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0. Introduction

The classical Kiinneth formula computes the (co)homology groups of the product
of two topological spaces X and Y in terms of the (co)homology groups of X and Y.
By Gelfand’s theorem, the category of locally compact spaces being naturally equiv-
alent to the category of commutative C*-algebra by considering continuous functions
vanishing at infinity, it is therefore natural to consider C*-algebras as functions alge-
bras on noncommutative spaces. In this setting, cohomology is substituted by K-theory
for C*-algebras. K-theory for C*-algebras has found important applications in topol-
ogy, geometry and mathematical physics. The Cartesian product for topological spaces
corresponds to the (minimal) tensor product in the category of C*-algebras. The Kiin-
neth formula in K-theory computes the K-theory of the tensor product A®B of two
C*-algebras A and B in terms of the K-theory of A and B. In an important article
[12], C. Schochet proved the Kiinneth formula in K-theory when one of the C*-algebra
is in the so called Bootstrap class. Other examples of C*-algebras for which the Kiin-
neth formula holds arise from crossed-product by groups that satisfy the Baum—Connes
conjecture with coefficients [1]. If a given C*-algebra A satisfies the Kiinneth formula in
K-theory together with any C*-algebra B, then A is exact in K-theory, i.e. every exten-
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sion of C*-algebra gives rise by tensorization to a six-term exact sequence in K-theory [1,
Remark 4.3]. In [11], inspired by [6], N. Ozawa provided a counterexample for exactness
in K-theory and hence to the Kiinneth formula.

The aim of this paper is to develop techniques of quantitative operator K-theory to
compute K-theory of C*-algebras. In particular, we apply these techniques to provide
new examples of C*-algebras that satisfy the Kiinneth formula in K-theory. The concept
of quantitative operator K-theory was first introduced in [14] and was set-up in full
generality for filtered C*-algebras in [9]. A standard way to compute (co)homology groups
is by cutting and pasting using Mayer—Vietoris long exact sequence in (co)homology.
In the category of C*-algebras, the usual Mayer—Vietoris six terms exact sequence in
K-theory requires the existence of non trivial ideals. But for simple C*-algebras, non
trivial ideal does not exist. The full power of quantitative K-theory is that a controlled
version of the Mayer—Vietoris six terms exact sequence for a C*-algebra A filtered by
(A4;)r>0 can be stated, only involving neighborhood algebras of a suitable decomposition
of A, into closed linear subspaces A; and As. This neighborhood algebras can be viewed
as the “ideal generated up to a certain order” by A; and As.

We introduce a concept of finite asymptotic nuclear decomposition for filtered
C*-algebras. This C*-algebraic concept can be viewed as the noncommutative ana-
logue of metric spaces with finite asymptotic dimension. We establish an algorithm for
computing K-theory of C*-algebras with finite asymptotic nuclear decomposition. As a
consequence, we prove the Kiinneth formula for C*-algebras in this class. Essentially,
the assumption of finite asymptotic nuclear dimension allows for some integer n to de-
compose at order r a C*-algebra a A in n steps under controlled Mayer—Vietoris into
C*-algebras which are locally in the Bootstrap class. We can then compute inductively
quantitative K-theory for C*-algebras in this class using the controlled Mayer—Vietoris
exact sequence. The K-theory is computed by taking limit of quantitative K-theory
when the order goes to infinity.

The paper is organized as follows. In Section 1, we give from [9,10] an overview of
quantitative K-theory. In Section 2 we introduce the concept of a controlled Mayer—
Vietoris pair. This is the key ingredient to define later on the class of C*-algebras with
finite asymptotic nuclear decomposition. Typical examples of these objects arise from
Roe algebras and more generally from C*-algebras of étale groupoids. In Section 3 is
stated for a controlled Mayer—Vietoris pair the controlled six term exact sequence. We
apply this sequence to K-contractibility of C'*-algebra. Section 4 is devoted to the quan-
titative Kiinneth formula, which implies the Kiinneth formula in K-theory. We show
that examples of filtered C*-algebras for which the quantitative Kiinneth formula holds
are provided by crossed product of C*-algebras by finitely generated groups satisfying
the Baum—Connes conjecture with coeflicients. The main result of these section in that
the quantitative Kiinneth formula is stable under decomposition by controlled Mayer—
Vietoris pair. In Section 5 we introduce the class of C*-algebras with finite asymptotic
nuclear decomposition and we show that these C*-algebras satisfy the quantitative Kiin-
neth formula. As a consequence, we show that the uniform Roe algebra of a discrete
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metric space with bounded geometry and with finite asymptotic dimension satisfies the
Kiinneth formula in K-theory.
The authors want to thank the referees for their very helpful comments.

