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1. Introduction

Let Bm be the unit ball in the complex space Cm, and L2
a(Bm) be the Bergman space 

of square integrable holomorphic functions on Bm, and A be the algebra C[z1, · · · , zm]

of polynomials of m variables. The algebra A plays two roles in our study: one is that A
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is a dense subspace of the Hilbert space L2
a(Bm), the other is that A acts on L2

a(Bm) by 

Toeplitz operators.

In this article we are interested in an ideal I of A generated by monomials. Let I be 

the closure of I in L2
a(Bm), and QI be the quotient Hilbert space L2

a(Bm)/I. The first 

author proved in [5, Theorem 2.1] that the Toeplitz operators Tzi
, i = 1, . . . , m, on I, 

and the quotient QI are essentially normal,2 i.e. the following commutators are compact

[Tzi
|I ,

(
Tzj

|I
)∗

] ∈ K(I), and [Tzi
|QI

,
(
Tzj

|QI

)∗
] ∈ K(QI), i, j = 1, · · · , m.

Let T(QI) be the unital C∗-algebra generated by the Toeplitz operators Tzi
|QI

, i =

1, · · · , m. The above essential normality property of the Toeplitz operators gives the 

following extension sequence

0 −→ K −→ T(QI) −→ C(σe
I) −→ 0,

where σe
I is the essential spectrum of the quotient tuple (Tz1

|QI
, · · · , Tzk

|QI
) on QI , 

and K is the algebra of compact operators. By the Gelfand–Naimark theorem, σe
I is the 

spectrum space of the commutative C∗-algebra T(QI)/K. Abusing the notion, we will 

sometimes refer to σe
I as the essential spectrum space of the algebra T(QI). The index 

problem we want to answer in this article is to provide a good description of the above 

K-homology class.

The main difficulty in answering the question above is that the ideal I in general 

fails to be radical. This makes the geometric ideas introduced in [8] and [10] impossible 

to apply directly. The seed of the main idea in this article is the following observation 

discussed in [8, Section 5.2]. For m = 2, consider the ideal I = 〈z2
1〉 ⊂ A = C[z1, z2]. The 

quotient QI can be written as the sum of two space

L2
a,1(D) ⊕ L2

a,2(D),

where D is the unit disk inside the complex plane C, and L2
a,1(−) (and L2

a,2(−)) is the 

weighted Bergman space with respect to the weight defined by the defining function 

1 − |z|2 (and (1 − |z|2)2). Define the restriction map RI : L2
a(B2) → L2

a,1(D) ⊕ L2
a,2(D)

by

RI(f) := (f |z1=0,
∂f

∂z1
|z1=0).

It is not hard to introduce a Hilbert A = C[z1, z2]-module structure on L2
a,1(D) ⊕L2

a,2(D)

so that the following exact sequence of Hilbert modules holds,

0 −→ I −→ L2
a(B2) −→ L2

a,1(D) ⊕ L2
a,2(D) −→ 0.

2 Arveson [1, Corollary 2.2] proved the similar result on the Drury–Arveson space.
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It is well known that the Toeplitz operators on the (weighted) Bergman space L2
a,1(D) and 

L2
a,2(D) are essentially normal. In [8, Section 5.2], we observe that one can conclude the 

essential normality property of the Hilbert module I and QI from the exact sequence 

above. Furthermore, it is not hard to prove that the quotient Hilbert module QI is 

isomorphic to the module L2
a,1(D) ⊕ L2

a,2(D), and the extension class [T(QI)] associated 

to QI can be identified with the one associated to L2
a,1(D) ⊕ L2

a,2(D).

In this article, we extend the example above to an arbitrary ideal I of L2
a(Bm) gen-

erated by monomials. By considering an ideal generated by two monomials, we realize 

that it is more natural to work with long exact sequences of Hilbert modules, instead of 

short ones. The following is our main theorem.

Theorem 1.1. Let I be an ideal of C[z1, · · · , zm] generated by monomials, and I be its 

closure in the Bergman space L2
a(Bm). There are Bergman space like Hilbert A-modules 

A0 = L2
a(Bm), A1, · · · , Ak together with bounded A-module morphisms Ψi : Ai → Ai+1, 

i = 0, · · · , k − 1 such that the following exact sequence of Hilbert modules holds

0 −→ I ↪→ L2
a(Bm)

Ψ0−→ A1
Ψ1−→ · · ·

Ψk−1

−→ Ak −→ 0.

For the example above I = 〈z2
1〉, the number k in Theorem 1.1 is 1, and the Bergman 

space like Hilbert A-module A1 is the sum L2
a,1(D) ⊕ L2

a,2(D). We will explain in Sec-

tion 2.3, Proposition 2.5, that the Hilbert A-module Ai, i = 1, · · · , k, has a similar 

geometric structure as a direct sum of (weighted) Bergman spaces on lower dimensional 

balls.

As a corollary of Theorem 1.1, we obtain a new proof of the essential normality 

property of the ideal I and its quotient QI . Moreover, Theorem 1.1 allows us to identify 

the extension class associated to T(QI) geometrically. We compute it in the following 

theorem.

Theorem 1.2. (Theorem 3.10) Let T(Ai) be the unital C∗-algebra generated by Toeplitz 

operators on Ai, and σe
i be the associated essential spectrum space. In K1(σe

1 ∪ · · · ∪ σe
k), 

the following equation holds,

[T(QI)] = [T(A1)] − [T(A2)] + · · · + (−1)k−1[T(Ak)].

As it is explained in Section 2.3, every algebra T(Ai), i = 1, · · · , k, can be identified as 

the algebra of Toeplitz operators on square integrable holomorphic sections of a hermitian 

vector bundle on a disjoint union of subsets of Bm. This geometric interpretation allows 

us to use the ideas developed in [8] and [10] to study the “geometry” of the algebra 

T(QI).

The zero set of a monomial ideal I defines a (singular) projective variety. We think 

that the K-homology class associated to the extension of T(QI) is closely related to the 

fundamental class studied by Baum, Fulton, MacPherson in [2,3]. In particular, in the 
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near future we plan to study the relation between the Euler characteristic associated to 

the alternating sum in Theorem 1.2 and the arithmetic genus of the associated projective 

variety.

We remark that although our Theorem 1.1 is stated for the closure of a monomial 

ideal inside the Bergman space L2
a(Bm), the same proof also works for the closure of any 

monomial ideal inside more general spaces, e.g. weighted Bergman spaces L2
a,s(Bm) and 

the Drury–Arveson space.

Our result in Theorem 1.1 can be viewed as a “resolution” ([12]) of the ideal I by 

essentially normal Hilbert modules A0, · · · , Ak. Such an idea of “resolution” goes back 

to the first author’s work in [5], and the study in this article should not be limited 

to monomial ideals. In Section 4.3, we explain that a similar construction also works 

for a more general ideal in C[z1, z2, z3]. In the near future, we hope to report about a 

systematic study on extending ideas from Theorem 1.1 to more general ideals I with the 

help of results in [9].

This article is organized as follows. In Section 2, we will introduce the main building 

block in our construction. In Section 3, we will construct the Hilbert modules Ai and 

morphisms Ψi, i = 0, · · · , k in Theorem 1.1, and prove the main Theorem. Our proof 

is inspired by the corresponding algebraic study on monomial ideals [4], [11]. We will 

end our paper by exhibiting our constructions on concrete examples in Section 4. In 

particular, a non-monomial ideal example is discussed in Section 4.3.
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2. Generalized Bergman space and the associated Toeplitz operators

In this section, we introduce and study a building block in the construction of the 

resolution in Theorem 1.1.

