
Received: 26 December 2016 Revised: 3 November 2017 Accepted: 15November 2017

DOI: 10.1002/jez.b.22785

P E R S P E C T I V E AND HYPOTH E S I S

Toward amechanistic explanation of phenotypic evolution:
The need for a theory of theory integration

Manfred D. Laubichler1,2,3 Sonja J. Prohaska3,4,5 Peter F. Stadler3,5,6,7,8,9,10

1School of Life Sciences, Arizona StateUniversity, Tempe, Arizona

2Marine Biological Laboratory,WoodsHole,Massachusetts

3Santa Fe Institute, Santa Fe, NewMexico

4Computational EvoDevoGroup, Department of Computer Science, Leipzig, Germany

5InterdisciplinaryCenter of Bioinformatics, University of Leipzig, Leipzig, Germany

6BioinformaticsGroup, Department of Computer Science, University of Leipzig, Leipzig, Germany

7Max-Planck Institute forMathematics in the Sciences, Leipzig, Germany

8Fraunhofer Institut für Zelltherapie und Immunologie–IZI, Leipzig, Germany

9Department of Theoretical Chemistry, University of Vienna,Wien, Austria

10Center forNon-CodingRNA in Technology andHealth, University of Copenhagen, Frederiksberg, Denmark

Correspondence

PeterF. Stadler, BioinformaticsGroup,

DepartmentofComputer Science,University

of Leipzig,Härtelstraße16-18,D-04107Leipzig,

Germany.

Email: studla@bioinf.uni-leipzig.de

Abstract
Reconciling different underlying ontologies and explanatory contexts has been one of the main

challenges and impediments for theory integration in biology. Here, we analyze the challenge

of developing an inclusive and integrative theory of phenotypic evolution as an example for the

broader challenge of developing a theory of theory integrationwithin the life sciences and suggest

a number of necessary formal steps toward the resolution of often incompatible (hidden) assump-

tions. Theory integration in biology requires a better formal understanding of the structure of bio-

logical theories The strategy for integrating theories crucially depends on the relationships of the

underlying ontologies.
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1 INTRODUCTION

Explanations of phenotypic evolution focus mainly on the dynamics of

change. Mechanisms, such as natural selection or genetic drift, make

predictions about the fate of variation within populations at both the

phenotypic and genetic level and have been empirically tested in both

natural and artificial settings (Coyne & Orr, 2004; Endler, 1986; Fox

& Lenski, 2015; Grant & Grant, 2010, 2014; Kawecki et al., 2012;

Lenski, 2001; Lenski, Ofria, Pennock, & Adami, 2003; Wilke, Wang,

Ofria, Lenski, & Adami, 2001;Wiser, Ribeck, & Lenski, 2013). However,

the focus on populations and their variational properties, or on “evo-

lution in action,” has overshadowed other evolutionary phenomena,

such as the substantial degrees of stability at different evolutionary

timescales (Dvorak, Casamatta, Hasler, & Poulickova, 2015; Eldredge

et al., 2005; Kerr, 1994). These phenomena feature more prominently

in paleontology and comparative biology and often generate their

own set of explanatory models disconnected from those rooted in

population dynamics (Davidson & Erwin, 2006, 2010; Erwin & David-

son, 2002). For the development of an inclusive evolutionary theory,

this situation is highly unsatisfactory. The goal of formal evolution-

ary theory should be to conceptualize and explain the whole set of

evolutionary phenomena, that is both stability and change, from one

common explanatory framework (Wagner, Chiu, & Laubichler, 2000a;

Krakauer et al., 2011; Laubichler & Renn, 2015; Laubichler, Stadler,

Prohaska, &Nowick, 2015).

To accomplish this requires rethinking the formal structure of evo-

lutionary theory. Specifically, developing a more inclusive framework

that enables the integration and mapping of different explanatory

models relevant for the understanding of phenotypic evolution. These

include the population-based models of evolutionary dynamics, the

regulatory network and developmental systems based models of the

origin of phenotypic variation, and the molecular and cellular-based

models ofmutations and genomic change (Lynch, 2007; Peter &David-

son, 2015). Each of these models has its own logic, defined objects and
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ontologies (see Box 1) that need to bemapped onto the others in order

to arrive at a more integrated theory of theory integration. From a

formal point of view, this amounts to the development of a theory of

theory integration that has both formal and applied or practical dimen-

sions. Another dimension of such a theory of theory integration is the

need to pay attention to the appropriate level of coarse graining rela-

tive to the desired level of explanation. While this represents a more

general problem applicable to all areas of science, in the case of the

development of a more inclusive theory of phenotypic evolution these

challenges fall into several interrelated categories as follows.

