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1. Introduction

Let B™ be the unit ball in the complex space C™, and L2 (B™) be the Bergman space
of square integrable holomorphic functions on B™, and A be the algebra Clzq, - , 2]
of polynomials of m variables. The algebra A plays two roles in our study: one is that A
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is a dense subspace of the Hilbert space L2(B™), the other is that A acts on L2(B™) by
Toeplitz operators.

In this article we are interested in an ideal I of A generated by monomials. Let T be
the closure of I in L2(B™), and Q; be the quotient Hilbert space L2(B™)/I. The first
author proved in [5, Theorem 2.1] that the Toeplitz operators T,,, i = 1,...,m, on I,
and the quotient Q; are essentially normal,” i.e. the following commutators are compact

[Tzi‘f7 (TZ]' |T)*} € ’C(T)’ and [Tzi|Q17 (sz|QI)*] € IC(QI)’ =1 ,m.

Let T(Qr) be the unital C*-algebra generated by the Toeplitz operators Ty,|g,, ¢ =
1,---,m. The above essential normality property of the Toeplitz operators gives the
following extension sequence

0—K—%Qr) — C(cf) — 0,

where o¢ is the essential spectrum of the quotient tuple (T, |q,, -, 2% l0,) on Qr,
and K is the algebra of compact operators. By the Gelfand-Naimark theorem, o§ is the
spectrum space of the commutative C*-algebra T(Q)/K. Abusing the notion, we will
sometimes refer to o§ as the essential spectrum space of the algebra T(Q). The index
problem we want to answer in this article is to provide a good description of the above
K-homology class.

The main difficulty in answering the question above is that the ideal I in general
fails to be radical. This makes the geometric ideas introduced in [8] and [10] impossible
to apply directly. The seed of the main idea in this article is the following observation
discussed in [8, Section 5.2]. For m = 2, consider the ideal I = (27) C A = Cl[z1, 22]. The
quotient ()7 can be written as the sum of two space

L3 1(D) & L 5(D),

where D is the unit disk inside the complex plane C, and L2 ;(—) (and L2 5(—)) is the
weighted Bergman space with respect to the weight defined by the defining function
1 —|2|* (and (1 — |2|?)?). Define the restriction map Ry : L2(B®) — L2 (D) & L2 ,(D)
by
of
Ri(f) = (Flasmos o leimo):

21

It is not hard to introduce a Hilbert A = C[z1, 25]-module structure on L2 | (D) & L2 , (D)
so that the following exact sequence of Hilbert modules holds,

0— 1 — L2(B%) — L2 (D) & L2 ,(D) — 0.

2 Arveson [1, Corollary 2.2] proved the similar result on the Drury—Arveson space.
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It is well known that the Toeplitz operators on the (weighted) Bergman space L2 ; (D) and
Lg,z (D) are essentially normal. In [8, Section 5.2], we observe that one can conclude the
essential normality property of the Hilbert module I and Q; from the exact sequence
above. Furthermore, it is not hard to prove that the quotient Hilbert module Q; is
isomorphic to the module L7 ; (D) ® L2 ,(D), and the extension class [T(Q;)] associated
to @ can be identified with the one associated to L2 | (D) & L2 , (D).

In this article, we extend the example above to an arbitrary ideal I of L2(B™) gen-
erated by monomials. By considering an ideal generated by two monomials, we realize
that it is more natural to work with long exact sequences of Hilbert modules, instead of
short ones. The following is our main theorem.

Theorem 1.1. Let I be an ideal of Clz1,--- ,zy] generated by monomials, and I be its
closure in the Bergman space L2(B™). There are Bergman space like Hilbert A-modules
Ao = L2(B™), Ay, - -, Ay together with bounded A-module morphisms W; : A; — Aii1,
1=20,---,k—1 such that the following exact sequence of Hilbert modules holds

0— T L2B™) 2o 4, 2 .25 4, — 0.

For the example above I = (27), the number k in Theorem 1.1 is 1, and the Bergman
space like Hilbert A-module A; is the sum L2 (D) & L2 ,(ID). We will explain in Sec-
tion 2.3, Proposition 2.5, that the Hilbert A-module A;, ¢ = 1,--- ,k, has a similar
geometric structure as a direct sum of (weighted) Bergman spaces on lower dimensional
balls.

As a corollary of Theorem 1.1, we obtain a new proof of the essential normality
property of the ideal I and its quotient @Q;. Moreover, Theorem 1.1 allows us to identify
the extension class associated to T(Qr) geometrically. We compute it in the following
theorem.

Theorem 1.2. (Theorem 3.10) Let T(A;) be the unital C*-algebra generated by Toeplitz
operators on A;, and of be the associated essential spectrum space. In K1(ofU---Uoy),
the following equation holds,

[T(Q1)] = [F(A1)] — [F(A2)] + -+ + (= 1)F T [T(A)].

As it is explained in Section 2.3, every algebra T(A;), i = 1,--- , k, can be identified as
the algebra of Toeplitz operators on square integrable holomorphic sections of a hermitian
vector bundle on a disjoint union of subsets of B”*. This geometric interpretation allows
us to use the ideas developed in [8] and [10] to study the “geometry” of the algebra
Q).

The zero set of a monomial ideal I defines a (singular) projective variety. We think
that the K-homology class associated to the extension of T(Q;) is closely related to the
fundamental class studied by Baum, Fulton, MacPherson in [2,3]. In particular, in the
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near future we plan to study the relation between the Euler characteristic associated to
the alternating sum in Theorem 1.2 and the arithmetic genus of the associated projective
variety.

We remark that although our Theorem 1.1 is stated for the closure of a monomial
ideal inside the Bergman space L2(B™), the same proof also works for the closure of any
monomial ideal inside more general spaces, e.g. weighted Bergman spaces LiS(Bm) and
the Drury—Arveson space.

Our result in Theorem 1.1 can be viewed as a “resolution” ([12]) of the ideal I by
essentially normal Hilbert modules Ao, --- , Ax. Such an idea of “resolution” goes back
to the first author’s work in [5], and the study in this article should not be limited
to monomial ideals. In Section 4.3, we explain that a similar construction also works
for a more general ideal in C[z1, 29, 23]. In the near future, we hope to report about a
systematic study on extending ideas from Theorem 1.1 to more general ideals I with the
help of results in [9].