2.1. Notations

We start with fixing some notations. For a positive integer q, we use the symbol Sq(m)

to denote the set of q-shuffles of the set [m] = {1, · · · , m}, i.e.

Sq(m) := {j := (j1, · · · , jq)|1 ≤ j1 < j2 < · · · < jq ≤ m}.

Let N be the set of all nonnegative integers. For any i = (i1, · · · , iq) ∈ N
q, we use |i| to 

denote the sum i1 + · · · + iq.

Fix j = (j1, · · · , jq) ∈ Sq(m), and b = (b1, · · · , bq) ∈ N
q. We associate a subset 

Bb
j ⊆ N

m defined by



R.G. Douglas et al. / Journal of Functional Analysis 275 (2018) 735–760 739

Bb
j := {(n1, · · · , nm) ∈ N

m|njk

≤ bk, for k = 1, ..., q}.

We call Bb
j the box associated to j and b.

In the following, we introduce a Hilbert space Hb
j as a closed subspace of L2

a(Bm).

On Bm, consider the weighted Bergman space L2
a,s(Bm) defined by square integrable 

holomorphic functions on Bm with respect to the norm

||f ||2L2
a,s

=

∫

Bm

|f(z)|2(1 − |z|2)s (m + s)!

m!s!
dV (z),

where dV is the normalized Lebesgue measure on Bm. This Hilbert space has the fol-

lowing standard orthonormal basis

{
zn :=

zn1

1 · · · znm
m√

ωs(n)

∣∣∣∣ n = (n1, · · · , nm) ∈ N
m

}
(1)

where ωs(n) := n1!···nm!(m+s)!
(n1+···+nm+s+m)! .

Definition 2.1. The Hilbert space Hb
j is a closed subspace of L2

a(Bm) consisting of func-

tions f ∈ L2
a(Bm) whose expansion 

∑
n fnzn with respect to the orthonormal basis zn

satisfies

fn = 0, for n /∈ Bb
j .

We have the following orthonormal basis for the Hilbert space Hb
j ,

zn :=
zn1

1 ...znm

m√
ω0(n)

,

where 0 ≤ nj1 ≤ b1, · · · , 0 ≤ njq ≤ bq, and the index ni for i /∈ j belongs to N. In terms 

of this basis, an element X ∈ Hb
j can be written as

X =
∑

0≤nj1 ≤b1,··· ,0≤njq
≤bq

Xn1···nmzn. (2)

In the following, we define a representation of the polynomial algebra A =

C[z1, · · · , zm] on the Hilbert space Hb
j . Let PHb

j
be the orthogonal projection of L2

a(Bm)

onto Hb
j . For p = 1, · · · , m, the operator T j,b

zp
on Hb

j is defined to be the operator 

PHb
j
Tzp

|Hb
j
. More explicitly, the operator T j,b

zp
on Hb

j is of the following form,

T j,b
zp

(zn) =

{
zpzn, if (n1, · · · , np + 1, · · · , nm) ∈ Bb

j ,

0, otherwise.
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Since the orthogonal complement of the closed subspace Hb
j ⊂ L2

a(Bm) is invariant 

under the operator Tzp
, p = 1, · · · , m, (T j,b

z1
, · · · , T j,b

zm
) is a commuting tuple of bounded 

linear operators on Hb
j . Hence we have reached the following lemma.

Lemma 2.2. The above operators {T j,b
zi

}m
i=1 define a bounded representation of the algebra 

A on the space Hb
j .

2.2. Essential normality property

In this subsection, we prove the following property of the Hilbert A-module Hb
j .

Proposition 2.3. The following commutators are compact.

[T j,b
zs

∗
, T j,b

zt
] ∈ K(Hb

j ), ∀s, t = 1, · · · , m.

Therefore, Hb
j is an essentially normal Hilbert A-module.

Since the Hilbert module Hb
j can be identified with the quotient module L2

a(Bm) �

〈zb1+1
j1 , · · · , zbq+1

jq 〉, the assertion of Proposition 2.3 follows from [1] and [6]. We outline 

its proof here for completeness.

Proof. Let P b
j be the orthogonal projection from L2

a(Bm) onto the closed subspace Hb
j . 

As T j,b
zs

can be written as P b
j Tzs

P b
j , it suffices to prove the commutator [P b

j , Tzs
] is 

compact.

For n ∈ Bb
j , P b

j Tzs
(zn) is computed as follows,

P b
j Tzs

(zn) =

{ √
ω0(n1···(ns+1)···nm)

ω0(n1···nm) zn1···(ns+1)···nm

, if (n1 · · · (ns + 1) · · · nm) ∈ Bb
j ,

0, otherwise.

Similarly, Tzs
P b
j (zn) is computed as follows,

Tzs
P b
j (zn) =

{ √
ω0(n1···(ns+1)···nm)

ω0(n1···nm) zn1···(ns+1)···nm

, if (n1 · · · ns · · · nm) ∈ Bb
j ,

0, otherwise.

Hence, [P b
j , Tzs

](zn) is computed as follows,

[P b
j , Tzs

](zn) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
√

ω0(n1···(bk+1)···nm)
ω0(n1···bk···nm)

zn1···(ns+1)···nm

, if (n1 · · · ns · · · nm) ∈ Bb
j ,

and s = jk, and ns = bk

for some k,

0, otherwise.

We observe that the weight ω0(n1···(bk+1)···nm)
ω0(n1···bk···nm)

converges to zero as ||(n1, · · · , bk, · · · ,

nm)|| → ∞. From this, we can conclude that the commutator [P b
j , Tzs

] is compact. �
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Remark 2.4. It is not hard to check in the above proof of Proposition 2.3 that the 

commutators [P b
j , Tzs

] and therefore also [T j,b
zs

∗
, T j,b

zt
] belong to the Schatten-p ideal for 

p > m − q.

2.3. Geometry of the Hilbert space Hb
j

In this subsection, we discuss briefly the geometry of the Hilbert space Hb
j introduced 

in Section 2.1.

Let Bj be the subset of Bm cut by the hyperplanes Hji := {zji = 0}, i = 1, · · · , q, i.e.

Bj := {(z1, · · · , zm) ∈ B
m| zj1 = · · · = zjq = 0}.

Observe that Bj is the unit ball inside the subspace

Hj := {(z1, · · · , zm)|zj1 = · · · = zjq = 0},

which is isomorphic to the standard complex space Cm−q.

For i = (i1, · · · , iq) ∈ N
q, we consider the following weighted Bergman space H̃b

j,i :=

L2
a,q+|i|(Bj). And given any b ∈ N

q, we consider the following Hilbert space

H̃b
j :=

⊕

i∈Nq,i1≤b1,··· ,iq≤bq

H̃b
j,i :=

⊕

i∈Nq,i1≤b1,··· ,iq≤bq

L2
a,q+|i|(Bj).

Let Hb
j,i be the closed subspace of Hb

j spanned by basis vectors zn for nj1 = i1, 

· · · , njq = iq. It is not hard to check that Hb
j is a direct sum of closed subspaces as 

follows,

Hb
j =

⊕

i∈Nq,i1≤b1,··· ,iq≤bq

Hb
j,i.

We define a map Rb
j : Hb

j → H̃b
j by

Rb
j (f) :=

∑

i1≤b1,··· ,iq≤bq

Rb
j,i(f),

where Rb
j,i : Hb

j,i → H̃b
j,i is defined as follows,

Rb
j,i(f) :=

∂i1+···+iq

f

∂zi1

j1
· · · ∂ziq

jq

∣∣∣
Bj

, ∀f ∈ Hb
j,i.