(1) How can we relate macroscopic pattern to microscopic causes?

The challenge here is one of srelating macroscopic phenomenology

describing patterns of variation at different time scales and levels of

analysis to experimental data based on the manipulation of specific

elements in molecular and developmental processes (Erwin & David-

son, 2009). The situation is even more challenging due to the fact that

we have different conceptual structures, models, vocabularies, and

ontologies for each level of description.One important dimension here

is the challenge to scale specific mechanisms. For example, we have a

detailed understanding of the rates of mutations based on molecular

principles, but we have no way to simply scale such a uniform muta-

tion rate to explanations of long-term evolutionary change and stabil-

ity as this requires us to integrate molecular evolution rates into other

explanatory models of developmental regulation and control as well

as long-term organism–population–environment interactions (Odling-

Smee, Laland, & Feldman, 2003; Odling-Smee, Erwin, Palkovacs, Feld-

man, & Laland, 2013; Peter &Davidson, 2015).

(2) How can we relate explanatory models at different scales to each

other?

A more specific problem, and one we will discuss in more detail

below, is the issue of how to integrate explanatory models at differ-

ent scales. The conceptual and technical issues here are related to

coarse graining or the challenge to find appropriate levels of descrip-

tion and explanation for phenomena (Daniels, Krakauer, & Flack, 2012;

Krakauer et al., 2011). But coarse graining the appropriate level of

description is only part of the answer here. We also need to develop a

rational and reproducible strategy of how to relate mechanisms at dif-

ferent scales to each other. In the case of phenotypic evolution, these

range frommolecular to cellular, developmental all theway to environ-

mental causes (Bergstrom&Dugatkin, 2016;Gilbert&Epel, 2015). The

traditional approach within evolutionary biology focuses on decom-

posing measured phenotypic variance into various components. But,

even though this exercise generates covariance terms, we do not learn

a lot about the specific nature of these interactions, even though they

are causally relevant for understanding patterns of phenotypic vari-

ation and their evolutionary consequences (Falconer, 1989; Wagner,

Laubichler, & Bagheri-Chaichian, 1998;Wagner & Zhang, 2011).

(3) How can we relate different theoretical contexts?

The problem becomes even more complicated as soon as we real-

ize that these different levels of biological systems are embedded

into different theoretical contexts that (1) define the concepts used

to describe the phenomena and (2) also define the epistemologi-

cal criteria used to assess what explanation means in different con-

texts (Laubichler & Maienschein, 2013). This challenge is not just a

philosophical exercise. In the case of explanations of phenotypic

evolution, we are dealing with two explanatory paradigms that

operate at different scales and involve different standards of expla-

nation, often referred to as ultimate or evolutionary and proximate

or causal-mechanistic explanations (Mayr, 1961). Integration between

these paradigms is necessary for any complete explanation of phe-

notypic evolution, but requires explicit consideration of the specific

details and assumptions of these different theoretical and explanatory

contexts, especially if the goal is, as we argue here, to develop a map-

ping between different types of formal models.

(4) How can we relate different measurements?

A final problem here is related to measurements. Each theoreti-

cal context also defines its own measurement procedures that define

the objects and identify the functional properties of entities that are

part of explanations (Wagner, Laubichler, & Bagheri-Chaichian, 1998;

Laubichler &Wagner, 2000; Wagner, Chiu, & Laubichler, 2000b; Wag-

ner & Laubichler, 2000; Wagner & Zhang, 2011; Zhang & Wagner,

2013; Laubichler, Stadler, Prohaska, & Nowick, 2015). In previous calls

for integration across different models not enough attention has been

paid to themeasurement dimension. It is essential for any formal map-

ping between models that we define the properties of all involved

objects precisely. Integrating models of phenotypic evolution is a good

test case for such an exercise as it has been the subject of a lot of pre-

vious work as well as confusion, exacerbated by the fact that often the

same term, such as “gene” is used in radically different measurement

and theoretical contexts.