This article is organized as follows. In Section 2, we will introduce the main building
block in our construction. In Section 3, we will construct the Hilbert modules A; and
morphisms W;, ¢ = 0,--- ,k in Theorem 1.1, and prove the main Theorem. Our proof
is inspired by the corresponding algebraic study on monomial ideals [4], [11]. We will
end our paper by exhibiting our constructions on concrete examples in Section 4. In
particular, a non-monomial ideal example is discussed in Section 4.3.
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2. Generalized Bergman space and the associated Toeplitz operators

In this section, we introduce and study a building block in the construction of the
resolution in Theorem 1.1.

2.1. Notations

We start with fixing some notations. For a positive integer ¢, we use the symbol S,(m)
to denote the set of g-shuffles of the set [m] = {1,--- ,m}, ie.

Sy(m) == {i:= (", )1 <j' <2< <jT<m}.

Let N be the set of all nonnegative integers. For any i = (it,--- ,i7) € N%, we use [i| to
denote the sum ¢ 4 - - - + 49,

Fix j = (j',--,j%) € Sy(m), and b = (b',--- ,b?) € N9. We associate a subset
ij C N™ defined by
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B :={(n',--- ,n™) € Nm\n]k <V fork=1,...,q}.

We call B;’ the box associated to j and b.
In the following, we introduce a Hilbert space 7—[}’ as a closed subspace of L2(B™).
On B™, consider the weighted Bergman space LZVS(IB’”) defined by square integrable
holomorphic functions on B™ with respect to the norm

1918, = [ IR0 - 1p v,

m!s!

where dV is the normalized Lebesgue measure on B™. This Hilbert space has the fol-
lowing standard orthonormal basis

"1—) n:(nl,-”,nm)ENm} (1)

nil-ngl(m4s)!

where wg(n) := R ——————

Definition 2.1. The Hilbert space H is a closed subspace of L2(B™) consisting of func-
tions f € L2(B™) whose expansion Y fuz" with respect to the orthonormal basis 2"
satisfies

fa=0, forn¢ B

We have the following orthonormal basis for the Hilbert space 7—[1{’,

n z{‘l...z;ﬁbm
zZ" = ,
wo(n)
where 0 < nj < bl,.--,0< njo < b?, and the index n; for ¢ ¢ j belongs to N. In terms

of this basis, an element X € ’Hjb can be written as

X = > Xptoogm 2™ (2)

0<nit <bl,--- ,0<nI? <ba

In the following, we define a representation of the polynomial algebra A =
Clz1,- -+ , zm| on the Hilbert space 7—[[’ Let Per be the orthogonal projection of L2(B™)
onto HP. For p = 1,---,m, the operator TJ ® on H! is defined to be the operator
P30Tz, |0 - More explicitly, the operator T0:° on H, is of the following form,

Tj’b(zn): Zp,z'"7 if (77,1’... ,Tlp+17"‘ 7nm)€ij7
0, otherwise.
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Since the orthogonal complement of the closed subspace 7—[][’ C L2(B™) is invariant
under the operator T, , p=1,---,m, (T5°, .- ,Tg;b) is a commuting tuple of bounded

z1 7 n

linear operators on ’Hjb. Hence we have reached the following lemma.

Lemma 2.2. The above operators {Tg;b}iﬁl define a bounded representation of the algebra
A on the space ’H’[’

2.2. Essential normality property

In this subsection, we prove the following property of the Hilbert A-module ”Hjb
Proposition 2.3. The following commutators are compact.
(T30, T3] € K(HY), Vs, t=1,--- ,m.
Therefore, Hjb is an essentially normal Hilbert A-module.

Since the Hilbert module 7-[;’ can be identified with the quotient module L2(B™) &

(z;?i“, - ,zé’z *1) the assertion of Proposition 2.3 follows from [1] and [6]. We outline

its proof here for completeness.

Proof. Let ij be the orthogonal projection from LZ2(B™) onto the closed subspace Hjb.
As T)® can be written as PPT. PP, it suffices to prove the commutator [P?,T. ] is
compact.

For n € BY, PPT., (z") is computed as follows,

\/wo(nl<-~(ns—0—1)~~n”")an~~(n3-i-1)~~~n7”7 if (nl . (ns + 1) L. nm) c Bb

wo (nt--nm) )7

0, otherwise.

]Dijzs (Zn) _ {

Similarly, 7, ij (z") is computed as follows,

wo(nl...n’!n) i

Tzs P]b (Zn) =

/R et (e ™) € BY
0, otherwise.

Hence, [ij, T..](2") is computed as follows,

T..(pk om s m .
_\/wo(n (bk+1)---n )an(n +1)-n , if (nlngnm) EB;’,

wo(nl-bF.pm)
P T ) = and s = j*, and n* = b*
for some k,
0, otherwise.

1 k m
We observe that the weight WOO(JZ(;;(.’.’.J}?T‘I‘;S) )

n™)|| = oo. From this, we can conclude that the commutator [P?, T ] is compact. O

converges to zero as ||(nt,--- ,bF, -,
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Remark 2.4. It is not hard to check in the above proof of Proposition 2.3 that the
commutators [P?,T;,] and therefore also [Tg;b*, T):*] belong to the Schatten-p ideal for
p>m—gq.

2.3. Geometry of the Hilbert space ’Hf’

In this subsection, we discuss briefly the geometry of the Hilbert space 7-[]-[’ introduced
in Section 2.1.
Let Bj be the subset of B™ cut by the hyperplanes Hji := {z;; =0}, i=1,--- ,q, i.e.