1. Overview of quantitative K-theory

In this section, we recall the basic concepts of quantitative K-theory for filtered
C*-algebras and collect the main results of [9] concerning quantitative K-theory that
we shall use throughout this paper. Roughly speaking, quantitative K-theory is the
abelian groups of K-theory elements with a prescribed propagation and K-theory can
be obtained as an inductive limit of quantitative K-groups (see Corollary 1.11). The key
point is that quantitative K-theory is in numerous geometric situations more computable
that usual K-theory. The structure of filtered C*-algebras allows us to talk about the
scale of elements in the C*-algebras.

Definition 1.1. A filtered C*-algebra A is a C*-algebra equipped with a family (A,),>0
of closed linear subspaces indexed by positive numbers such that:

e A, CA.ifr <

A, is stable by involution;

° Ar : Ar’ C Ar+r’;

¢ the subalgebra U A, is dense in A.
r>0

If A is unital, we also require that the identity 1 is an element of A, for every positive
number r. The elements of A, are said to have propagation 7.

Many examples of filtered C*-algebras arise from geometry. Typical examples are
provided by Roe algebras, group and crossed-product algebra [9], groupoid algebras
(see Section 2.4) and finitely generated C*-algebras. Indeed all filtered C*-algebras are
associated with a length function: let A be a C*-algebra and assume that there exists a
function £ : A — R* U {oco} such that

z+y) < max{l(x),L(y)} for all x and y in A;
) for all  in A;

Az) = {(z) for all z in A and X in C\ {0};

o U(zy) < l(x)+ L(y) for all z and y in A;

o the set {x € A such that ¢(x) < r} is closed in A for all positive numbers r;
» the disjoint union | J, . ,{z € A such that £(x) < r} is dense in A.

If we set A, = {x € A such that ¢(z) < r}, then A is filtered by (A,)r>0. It is straight-
forward to show that the category of filtered C*-algebras is equivalent to the category of
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C*-algebras equipped with a length function. For this reason, a C*-algebra with a lengh
function (or a filtration) is called a geometric C*-algebra. In essence, we study geometric
C*-algebras just as group theorists study geometric group theory.

Let A and A’ be respectively C*-algebras filtered by (A, ),>o and (A%);~o. A homo-
morphism of C* -algebras ¢ : A— A’ is a filtered homomorphism (or a homomorphism
of filtered C*-algebras) if ¢(A,) C A, for any positive number r. If A is not unital, let
us denote by A its unitarization, i.e.,

A={(z,\);z€ A, \cC}
with the product
(2, ) (2", ) = (z2’ + M’ + N, AX)

for all (z,A) and (2, \’) in A. Then A is filtered with

Ar ={(z,\); z € A, € C}.
We also define ps : A — C; (z,\) — .
1.1. Definition of quantitative K -theory

Let A be a unital filtered C*-algebra. For any positive numbers r and e with ¢ < 1/4,
we call

o anelement u in A an e-r-unitary if u belongs to A, ||[u*-u—1| < € and ||u-u*—1]| < €.
The set of e-r-unitaries on A will be denoted by U="(A);

o an element p in A an e-r-projection if p belongs to A,., p = p* and ||p? — p|| < €. The
set of e-r-projections on A will be denoted by P="(A).

Then ¢ is the called the control and r is called the propagation of the e-r-projection or of
the e-r-unitary. Notice that an e-r-unitary is invertible, and that if p is an e-r-projection
in A, then it has a spectral gap around 1/2 and then gives rise by functional calculus to
a projection ko(p) in A such that ||p — ko(p)|| < 2e.

Recall the following from [9, Lemma 1.7] the following result that will be used quite
extensively throughout the paper.

Lemma 1.2. Let A be a C*-algebra filtered by (Ay)r>o-

(i) Ifp is an e-r-projection in A and q is a self-adjoint element of A, such that |[p—q|| <
2

w, then q is an e-r-projection. In particular, if p is an e-r-projection in A and

if q is a self-adjoint element in A, such that ||p—ql|| < €, then q is a 5e-r-projection

in A and p and q are connected by a homotopy of be-r-projections.
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(ii) If A is unital and if u is an e-r-unitary and v is an element of A, such that

e—|lu”u—1|

Ju—v| < —F5—

and v is an element of A, such that ||u — v|| < e, then v is an 4e-r-unitary in A
and u and v are connected by a homotopy of 4e-r-unitaries.

, then v is an e-r-unitary. In particular, if u is an e-r-unitary

(iii) If p is a projection in A and q is a self-adjoint element of A, such that ||p—q| < 5,
then q is an e-r-projection.