2 THE CHALLENGE OF THEORY

INTEGRATION

Throughout the history of science theory integration has been a driv-

ing force in many disciplines including evolutionary biology (Mayr &

Provine, 1980; Smocovitis, 1996). Here, the challenge of theory inte-

gration has taken several different forms. On the one hand, there

have been continuous attempts to ground explanations of biologi-

cal phenomena in fundamental principles of physics and chemistry

(de Chadarevian, 2002; Morange, 1998; Schrödinger, 1945). Despite

challenges related to diversity and complexity of biological systems

this approach has been remarkably successful for certain dimensions

of biological systems. Scaling laws governing wide domains of life can

in many instances be derived from basic physical principles related to

the energetics of systems (West, 2017). Similarly, specific aspects of

the role of information in biological systems can also be connected to

principles of nonequilibrium thermodynamics (Coulon, Chow, Singer, &

Larson, 2013; Sengupta, Stemmler, & Friston, 2013; Wolpert, 2016).

On the other hand, evolutionary theory has also acted as an integra-

tive force for many properties of living systems. Concepts such as the

universal replicator equation (Hofbauer & Sigmund, 1988) or Fisher's

Fundamental Theorem of Natural Selection (Fisher, 1930) emphasize

universal aspects of evolutionary theory.

However, despite these unquestionable successes many areas of

the life sciences have not yet been similarly integrated as challenges
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Box 1. Ontologies as formal systems of knowledge representation

In information science, an ontology is a formal, explicit specification of a shared conceptualization (Gruber, 1993). It provides a flexible,

but formally rigorous, framework for the representation of knowledge that aims at capturing our way of thinking in categories and rela-

tions. To this end, it provides a controlled, shared vocabulary to specify the objects and concepts, that is, the entities, that exist within a

model domain and their relationships. Ontologies comprise individuals (the basic objects), classes (sets, collections, concepts, or kinds of

objects), attributes (in particular properties that can be ascribed to objects), and relations (ways in which classes and individuals can be

related to each other). To enable formal reasoning, function terms (complex combinations of relations), restrictions (formal statements

of conditions that certain objects, classes, relations, or function terms must satisfy), rules (if–then statements that allow inference), and

axioms (assertions in the form of formal logic that together describe the basic knowledge about the model domain) can be specified. An

ontology is thus a formal way to specify theories. In practice, however, formal theories are usually specified “on top of”—that is, as exten-

sions of—an underlying ontology. Importantly, alternative theories can be formulated by extending the same underlying ontologies with

mutually inconsistent sets of assertions.

Ontologies can be visualized as directed (usually acyclic) graphs, with vertices and edges representing the entities and their relationships,

respectively, as in the tiny example below, which represents some simple facts about the involvement of hox genes in the formation of

animal bodyplans:

In practice, ontologies are usually specified in special ontology languages such as OBO, which is most commonly used in biological and

biomedical sciences, and is used for the well-known Gene Ontology GOGO (GO Consortium, 2009). The practical organization of empir-

ical knowledge—that is, data—in a particular domain is strongly influenced by the underlying ontology: the relationships among objects,

concepts, and terms explicitly or implicitly informs the datamodels that guide the design of databases.

related to different measurements, scales, and explanatory frames are

still unresolved. This has led to a prolific debate among biologists and

philosophers about the role of theory and explanation within the life

sciences (Craver & Darden, 2013; Dupré, 1993; Godfrey-Smith, 2003,

2014; Mitchell, 2003; Sarkar, 1998, 2005; Schaffner, 1993; Wimsatt,

2007). One result of this debate has been a conception that sees biol-

ogy less as an axiomatic science based on first principles, andmore as a

family of models and theories of varied explanatory scale and reach. A

number of philosophers have emphasized explanatory pluralism over

the perceived straightjacket of formal reductionism and highlighted

the unique nature of the life sciences and their explanatory practices.

In many ways, this perspective has accurately described the actual

practices of vast domains of the life sciences during the last decades

of the 20th century. Another reason that has often been put forward

in defense of a pluralistic view of biological sciences is the fact that

biological systems are intrinsically complex and therefore resists sim-

ple reductionist explanations.