B :={(z1,- - ,2m) € B"| zj1 =--- = zju = 0}.
Observe that B; is the unit ball inside the subspace
Hj:={(z1,-- ,2m)|zj1 = - = zja =0},

which is isomorphic to the standard complex space C™ 9.
For i = (i, - ,i9) € N4, we consider the following weighted Bergman space ”Hii =
Li o+l (B;). And given any b € N9, we consider the following Hilbert space

ﬁf = @ ﬁlbl = @ Li,q—Hi\ (B;).

i€ENa 1 <pl ... §9<b i€ENa 1 <pl ... 4a<b

Let Hjb) . be the closed subspace of Hf’ spanned by basis vectors 2" for nj = it
-+, nja = 9. It is not hard to check that Hj[’ is a direct sum of closed subspaces as
follows,

M = D Hyi

iENT §1<bl oo ja<ba

We define a map ij : 'Hib — 7—7;’ by

Rib(f) = Z ij,i(f)7

1<l i <be

where le”i : 'Hj[”i — ﬁﬁi is defined as follows,

ai1+...+iq
ij,i(f) = —f , Vf € H;bx

1 q
e
We have the following property of the map ij.

Proposition 2.5. The map ij s an isomorphism of Hilbert spaces.
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Proof. It suffices to prove that the operator Rii : ?—l]b L ﬁ}’ . is an isomorphism of
Hilbert spaces.

For 2" € Hf’l,
2l dl
b RN A 1 i1 -q m
RLi(zn) = 72;? 2;1 ...Z;q Z:Ln ,
wo(n)
where by fz\j”, s=1,---,q, we mean removing z > from the expression.
Let n’ be the tuple in N™~7 obtained from n w1th ni' .-+ ,n?" removed. The norm of
b n :
RY(z") in L2 ot 1i|(By) is
1 . . .
\/wq+\| D2 (19)2wg (W) \/zl!~-~zq!(m+ [i])!
wo (n) m!

Since the above ratio is independent of the index n’, we conclude from the above com-
putation that th)i and therefore Rj[’ are isomorphisms of Hilbert spaces. 0O

Remark 2.6. Proposition 2.5 suggests that our general construction is a proper general-
ization of the Example of ideal (2?) in the Introduction. The proof of Proposition 2.5
tells that the map Rb is an isomorphism but not an isometry of Hilbert spaces. One can
properly adjust the deﬁnltlon of the map Rb to make it and therefore Rb into isometry,
but we have decided to take the above deﬁmtlon of RJb as it seems more natural.

We consider the trivial vector bundle Ejb ;= COHD (1) B; over B;. The hermitian
structure on E? is defined as follows. We choose the standard basis of {e;};1 <bl ... ja<ba
of C'+1)-("+1)  The Hermitian metric on Ejb at z € B; is

<ei7ei'>z = 5i,i’(1 — |Z|2)q+\i|.

It is not hard to see that the Hilbert space ﬁ)[’ can be identified with the Bergman space
of L?-holomorphic sections of the bundle Ejb. We consider the Toeplitz algebra ‘Z(Ej[’)
generated by matrix valued Toeplitz operators on the Bergman space of L?-holomorphic
sections. Under the isomorphism R one can easily identify the Toeplitz algebra ‘Zb
generated by T0:°, i =1,--- ,m on Hb with the Toeplitz algebra ‘Z(E[’) on ’Hb

3. Resolutions of monomial ideals

In this section, we present the proof of the main theorem (Theorem 1.1) of this article.
In the first three subsections, we generalize the discussion in Section 2 to construct an
exact sequence of Hilbert A-modules associated to k boxes in N™. And in Section 3.4,
we apply our construction to prove Theorem 1.1.
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3.1. Construction of the Hilbert Clz1,- - , zym]-modules

Let ijll, e ’ij: be finitely many boxes in N™ as defined at the beginning of Sec-
tion 2.1. We start with the following easy property of boxes in N™.

Lemma 3.1. Intersections of boxes in N™ are again bozes.

Proof. Let us consider two boxes ijll and ij;. Let j12 be the union of j; and js. Suppose
that there are gi2 elements in j12. Then ji2 can be viewed as an element of Sy, (m). We
write j12 as jio := (jig, - ,j1a?). Define bia to be an element byy := (biy, - -, b2

N412 by

) in

. min( iqabg )7 ]{CQ =J1 =173,
b12 = 197 ]{CQ :]f ¢ jl ija
3 Jta =35 &1 Nje.

It is easy to check that the intersection of ijll and ij; is Bj[’llj. The general case of the
lemma can be proved by induction from the above proof for two boxes. O

For any subset I C {1,---,k}, we use B;’I’ to denote the following intersection,
by ._ b;
lez T ﬂ Bji :
iel
For each box B;’II , we consider the corresponding Hilbert A = C|zy,- - , 2] module ’Hj[’II
as is introduced in Section 2. It is not hard to see that subsets of size ¢ in {1,--- ,k} are
in 1-1 correspondence with elements in S, (k).
Given ijll, e ,ij:, for 1 < ¢ < k, we define a Hilbert module A, as follows.
o b
Aq T @ Hill :
1€S,(k)

For convenience, we use Ag to denote the Bergman space L2(B™). We remark that every
Hilbert space A, is equipped with a Hilbert A-module structure from the corresponding
A-module structure on each component ’HJ.[’II . It follows from Proposition 2.3 that each
A, is an essentially normal Hilbert A-module.

3.2. Morphisms

In this subsection, we define the boundary morphism ¥, : A, — Ag4q for ¢ =
0,---,k—1. In the following, we heavily use the expression introduced in Equation (2).
To explain our construction, we start with a few examples with a small number k of
boxes ijll, e ,Bi’" in N™,
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When k = 1, there is only one box B. We have two Hilbert modules Ay = L2(B™)
and A; = ”Hjb. We define ¥g : Ag — A; as follows. For X € Ay = L2(B™), the map ¥,
maps X to Y :=¥y(X) € ”Hjb of the following form,

Yoa — an...nm, ne B]b,
s 0, otherwise.

When k = 2, there are two boxes ijll and ij;. We denote their intersection by B;’fj.
For X € Ay = L2(B™), ¥o(X) is written as Y; + Ya, where Y; € Hjb11 and Y; € ”Hjb; are
of the following form,

X,., neB™ X,, neB™
Y; = v i Y- = w j2 7
(Y1) {0, otherwise, (Y2)n {O, otherwise.