We have the following property of the map Rb
j .

Proposition 2.5. The map Rb
j is an isomorphism of Hilbert spaces.
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Proof. It suffices to prove that the operator Rb
j,i : Hb

j,i → H̃b
j,i is an isomorphism of 

Hilbert spaces.

For zn ∈ Hb
j,i,

Rb
j,i(z

n) =
i1! · · · iq!√

ω0(n)
zn1

1 · · · ẑi1

j1 · · · ẑiq

jq · · · znm

m ,

where by ẑis

js , s = 1, · · · , q, we mean removing ẑi2

js from the expression.

Let n′ be the tuple in Nm−q obtained from n with nj1

, · · · , njq

removed. The norm of 

Rb
j,i(z

n) in L2
a,q+|i|(Bj) is

i1! · · · iq!
√

ωq+|i|(n′)√
ω0(n)

=

√
(i1!)2 · · · (iq!)2ωq+|i|(n′)

ω0(n)
=

√
i1! · · · iq!(m + |i|)!

m!
.

Since the above ratio is independent of the index n′, we conclude from the above com-

putation that Rb
j,i and therefore Rb

j are isomorphisms of Hilbert spaces. �

Remark 2.6. Proposition 2.5 suggests that our general construction is a proper general-

ization of the Example of ideal 〈z2
1〉 in the Introduction. The proof of Proposition 2.5

tells that the map Rb
j is an isomorphism but not an isometry of Hilbert spaces. One can 

properly adjust the definition of the map Rb
j,i to make it and therefore Rb

j into isometry, 

but we have decided to take the above definition of Rb
j as it seems more natural.

We consider the trivial vector bundle Eb
j := C

(b1+1)···(bq+1)×Bj over Bj. The hermitian 

structure on Eb
j is defined as follows. We choose the standard basis of {ei}i1≤b1,··· ,iq≤bq

of C(b1+1)···(bq+1). The Hermitian metric on Eb
j at z ∈ Bj is

〈ei, ei′〉z = δi,i′(1 − |z|2)q+|i|.

It is not hard to see that the Hilbert space H̃b
j can be identified with the Bergman space 

of L2-holomorphic sections of the bundle Eb
j . We consider the Toeplitz algebra T(Eb

j )

generated by matrix valued Toeplitz operators on the Bergman space of L2-holomorphic 

sections. Under the isomorphism Rb
j , one can easily identify the Toeplitz algebra Tb

j

generated by T j,b
zi

, i = 1, · · · , m on Hb
j , with the Toeplitz algebra T(Eb

j ) on H̃b
j .

3. Resolutions of monomial ideals

In this section, we present the proof of the main theorem (Theorem 1.1) of this article. 

In the first three subsections, we generalize the discussion in Section 2 to construct an 

exact sequence of Hilbert A-modules associated to k boxes in Nm. And in Section 3.4, 

we apply our construction to prove Theorem 1.1.
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3.1. Construction of the Hilbert C[z1, · · · , zm]-modules

Let Bb1

j1
, · · · , Bbk

jk
be finitely many boxes in Nm as defined at the beginning of Sec-

tion 2.1. We start with the following easy property of boxes in Nm.

Lemma 3.1. Intersections of boxes in Nm are again boxes.

Proof. Let us consider two boxes Bb1

j1
and Bb2

j2
. Let j12 be the union of j1 and j2. Suppose 

that there are q12 elements in j12. Then j12 can be viewed as an element of Sq12
(m). We 

write j12 as j12 := (j1
12, · · · , jq12

12 ). Define b12 to be an element b12 := (b1
12, · · · , bq12

12 ) in 

N
q12 by

bk
12 :=

⎧
⎪⎨
⎪⎩

min(bs
1, bs′

2 ), jk
12 = js

1 = js′

2 ,

bs
1, jk

12 = js
1 /∈ j1 ∩ j2,

bs′

2 , jk
12 = js′

2 /∈ j1 ∩ j2.

It is easy to check that the intersection of Bb1

j1
and Bb2

j2
is Bb12

j12
. The general case of the 

lemma can be proved by induction from the above proof for two boxes. �

For any subset I ⊂ {1, · · · , k}, we use BbI

jI
to denote the following intersection,

BbI

jI
:=

⋂

i∈I

Bbi

ji
.

For each box BbI

jI
, we consider the corresponding Hilbert A = C[z1, · · · , zm] module HbI

jI

as is introduced in Section 2. It is not hard to see that subsets of size q in {1, · · · , k} are 

in 1-1 correspondence with elements in Sq(k).

Given Bb1

j1
, · · · , Bbk

jk
, for 1 ≤ q ≤ k, we define a Hilbert module Aq as follows.

Aq :=
⊕

I∈Sq(k)

HbI

jI
.

For convenience, we use A0 to denote the Bergman space L2
a(Bm). We remark that every 

Hilbert space Aq is equipped with a Hilbert A-module structure from the corresponding 

A-module structure on each component HbI

jI
. It follows from Proposition 2.3 that each 

Aq is an essentially normal Hilbert A-module.

3.2. Morphisms

In this subsection, we define the boundary morphism Ψq : Aq → Aq+1 for q =

0, · · · , k − 1. In the following, we heavily use the expression introduced in Equation (2). 

To explain our construction, we start with a few examples with a small number k of 

boxes Bb1

j1
, · · · , Bbk

jk
in Nm.
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When k = 1, there is only one box Bb
j . We have two Hilbert modules A0 = L2

a(Bm)

and A1 = Hb
j . We define Ψ0 : A0 → A1 as follows. For X ∈ A0 = L2

a(Bm), the map Ψ0

maps X to Y := Ψ0(X) ∈ Hb
j of the following form,

Yn1···nm :=

{
Xn1···nm , n ∈ Bb

j ,

0, otherwise.

When k = 2, there are two boxes Bb1

j1
and Bb2

j2
. We denote their intersection by Bb12

j12
. 

For X ∈ A0 = L2
a(Bm), Ψ0(X) is written as Y1 + Y2, where Y1 ∈ Hb1

j1
and Y2 ∈ Hb2

j2
are 

of the following form,

(Y1)n :=

{
Xn, n ∈ Bb1

j1
,

0, otherwise,
(Y2)n :=

{
Xn, n ∈ Bb2

j2
,

0, otherwise.

For (X1, X2) ∈ Hb1

j1
⊕ Hb2

j2
= A1, define Ψ1(X1, X2) ∈ A2 by

Ψ1(X1, X2)n :=

{
(X1)n − (X2)n, n ∈ Bb12

j12
,

0, otherwise.

For a general k, in order to define the morphism Ψq : Aq → Aq+1, we introduce the 

following maps f i
q+1 : Sq+1(k) → Sq(k) for i = 1, · · · , q + 1. An element in Sq+1(k) is a 

subset Iq+1 of {1, · · · , k} of size q + 1. The map f i
q+1(Iq+1) is the subset of {1, · · · , k}

of size q by dropping the i-th smallest element in Iq+1. Define Ψq : Aq → Aq+1 by

Ψq(X) :=
∑

Iq+1∈Sq+1(k)

Y Iq+1 , Y Iq+1 ∈ H
bIq+1

jIq+1

,

for X =
∑

Jk∈Sq(k) XJk with XJk ∈ H
bJk

jJk

. The function Y Iq+1 ∈ H
bIq+1

jIq+1

is defined by

(Y Iq+1)n :=

{ ∑q+1
i=1 (−1)i−1(Xfi

q+1(Iq+1))n, n ∈ B
bIq+1

jIq+1

,

0, otherwise.