Here, we argue that this philosophical conception of methodologi-

cal and explanatory pluralism is no longer adequate for several areas

of biology because of (1) the data revolution and (2) the computational

revolution within the life sciences that have brought the goal of the-

ory integration within reach again. Taken together these two trends,

in addition with progress in our understanding of complex systems,

enables us to develop appropriately coarse grained explanations of

complex phenomena based on the systematic integration of local the-

ories describing specific domains. But theory integration will not hap-

pen by itself and requires a number of conceptual and formal advances

discussed below. In the age of high-throughput methods and big data,

increasingly diverse data sets are brought together in order to address

specific biological questions, often related to disease (Gligorijevic et al.,
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2016; Rappaport et al., 2017). Each of these data sets is structured

according to a specific data model and ontology that reflects the theo-

retical commitments of a particular domain. As these assumptions are

often hidden, without a clear and explicit focus on integration of differ-

ent data, the promise of big data will remain largely elusive. Further-

more, without an explicit critical assessment of data models used to

organize large-scale data sets, any user will be locked into a number

of assumptions that might not be adequate for the specific question of

interest. The computational revolution and the increased use of com-

plexmodels to both analyze and simulate biological phenomena is sim-

ilarly dependent on an explicit understanding of data models, ontolo-

gies, and theoretical frameworks. Both of these trends make theory

integration more feasible while at the same time also pointing to the

need to adequately focus on the challenges related to theory, data, and

model integration in the life sciences. And as this kind of integration is

happeningaspart of currentpracticeswithin the life sciences,weargue

that it should be guided by a set of principles and standards thatwe call

a theory of theory integration.

As we have seen, in the life sciences we are confronted with a large

number of models and theories with limited scopes. Each of these uses

its own terminology and describes relationships between their respec-

tive entities in a manner that is informed by an often quite specific set

of questions and assumptions. In the emerging age of big data, many

of these “local” theories are accompanied by large amounts of empiri-

cal data that are stored, indexed, and organized according to the the-

oretical framework in which they were produced. The integration of

such “local” theories into amore global onewith awider scope is desir-

able not only for both theoretical reasons but also pragmatically, as we

increasingly rely on the (re)use of a potentially much larger body of

data that were produced for and in specific experimental contexts.

The problems related to the integration of local theories in biol-

ogy are quite different, and in a sense more difficult, from the phys-

ical sciences because in the life sciences different theoretical frame-

works rarely can be thought of as simple coarse or fine grainings of

each other. The practical problem thus becomes one of finding map-

pings between entities and relations in distinct local theories in such

a way that it becomes possible to reason consistently in both local

theories.

The fact that a successful integration of local theories also implies

a meaningful integration of their associated data makes this endeavor

also useful in practice. Practical data integration, however, implies that

the maps between local theories have to be precisely defined math-

ematical objects that can be encoded in computer programs. Theory

integration at this level, therefore, goes beyond a pleasing philosophi-

cal exercise and calls for a certain minimum level of mathematical for-

malization of the local theories. Theories associated with large bodies

of data, of course, have reached this level of formality, albeit maybe

implicitly, by the very datamodels that are used.

3 EXPLAINING PHENOTYPIC EVOLUTION

In light of these reflections on the need for theory integration,

we next turn to one specific explanatory challenge—the problem of

phenotypic evolution. Over the last decades, evolutionary biology has

made incredible advances in many different domains from molecular

evolution to phylogeny and from behavioral to developmental evolu-

tion. But these advances have come at a price. Evolutionary biology is

today more fragmented than ever before. Some see this as inevitable

and argue that a more pluralistic conception of science better reflects

the complexity of theworldwewant to explain (Dupré, 1993;Mitchell,

2003). Indeed, as we discussed this pluralistic conception of science

is rapidly gaining acceptance among philosophers of biology. Many of

these debates focus on challenges, such as the connections between

models and theories or adequate domains of representation that are

related to the our position. But these philosophical discussions are

mainly reflexive (as good philosophy should be) and are not primar-

ily concerned with the practical challenges of model building and data

integration that we focus on here. Another difference between our

position and those of many philosophers is that we, as theoretical evo-

lutionary biologists, are guided by the assumption that there is value

in striving for theoretical unification and integration, both for explana-

tory and forpractical reasons and that even ifwedonot reachour theo-

retical goals yet, the formal clarifications related toontologies anddata

models that are necessary to connect different types of data andmod-

els at any scale are an important first step toward reaching this goal

eventually.

Complete explanations of phenotypic evolution have the following

logical structure that also highlights the challenges for model integra-

tion asweneed tomapbetweenobjects andproperties at eachof these

levels (Laubichler &Maienschein, 2013). Formulated thisway, the logic

of phenotypic evolution provides a clear road map for the integration

of different models and data sets:

(1) All phenotypes are the product of development in multicellular

organisms.

(2) All phenotypic variants are therefore the product of some corre-

sponding variation in developmental processes.