For (X1, X5) € H* ® M = Ay, define ¥y(X1, X5) € Ay by

(X1)n — (X2)n, ne B2

j12 ?

U, (Xq, X =
1(X1, X2)u {07 otherwise.

For a general k, in order to define the morphism ¥, : 4, — Ay41, we introduce the
following maps f2, : Sqy1(k) = Sy(k) for i =1,--- g+ 1. An element in S,y (k) is a
subset Iy of {1,---,k} of size ¢ 4+ 1. The map fi,(Iy41) is the subset of {1,--- ,k}
of size ¢ by dropping the i-th smallest element in I,,. Define ¥, : A, — Ay41 by

U, (X):= Z ylotr ylot ¢ H,bl‘?“,

Mgt1
Iq41€8q11(k)

for X =37, s,k X7k with X7r € 7—[:)]]: The function Yle+1 € Hil:: is defined by

+1 i : brg41
prey o [ SEI T ), e B
( Jn : !
0, otherwise.

3.8. Properties of the box resolution
In this subsection, we study properties of the box resolutions.
Proposition 3.2. Vg > 0, the morphism ¥, : Ay — Agy1 is bounded.

Proof. We write X € 4, as a sum

_ 1, 1, brg
X= > xh X €M,
T,€84 (k)
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By using the definition above we have ¥, (X) = 21,+1 YZat1 where Yo+t € ’H]I, is
q q+1

equal to

, i b
Zq+1( )z—l(qu+1(Iq+1))m neB

(Viarn), = =
0, otherwise.
The norm of ¥,(X) is computed as
1 (X)|I* = Z||qu+1|\2 Z Z Yoo
fara neBb; I/‘”l
Tg+1
q+1 _ v
=20 D 1T e ),
T4 EB;II,‘IZH i=1

q+1

by the Cauchy—Schwartz inequality

<Z > (@l ) (i i) 2

Tawa neB; Iq+1
I/
g+1
1’ b
as B, "' C B,
10 A )1gq
I, 2
<D0 (g DX )
g+t nEBqu
Iq

as every I, is contained in at most (k - q) number of I,

<(k—q)(g+1) Z Z

Tesq(k) qu
=(k—q(g+ DX O
Proposition 3.3. The map U, : Ay — Agq1 is an A= Clz1, -+ , 2| -module morphism.

Proof. For every I € S,(k), for X! € H;’II, U, (XT) is a sum

Z (_1)sign(1,s)yIu{s}’

1<s<k,s¢I

where Y1V{s} € Hfllj{{f}}, and s is the a-th smallest number in I U {s}, and sign(/, s) =

o — 1, and the function Y?“{*} has the following form,
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I hI E]
YIU{S} - X"’ ne Bizuu{{s}}’
o =
0, otherwise.

If pe{1,---,m}, the z, action on ’Hjbl’ is as follows,

wo(ni-(np+1)nm) v 1 .
VRl X e PR
. wo(nl"'(’ﬂ +1)"'nm) T s .
TN (X )y ny 4 1)y = \/ wolnn) Xy, P =0 €11
and n, +1 < 5%,
0, otherwise.

From this, we observe that the operator Tz’zfj %I preserves the component ’Hjbf . Similarly,

. brogs} -
the z, action on H; ") g as follows,

Tu{s}

iru{sy,brugs
Té}l)u{&} TUu{s} (YIU{S})

ny-(np+1)- gy,

NECCEERRI] G S S T T

— wo(ni-—(n My I 3 . .
N \/ ol ;o(gtfffi)n) )Yn1u{;sl};nma p= .]t € ]IU{S}’ Np +1 < bt’

0, otherwise.

Using the above definition of ¥,(X7), we can directly check that on each component
brugsy
Jru{sy’

Tu{s}

(o (i)™ = e s i, )0
which shows that ¥, is compatible with the A-module structure. O

Proposition 3.4. Im(¥,_4) C ker(¥,).

Proof. For every I € S,_1(k) and any X' € 7—[]-[’]1, the image of X! under ¥, is of the
form

Z (_l)sign(I,s)YIU{s}’
1<s<k,s¢I

where Y1V{s} ¢ H?II:J{{:}}’ and s is the a-th smallest number in I U {s}, and sign(I,s) =

a — 1, and the function Y/Y{s} has the following form,

I brugsy
Yotk = Xo nEB
0, otherwise.
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Similarly, the image of YY{s} under the map W, is of the form

Z (_1)sign(IU{s},t)ZIU{s,t}’
1<t<k,t¢TU{s}

where Z1U{s:t} ¢ H?IU{S’”, and t is the S-th smallest number in I U {s,t}, and sign(J U

Jru{s,t}

{s},t) = B — 1, and the function Z'Y{>*} has the following form,

Jrugs,ty ’

ZIU{s,t} B Yﬂ]u{s}’ ne B?Iu{s,t}
" 0, otherwise.

Combining the above computation, we have the following expression for ¥ (¥, _;(X7)),

U (U (X)) = Y (—1)enhoy, (Il

1<s<k,s¢I
_ Z (71)sign(1,s) Z (71)sign(IU{s},t)ZIU{s,t}
1<s<k,s¢I 1<t<k,tgIU{s}

_ Z (—1)siends)sign(IU{s}ht) ZTU{s:t}
1<s#t<k,s,t¢]

_ Z ((_1)sign(I,s)+sign(IU{s},t) n (_1)sign(I,t)+sign(IU{t},s))
1<s<t<k,s,t¢I

« ZIU{sit}
When s < t, it is not hard to check the following equations

sign(I, s) = sign({ U {t},s), sign(I U {s},t) = sign(I,t) + 1.
We conclude that ¥, (¥, _1(XT)) =0, and complete the proof of this proposition. O

Lemma 3.5.

Im(¥y) D ker(¥).

Proof. Consider X = (X1!,--- XP) € A; such that X € ker ¥;. Define a function
£ e Ag = L2(B™) as follows.

£, X, thereis s such that n € ij:,
"7 10, otherwise.