3.3. Properties of the box resolution

In this subsection, we study properties of the box resolutions.

Proposition 3.2. ∀q ≥ 0, the morphism Ψq : Aq → Aq+1 is bounded.

Proof. We write X ∈ Aq as a sum

X =
∑

Iq∈Sq(k)

XIq , XIq ∈ H
bIq

jIq
.
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By using the definition above we have Ψq(X) =
∑

I′
q+1

Y I′
q+1 , where Y I′

q+1 ∈ H
bI′

q+1

jI′
q+1

is 

equal to

(Y I′
q+1)n :=

⎧
⎨
⎩

∑q+1
i=1 (−1)i−1(Xfi

q+1(I′
q+1))n, n ∈ B

bI′
q+1

jI′
q+1

,

0, otherwise.

The norm of Ψq(X) is computed as

||Ψq(X)||2 =
∑

I′
q+1

||Y I′
q+1 ||2 =

∑

I′
q+1

∑

n∈B
b

I′
q+1

j
I′

q+1

|Y
I′

q+1

n |2

=
∑

I′
q+1

∑

n∈B
b

I′
q+1

j
I′

q+1

|

q+1∑

i=1

(−1)i−1(Xfi
q+1(I′

q+1))n|2

by the Cauchy–Schwartz inequality

≤
∑

I′
q+1

∑

n∈B
b

I′
q+1

j
I′

q+1

(q + 1)|(Xfi
q+1(I′

q+1))n|2

as B
bI′

q+1

jI′
q+1

⊆ B
bIq

jIq

≤
∑

I′
q+1

∑

n∈B
bIq
jIq

(q + 1)|(XIq )n|2

as every Iq is contained in at most (k − q) number of I ′
q+1

≤ (k − q)(q + 1)
∑

I∈Sq(k)

∑

n∈B
bIq
jIq

|(XIq )n|2

= (k − q)(q + 1)||X||2. �

Proposition 3.3. The map Ψq : Aq → Aq+1 is an A = C[z1, · · · , zm]-module morphism.

Proof. For every I ∈ Sq(k), for XI ∈ HbI

jI
, Ψq(XI) is a sum

∑

1≤s≤k,s/∈I

(−1)sign(I,s)Y I∪{s},

where Y I∪{s} ∈ H
bI∪{s}

jI∪{s}
, and s is the α-th smallest number in I ∪ {s}, and sign(I, s) =

α − 1, and the function Y I∪{s} has the following form,
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Y
I∪{s}
n =

{
XI

n , n ∈ B
bI∪{s}

jI∪{s}
,

0, otherwise.

If p ∈ {1, · · · , m}, the zp action on HbI

jI
is as follows,

T jI ,bI
zp

(XI)n1···(np+1)···nm
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
ω0(n1···(np+1)···nm)

ω0(n1···nm) XI
n1···np···nm

, p /∈ jI ,√
ω0(n1···(np+1)···nm)

ω0(n1···nm) XI
n1···np···nm

, p = js ∈ jI ,

and np + 1 ≤ bs,

0, otherwise.

From this, we observe that the operator T jI ,bI
zp

preserves the component HbI

jI
. Similarly, 

the zp action on H
bI∪{s}

jI∪{s}
is as follows,

T
jI∪{s},bI∪{s}
zp (Y I∪{s})n1···(np+1)···nm

=

⎧
⎪⎪⎨
⎪⎪⎩

√
ω0(n1···(np+1)···nm)

ω0(n1···nm) Y
I∪{s}

n1···np···nm
, p /∈ jI , p �= s,√

ω0(n1···(np+1)···nm)
ω0(n1···nm) Y

I∪{s}
n1···np···nm

, p = jt ∈ jI∪{s}, np + 1 ≤ bt,

0, otherwise.

Using the above definition of Ψq(XI), we can directly check that on each component 

H
bI∪{s}

jI∪{s}
,

(
Ψq

(
T jI ,bI

zp
(XI)

))I∪{s}

= T
jI∪{s},bI∪{s}
zp

(
Ψq

(
XI

)I∪{s}
)

,

which shows that Ψq is compatible with the A-module structure. �

Proposition 3.4. Im(Ψq−1) ⊆ ker(Ψq).

Proof. For every I ∈ Sq−1(k) and any XI ∈ HbI

jI
, the image of XI under Ψq−1 is of the 

form

∑

1≤s≤k,s/∈I

(−1)sign(I,s)Y I∪{s},

where Y I∪{s} ∈ H
bI∪{s}

jI∪{s}
, and s is the α-th smallest number in I ∪ {s}, and sign(I, s) =

α − 1, and the function Y I∪{s} has the following form,

Y
I∪{s}
n =

{
XI

n , n ∈ B
bI∪{s}

jI∪{s}
,

0, otherwise.
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Similarly, the image of Y I∪{s} under the map Ψq is of the form

∑

1≤t≤k,t/∈I∪{s}

(−1)sign(I∪{s},t)ZI∪{s,t},

where ZI∪{s,t} ∈ H
bI∪{s,t}

jI∪{s,t}
, and t is the β-th smallest number in I ∪ {s, t}, and sign(I ∪

{s}, t) = β − 1, and the function ZI∪{s,t} has the following form,

Z
I∪{s,t}
n =

{
Y

I∪{s}
n , n ∈ B

bI∪{s,t}

jI∪{s,t}
,

0, otherwise.

Combining the above computation, we have the following expression for Ψq(Ψq−1(XI)),

Ψq(Ψq−1(XI)) =
∑

1≤s≤k,s/∈I

(−1)sign(I,s)Ψq(Y I∪{s})

=
∑

1≤s≤k,s/∈I

(−1)sign(I,s)
∑

1≤t≤k,t/∈I∪{s}

(−1)sign(I∪{s},t)ZI∪{s,t}

=
∑

1≤s �=t≤k,s,t/∈I

(−1)sign(I,s)+sign(I∪{s},t)ZI∪{s,t}

=
∑

1≤s<t≤k,s,t/∈I

(
(−1)sign(I,s)+sign(I∪{s},t) + (−1)sign(I,t)+sign(I∪{t},s)

)

× ZI∪{s,t}.

When s < t, it is not hard to check the following equations

sign(I, s) = sign(I ∪ {t}, s), sign(I ∪ {s}, t) = sign(I, t) + 1.

We conclude that Ψq(Ψq−1(XI)) = 0, and complete the proof of this proposition. �

Lemma 3.5.

Im(Ψ0) ⊇ ker(Ψ1).

Proof. Consider X = (X1, · · · , Xp) ∈ A1 such that X ∈ ker Ψ1. Define a function 

ξ ∈ A0 = L2
a(Bm) as follows.

ξn :=

{
Xs

n, there is s such that n ∈ Bbs

js
,

0, otherwise.

We observe that if there are s, t such that n belongs to both Bbs

js
and Bbt

jt
, then the Hbst

jst

component of Ψ1(X) is
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Xs
n − Xt

n = 0,

as X ∈ ker(Ψ1). Hence, the value ξn is independent of the choices of s. Therefore ξ is 

well defined. Furthermore, ||ξ||2 is no more than the sum

||X1||2 + · · · + ||Xp||2. (3)

Hence, ξ ∈ A0 and Ψ0(ξ) = X ∈ ker(Ψ1). �

Proposition 3.6.