(3) Developmental processes are determined by a complex set of

causal mechanisms controlled by regulatory networks ranging

from the genome, to cellular signaling, to environmental signal-

ing networks.

(4) Variation can be introduced at each level of these complex causal

mechanisms and regulatory and signaling networks.

(5) All stages of developmental control display redundancy and plas-

ticity, making themapping from one level to the other nontrivial.

(6) All stages of developmental control are structured networks that

display their own set of regularities.

(7) Causal–mechanistic explanations of development thus have to

integrate the actions of these hierarchical regulatory networks

withmolecular mechanisms of morphogenesis.

(8) An integrated model of development and of developmental vari-

ation provides a causal understanding of the origin of variation

within populations. This was actually Darwin's second question,

the origin of variation.
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(9) Mechanisms of evolutionary dynamics such as selection or drift

account for the fate of variants in concrete populations and envi-

ronmental conditions.

(10) A unified explanation of the causal mechanisms of phenotypic

evolution has to be based on the integration of all these different

causal layers.

Wehave arguedbefore that one of the challenges of explaining phe-

notypic evolution is to simultaneously account for patterns of change

and stability. From the logic of phenotypic evolution, we can see that

explanations of phenotypic stability need to be derived from the prop-

erties of regulatory networks and developmental systems that trans-

late variational inputs at different levels (different types of molecular

changes, changes in regulatory architecture or changes to various type

of signaling input) into heritable phenotypic variation. Clearly, natu-

ral selection at different scales plays an important role and can con-

tribute to stability in the formof dynamic equilibria (Fox&Wolf, 2006).

However, these are of a different kind than dynamic stability that is a

consequence of the variational properties of complex regulatory sys-

tems. Given the complexities of these systems, this is not just a simple

mapping exercise, commonly referred to as the genotype–phenotype

map (Lynch, 2007; Wagner & Zhang, 2011; Zhang & Wagner, 2013).

It requires us to find a way to connect local models and their input–

output structure to each other. Thisway itwill be possible, for instance,

to connect regularities that are the consequence of a specific network

topology of a gene regulatory network with observed patterns and

constraints of available phenotypic variation in populations. But before

doing this, we need to address some fundamental challenges of formal

model integration.

4 CHALLENGES IN MODEL INTEGRATION

One of the big challenges in modern (theoretical) biology it to under-

stand and explain the diversity of living organism (Krakauer et al.,

2011; Wagner et al., 2000b). With the advent of modern molecular

biology, it quickly became clear that the observed phenotypic variation

within a population cannot be attributed in a simple manner to geno-

typic variation. There is orders ofmagnitude toomuch genotypic varia-

tion under the simplestmodel assumption, namely that genotypic vari-

ance translates directly into phenotypic variance (de Brito, Pletscher,

& Cheverud, 2005; Jarvis & Cheverud, 2009; Mitteroecker, Cheverud,

&Pavlicev, 2016; Pavlicev,Norgard, Fawcett, &Cheverud, 2011; Porto,

Schmelter, VandeBerg, Marroig, & Cheverud, 2016).

It has become part of the program of modern molecular and devel-

opment biology to explain this apparent contradiction. There is broad

consensus that phenotypic variation is the causal consequence of

genotypic variation. However, this connection is not direct but medi-

ated by several layers of explanatory theory.

The simplestmodel sets phenotypic variation in a direct causal rela-

tion to genomic sequence variation. The problem here is that individ-

ual mutations can only explain a petit fraction of phenotypic changes.

Nevertheless, this crudemodel has been the basis for mutation tests, a

measurement technique that artificially introduced sequence changes

into the genome, that was used to study the effect of single mutations

on the phenotype. In early days, this resulted in an effort to catalog

pairs of genomic and phenotypic changes (Griffiths, Wessler, Carroll,

& Doebley, 2012), still an active endeavor, for example, in the context

of monogenic diseases (Lahiry, Torkamani, Schork, &Hegele, 2010).

Further understanding of the underlying logic in the mapping

resulted from the pooling of genomic mutations with the same pheno-

typic effect into entities, forming the concept of a “gene.” This coarse

graining is to the cost of resolution but in favor of a higher level

of description. As a consequence, the model is refined and variation

within genes is now set in a causal relation with phenotypic variation.

This, however, has to be understood as an approximation.