We observe that if there are s, ¢ such that n belongs to both B:’ * and Bi . then the 7—[:’:
component of ¥y (X) is
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X — Xt =0,

as X € ker(¥;). Hence, the value &, is independent of the choices of s. Therefore ¢ is
well defined. Furthermore, ||¢]|? is no more than the sum

X2+ 172 (3)
Hence, £ € Ag and ¥y(§) = X € ker(¥4). O

Proposition 3.6.
Im(\PQ*l) 2 ker(\:[lq)v q= ]-7 T 7k'

Proof. We prove the proposition by induction on the number k.

For k =1, we consider the map ¥y : Ag — A;. With the orthonormal basis, it is not
hard to observe that .4; can be identified with a closed subspace of Ay = L2(B™), and
the map ¥y is the corresponding orthogonal projection map. Therefore, ¥ is a surjective
map.

Suppose that the following is true

Im(\I}qfl) 2 ker(\I/q), q= ]-7 e 7k7

for all 1 < k < p. We prove the statement for k = p.
The case for ¢ = 1 is proved in Lemma 3.5. We are left to show the cases for 2 < g < p.
We consider the following two collections of p — 1 boxes,

(1) the first p — 1 boxes

b bp—1
By B
We follow the construction in Section 3.1-3.2 and consider the associated A-modules
Al together with the A-module morphisms W} : Al — Al s=1,--- p—2. Set
1._ 1 _q.
A, = {0}, and ¥, = 0; b
(2) the intersections of the first p — 1 boxes with the last one B;”,

blp bpflp
{BJIP ’... ’B]p*lp }.
We follow the construction in Section 3.1-3.2 and consider the associated A-modules
A? together with the A-module morphisms W2 : A2 — A2, s =1,---,p—2. Set
A? = {0}, and ¥2 |, =0.

By the induction assumption, we know that

Im(W; ;) D ker(¥,), Im(¥2

q_l)gker(\llg)7 qzla ap_l
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We define a map @, : A} — A7 by
(X)) =Y Tes(p-1)

where by Y/} we refer to the component corresponding to the intersection of the

b; b; .
boxes B. ", .-, B, " with
Jiyp Jigp

brugp
YnIu{p} = (71)tX’{7 ne BjIIu{;}}’
0, otherwise.

Similar to Proposition 3.3, ®; is an A-module morphism. We leave the details to the
reader.
With the above construction, we can easily check the following identities.

(1) Aq = Atll @AE*P for q= 27' Y2 where A}; = {0}

\Ill
(2) \I}q: q g 7forq:2,--~,p—:|_7VVhe]:'e\Ilzl,fl:0~
B, W,

We use the above identifications to prove Im(¥,_1) D ker(¥,). The proof consists of
the following three cases.

i)q=2, 1) 3<g<p-—1, iti) ¢ = p.
1) qg=2.
Suppose (X1, X3) € Al ® A? = A, is in the kernel of the morphism ¥,. By the above
identification of ¥,, we have

Vi(X1) =0, Py (X1) + V2(X5) = 0.

By the induction assumption, ker(¥3) C Im(¥1i). So there exists Y; € A} such that
Ui(Y;) = X;. By Proposition 3.4 for the morphism ¥,, we have

(0,0) = Wo (W1 (Y1,0))=Wa (}(Y1), D1 (V1)) = (‘I’é (T1(11)), P2 (P(Y2)) + W3 (<I>1(Y1))>
as U1(Y1) = X1, ¥y (¥1(¥1)) = 0
= (0, @:(x1) + W3 (@:(11))).
Hence, ®2(X1) 4+ ¥3(®1(Y1)) = 0. Consider X} = X5 — ®(Y;). We compute
U(X3) = V(X — B1(V1)) = UF(Xp) — UF(D1 (V1)) = VF(Xa) + Po(X1) = O,

as Wy (X1, Xg) = (V3(Xy), P2(X1) + ¥F(Xy)) = 0.
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Using the property that U?(X%) = 0, we construct an element Y5 € Hjbp” by setting

(Ya)n := (Xéip)n, ne Bilp, for some i=1,...,p—1,
" 0, otherwise.

As W2(X}) = 0, the above definition of Y3 is independent of the choices of i. It is not
hard to check the norm of Y5 is bounded following the similar estimate as Equation (3).
Therefore, Y; is in 7—[;’: C L2(B™), and ¥3(Ys) = X5.

In summary, we have constructed an element (Y7,Ys) € A; = Al @ 7—[;’:. And it is not
hard to check that

Uy(Y1,Y2) = (P1(V1), ®1(Y1) + U5(Y2)) = (X1, 1 (Y1) 4+ X5) = (X1, Xa),

which shows that (X, Xz) € Im(¥1).
i)3<qg<p-1

Suppose (X1,X2) € A, ® A2} = A, is in the kernel of the morphism ¥,. By the
above identification of ¥,, we have

\y;(Xl) =0, ®,(X1) + \1/371()(2) =0.

q-1 q
Uy (Uy—1(Y1,0)) =0, &4(X1) + ¥2_,(®,-1(Y1)) = 0. Hence, we have

q—1

As Im(¥} ;) 2 ker(¥)), there is ¥; € Al , such that X; = Wl (V7). As

U7 (Xz — @-1(Y1)) = 0.

As Im(¥2_,) 2 ker(¥?

2 1), there exists Y, € A2_, such that

U2 ,(Ya) = Xy — 041 (V1)

Therefore, we have found (Y7,Y2) € A, such that
Uy (Y1, Ya) = (1 (Y1), @1 (Y1) + Pya(Y2)) = (X1, Xa).

iii) ¢ = p.
We notice that A, is the same as A2 ;. As the map W2_, : A2 , — A2 is surjective,
it follows that the map ¥,y : A, 1 = Al | ® A2 » = A, = A2 | is surjective. O

3.4. Proof of Theorem 1.1

In this subsection, we prove the main theorem of the paper. We assume that [ is an