Im(Ψq−1) ⊇ ker(Ψq), q = 1, · · · , k.

Proof. We prove the proposition by induction on the number k.

For k = 1, we consider the map Ψ0 : A0 → A1. With the orthonormal basis, it is not 

hard to observe that A1 can be identified with a closed subspace of A0 = L2
a(Bm), and 

the map Ψ0 is the corresponding orthogonal projection map. Therefore, Ψ0 is a surjective 

map.

Suppose that the following is true

Im(Ψq−1) ⊇ ker(Ψq), q = 1, · · · , k,

for all 1 ≤ k < p. We prove the statement for k = p.

The case for q = 1 is proved in Lemma 3.5. We are left to show the cases for 2 ≤ q ≤ p. 

We consider the following two collections of p − 1 boxes,

(1) the first p − 1 boxes

{Bb1

j1
, · · · , B

bp−1

jp−1
}.

We follow the construction in Section 3.1–3.2 and consider the associated A-modules 

A1
s together with the A-module morphisms Ψ1

s : A1
s → A1

s+1, s = 1, · · · , p − 2. Set 

A1
p := {0}, and Ψ1

p−1 = 0;

(2) the intersections of the first p − 1 boxes with the last one B
bp

jp
,

{B
b1p

j1p
, · · · , B

bp−1p

jp−1p
}.

We follow the construction in Section 3.1–3.2 and consider the associated A-modules 

A2
s together with the A-module morphisms Ψ2

s : A2
s → A2

s+1, s = 1, · · · , p − 2. Set 

A2
p := {0}, and Ψ2

p−1 = 0.

By the induction assumption, we know that

Im(Ψ1
q−1) ⊇ ker(Ψ1

q), Im(Ψ2
q−1) ⊇ ker(Ψ2

q), q = 1, · · · , p − 1.
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We define a map Φt : A1
t → A2

t by

Φt(X
I) = Y I∪{p}, I ∈ St(p − 1)

where by Y I∪{p} we refer to the component corresponding to the intersection of the 

boxes B
bi1p

ji1p
, · · · , B

bitp

jitp
with

Y
I∪{p}
n :=

{
(−1)tXI

n , n ∈ B
bI∪{p}

jI∪{p}
,

0, otherwise.

Similar to Proposition 3.3, Φt is an A-module morphism. We leave the details to the 

reader.

With the above construction, we can easily check the following identities.

(1) Aq = A1
q ⊕ A2

q−1, for q = 2, · · · , p, where A1
p = {0}.

(2) Ψq =

(
Ψ1

q 0

Φq Ψ2
q−1

)
, for q = 2, · · · , p − 1, where Ψ1

p−1 = 0.

We use the above identifications to prove Im(Ψq−1) ⊇ ker(Ψq). The proof consists of 

the following three cases.

i) q = 2, ii) 3 ≤ q ≤ p − 1, iii) q = p.

i) q = 2.

Suppose (X1, X2) ∈ A1
2 ⊕ A2

1 = A2 is in the kernel of the morphism Ψ2. By the above 

identification of Ψq, we have

Ψ1
2(X1) = 0, Φ2(X1) + Ψ2

1(X2) = 0.

By the induction assumption, ker(Ψ1
2) ⊆ Im(Ψ1

1). So there exists Y1 ∈ A1
1 such that 

Ψ1
1(Y1) = X1. By Proposition 3.4 for the morphism Ψ•, we have

(0, 0) = Ψ2

(
Ψ1(Y1, 0)

)
= Ψ2

(
Ψ1

1(Y1), Φ1(Y1)
)

=
(

Ψ1
2

(
Ψ1

1(Y1)
)
, Φ2

(
Ψ1

1(Y1)
)

+ Ψ2
1

(
Φ1(Y1)

))

as Ψ1
1(Y1) = X1, Ψ1

2

(
Ψ1

1(Y1)
)

= 0

=
(

0, Φ2(X1) + Ψ2
1

(
Φ1(Y1)

))
.

Hence, Φ2(X1) + Ψ2
1

(
Φ1(Y1)

)
= 0. Consider X ′

2 = X2 − Φ1(Y1). We compute

Ψ2
1(X ′

2) = Ψ2
1(X2 − Φ1(Y1)) = Ψ2

1(X2) − Ψ2
1(Φ1(Y1)) = Ψ2

1(X2) + Φ2(X1) = 0,

as Ψ2(X1, X2) = (Ψ1
2(X1), Φ2(X1) + Ψ2

1(X2)) = 0.
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Using the property that Ψ2
1(X ′

2) = 0, we construct an element Y2 ∈ H
bp

jp
by setting

(Y2)n :=

{
(X ′

2
ip

)n, n ∈ B
bip

jip
, for some i = 1, ..., p − 1,

0, otherwise.

As Ψ2
1(X ′

2) = 0, the above definition of Y2 is independent of the choices of i. It is not 

hard to check the norm of Y2 is bounded following the similar estimate as Equation (3). 

Therefore, Y2 is in H
bp

jp
⊂ L2

a(Bm), and Ψ2
0(Y2) = X ′

2.

In summary, we have constructed an element (Y1, Y2) ∈ A1 = A1
1 ⊕ H

bp

jp
. And it is not 

hard to check that

Ψ1(Y1, Y2) = (Ψ1
1(Y1), Φ1(Y1) + Ψ2

0(Y2)) = (X1, Φ1(Y1) + X ′
2) = (X1, X2),

which shows that (X1, X2) ∈ Im(Ψ1).

ii) 3 ≤ q ≤ p − 1.

Suppose (X1, X2) ∈ A1
q ⊕ A2

q−1 = Aq is in the kernel of the morphism Ψq. By the 

above identification of Ψq, we have

Ψ1
q(X1) = 0, Φq(X1) + Ψ2

q−1(X2) = 0.

As Im(Ψ1
q−1) ⊇ ker(Ψ1

q), there is Y1 ∈ A1
q−1 such that X1 = Ψ1

q−1(Y1). As 

Ψq(Ψq−1(Y1, 0)) = 0, Φq(X1) + Ψ2
q−1(Φq−1(Y1)) = 0. Hence, we have

Ψ2
q−1(X2 − Φq−1(Y1)) = 0.

As Im(Ψ2
q−2) ⊇ ker(Ψ2

q−1), there exists Y2 ∈ A2
q−2 such that

Ψ2
q−2(Y2) = X2 − Φq−1(Y1).

Therefore, we have found (Y1, Y2) ∈ Aq such that

Ψq−1(Y1, Y2) =
(
Ψ1

q−1(Y1), Φq−1(Y1) + Ψq−2(Y2)
)

= (X1, X2).

iii) q = p.

We notice that Ap is the same as A2
p−1. As the map Ψ2

p−2 : A2
p−2 → A2

p−1 is surjective, 

it follows that the map Ψp−1 : Ap−1 = A1
p−1 ⊕ A2

p−2 → Ap = A2
p−1 is surjective. �

3.4. Proof of Theorem 1.1

In this subsection, we prove the main theorem of the paper. We assume that I is an 

ideal of the polynomial algebra C[z1, · · · , zm] generated by monomials zαi := z
α1

i

1 · · · z
αm

i
m , 

for αi ∈ N
m, i = 1, · · · , l.
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Following [11, Theorem 1.1.2], monomials inside the ideal I form a linear basis of the 

ideal I over C. We consider the lattice Nm and the subset C(I) consisting of exponents 

of monomials that do not belong to I. According to [11, Proposition 1.1.5], a monomial 

v belongs to I if and only if there is a monomial w such that v = wzαi for some 

i = 1, · · · , l. Therefore, the monomial zn1

1 · · · znm

m does not belong to I if and only if 

for any i = 1, · · · , l, zαi is not a factor of zn1

1 · · · znm

m . Equivalently, zn1

1 · · · znm

m does not 

belong to I if and only if for every i, there is si such that nsi < αsi

i .