(iv) If A is unital and if u is a unitary in A and v is an element of A, such that
lu—wv| < 5, then v is an e-r-unitary.

Let us also mention the following result concerning homotopy up to stabilization of
products of e-r-unitaries [9, Corollary 1.8].

Lemma 1.3. Let ¢ and r be positive numbers with ¢ < 1/12 and let A be a unital filtered
C*-algebra.

(i) Letw and v be e-r-unitaries in A, then diag(u,v) and diag(uv, 1) are homotopic as
3e-2r-unitaries in Ma(A);

(ii) Let u be an e-r-unitary in A, then diag(u,u*) and Iy are homotopic as 3e-2r-unita-
ries in Ma(A).

For purpose of rescaling the control and the propagation of an e-r-projection or of an
e-r-unitary, we introduce the following concept of control pair.

Definition 1.4. A control pair is a pair (A, h), where

e ) is a positive number with A > 1;
e h:(0,45) — (1,+00); € — h. is a map such that there exists a non-increasing map
g:(0,45) — (1,+00), with h < g.

The set of control pairs is equipped with a partial order: (A, h) < (N, h") if A < N
and he < h. for all € in (0, 737)-
Recall the following from [9, Corollary 1.31].

Proposition 1.5. There exists a control pair (c, k) such that the following holds:

For any unital filtered C*-algebra A, any positive numbers € and r with € < ﬁ and
any homotopic e-r-projections qo and q1 in P;"(A), then there is for some integers k
and | an ae-k.r-unitary W in My 41(A) such that

|| diag(qo, Ik, 0;) — W diag(q1, Ix, 0;)W*|| < ae.

For any n integer, we set U;"(A4) = US"(M,(A)) and P;"(A4) = P*"(M,,(A)). For
any unital filtered C*-algebra A, any positive numbers € and r and any positive integer n,
we consider inclusions
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PLT(A) = P (A); p (8 8)
and

Ui s v an e (7).
This allows us to define

U (4) = (J Ui (4)
neN
and
P (A) = [ PR(A).
neN
For a unital filtered C*-algebra A, we define the following equivalence relations on

P (A) x N and on UZ (A):

o if p and ¢ are elements of PS(A), | and !’ are positive integers, (p,1) ~ (gq,l’) if
there exists a positive integer k£ and an element h of PS2 (A[0, 1]) such that h(0) =
diag(p, Ix+r) and h(1) = diag(q, Jr+1);

+ if u and v are elements of US"(A), u ~ v if there exists an element h of U?"(A[0, 1))
such that h(0) = u and h(1) = v.

If p is an element of P (A) and [ is an integer, we denote by [p, ], the equivalence
class of (p, 1) modulo ~ and if w is an element of U (A) we denote by [u]. . its equivalence
class modulo ~.

Definition 1.6. Let  and ¢ be positive numbers with € < 1/4. We define:
(i) K5"(A) =P (A) x N/ ~ for A unital and
K" (A) = {[p,1]., € P*"(A) x N/ ~ such that rankro(pa(p)) =1}

for A non unital (ko(pa(p)) being the spectral projection associated to pa(p));
(i) K;"(A) =US(A)/ ~, with A = A if A is already unital.

Then K" (A) turns to be an abelian group [9, Lemma 1.15], where

[pv l]s,r + [Pl> l/}s,r = [diag(pap/), I+ l/]s,r

for any [p, |-, and [p/,!']c » in K5 (A). According to Corollary 1.3, K7'"(A) is equipped
with a structure of abelian group such that
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[u]e,r + [U/]E,r = [dlag(uu U)]E,ra

for any [u]., and [u/]., in K7 (A).
Recall from [9, Corollaries 1.19 and 1.21] that for any positive numbers r and ¢ with
€ < 1/4, then the map

K" (C) — Z; [p,l)e.r — rank ko(p) —

is an isomorphism and K7 (C) = {0}.
We have for any filtered C*-algebra A and any positive numbers r, 7/, ¢ and ¢’ with
e <& <1/4 and r < 7’ natural group homomorphisms called the structure maps:

o 1" Ky (A)—Ko(A); [p,)er — [Ko(p)] — [I1] (where ko(p) is the spectral projec-
tion associated to p);
® Li’r : Klg’r(A)—)Kl(A% [u]s,r = [ul;
e,r e,r e,r
° L* /: l;o @ Ll ; ’ ’
o 17T KT (A)— K (A); [p e = [Pyl
o 7T KT (A) KT (A); [uler o Juler s
5,6/,7’,7’/ 5,5/,7’,7"/ E,EI,T,T/
Lx =L @ g .
If some of the indices 7,7’ or ¢,&’ are equal, we shall not repeat them in 55" The
structure maps satisfy the obvious compatibilitity rules with respect to compositions.
We have in the formalism of quantitative K-theory the analogue of the standard form
for a K-theory class.