1 m

ideal of the polynomial algebra C[z1, - - - , 2,,] generated by monomials 2% := 21" -+ 2z ,
fora; eN™, ¢=1,---,1.
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Following [11, Theorem 1.1.2], monomials inside the ideal I form a linear basis of the
ideal I over C. We consider the lattice N™ and the subset C'(I) consisting of exponents
of monomials that do not belong to I. According to [11, Proposition 1.1.5], a monomial
v belongs to I if and only if there is a monomial w such that v = wz® for some
i = 1,---,1. Therefore, the monomial z{bl z,’,LLn does not belong to I if and only if
for any i = 1,--- ,[, 2% is not a factor of z’fl e zf,‘tm. Equivalently, z’fl e z,’jlm does not
belong to I if and only if for every i, there is s; such that n® < o}

Consider the finite collection S(aq,---,q) of I-tuple of natural numbers s =
(s1,-+,8) such that 1 < s; < m. For each s, let j; C {1,--- ,m} be the subset con-
sisting of those numbers appearing in the array (s1,--- ,s;). For every k € js, let by be
the minimum of all ¢’ such that s; = k for ¢ = 1,---,l. From the above conditions
on monomials not in I, we conclude that C(I) is the union of all boxes Bs;. We refer
the reader to [4, Section 9.2, Theorem 3] for a related discussion. We conclude from
the discussion above that a polynomial f belongs to I if and only if f has no nonzero
component in any of the boxes B = for any s € S(a1,---, ). Let ijll7 e 78;’: be the
collection of nonempty boxes in {Bb 15 € S(ag, -+ ,a;)} associated to the ideal 1.

Associated to the above collection of boxes ijll, e ,ijk’“, we apply the constructions
in Section 3.1-3.2 to construct a sequence of Hilbert A-modules Ag,--- , A; together
with module morphisms ¥, : 4, — Ag41, ie.

Ap = L2(B™) Yo 4, Ty T 4 o,

Proposition 2.3 shows that each A, (¢ = 0,1, ..., k) isa Hilbert A = Clz1,- - - , zp]-module.
Proposition 3.2-3.3 show that ¥, (¢ = 0,---,k — 1) is a bounded module morphism.
Proposition 3.4-3.6 show that the above sequence is exact at A, for g =1,--- , k.

We are left to prove that the kernel of the morphism W, is the completion of I in
L2(B™), i.e

1 = ker(¥y).

By the above discussion, if f € I, then f has no nonzero component in any of the boxes
B;’; for any s € S(aq,- -, ;). This shows that f € ker(¥y). Therefore, I and its closure
I are contained inside ker(0).

Suppose that f is in the kernel ker(¥(). Write f in terms of the orthonormal basis,

[= Z Ju2"

neN™

As Uy(f) = 0, by the definition of ¥y, for any s = 1,--- ,k, and any n € B , fo=0.
For any positive integer M, let fi; be the truncation of the above expansmn of f by
requiring n',--- ,n™ < M, i.e.

fav = Z faz".

neN™ nl<M, - nm<M
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It is not hard to see that fp; is a polynomial and has no component in the boxes
ijll, e ,ijk’“. By the construction of the boxes ijll, e ,ij:, far belongs to the ideal 1.
As M — oo, fas converges to f in L2(B™). Hence, we have shown that f belongs to the
closure I, and ker(¥) is a subset of 1. So we conclude that I = ker(¥y).

In summary, we have completed the proof of Theorem 1.1 for general monomial ideals.
3.5. K-homology class

As a corollary of Theorem 1.1, by applying [6, Theorem 1], we can conclude that the
closure I of the ideal I and the quotient Q; := L2(B™)/I are both essentially normal
Hilbert modules.

Let T(I) (and T(Q;)) be the unital C*-algebra generated by Toeplitz operators on the
module I (and the quotient module Q7). We now discuss properties of the K-homology
class associated to the following Toeplitz extension,

0—K—%Qr) — C(cf) — 0,

where 0§ is the essential spectrum space of the algebra T(Q;) and K is the algebra of
compact operators.
By Theorem 1.1, for i = 1,--- , k, we introduce the following closed subspace of A;,
A = Im(\I/l_l) = ker(\Ili).

(2

As W, is surjective, A, = Ay.

As ¥, : A; — A;1; is a morphism of A = C[z,--- , zy,]-modules, the kernel A; =
ker(¥,) is naturally an A-module. Furthermore, we have the following exact sequence of
Hilbert A-modules,

0— A — A — A, —0,i=1-- k-1,

where the first map is the inclusion, and the second map is ¥;.

Lemma 3.7. Vi = 1,--- ,k, the A-module A is essentially normal, and therefore the
quotient module Q; := A;/A; s also essentially normal.

Proof. When i = k—1, as ¥;,_ is surjective, we have the following short exact sequence,
0— A, — Ay — Ay — 0.

As it is explained in Section 3.1, both Aj_; and Ay are essentially normal A-modules.
It follows from [6, Theorem 1] that A, _, is an essentially normal A-module.
Repeating the above arguments to the exact sequence

0— A _,— A1 — A, — 0,
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we conclude that A, , is an essentially normal A-module. Similarly, the iterated argu-
ments show that every A; is an essentially normal A-module. O

Modeled by the above short exact sequence of essentially normal Hilbert A-modules
A; and A;, we prove the following property.

Proposition 3.8. Let My, Ms, M3 be essentially normal Hilbert A-modules, and W7 :
My — My, Wy : My — Mg be morphisms of Hilbert A-modules satisfying the following
short exact sequence

0 — My 25 by, 23 My — 0.
Suppose that the essential spectrum of the tuples (TZil, e ,TZim),i =1,2,3, is contained
in the closed unit ball B < C™, and let oy : C(B") — C(M;) = B(M;)/K(M;) be the

induced representations of C(B") on the Calkin algebra C(M;). There are co-isometry
operators U : My — My and V : My — M3 such that

Uv: =0=VU*,U'U+V*'V =1,
and commute with A-module structures up to compact operators, i.e.
[U]OéQ[U]* = g, [V]QQ[V]* = Qas,

where o;(p) = [T,] € C(M;) denotes the equivalence class of the multiplication operator
T, € L(M;).

Proof. As W, is surjective, WolV5 is positive definite. Let Wo = A3V be the polar
decomposition of the morphism W5 such that As is a positive definite operator on M3,
s.t. Az = (WoW5)2, and V is a co-isometry, i.e. VV* = 1.