Consider the finite collection S(α1, · · · , αl) of l-tuple of natural numbers s =

(s1, · · · , sl) such that 1 ≤ si ≤ m. For each s, let js ⊆ {1, · · · , m} be the subset con-

sisting of those numbers appearing in the array (s1, · · · , sl). For every k ∈ js, let bk be 

the minimum of all αsi

i such that si = k for i = 1, · · · , l. From the above conditions 

on monomials not in I, we conclude that C(I) is the union of all boxes Bs. We refer 

the reader to [4, Section 9.2, Theorem 3] for a related discussion. We conclude from 

the discussion above that a polynomial f belongs to I if and only if f has no nonzero 

component in any of the boxes Bbs

js
for any s ∈ S(α1, · · · , αl). Let Bb1

j1
, · · · , Bbk

jk
be the 

collection of nonempty boxes in {Bbs

js
: s ∈ S(α1, · · · , αl)} associated to the ideal I.

Associated to the above collection of boxes Bb1

j1
, · · · , Bbk

jk
, we apply the constructions 

in Section 3.1–3.2 to construct a sequence of Hilbert A-modules A0, · · · , Ak together 

with module morphisms Ψq : Aq → Aq+1, i.e.

A0 = L2
a(Bm)

Ψ0−→ A1
Ψ1−→ · · ·

Ψk−1

−→ Ak −→ 0.

Proposition 2.3 shows that each Aq (q = 0, 1, ..., k) is a Hilbert A = C[z1, · · · , zm]-module. 

Proposition 3.2–3.3 show that Ψq (q = 0, · · · , k − 1) is a bounded module morphism. 

Proposition 3.4–3.6 show that the above sequence is exact at Aq for q = 1, · · · , k.

We are left to prove that the kernel of the morphism Ψ0 is the completion of I in 

L2
a(Bm), i.e.

I = ker(Ψ0).

By the above discussion, if f ∈ I, then f has no nonzero component in any of the boxes 

Bbs

js
for any s ∈ S(α1, · · · , αl). This shows that f ∈ ker(Ψ0). Therefore, I and its closure 

I are contained inside ker(Ψ0).

Suppose that f is in the kernel ker(Ψ0). Write f in terms of the orthonormal basis,

f =
∑

n∈Nm

fnzn.

As Ψ0(f) = 0, by the definition of Ψ0, for any s = 1, · · · , k, and any n ∈ Bbs

js
, fn = 0. 

For any positive integer M , let fM be the truncation of the above expansion of f by 

requiring n1, · · · , nm < M , i.e.

fM :=
∑

n∈Nm,n1<M,··· ,nm<M

fnzn.
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It is not hard to see that fM is a polynomial and has no component in the boxes 

Bb1

j1
, · · · , Bbk

jk
. By the construction of the boxes Bb1

j1
, · · · , Bbk

jk
, fM belongs to the ideal I. 

As M → ∞, fM converges to f in L2
a(Bm). Hence, we have shown that f belongs to the 

closure I, and ker(Ψ0) is a subset of I. So we conclude that I = ker(Ψ0).

In summary, we have completed the proof of Theorem 1.1 for general monomial ideals.

3.5. K-homology class

As a corollary of Theorem 1.1, by applying [6, Theorem 1], we can conclude that the 

closure I of the ideal I and the quotient QI := L2
a(Bm)/I are both essentially normal 

Hilbert modules.

Let T(I) (and T(QI)) be the unital C∗-algebra generated by Toeplitz operators on the 

module I (and the quotient module QI). We now discuss properties of the K-homology 

class associated to the following Toeplitz extension,

0 −→ K −→ T(QI) −→ C(σe
I) −→ 0,

where σe
I is the essential spectrum space of the algebra T(QI) and K is the algebra of 

compact operators.

By Theorem 1.1, for i = 1, · · · , k, we introduce the following closed subspace of Ai,

A−
i := Im(Ψi−1) = ker(Ψi).

As Ψk−1 is surjective, A−
k = Ak.

As Ψi : Ai → Ai+1 is a morphism of A = C[z1, · · · , zm]-modules, the kernel A−
i =

ker(Ψi) is naturally an A-module. Furthermore, we have the following exact sequence of 

Hilbert A-modules,

0 −→ A−
i −→ Ai −→ A−

i+1 −→ 0, i = 1, · · · , k − 1,

where the first map is the inclusion, and the second map is Ψi.

Lemma 3.7. ∀i = 1, · · · , k, the A-module A−
i is essentially normal, and therefore the 

quotient module Qi := Ai/A−
i is also essentially normal.

Proof. When i = k−1, as Ψk−1 is surjective, we have the following short exact sequence,

0 −→ A−
k−1 −→ Ak−1 −→ Ak −→ 0.

As it is explained in Section 3.1, both Ak−1 and Ak are essentially normal A-modules. 

It follows from [6, Theorem 1] that A−
k−1 is an essentially normal A-module.

Repeating the above arguments to the exact sequence

0 −→ A−
k−2 −→ Ak−1 −→ A−

k−1 −→ 0,
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we conclude that A−
k−2 is an essentially normal A-module. Similarly, the iterated argu-

ments show that every A−
i is an essentially normal A-module. �

Modeled by the above short exact sequence of essentially normal Hilbert A-modules 

A−
i and Ai, we prove the following property.

Proposition 3.8. Let M1, M2, M3 be essentially normal Hilbert A-modules, and W1 :

M1 → M2, W2 : M2 → M3 be morphisms of Hilbert A-modules satisfying the following 

short exact sequence

0 −→ M1
W1−→ M2

W2−→ M3 −→ 0.

Suppose that the essential spectrum of the tuples (T i
z1

, · · · , T i
zm

), i = 1, 2, 3, is contained 

in the closed unit ball B
m

⊂ C
m, and let αi : C(B

m
) → C(Mi) = B(Mi)/K(Mi) be the 

induced representations of C(B
m

) on the Calkin algebra C(Mi). There are co-isometry 

operators U : M2 → M1 and V : M2 → M3 such that

UV ∗ = 0 = V U∗, U∗U + V ∗V = I,

and commute with A-module structures up to compact operators, i.e.

[U ]α2[U ]∗ = α1, [V ]α2[V ]∗ = α3,

where αi(p) = [Tp] ∈ C(Mi) denotes the equivalence class of the multiplication operator 

Tp ∈ L(Mi).

Proof. As W2 is surjective, W2W ∗
2 is positive definite. Let W2 = A3V be the polar 

decomposition of the morphism W2 such that A3 is a positive definite operator on M3, 

s.t. A3 = (W2W ∗
2 )

1
2 , and V is a co-isometry, i.e. V V ∗ = I.

As W2 is an A-module morphism, for any f ∈ A = C[z1, · · · , zm], we have

A3V T 2
f = W2T 2

f = T 3
f W2 = T 3

f A3V,

where T 2
f and T 3

f are the Toeplitz operators on M2 and M3 associated to f . As M2 and 

M3 are essentially normal, T 2
f and T 3

f are both normal in the respective Calkin algebras. 