Lemma 1.7. Let A be a non unital filtered C*-algebra. Let € and s be positive numbers
with & < 55. Then for any x in Kg*(A), there exist

o two integers k and n with k < n;

e a 9e-s-projection q in M,(A)

such that pa(q) = diag(Iy,0) and z = [q, kloe.s in Kj"*(A).

Proof. Let x be an element in K;"*(A), let p be an e-s-projection in some M, (A) and let k
be an integer with rank x(pa(¢)) = k and such that = = [p, k], s. We can assume without
loss of generality that k& < n. Let U be a unitary in M, (C) such that U-ko(pa(q))-U* =
diag (I, 0). Since U is homotopic to I,, as a unitary of M, (C), we see that U -p-U* and
p are homotopic as e-s-projections in M, (/Nl) Set then

¢ =U-q- U +diag(I),0) = U - pa(q) - U".

Since
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¢ —U-q-U*||=||U - (ko(pa(p)) — pa(p)) - U]
= [[ko(pa(p)) — pa®@)|
< 2e,

we get according to Lemma 1.2 that ¢ and ¢’ are homotopic 9e-s-projections in M, (fl)
Since pa(q’) = diag(Ix,0), we get the result. O

We have a similar result in the odd case.

Lemma 1.8. Let A be a non unital C*-algebra filtered by (As)sso. Let € and s be positive
numbers with € < 8—14.

(i) for any x in KS°(A), there exists an 21e-s-unitary u in M, (A), such that p(u) =
I, and 157" (2) = [u]a1c.s in K2'9°(A);

(ii) if w and v are two e-r-unitaries in My(A) such that pa(u) = pa(v) = I, and

[u]e,s = [V]e,s in K7 (A), then there exists an integer k and a homotopy (w¢)eo.1) of
21e-s-unitaries of My (A) between diag(u, I) and diag(v, It) such that pa(w;) =
I 41 for every t in [0,1].

Proof. Let v be an e-r-unitary in some M, (A) such that x = [v]. . According to [9, Re-

mark 1.4], we have that ||pa(v) ™! —pa(v*)| < 2e. In particular, pa(v)~!

is a Te-runitary
and pa(v)~! is homotopic to I, as a Te-s-unitary of M, (C), where C is provided with
the trivial filtration [9, Lemma 1.20]. Hence, if we set u = pa(v)~lv, then u is a 21e-s

unitary of M,,(A) such that pa(u) = I, and u and v are homotopic as 21e-s unitaries of

M, (A). Hence we have the equality

T (2) = [late,s = [ulp1e,s. O

Let ¢ : A — B be a homomorphism of filtered C*-algebras. Then ¢ preserves
e-r-projections and e-r-unitaries and hence ¢ induces for any positive number r and
any ¢ € (0,1/4) a group homomorphism

G KET(A4) — K27(B).
Moreover quantitative K-theory is homotopy invariant with respect to homotopies that
preserves propagation [9, Lemma 1.26]. There is also a quantitative version of Morita

equivalence [9, Proposition 1.28].

Proposition 1.9. If A is a filtered algebra and F€ is a separable Hilbert space, then the
homomorphism
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A= H(H)® A; a s 0

induces a (Zz-graded) group isomorphism (the Morita equivalence)
ME" KT (A) = KT (H () @ A)
for any positive number r and any € € (0,1/4).

The following observation establishes a connection between quantitative K-theory and
classical K-theory (see [9, Remark 1.17]).

Proposition 1.10.

(i) Let A be a filtered C*-algebra. For any positive number ¢ with ¢ < % and any
element y of K.(A), there exists a positive number r and an element x of K3 (A)
such that 13" (z) = y;

(ii) There exists a positive number Ay such that for any C*-algebra A, any positive
numbers e and r with e < 5= and any element x of K" (A) for which v.e,r(z) = 0

in K.(A), then there exists a positive number r' with v’ > r such that JSroemr (x) =

0 in K27 (A).

As a consequence, we get the following approximation property.

Corollary 1.11. Let Ay be as in Proposition 1.10. Then for any positive number € with
e < ﬁ and for any filtered C*-algebra A, then

K. (A) = lim (52057 (K27 (A)).
T
1.2. Quantitative objects

In order to study the functorial properties of quantitative K-theory, we introduced in
[10] the concept of quantitative object.