As W5 is an A-module morphism, for any f € A = C|zy,- -, 2mm], we have

ASVT} = WoT} = T}W, = T} A3V,

where T]? and T]‘? are the Toeplitz operators on Ms and Mjz associated to f. As My and
M3 are essentially normal, TJ? and TJ'? are both normal in the respective Calkin algebras.
It follows from the Fuglede-Putnam theorem that the following equation holds modulo
compact operators

AsV(TF)* = Wa(T7)* = (T})*Wa = (T})*AsV.
Taking the adjoint of both sides of the above equation, we reach

TFV*As = V* AsT}.
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Multiplying A3V to the left of each term in the above equation, with the property
VV* =1, we have

AVTFV* Az = AsVV* AT} = A3TY.
As
AsVTF =T} A5V,
we conclude from the above equation that modulo compact operators
AsVTFV* A3 = T} AsVV* A3 = T} A3 = A3T}.
As Aj is positive definite, it is safe to conclude that modulo compact operators
T} A3 = AsT}.

The above commutativity plus the equation AgVTf2 = TngV gives the following iden-
tity, modulo compact operators,

VT; =T}V.

The property of VV* = I confirms that modulo compact operators
VT;V* =T},

which is exactly
VasV* = as.

As Wy : My — M> is injective with closed range, W;W; is positive definite. Let
Wi = WA; be the polar decomposition of the operator W;, where A; = (Wl*Wl)%
and W : My — M, is a partial isometry, i.e. W*W = I. An argument similar to
the one above can be made for W5 to show that modulo compact operators, for any
f EA:(C[Zlv 727?7:]’

AT} =TrA;,
and
W*T;W =Ty,
If we set U = W*, then UTJ?U* = T}, and UU* = I, which shows

UasU* = «.
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As WoW, = A3VU*A; = 0, VU* = 0 follows from the invertibility of A; and As.
Therefore, U*U and V*V are commuting two orthogonal projections on Ms. To prove
that their sum is the identity operator, it is enough to show that the kernel of their sum
is trivial. If £ € M, satisfies U*UE + V*VE = 0, it follows that U*UE = V*VE =0, and
Ut =VE=0. Then Wyl = A3VE =0, and W€ = A UE = 0. As Waf = 0, € belongs
to the kernel of W5, and the exactness of the morphisms shows that there is n € W;
such that Win = €. As W' ¢ =0, WfWin = 0, and £ = Win = 0. Hence the kernel of
U*U + V*V is trivial, and U*U + V*V =1. O

Let ¥(M;) be the unital C*-algebra generated by Toeplitz operators on M;, and
of be the associated essential spectrum space of the tuple (T}, --,7T%, ) on M;. The
morphisms a3 and g factor to injective algebra homomorphisms from C(o§) and C(o§)
to C(M7) and C(Ma). By Proposition 3.8, ay = [U]as[U]*. The composition of [U]as[U]*
with a; ' is an algebra homomorphism from C(c§) to C(o§). Accordingly, this induces
a natural map from of to ¢5. Similar arguments also give a natural map from o§ to
o§. Accordingly, a; and a3 induce classes in K (0§). The following property is a quick
corollary of Proposition 3.8.

Corollary 3.9. Under the same assumption as Proposition 5.8, the following equation
holds in K;(0$),

[az] = [oa] + [as],

where [a1] and [as3] are identified as classes in K1(0§) by the co-isometry operators U
and V' introduced in Proposition 3.8.

Proof. As we have explained, a; and ag induces classes in K;(c§). Furthermore, as
K-homology classes of 0§, a1 = [Ulae[U]*, a5 = [V]aa[V]* : C(0§) — C(Msz) with
UU*=1=VV* UV*=0=VU* and U*U 4+ V*V = I. Such a pair U,V proves the
following equation,

[ag] = [041] + [ag]. O

We are now ready to apply Proposition 3.8 and Corollary 3.9 to the exact sequence
constructed in Theorem 1.1. Let T(A;) (and T(A;)) be the unital C*-algebra generated
by Toeplitz operators on A; (and A7), and ¢¢ € B" (and o¢_ C B™) be the associated
essential spectrum space, and «; (and «; ) be the associated representation of C(cy)
(and C(of_)) into the Calkin algebra C(A;) (and C(A;)).

Theorem 3.10. (Theorem 1.2) The K-homology class associated to [T(Qr)] is the same
as (o], and in Ki(o§U---Uog),

[T(QD)] = [oa] = [aa] + -+ (=1)" o).
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Proof. We apply Corollary 3.9 to the following short exact sequence of essentially normal
Hilbert A-modules

0— A — A — A, —0,i=1,-- k-1
We have the following equation in K (o;),
[ai] = [og ]+ o).
When i =k — 1, A, = Ay, and in K (0}_,),
[ak—1] = o] + [ow].
Similarly, for i = k — 2, in K;(0§_,),
[ag—2] = [og_o] + [ay_4].

Combining the above two equations on K-homology groups, we conclude that in
K1(0'271 U 0272)’

[ak—1] + [og_5] = [o] + [ah—2],
by pushing forward the respective equations in Ki(of_;) and K(o},_,) into the ones in

K, (of_, Uoj_5) via the natural inclusion maps o_,,05_5 <= 05_; U0of_5.
Repeating the above arguments inductively, we conclude that in K;(ofU---Uof),

[o7] = [oa] = [az] + - + (= 1) Hau].
By the short exact sequence of essentially normal Hilbert A-modules,
0—1— L:B™) — A} — 0,
we conclude that there is a natural A-module isomorphism between the quotient Hilbert

modules Q; = L2(B™)/I and A; . We conclude from [8, Proposition 4.4] that they must
define the same K-homology class. Therefore, we conclude that in Kq(cfU---Uoy),

[T@N] =[] = [ag] + -+ (1) ay). O
4. Examples

In this section, we explain our construction of the boxes in examples.
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(r.s)

(r.q9)

Fig. 1. Staircase diagram corresponding to I = (2723, 2{23). (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

4.1. Ideal T = (2323) C C[z1, 22]

The exponents of monomials in the ideal I = (2?23) comprises the region
{(n*,n?)[n*,n? > 2}. In this example, there is only one a = (2,2). There are two
boxes associated to the ideal, ijll = {(n',n?)|nt < 1}, ij; = {(n',n?)|n? < 1}. The
intersection ijllj of ijll and B;’; is of the form {(n',n?)|nt, n? <1}.