It follows from the Fuglede–Putnam theorem that the following equation holds modulo 

compact operators

A3V (T 2
f )∗ = W2(T 2

f )∗ = (T 3
f )∗W2 = (T 3

f )∗A3V.

Taking the adjoint of both sides of the above equation, we reach

T 2
f V ∗A3 = V ∗A3T 3

f .
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Multiplying A3V to the left of each term in the above equation, with the property 

V V ∗ = I, we have

A3V T 2
f V ∗A3 = A3V V ∗A3T 3

f = A2
3T 3

f .

As

A3V T 2
f = T 3

f A3V,

we conclude from the above equation that modulo compact operators

A3V T 2
f V ∗A3 = T 3

f A3V V ∗A3 = T 3
f A2

3 = A2
3T 3

f .

As A3 is positive definite, it is safe to conclude that modulo compact operators

T 3
f A3 = A3T 3

f .

The above commutativity plus the equation A3V T 2
f = T 3

f A3V gives the following iden-

tity, modulo compact operators,

V T 2
f = T 3

f V.

The property of V V ∗ = I confirms that modulo compact operators

V T 2
f V ∗ = T 3

f ,

which is exactly

V α2V ∗ = α3.

As W1 : M1 → M2 is injective with closed range, W ∗
1 W1 is positive definite. Let 

W1 = WA1 be the polar decomposition of the operator W1, where A1 = (W ∗
1 W1)

1
2

and W : M1 → M2 is a partial isometry, i.e. W ∗W = I. An argument similar to 

the one above can be made for W2 to show that modulo compact operators, for any 

f ∈ A = C[z1, · · · , zm],

A1T 1
f = T 1

f A1,

and

W ∗T 2
f W = T 1

f .

If we set U = W ∗, then UT 2
f U∗ = T 1

f , and UU∗ = I, which shows

Uα2U∗ = α1.
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As W2W1 = A3V U∗A1 = 0, V U∗ = 0 follows from the invertibility of A1 and A3. 

Therefore, U∗U and V ∗V are commuting two orthogonal projections on M2. To prove 

that their sum is the identity operator, it is enough to show that the kernel of their sum 

is trivial. If ξ ∈ M2 satisfies U∗Uξ + V ∗V ξ = 0, it follows that U∗Uξ = V ∗V ξ = 0, and 

Uξ = V ξ = 0. Then W2ξ = A3V ξ = 0, and W ∗
1 ξ = A1Uξ = 0. As W2ξ = 0, ξ belongs 

to the kernel of W2, and the exactness of the morphisms shows that there is η ∈ W1

such that W1η = ξ. As W ∗
1 ξ = 0, W ∗

1 W1η = 0, and ξ = W1η = 0. Hence the kernel of 

U∗U + V ∗V is trivial, and U∗U + V ∗V = I. �

Let T(Mi) be the unital C∗-algebra generated by Toeplitz operators on Mi, and 

σe
i be the associated essential spectrum space of the tuple (Tz1

, · · · , Tzm
) on Mi. The 

morphisms α1 and α2 factor to injective algebra homomorphisms from C(σe
1) and C(σe

2)

to C(M1) and C(M2). By Proposition 3.8, α1 = [U ]α2[U ]∗. The composition of [U ]α2[U ]∗

with α−1
1 is an algebra homomorphism from C(σe

2) to C(σe
1). Accordingly, this induces 

a natural map from σe
1 to σe

2. Similar arguments also give a natural map from σe
3 to 

σe
2. Accordingly, α1 and α3 induce classes in K1(σe

2). The following property is a quick 

corollary of Proposition 3.8.

Corollary 3.9. Under the same assumption as Proposition 3.8, the following equation 

holds in K1(σe
2),

[α2] = [α1] + [α3],

where [α1] and [α3] are identified as classes in K1(σe
2) by the co-isometry operators U

and V introduced in Proposition 3.8.

Proof. As we have explained, α1 and α3 induces classes in K1(σe
2). Furthermore, as 

K-homology classes of σe
2, α1 = [U ]α2[U ]∗, α3 = [V ]α2[V ]∗ : C(σe

2) → C(M2) with 

UU∗ = I = V V ∗, UV ∗ = 0 = V U∗, and U∗U + V ∗V = I. Such a pair U, V proves the 

following equation,

[α2] = [α1] + [α3]. �

We are now ready to apply Proposition 3.8 and Corollary 3.9 to the exact sequence 

constructed in Theorem 1.1. Let T(Ai) (and T(A−
i )) be the unital C∗-algebra generated 

by Toeplitz operators on Ai (and A−
i ), and σe

i ⊂ B
m

(and σe
i− ⊂ B

m
) be the associated 

essential spectrum space, and αi (and α−
i ) be the associated representation of C(σe

i )

(and C(σe
i−)) into the Calkin algebra C(Ai) (and C(A−

i )).

Theorem 3.10. (Theorem 1.2) The K-homology class associated to [T(QI)] is the same 

as [α−
1 ], and in K1(σe

1 ∪ · · · ∪ σe
k),

[T(QI)] = [α1] − [α2] + · · · + (−1)k−1[αk].
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Proof. We apply Corollary 3.9 to the following short exact sequence of essentially normal 

Hilbert A-modules

0 −→ A−
i −→ Ai −→ A−

i+1 −→ 0, i = 1, · · · , k − 1.

We have the following equation in K1(σi),

[αi] = [α−
i ] + [α−

i+1].

When i = k − 1, A−
k = Ak, and in K1(σe

k−1),

[αk−1] = [α−
k−1] + [αk].

Similarly, for i = k − 2, in K1(σe
k−2),

[αk−2] = [α−
k−2] + [α−

k−1].

Combining the above two equations on K-homology groups, we conclude that in 

K1(σe
k−1 ∪ σe

k−2),

[αk−1] + [α−
k−2] = [αk] + [αk−2],

by pushing forward the respective equations in K1(σe
k−1) and K1(σe

k−2) into the ones in 

K1(σe
k−1 ∪ σe

k−2) via the natural inclusion maps σe
k−1, σe

k−2 ↪→ σe
k−1 ∪ σe

k−2.

Repeating the above arguments inductively, we conclude that in K1(σe
1 ∪ · · · ∪ σe

k),

[α−
1 ] = [α1] − [α2] + · · · + (−1)k−1[αk].

By the short exact sequence of essentially normal Hilbert A-modules,

0 −→ I −→ L2
a(Bm) −→ A−

1 −→ 0,

we conclude that there is a natural A-module isomorphism between the quotient Hilbert 

modules QI = L2
a(Bm)/I and A−

1 . We conclude from [8, Proposition 4.4] that they must 

define the same K-homology class. Therefore, we conclude that in K1(σe
1 ∪ · · · ∪ σe

k),

[T(QI)] = [α1] − [α2] + · · · + (−1)k−1[αk]. �

4. Examples

In this section, we explain our construction of the boxes in examples.
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Fig. 1. Staircase diagram corresponding to I = 〈zp
1 zq

2 , zr
1 zs

2〉. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

4.1. Ideal I = 〈z2
1z2

2〉 ⊂ C[z1, z2]

The exponents of monomials in the ideal I = 〈z2
1z2

2〉 comprises the region 

{(n1, n2)|n1, n2 ≥ 2}. In this example, there is only one α = (2, 2). There are two 

boxes associated to the ideal, Bb1

j1
:= {(n1, n2)|n1 ≤ 1}, Bb2

j2
:= {(n1, n2)|n2 ≤ 1}. The 

intersection Bb12

j12
of Bb1

j1
and Bb2

j2
is of the form {(n1, n2)|n1, n2 ≤ 1}.