Definition 1.12. A quantitative object is a family O = (O°")occc1/a,r>0 of abelian
groups, together with a family of group homomorphisms

for 0 <e<e <1/4and 0 <r <7’ called the structure maps such that

o 1" =1Idoper for any 0 < e < 1/4 and r > 0;
’ forany0<e<e' <&’ <1/dand 0<r <1’ <.

e e ' e’ e rr’
* lo Cto =lo
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Example 1.13. Our prominent example will be of course quantitative K-theory
K.(A) = (K" (A))o<ce<t /a0 of a filtered C*-algebra A with structure maps ¢3° """ :
Kf’T(A)*)Kil’T’(A) for0<e<e <1/4and 0<r <.

1.8. Controlled morphisms

In this subsection, we recall from [9, Section 2] the relevant notion of morphisms in
the framework of quantitative objects.

Definition 1.14. Let (A, h) be a control pair and let O = (O*")pcec1/a,r>0 and O =
(O"*")o<e<1/a,,>0 be quantitative objects. A (A, h)-controlled morphism

F:0—=0
is a family 7 = (F*")gc.c 1 50 of groups homomorphisms

FeT .05 O/ Ae,her

1

o T < r’and

such that for any positive numbers ¢, ¢/, r and r’ with 0 < ¢ < & <
her < horr', we have

e o Lge',r,r' _ L?\gE/,)\E',hE’r’,hE/T/ o FET.

When it is not necessary to specify the control pair, we will just say that F is a
controlled morphism. In order to avoid overloading subscripts, from now on we shall not
specify the range of € and r in the quantitative objects and quantitative morphisms.
Indeed, for a quantitative morphism, the range of ¢ is completely determined by the
control pair. In the same way, to avoid overloading upperscript in the structure maps,

’ !’
e,e’,ryr

7 /
we shall write ¢,° " for ¢ when ¢ and r in the source are implicit and ¢3" " for

L‘?D’E/’T’T/ when &’ and r’ in the range are implicit. If both source and range are implicit
we shall write ¢,
If O = (O®") is a quantitative object, let us define the identity (1, 1)-controlled

morphism
Zdo = (Idp=r) : O = O.

Recall that if A and B are filtered C*-algebras and if F : K.(4) — K.(B) is a
(A, h)-controlled morphism, then F induces a morphism F : K,(A4) — K.(B) uniquely
defined by 13" 0 F&" = F o 13",

In some situation, as for instance control boundary maps of controlled Mayer—Vietoris
pair (see Section 3.2), we deal with family F=" : 05" — O'*&<" of group morphism
defined indeed only up to a certain order.
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Definition 1.15. Let (X, h) be a control pair, let O = (O=®) and O’ = (O'*®) be quanti-
tative objects and let r be a positive number. A (A, h)-controlled morphism of order r

F:0-=0

is a family F = (FE’S)O<E<ﬁ,O<S<ﬁ of groups homomorphisms

F&s . 0O55 (/)/ e hes

such that for any positive numbers ¢, ¢/, s and s’ with 0 <e <&’ < 7, s < s <r and
hes < hes', we have

/g — — e hrs’
s o L%,s, =150 s’ o oS

As for general controlled morphism, we shall not specify if not necessary the range of
€ and s as there are uniquely determined by the underlying control pair and order.
If (A\,h) and (X, R') are two control pairs, define

hxh': (0 ) = (1, +00); € > hyrchl.

TANN
Then (AN, h*h') is again a control pair. Let O = (0="), O’ = (0’=") and 0" = (0" =)
be quantitative objects, let

F=(F"):0—=0
be a (ag, kr)-controlled morphism, and let
G = (Gs,r) o N, Y

be a (ag, kg)-controlled morphism. Then Go F : O — O” is for (a, k) = (agap, kg x kx)
the (o, k)-controlled morphism defined by the family

(Ga]—‘a,k]:,g"’ o F&T - 05T 01/0457’37”). (1)

Notice that if let F : O — O and G : O’ — O” are respectively a (ar, kx)-controlled
morphism and (ag, kg)-controlled morphism of order 7, then equation (1) defines a
(agap, kg * kr)-controlled morphism G o F : O — O of order 7.

Notation 1.16. Let (A, 2) be a control pair and let O = (0O%") and O = (O'®") be
quantitative objects and let F = (F&") : O — O’ (resp. G = (G=") : O — O') be

a (ar, kr)-controlled morphism (resp. a (ag, kg)-controlled morphism). Then we write

FO gt
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o (ar,kr) < (A h)and (ag,kg) < (A h);
o for every £ in (0, ) and r > 0, then

7)\6hTOFgr7

—, A& he
LO/ g, T’OGET‘

O/
Definition 1.17. Let F : O1 — O}, F : O3 = 05, G : O1 — Oz and G’ : O] — O} be
controlled morphisms and let (A, h) be a control pair. Then the diagram (or the square)

01#02

S

0y —I— 0
is called (A, h)-commutative (or (A, h)-commutes) if G’ o F O Fro G. The definition
of (A, h)-commutative diagram can be obviously extended to the setting of controlled
morphism of order r.