We have following subsets B;, := {(0, 22)| |22| < 1}, Bj, := {(21,0)| |z1] < 1}.

The Hilbert module A; is the direct sum of two submodules A} and A?, where A} is
the closed subspace of L2(B?) spanned by {2, 2125 },en, and A? is the closed subspace
of L2(B?) spanned by {z7, 2722 }nen-

The Hilbert A-module on Aj is the subspace of L2(B?) spanned by {1, z1, 22, 2122}
It is easy to see that Ay = A} N A3

4.2. Ideal I = (2V24, 2725) C Clz1, 22]

We consider the ideal I = (221 2725) C Clz1, 22], p,q,7,s > 0. We explain our
construction of boxes and the associated Hilbert modules in Theorem 1.1 in this example.

The exponents of monomials in I belong to the white region of the Fig. 1 marked
by I. The subset C(I) C N? consisting of exponents of monomials not in the ideal I
is the blue region in Fig. 1. In this example, a1 = (1, 8), a2 = (p,q), S(a1, as) consists
of 4 arrays (1,1),(1,2),(2,1), (2,2). The boxes associated to these arrays are described
below.

(1) For s = (1,1), the box ij111 is {(nt,n?)|nt < r};
(2) For s = (1,2), the box B;’II; = {(n',n?)|n' < p,n* < s};
(3) For s = (2,1), the box th;ll ={(nt,n?H)nt <rn? <q};
(4) For s = (2,2), the box ij;; = {(n',n?)|n? < ¢}
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In the Fig. 1, the box Bb“ is marked as region A, and the box Bb12 is marked as region
C, and the box Bb22 is marked as region B. As the box Bb"‘l is contalned inside B;’l;‘,
we do not need to mclude the box 812211 in our constructlon However our theorem still
works even if we include it.

The Hilbert space A; is a direct sum of three spaces A}, A2, A%2. The Hilbert space
All is the subspace of L2(B?) spanned by {23, 2125, , 20 '28 }en, and the Hilbert
space A'? is the finite dimension subspace of L2(B?) spanned by

1 s 21 P 5 Zf_la
p—1
22 y 2122 T R A2,
2570 ;2T T
The Hilbert space .A?2 is the subspace of L2(B?) spanned by {27, 2029, - -+ , 2728~ }neN
The Hilbert space Aj is a direct sum of three spaces, Al' N Al2, A1l N A2?
A2 N AR,
The Hilbert space Ajz is the subspace of L2(B?) spanned by
1 R , Z{_17
) y Tt 72{_12’27
AT Bt

4.8. Ideal (22,23 — 23) C Clz1, 29, 23]

We consider the biholomorphic transformation T : C* — C?® by (21,22,23) —
(u1,u2,u3) = (21, 22,23 — 2z3). Under the biholomorphic transformation T, the ideal
I = (23,23 — 22) is changed to I’ = (2%, 23). T maps the unit ball B3 to the domain
defined as follows,

Q = {(ur, ug, us)|Jur|* + |ug|® + |us + u3|* < 1} € C°.

Let dVg, be the normalized Lebesgue measure on €2, and L2(Q) be the Bergman space
on {2 with respect to the measure dVq. Under the biholomorphic transformation 7', the
Bergman space L2(B?) is mapped isometrically to L2(£2). And the closure I of the ideal
I in L2(B3) is mapped to the closure I of the ideal I’ in L2(). We notice that the
transformation 7" maps the polynomial algebra to itself. As A-modules, L2 (B?) (and I)
and L2(Q2) (and T/) are isomorphic.

On L2(9), for the ideal I’ = (2%, 23), we apply the similar construction as in Section 3.
There is only one box ij associated to the ideal I’, where j = (1,3) and b = (1,0), and
B = {(n1,n2,0)|n1 < 1}. We consider the subset ; = {(21, 22, 23) € Q|21 = 23 = 0}. Q;
can be identified with an open subset of C of the form {z5| |22|? +|22|* < 1}. Let L2 ()
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be the Hilbert space of square integrable holomorphic functions on €2; with respect to
the norm

(1= |22 = |22|*)*dVay,,

where dVg, is the normalized Lebesgue measure on €2;.
Define the Hilbert space A to be the following direct sum of two weighted Bergman
spaces, i.e.

A= Li,Q(Qi) D Li,:s(Qj)-

We define the A = C[z1, 22, z3]-module structure on Ay by the following formulas.
For (X,Y) € L2 5() & L 5(),

T, (X,Y) = (0,X), Toy(X,Y) = (22X, 22Y), T,(X,Y) = (0,0).

We notice that monomials {z}}ien form an orthogonal basis of both L2 ,(€;) and
L2 3(€). A straightforward computation shows that Ay is an essentially normal Hilbert
C[z1, 22, z3]-module (see also [7]).

We define a map Wy : L2(Q) — Ap = L2 () @ L7 5(;) by

of
\Il(f) = (.f|21223:0? 8—21‘21223:0)'
Similar to the argument in the proof of Theorem 1.1 in Section 3.4, we can prove that
Uy is a bounded surjective A-module morphism and its kernel is exactly 7. Hence we

have the following short exact sequence of essentially normal A-modules,

0T — L2(Q) 2% Ay — 0.

The biholomorphic transformation T maps W := {(0, 22, 22) € B3} isomorphically to
Q5 = {(0,22,0) € Q}. We can replace ©; by W in the corresponding definitions of A;
the map ¥;. Using the transformation 7', we have a short exact sequence of essentially
normal A-modules,

0— T — L2(B%) 25 A; — 0.

As a corollary, we can conclude that the ideal I and associated quotient module Q7
are both essentially normal. We also have the following geometric description for the
corresponding Toeplitz extension,

[T(Qr)] = [(I(L?z,z(Qj) S Lig(ﬂl))]
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