We have following subsets Bj1 := {(0, z2)| |z2| < 1}, Bj2 := {(z1, 0)| |z1| < 1}.

The Hilbert module A1 is the direct sum of two submodules A1
1 and A2

1, where A1
1 is 

the closed subspace of L2
a(B2) spanned by {zn

2 , z1zn
2 }n∈N, and A2

1 is the closed subspace 

of L2
a(B2) spanned by {zn

1 , zn
1 z2}n∈N.

The Hilbert A-module on A2 is the subspace of L2
a(B2) spanned by {1, z1, z2, z1z2}. 

It is easy to see that A2 = A1
1 ∩ A2

1.

4.2. Ideal I = 〈zp
1zq

2 , zr
1zs

2〉 ⊂ C[z1, z2]

We consider the ideal I = 〈zp
1zq

2 , zr
1zs

2〉 ⊂ C[z1, z2], p, q, r, s ≥ 0. We explain our 

construction of boxes and the associated Hilbert modules in Theorem 1.1 in this example.

The exponents of monomials in I belong to the white region of the Fig. 1 marked 

by I. The subset C(I) ⊂ N
2 consisting of exponents of monomials not in the ideal I

is the blue region in Fig. 1. In this example, α1 = (r, s), α2 = (p, q), S(α1, α2) consists 

of 4 arrays (1, 1), (1, 2), (2, 1), (2, 2). The boxes associated to these arrays are described 

below.

(1) For s = (1, 1), the box Bb11

j11
is {(n1, n2)|n1 < r};

(2) For s = (1, 2), the box Bb12

j12
= {(n1, n2)|n1 < p, n2 < s};

(3) For s = (2, 1), the box Bb21

j21
= {(n1, n2)|n1 < r, n2 < q};

(4) For s = (2, 2), the box Bb22

j22
= {(n1, n2)|n2 < q}.
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In the Fig. 1, the box Bb11

j11
is marked as region A, and the box Bb12

j12
is marked as region 

C, and the box Bb22

j22
is marked as region B. As the box Bb21

j21
is contained inside Bb12

j12
, 

we do not need to include the box Bb21

j21
in our construction. However, our theorem still 

works even if we include it.

The Hilbert space A1 is a direct sum of three spaces A11
1 , A12

1 , A22
1 . The Hilbert space 

A11
1 is the subspace of L2

a(B2) spanned by {zn
2 , z1zn

2 , · · · , zr−1
1 zn

2 }n∈N, and the Hilbert 

space A12 is the finite dimension subspace of L2
a(B2) spanned by

1 , z1 , · · · , zp−1
1 ,

z2 , z1z2 , · · · , zp−1
1 z2,

· · · · · ·

zs−1
2 , z1zs−1

2 , · · · , zp−1
1 zs−1

2 .

The Hilbert space A22 is the subspace of L2
a(B2) spanned by {zn

1 , zn
1 z2, · · · , zn

1 zq−1
2 }n∈N.

The Hilbert space A2 is a direct sum of three spaces, A11
1 ∩ A12

1 , A11
1 ∩ A22

1 , and 

A12
1 ∩ A22

1 .

The Hilbert space A3 is the subspace of L2
a(B2) spanned by

1 , · · · , zr−1
1 ,

z2 , · · · , zr−1
1 z2,

· · ·

zq−1
2 , · · · , zr−1

1 zq−1
2 .

4.3. Ideal 〈z2
1 , z3 − z2

2〉 ⊂ C[z1, z2, z3]

We consider the biholomorphic transformation T : C
3 → C

3 by (z1, z2, z3) �→

(u1, u2, u3) = (z1, z2, z3 − z2
2). Under the biholomorphic transformation T , the ideal 

I = 〈z2
1 , z3 − z2

2〉 is changed to I ′ = 〈z2
1 , z3〉. T maps the unit ball B3 to the domain Ω

defined as follows,

Ω = {(u1, u2, u3)||u1|2 + |u2|2 + |u3 + u2
2|2 < 1} ⊂ C

3.

Let dVΩ be the normalized Lebesgue measure on Ω, and L2
a(Ω) be the Bergman space 

on Ω with respect to the measure dVΩ. Under the biholomorphic transformation T , the 

Bergman space L2
a(B3) is mapped isometrically to L2

a(Ω). And the closure I of the ideal 

I in L2
a(B3) is mapped to the closure I

′
of the ideal I ′ in L2

a(Ω). We notice that the 

transformation T maps the polynomial algebra to itself. As A-modules, L2
a(B3) (and I) 

and L2
a(Ω) (and I

′
) are isomorphic.

On L2
a(Ω), for the ideal I ′ = 〈z2

1 , z3〉, we apply the similar construction as in Section 3. 

There is only one box Bb
j associated to the ideal I ′, where j = (1, 3) and b = (1, 0), and 

B = {(n1, n2, 0)|n1 ≤ 1}. We consider the subset Ωj = {(z1, z2, z3) ∈ Ω|z1 = z3 = 0}. Ωj

can be identified with an open subset of C of the form {z2| |z2|2 + |z2|4 < 1}. Let L2
a,s(Ωj)
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be the Hilbert space of square integrable holomorphic functions on Ωj with respect to 

the norm

(1 − |z2|2 − |z2|4)sdVΩj
,

where dVΩj
is the normalized Lebesgue measure on Ωj.

Define the Hilbert space A to be the following direct sum of two weighted Bergman 

spaces, i.e.

A = L2
a,2(Ωj) ⊕ L2

a,3(Ωj).

We define the A = C[z1, z2, z3]-module structure on AI′ by the following formulas. 

For (X, Y ) ∈ L2
a,2(Ωj) ⊕ L2

a,3(Ωj),

Tz1
(X, Y ) = (0, X), Tz2

(X, Y ) = (z2X, z2Y ), Tz3
(X, Y ) = (0, 0).

We notice that monomials {zi
2}i∈N form an orthogonal basis of both L2

a,2(Ωj) and 

L2
a,3(Ωj). A straightforward computation shows that AI′ is an essentially normal Hilbert 

C[z1, z2, z3]-module (see also [7]).

We define a map ΨI′ : L2
a(Ω) → AI′ = L2

a,2(Ωj) ⊕ L2
a,3(Ωj) by

Ψ(f) := (f |z1=z3=0,
∂f

∂z1
|z1=z3=0).

Similar to the argument in the proof of Theorem 1.1 in Section 3.4, we can prove that 

ΨI′ is a bounded surjective A-module morphism and its kernel is exactly I
′
. Hence we 

have the following short exact sequence of essentially normal A-modules,

0 −→ I
′
−→ L2

a(Ω)
ΨI′

−→ AI′ −→ 0.

The biholomorphic transformation T maps W := {(0, z2, z2
2) ∈ B

3} isomorphically to 

Ωj = {(0, z2, 0) ∈ Ω}. We can replace Ωj by W in the corresponding definitions of AI

the map ΨI . Using the transformation T , we have a short exact sequence of essentially 

normal A-modules,

0 −→ I −→ L2
a(B3)

ΨI−→ AI −→ 0.

As a corollary, we can conclude that the ideal I and associated quotient module QI

are both essentially normal. We also have the following geometric description for the 

corresponding Toeplitz extension,

[T(QI)] = [T
(
L2

a,2(Ωj) ⊕ L2
a,3(Ωj)

)
].
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