Recall from [10] the definition of controlled isomorphisms.

Definition 1.18. Let (A, k) be a control pair, and let F : O — O’ be a (ar, kr)-controlled
morphism with (ar, kr) < (A h). F is called (A, h)-invertible or a ()\ h)-isomorphism if

there exists a controlled morphism G : O’ — O such that G o .F 1) A~ Idp and FoG a8
Zdo:. The controlled morphism G is called a (), h)-inverse for G.

In particular, if A and B are filtered C*-algebras and if G : K, (A) — K.(B) is a
(A, h)-isomorphism, then the induced morphism G : K.(A) — K,.(B) is an isomorphism
and its inverse is induced by a controlled morphism (indeed induced by any (A, h)-inverse
for F).

In order to state in Section 4 the quantitative Kiinneth formula, we will need the
more general notion of quantitative isomorphism. Let O; = (O7*) and O3 = (O3®) be
quantitative objects. For a («, h)-controlled morphism

F = (F€7S) : 01 — OQ,
consider the following statements:

QIr(e,e',s,s") we assume that 0 < e <& < % and 0 < s < §'. If x is an element in
O5* such that F=*(z) = 0 in OF="=*, then LO’E *(2) =0 in Oil75/;

QSr(e,e,s,8) weassume that 0 < e <&’ < —a and 0 < s < hess’. If y is an element in
O5°, there exists an element x in O5** such that F=*'(z) = LO’;E thers” (y) in

Oas',hezs’
2 .
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Definition 1.19.

o Let O; = (07°) and Oy = (05°) be quantitative objects. Then a quantitative
isomorphism

.7:201—>02

is an (a, h)-controlled morphism F = (F=") for some control pair («, h) that satisfies

the following: there exists a positive number )\0, with Ag > 1 such that

— for any positive numbers € and s with ¢ < ;= /\ there exists a positive number s
with s < s’ such that QIx(e, \oe, s, 8') is satisfied;

— for any positive numbers ¢ and s with € < i, there exists a positive number s’
with s < s'hy,e such that QSx(e, Aog, s, s') is satisfied. The positive number Ag is
called the rescaling of the quantitative isomorphism F.

e A uniform family of quantitative isomorphisms if a family (F;);c; where, F; : O; —
O} is for any ¢ in I an («, h)-controlled morphism for a given control pair («, k) such
that there exists a positive number g, with )\0 1 for which the following holds
— for any positive numbers € and s with ¢ < ;= there exists a positive number s’

with s < s’ such that QI (g, Aog, s, 8') is batlbﬁed for any ¢ in I;

— for any positive numbers ¢ and s with ¢ < g, there exists a positive number s’

with s < §'hage such that QSx, (e, Aog, s, s ) is satlsﬁed for any 7 in I.

In particular, if A and B are filtered C*-algebras and if G : K. (A) — K. (B) is a quanti-
tative isomorphism, then the induced morphism G : K,(A) — K.(B) is an isomorphism
(but its inverse is no more given by a quantitative isomorphism).
1.4. Controlled exact sequences

In this subsection, we recall the controlled exact sequence for quantitative objects.
This controlled exact sequence is an important tool in computing quantitative K-theory
for filtered C*-algebras.
Definition 1.20. Let (A, h) be a control pair,

e Let O = (0%%), 0" = (O'¢,s) and 0" = (O ;) be quantitative objects and let
F=(F*:0—=0
be a (ar, kr)-controlled morphism and let

G = (GE,S) L0 O

be a (ag, kg)-controlled morphism. Then the composition
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oLo %o

is said to be (A, h)-exact at O’ if Go F = 0 and if for any 0 < & < Wlafag}v any

s > 0 and any y in O’%* such that G=*(y) = 0 in O”¢,r, there exists an element x
in O*¢"<% such that

F/\E,h,\ss(x) _ L(—Q;Otf)\i,k}',mhss (y)

in Ol a]—"AE,k]:,)\EhP;S.

e A sequence of controlled morphisms

Fr—1 Fr Frg1
o Op—1 — Ok = Okp1 — Opqo---

is called (), h)-exact if for every k, the composition

Froe
O = 0 5 O
is (A, h)-exact at Op.
o the notion of (A, h)-exactness of a composition and of a sequence can obviously be

extended to the setting of controlled morphism of order 7.

