mean of symbol and relationship recall in expression trees. The

harmonic mean prefers joint optimization of the two quantities:

for a given sum of symbol and relationship recall scores, the

highest value is obtained when the scores are equal. Here,

we are using undirected graphs rather than trees, and need to

account for symbol probabilities and angles.

Let M contain the corresponding query and candidate

symbol pairs in match, and |NQ| and |EQ| represent the

number of nodes and edges in the query Line-of-Sight graph.

Now we can define the Line-of-Sight Similarity (h) by:

RΩ(M) =
1

|NQ|
∑

(q,c)∈M

∑
ω∈Ωq∩Ωc

f(ω, q, c) (7)

R∠(M) =
1

|EQ|
∑

(Q,C)∈M

s∠(Q,C) (8)

h(M) = 2
RΩ(M) ·R∠(M)

RΩ(M) +R∠(M)
(9)

where RΩ is probabilistically-weighted symbol recall, and R∠
is the cosine similarity-weighted edge recall (with a tolerance

of ±45◦).

VI. EXPERIMENTAL DESIGN

To test the effectiveness of the proposed method, we

used selected queries to evaluate retrieval within the set of

LATEX formulas in the course notes, within the extracted

keyframes of the videos, and between these two collections. In

our experiments, the goal was to recover the query formula ex-

actly within an image, possibly with additional elements (e.g.,

additional symbols in a larger LATEX formula, or additional

elements in a video keyframe image).

Data. We use the publicly available AccessMath dataset.3

AccessMath contains 20 lecture videos recorded using a still

camera in the classroom. The resolution of each lecture

video is 1080p. A total of 13 out of 20 lecture videos are

accompanied by lecture notes in LATEX format. We experiment

on this subset of videos with notes describing most expressions

found in each video.

Test Queries. We pseudo-randomly choose 20 unique

queries for evaluation based on the following criteria. First,

each query is randomly selected from the rendered LATEX ex-

pressions from the lecture notes. Second, the query must

also appear on at least one key-frame of the corresponding

lecture video with no more than 1 symbol of difference.

3https://www.cs.rit.edu/∼dprl/Software.html#accessmath

53

= �0 x + 2y = 3

[−2
3

]
2z + w (1/3, 4/3) =

[
a
b

]
�v2 b1 = b2/3

a, b ∈ R �0 ∈ S Mb(R) r(A)

(
π
e

)
�u ∈ V f(x) = A

T
+ A

V =

{(
x
y

)
: x, y ∈ R

} [
1 0 −5

19
0 1 27

19

] ⎡
⎣1 0 0 2
0 0 0 3
0 0 1 1

⎤
⎦ R2�R3−−−−−→

⎡
⎣1 0 0 2
0 0 1 1
0 0 0 3

⎤
⎦

(
1 2
3 4

)(
0 7
1 2

)
�=

(
0 7
1 2

)(
1 2
3 4

)

Fig. 4. Twenty Test Queries used in our Experiment. For space, only LATEX versions are shown.

Third, the query must have at least 3 symbols. Fourth, the

query is not a sub-expression of any other query previously

selected. Finally, the sampled query does not completely

contain any other query previously selected. The 20 rendered

LATEX expressions selected are used as typeset LATEX queries

and their corresponding handwritten versions extracted from

the binary key-frame images. The final typeset queries from

rendered LATEX expressions are shown in Figure 4.
Indexing. After lecture video preprocessing, a total of 219

binary image keyframes binary are indexed from 13 videos,

producing 2185 symbol pair index entries, and 788,780 pair

instances in total. A total of 1471 rendered LATEX formulas

from 937 unique LATEX strings are indexed on a parallel index

for the lecture notes, which has 2,058 symbol pairs index

entries, with 152,712 pair instances in total. The lecture video

index takes 146 MB on disk while the lecture notes index

requires 28.8 MB.
Retrieval Metrics. We evaluate retrieval performance using

Recall@10 and Mean Reciprocal Rank (MRR). In this exper-

iment, a target match is an identical match of the the query,

possibly with additional unmatched elements. For query q in

the evaluation set Q, we define r as the position in the ranked

results where the query is found. The Reciprocal Rank (RR)

of q is defined as follows:

RR =

{
1
r if 1 ≤ r ≤ rmax

0 otherwise

where rmax = 10 as we only consider the top-10 matches for

each query. The Mean Reciprocal Rank (MRR) as the mean

of RR for all queries in the evaluation set Q. Recall@10 is

the percentage of evaluation queries where the target match is

found within the top-10 results.