With a theory of gene expression built around the central dogma,

not only variation in gene expression products but variation in their

amounts was considered to be of central importance for phenotypic

variation. Today, high-throughput techniques allow measurement of

gene expression profiles (Kwon & Ricke, 2011). While aiming to mea-

sure protein abundance, measurement techniques only facilitate the

observation of abundances at the level of transcripts. The theoreti-

cal model therefore requires to set the transcript level into relation

with the amount of gene product. A handymodel assumption is to pro-

pose a correlationbetween the level of transcription and the amount of

protein. As a consequence, transcript levels serve as an approximation

for protein abundance. Measurement techniques such as Affymetrix

GeneChips and RNA-seq are used to measure gene expression levels

(Gohlmann & Talloen, 2009; Kwon & Ricke, 2011). The measurement

theory behind chip technology relies on hybridization and assumes

that the gene structure is known and unique probes hybridize to indi-

vidual (coding) exons equally well. An average over a set of match-

ing probes finally approximates the amount of transcript of the corre-

sponding gene. Only very thoughtful chip layouts allow identification

of splicing variants and absolute instead of relative quantities. In con-

trast, measurement of transcript abundance with RNA-seq is based on

the assumption that transcripts can be reverse transcribed from ran-

dom primers with equal rates and efficiency.

This example highlights the importance of the theoretical concep-

tions behindmeasurements—and it points to the sometimes subtle but

important differences arising from different measurement technolo-

gies: in the case of gene chips, transcript structures are known a priori,

while for RNA-seq data it becomes the experimenters' choice whether

they are reconstructed from data or taken for granted in the data anal-

ysis pipeline. The very same experiment therefore may yield different

quantitative and even qualitative results depending on the theoretical

model used to extract a representation of gene expression from the

raw measurement data. The choice which representation is most suit-

able or useful will depend on the theoretical framework employed to

integrate gene expression with other data or knowledge.

The observation that variation in gene expression level can cause

phenotypic variation raises a further question: where does this varia-

tion come from? The answer lies in the organization of gene regulatory

networks: A specific subset of proteins, so-called transcription factors,

interacts with genomic elements associated with a particular genes,

and regulate their expression (Alberts, 2015; Arendt et al., 2016). In
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addition, controlled integration of environmental signals adds an addi-

tional source for phenotypic variation that is not based on genomic

sequence variation at all (epigenetics) (Feil & Fraga, 2012; Marsit,

2015). These interactions are manifold and involve molecules of dif-

ferent type that together form an interaction network. After abstrac-

tion, the units at this level of description are eventually nested within

intersecting subnetworks with particular features, such as pathways,

feedback loops, and elementary regulatory systems (Peter & David-

son, 2015). We can add further layers of description as, for example,

tissue formation that has groups of cells as its entities, or mechanisms

of organogenesis.

In all cases, the levels of description we pick are a consequence

of our theoretical assumptions and their corresponding measurement

techniques, and not necessarily the levels of nature's ontology. There-

fore, in this theoretical framework certain features, like neutrality,

might be independent from the particular nature of the entities and

appear onmultiple levels.

Summarizing these observations, we can conclude that a mecha-

nistic understanding of the processes leading to the transformation of

genomic into phenotypic variation has to be built “bottom-up” starting

with the molecular level. The many intermediate levels we pass on the

way to the top are characterized by specific measurement techniques.

The connections between these levels and their respective measured

entities are provided by specific local theories. What is needed for an

integrated causal understanding of phenotypic evolution is a system-

atic way to connect these local descriptions andmodels into a common

explanatory framework.

5 TOWARD A THEORY OF THEORY

INTEGRATION

Let us now investigate the implications of these theoretical consid-

erations in more detail. First, we notice that we have introduced

distinctive “levels” of description (genetic variation, transcription and

translation, transcriptional and posttranscriptional gene regulation,

tissue organization, etc.). It is important to notice that these levels are

constructs of our choice of a specific representation of the biological

system at hand. Whether we integrate posttranscriptional regulation

of mRNAs by microRNAs (Djuranovic, Nahvi, & Green, 2011) or the

manifold influences of chromatin structure into a model of gene regu-

lation, or whether we treat them as separate layers or components of

a description of the biological system is a matter of our choice, not a

property of biology itself.