Notice that the constraint on the range of ¢ is the definition of (A, h)-exatness is fixed
in such a way that F2** and G** make sense.

1.5. Six terms controlled exact sequence in quantitative K-theory

Examples of controlled exact sequences in quantitative K-theory are provided by
controlled six term exact sequences associated to a completely filtered extensions of
C*-algebras [9, Section 3].

Definition 1.21. Let A be a C*-algebra filtered by (A,),>0, let J be an ideal of A and
set J. = J N A,.. The extension of C*-algebras

0>J—>A—>A/J—0

is called a completely filtered extension of C*-algebras if the bijective continuous linear
map

A — (A + )/ T

induced by the inclusion A, < A is a complete isometry i.e. for any integer n, any
positive number r and any = in M,,(A,.), then
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yeMn(Jr)H vl o |z + yll

Notice that in this case, the ideal J is filtered by (A4, N J),>o and A/J is filtered
by (A, + J)r>0. A particular case of completely filtered extension of C*-algebra is the
case of filtered and semi-split extension of C*-algebras [9, Lemma 3.3] (or a semi-split
extension of filtered algebras) i.e. extension

0—-J—A— A/J—0,
where

o A is filtered by (A;)r>0;
o there exists a completely positive (complete) norm decreasing cross-section

s:AlJ— A
such that
s(Ar +J) C Ay
for any number r > 0.
For any extension of C*-algebras
0—-J—A—A/J—0,

we denote by 9y 4 : K.(A/J) — K.(J) the associated (odd degree) boundary map in
K-theory.

Proposition 1.22. There exists a control pair (ap, kp) such that for any completely filtered
extension of C*-algebras

0—J—AS A)J—0,
there exists a (ap, kp)-controlled morphism of odd degree
Dja=(0504): Kis1(4/T) = Ki(J)
which induces in K-theory 054 : Ki(A/J) = K41 (J).

Moreover the controlled boundary map enjoys the usual naturally properties with
respect to extensions (see [9, Remark 3.8]).
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Theorem 1.23. There exists a control pair (A h) such that for any completely filtered
extension of C*-algebras

0—J-L A5 4/]—0,
then the following siz-term sequence is (A, h)-exzact

Ko(J) —Z— Ko(A) —2— Ko(A)J)

D.I,AT D\I,Al

Ki(A)J) 22— Ki(A) «+LZ— Ki(J)
1.6. KK-theory and controlled morphisms

In this subsection, we discuss compatibility of Kasparov’s K K-theory with quantita-
tive K-theory of filtered C*-algebras.

Let A be a C*-algebra and let B be a filtered C*-algebra filtered by (B,),>q. Let us
define A®B, as the closure in the spatial tensor product A®B of the algebraic tensor
product of A and B,.. Then the C*-algebra A®B is filtered by (A®B,.),>o. If f : A1 — As
is a homomorphism of C*-algebras, let us set

fB A1®B — A2®B; a®b — f(a)®b

Recall from [4] that for C*-algebras A;, As and B, Kasparov defined a tensorization
map

B : KK*(Al,AQ) — KK*(A1®B,A2®B)
If B is a filtered C*-algebra, then for any z in K K, (A, A2) the morphism
K,.(A1®B)—K.(A3®B); © — 2@ 4,087 (%)

is induced by a controlled morphism which enjoys compatibility properties with Kasparov
product [9, Theorem 4.4].

Theorem 1.24. There exists a control pair (ar, k) such that

e for any filtered C*-algebra B;
o for any C*-algebras Ay and As;
o for any element z in KK.(A1, As),

there exists a (o, ky)-controlled morphism Tp(z) : Ki(A1@B) — K.(A20B) with
Te(z) = (15") of same degree as z that induces in K-theory the right multiplication
by 5(2).
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Moreover Tg(e) enjoys the following properties:

Proposition 1.25. For any filtered C*-algebra B and any C*-algebras A1 and As,

(i) for any elements z and 2z’ in KK.(A1, As), we have
Tz +2") = Te(z) + TB(Z/).

(ii) Let A} be a C*-algebras and let f : Ay — A} be a homomorphism of C*-algebras,
then Tp(f*(2)) = Tp(2) o fB,« for all z in KK.(A}, A2).

(iii) Let A} be a C*-algebra and let g : Ay — Ay be a homomorphism of C*-algebras
then Tp(g«(2)) = gp.« © Tp(2) for any z in KK, (A1, Ab).

. aT,k

() Ta(lda,]) =7 Tdx. (a,0m)-

(v) For any C*-algebra D and any element z in KK,(A1, As), we have Tp(tp(2)) =
Teap(2).