VII. RESULTS AND DISCUSSION

Search Modalities. Evaluation results are shown in Table

I. Typeset images are very regular and both classification of

symbols and LOS-graph structures are consistent for identical

sub-expressions. On the other hand, handwritten images have

a higher number of classification errors and inconsistency in

graph structures. However, it was noticed that despite the

existing errors, the system was able to find most targets as

long as at least one small portion of the query was matched

within the target image.
The highest Recall and MRR metrics are obtained by the

same-modality search (see Table I), and as expected cross-

modality search results is less accurate. Again, this is mostly

due to the differences in representation consistency across

modalities. In particular, the hardest modality is using hand-

written content to match rendered LATEX, as confirmed by this

modality having the lowest MRR values in Table I. Hand-

written queries have more irregularities and lower top label

confidences, and they are used to match very regular images

where such errors are rare, and despite these difficulties, our

model is capable of finding most targets within the top-10

results for all conditions of this modality.

Symbol Recognition. All the handwritten content in the

lecture videos used comes from a single writer. However,

the math symbol classifier training set comes from a set of

different writers, achieving a recognition rate of 88.85% in

the Isolated Symbol Recognition task from the CROHME

2016 competition [2]. In a practical setting, we would expect

that collections of lecture videos for a single course will have

handwritten content produced by a single writer most of the

time. The symbol classifier is expected to make some mistakes,

however, we would expect such mistakes to be consistent for

similar shapes given a single handwriting style, making it

possible to match queries within writer even in the presence

of multiple classification errors.

Ranking Metrics. On average, the proposed h(M) con-

sistently finds the targets at better ranks than α(M). We

observe that a common mistake made by the α(M) metric is

overweighting partial matches with very consistent pairs (high

confidence labels and cosine similarities) over larger exact

matches containing more inconsistent pairs (lower confidence

labels and cosine similarities). This behavior can have a

strong effect, especially for cross-modal search. On the other

hand, h(M) can be more balanced by preferring matches

maximizing both node recall (based on label confidence) and

edge recall (based on cosine similarity). This metric tends to

prefer more spatially consistent matches than α(M).

In most cases, using the minimum of paired label confi-

dences provided better MRR results than using the product.

The only exception is found for h vs h∧ in LATEX to White-

board matching, where the difference can be explained by two

queries having bad matches with good spatial alignment being

ranked higher than targets having lower spatial consistency.

Using the size ratio filter sr (Q,C) also seems to help in

most cases as long as a tolerant threshold is used. Extremely

bad matches can be filtered very early in the processing when

this filter is applied. However, cross-modality search is badly

hurt if the selected threshold is too strict since size ratios

54

TABLE I
FORMULA IMAGE SEARCH RESULTS. RANKING METRIC α USES THE PRODUCT OF SYMBOL AND ANGULAR CONFIDENCES, WHILE h USES THE

HARMONIC MEAN. ∧ AND s REPRESENT USING MINIMUM SYMBOL CONFIDENCES RATHER THAN PRODUCTS, AND USING A SIZE DIFFERENCE

THRESHOLD, RESPECTIVELY. MRR@10 IS THE MEAN RECIPROCAL RANK WITH QUERIES APPEARING AT RANK 11 OR LOWER SCORED AS 0.

Recall@10 MRR@10

α α∧ α∧s h h∧ h∧s α α∧ α∧s h h∧ h∧s

LATEX 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00
Whiteboard 0.95 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00
LATEX → Wtbd 0.95 0.95 0.90 0.95 1.00 0.95 0.66 0.69 0.71 0.89 0.84 0.86
Wtbd → LATEX 0.80 0.85 0.85 0.90 0.90 0.90 0.63 0.71 0.74 0.74 0.78 0.84

for LATEX are very consistent, but handwriting has more size

variations (even for a single writer).

Execution Times. Tangent-V is implemented in Python,

and evaluates queries using a single thread. Using a laptop

with an Intel core i7-4710 HQ processor and 16 GB of RAM,

it takes average times of 1.0s and 1.3s to process same-

modality LATEX queries using α (M) and h (M) respectively.

For within-modality whiteboard queries, it takes average times

of 34.1s and 41.5 s α (M) and h (M) respectively. Using a

faster programming language (e.g., C/C++) and early pruning

for bad candidates could be used to speed up our approach.

VIII. CONCLUSION

We have presented a new search engine to bridge between

formulas in whiteboard images extracted from lecture videos

and formula images from typeset course notes (see Figure 1).