Even if, for the sake of argument, we adopt the point of view that

there is a unique or optimal ontology of biological objects, and this

is very much a point of view that can be contested as well, this does

not in any way imply that there is a unique or optimal level of descrip-

tion and thus of formulating theories in or of biology. Distinct theories,

therefore, will be formulated using different slices of an ontology. In

the case of coarse graining, the situation is shown in Figure 1. In gen-

eral, the more fine-grained theory will populate lower, that is, more

resolved parts of the ontology. The very nature of biological systems

necessitates are trade-off between detail and generality. Hence, we

F IGURE 1 Theories that are coarse grainings of each other “live” in
different regions of the same ontology. Here, T0 is a coarse graining of
T1. For simplicity, we sketch ontologies, which in general are directed
acyclic graphs, see Box 1, as trees [Color figure can be viewed at wiley-
onlinelibrary.com]

argue that there is no “privileged” position at which theories are inher-

ently superior to others levels of description. Instead, biological the-

ories are formulated relative to the questions that they supposed to

answer and relative to themeasurements (data) that they aremeant to

explain (Laubichler et al., 2015).

Interesting and useful theories of biological phenomena will often

tie together unrelated parts of an ontology. We need to be able, for

example, to formulate models of the influence of microRNAs on pro-

teins that are involved in the developmental formation of muscle tis-

sue and the consequence of theirmis-regulation on the severity of cer-

tain diseases (Appasani, 2008; Sayed&Abdellatif, 2011). It is important

to note that theories are formulated in terms of particular ontologies,

but are not determined by them. For example, a good theorywill have a

certain level of generality and thus apply to all instances of a particular

type. A model that involves a certain level in an ontology presumably

should be general enough, therefore, not only to apply to a particular

item, but also to its sisters or children. That is, if we model the effect

of microRNAs on STAT3 (Löffler et al., 2007), wewould expect that the

same descriptive level, and thus the same type of modeling, that is, the

same theory, can be used to model the effect of microRNAs on other

(subclasses of) transcription factors aswell as ofmicroRNAsother than

those playing a role for STAT3.

The view of models and theories as determined by essentially arbi-

trary levels of description immediately begs the question of themutual

relations between different theories, and thus of a principled way of

integrating theories.

One mode of integration is the “concatenation” of models that

overlap substantially in their coverage of an underlying ontology

(Figure 2). Thedescription of gene expressionmay serve as an example.

Here, transcription factor networks and models of microRNA-based

posttranscriptional regulation can be combined in a rather straight-

forward manner. However, the combined picture is rarely, if ever, just

the union of the models. While a transcription factor networks lumps

together A, B, and C, these concepts need to be separated. In particu-

lar, the processes of transcription and translationmust be disentangled
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F IGURE 2 Different theoriesmay describe different aspects of real-
ity that, nevertheless, can be capturedwithin a single consistent ontol-
ogy. Theory integration then amounts to finding a theory T0 + T1 that
includes (coarse grainings of) both constituent theories T0 and T1. The
ontology also might need to be refined in part to accommodate a
more fine-grained theory [Color figure can be viewed at wileyonlineli-
brary.com]

to make it possible to incorporate the negative regulation of transla-

tion exerted by microRNAs as well as the transcriptional regulation of

miRNA expression.

This simple example highlights that the integration of models, in

general, requires an appropriate coarse graining or fine graining of the

component models. This process is conceptually guided by the need to

map theories onto each other in such a manner that they share the

same ontological vocabulary. In the example at hand, “gene expres-

sion,” for instance, needs to be replaced by more specific terms “tran-

scription” and “translation.” Of course, in the case of modeling gene

expression an overarching model is already available and we already

have an ontology that can be navigated and a consistent terminology

can be extracted from various levels of description.

However, in most cases we do not have the same resolution. The

concept of a “gene,” for instance, is defined and used in very different

ways in population genetics, genomics, or developmental biology and

the ontologies used in these fields are not integrated with each other

in the sense that we would know of a single ontology from which the

ontologies of the subfields could be extracted. The disparate defini-

tions of concepts in different subdisciplines preclude a simple match-

ing of terms and thus already makes ontology matching a hard prob-

lem because the relationships between terms/concepts appearing in

both ontologies are not at all obvious (Euzenat&Shvaiko, 2013;Otero-

Cerdeira, Rodríguez-Martínez, & Gómez-Rodríguez, 2015). As a con-

sequence, a theoretical framework needs to be developed that pro-

vides these relationships in an explicit form. In the case of the “gene”

for example, there is ample literature showing the incompatibilities

of different conceptions (Gerstein et al., 2007; Jia et al., 2015; Pro-

haska & Stadler, 2008; Stadler, Prohaska, Forst, & Krakauer, 2009).