Not unlike how word spotting techniques avoid challenges in

recognizing handwritten text, we avoid recognizing structure

in handwritten formulas to obtain strong search results using

multiple symbol class hypotheses and angles between symbol

pairs. Our system is available as open source, and could be

adapted to other graphic types simply by retraining the symbol

recognizers.

There are a number of directions for future work. Currently

we do not index individual symbols. Can unsupervised symbol

feature similarities rather than known a priori symbol classes

be used? How can we accelerate search? How should we

use vector-format images such as PDF, when exact symbol

identities and classes are known, but are unknown in binary

images? Finally, we might provide the math-aware operations

such as variable unification, wildcard matching, and symmetry

for commutative operators (e.g., ‘a+b’ matching ‘b+a’) found

in symbolic math search engines [14].

Acknowledgments. This material is based upon work sup-

ported by the National Science Foundation (USA) under Grant

No. HCC-1218801.

REFERENCES

[1] K. Davila and R. Zanibbi, “Whiteboard video summarization via spatio-
temporal conflict minimization,” in International Conference on Docu-
ment Analysis and Recognition (ICDAR), 2017, pp. 355–362.

[2] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain, “ICFHR
2016 CROHME: Competition on recognition of online handwritten
mathematical expressions,” in International Conference on Frontiers in
Handwriting Recognition (ICFHR), 2016, pp. 607–612.

[3] K. Davila and R. Zanibbi, “Layout and semantics: Combining represen-
tations for mathematical formula search,” SIGIR, pp. 1165–1168, 2017.

[4] S. Sudholt and G. A. Fink, “Phocnet: A deep convolutional neural
network for word spotting in handwritten documents,” in ICFHR, Oct
2016, pp. 277–282.

[5] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in ICCV. IEEE, 2003, pp. 1470–1477.

[6] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[7] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[8] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in CVPR.
IEEE, 2007, pp. 1–8.

[9] Y. Avrithis and G. Tolias, “Hough pyramid matching: Speeded-up ge-
ometry re-ranking for large scale image retrieval,” International Journal
of Computer Vision, vol. 107, no. 1, pp. 1–19, 2014.

[10] X. Li, M. Larson, and A. Hanjalic, “Pairwise geometric matching for
large-scale object retrieval,” in CVPR, June 2015, pp. 5153–5161.

[11] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-features for
large scale image search,” International Journal of Computer Vision,
vol. 87, no. 3, pp. 316–336, 2010.

[12] W. Zhang and C.-W. Ngo, “Topological spatial verification for instance
search,” IEEE Transactions on Multimedia, vol. 17, no. 8, pp. 1236–
1247, Aug 2015.

[13] Y. Zhang, Z. Jia, and T. Chen, “Image retrieval with geometry-preserving
visual phrases,” in CVPR. IEEE, 2011, pp. 809–816.

[14] R. Zanibbi and D. Blostein, “Recognition and retrieval of mathematical
expressions,” IJDAR, vol. 15, no. 4, pp. 331–357, 2012.

[15] R. Zanibbi, A. Aizawa, M. Kohlhase, I. Ounis, G. Topić, and K. Davila,
“NTCIR-12 MathIR Task Overview,” in Proc. NTCIR-12, 2016, pp. 299–
308.

[16] S. Marinai, B. Miotti, and G. Soda, “Using earth mover’s distance
in the bag-of-visual-words model for mathematical symbol retrieval,”
in International Conference on Document Analysis and Recognition
(ICDAR). IEEE, 2011, pp. 1309–1313.

[17] R. Zanibbi and L. Yu, “Math spotting: Retrieving math in technical
documents using handwritten query images,” in ICDAR. IEEE, 2011,
pp. 446–451.

[18] H. Chatbri, P. Kwan, and K. Kameyama, “An application-independent
and segmentation-free approach for spotting queries in document im-
ages,” in ICPR. IEEE, 2014, pp. 2891–2896.

[19] K. Davila, S. Ludi, and R. Zanibbi, “Using off-line features and synthetic
data for on-line handwritten math symbol recognition,” in ICFHR.
IEEE, 2014, pp. 323–328.

[20] K. Davila, “Symbolic and visual retrieval of mathematical notation using
formula graph symbol pair matching and structural alignment,” Ph.D.
dissertation, Rochester Institute of Technology, 2017.

[21] R. Zanibbi, K. Davila, A. Kane, and F. Tompa, “Multi-stage math
formula search: Using appearance-based similarity metrics at scale,”
SIGIR, pp. 145–154, 2016.

55