The integration of genomics and developmental biology, thus, seems to

require a rather detailed description of both the mechanics of “gene

expression” and of different notions of biological function used. To rec-

oncile the population genetics notions of a “gene” as locus that con-

F IGURE 3 Integration of theories formulated over inconsistent
ontologies presumes polyvalent concepts. In so far as these might lead
to inherent contradiction, this provides an obstacle to further theory
integration [Color figure can be viewed at wileyonlinelibrary.com]

tributes to fitness with the use of the term by the genomics commu-

nity, on theotherhand, abroaddescriptionof functionalDNAelements

seems to be necessary.

It appears that many biologists and some philosophers of science

perceive a polyvalent interpretation of key concepts, including gene,

species, homology, innovation, etc. as an advantage (Dupré, 1993).

While this may be the case in early stages of conceptualization, we

argue that polyvalency is one, albeit by no means the only, imped-

iment to theory integration. The reason is that an overlapping but

incongruent terminology aggravates in practice the identification

of inconsistencies of the ontologies of different subfields (Figure 3).

These ontologies, even if they are not formalized or even reflected by

practitioners, translate to the data models used to store and dissemi-

nate the flood of high-throughput data. Polyvalent terminologies thus

are prone to become a practical problem for integrative approaches

in computational biology that attempt to transcend boundaries of

traditional subfields of the life sciences.

The “alignment” of ontologies is of course only a first, presumably

necessary, step in theory integration (Figure 4). Thinking of theories

as formal systems of data, measurement procedure, and abstract rules

and relationships between them holds the promise to transform the-

ory integration into a problem that can be addressed at a formal level.

At least for sufficiently formalized theories such as the ones encap-

sulated in reasoning systems, this is possible and is an active area of

research in computer science, in particular in the field of knowledge

representation (Brachman & Levesque, 2004; Hunter & Liu, 2010).We

propose that less completely formalized theories are also amenable to

integration provided (1) they are specified in sufficient detail to allow

at least an approximatematching of their underlying ontologies and (2)

they do not contradict each other. It would appear that the develop-

ment of such a more formal theory of theory integration is a worthwhile



8 LAUBICHLER ET AL.

F IGURE 4 Integration of theories T1 and T2 formulated in unrelated
ontologies requires the construction of a consistent common ontology
(shown as red tree) capturing the relevant concepts of both domains.
Only then a unified theory T1 + T2 can be formulated [Color figure can
be viewed at wileyonlinelibrary.com]

endeavor. As an ultimate goal, we envision a predictive computational

model that, for example, is capable of subsuming all of present-day sys-

tems biology.

A natural starting point for developing such a theory of theory

integration is to consider whether there are already formal frame-

works that provide useful tools. The most promising candidate seems

to be category theory, a branch of mathematics concerned with the

formalization of mathematical structures and their underlying con-

cepts. Focused on mappings between formal structures, category the-

ory already plays an important role in computer science. There already

have been interesting attempts to employ it in a systematicmanner for

knowledge representation (Spivak&Kent, 2012) and the integrationof

ontologies (Hu&Wang, 2010; Zimmermann, Krötzsch, Euzenat, &Hit-

zler, 2006). While this is a first step, it is unlikely to be sufficient, given

emergent new concepts and thus extensions of underlying ontologies

should be expected as a side effect of theory integration.

6 CONCLUSION

In this paper, we have mostly identified serious problems and imped-

iments for developing an integrated theory of phenotypic evolution

and provided both conceptual and methodological suggestions for

addressing them. We see this as a first step in a long process. We

see the role of theoretical biology as providing these kind of solutions

and not simply developing models of very narrowly defined biological

problems.Whatwehavedemonstratedhere illustratedby theproblem

of explaining phenotypic evolution is that:

• explanations of complex biological phenomena require the integra-

tion of different theories andmodels,

• different theories andmodels generally use different ontologies and

operate at different scales,

• therefore, a theoretically guided practice of theory integration is

part of developing any form of inclusive integration,

• this requires a degree of formal awareness that is often lacking in

attempts of providing synthetic or integrative explanations.

Our initial reflections on how to go about developing a theory of

theory integration and our example of how to resolve the integration

of different models and their objects in the case of gene expression

demonstrate that such an approach is both possible and desirable. Fur-

thermore, in the realm of biological data integration, it even becomes a

technical necessity.
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