For any element in K K7 corresponding to a semi-split extension, up to a rescaling,
the Tp is given by the controlled boundary map associated to the tensorized extension:

Proposition 1.26. For any filtered C*-algebra B and any semi-split extension of
C*-algebras 0 - J — A — A/J — 0 with corresponding element [0y 4] of KK1(A/J,J)
that implements the boundary map, we have

(e ,k7)
T5([05,4]) """ Dsgp ass.
The controlled tensorization morphism 73 is compatible with Kasparov products.

Theorem 1.27. There exists a control pair (A, h) such that the following holds:
let A1, Ay and Asz be separable C*-algebras and let B be a filtered C*-algebra. Then
for any z in KK,.(A1, As) and any 2’ in KK,(As, As), we have

Ts(2®4,2") k) Te(2") o Ta(2).

We also have in the case of finitely generated group a controlled version of the Kas-
parov transformation. Let I' be a finitely generated group. Recall that a length on I is
amap £: ' — RT such that

e {(v) =0 if and only if ~ is the identity element e of T;
o U(vY) < L(y) + £(®') for all element v and 7’ of T.
) =1

() =L(v1).

~

In what follows, we will assume that ¢ is a word length arising from a finite generating
symmetric set S, i.e., £(y) = inf{d such that v = ~1 -4 with 71,...,74 in S}. Let
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us denote by B(e,r) the ball centered at the neutral element of T' with radius r, i.e.,
B(e,r) = {v € T such that ¢(y) < r}. Let A be a separable I'-C*-algebra, i.e., a separable
C*-algebra provided with an action of I' by automorphisms. For any positive number 7,
we set

(Axpeql), def {f € C.(TI", A) with support in B(e,r)}.

Then the C*-algebra Ax,..qI" is filtered by ((AX,eql')r)r>0. Moreover if f: A — B is a
T'-equivariant morphism of C*-algebras, then the induced homomorphism fr : Ax,.qq" —
Bxyeql is a filtered homomorphism. Recall from [4] that for any I'-C*-algebras A and
B, there exists a natural transformation

Jr: KKIN (A, B) » KK.(AX,eql', BXpeql)

called the Kasparov transformation that preserves Kasparov products. The Kasparov
transformation admits a quantitative version [9, Section 5].

Theorem 1.28. There exists a control pair (agz, k) such that

e for any separable I'-C*-algebras A and B;
e Forany z in KKL (A, B),

there exists a (g, kz)-controlled morphism
T4 (2) : Ki(A Xpea T) = Ki(Bxpeal)

with JEe4(2) = (JLY*7(2)) of same degree as z that induces in K -theory right multipli-
cation by Jre(z).

Moreover, J:¢%(e) satisfies the following properties.
Proposition 1.29. For any separable I'-C*-algebras A and B,
(i) for any z and 2’ in KKL (A, B), then
TEe(z + ") = JrEel(z) + TEeA(2).
(ii) For any T'-C*-algebra A’, any homomorphism f : A — A’ of T-C*-algebras and any
z in KKI(A', B), then jred(f (2)) = Jred(2) o fr.

(iii) For any I'-C*-algebra B’, any homomorphism g : B — B’ of I'-C*-algebras and
any = in KKT(A, B), then JE*4(g,()) = gr.. 0 J(2).

. k
(iv) Fred(Ida) "R Tde ase,ury.
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For any element in KK corresponding to a I'-equivariant semi-split extension, up to
a rescaling, then J7" ed i given by the controlled boundary map associated to the reduced

crossed-product extension:
Proposition 1.30. Let
0-J—>A—A/J—=0

be a semi-split exact sequence of I'-C*-algebras and let [0j 4] be the element of
KK{(A/J,J) that implements the boundary map &5 . Then we have

ag,k
T4 ([0,4]) @) Dy eal’, Axtyeql'

Eventually, the controlled Kasparov transformation is compatible with Kasparov prod-
ucts.

Theorem 1.31. There exists a control pair (X, h) such that the following holds: for ev-
ery separable T-C*-algebras A, B and D, any elements z in KKI (A, B) and 2’ in
KKI(B,D), then

A‘h e re
Jeed(z @p 2') ) gred(2) o gred(z).

Remark 1.32. We can choose (a7, k) such that (az,k7) = (a7, kr). In this case, for
any ['-C*-algebra A, any C*-algebras D; and Dy equipped with the trivial action of T"
and any z in KK, (D1, D), then

Tty eal o (2) = T (Ta,4(2)).

We have a similar result for maximal crossed products.
1.7. Quantitative assembly maps

In this subsection, we discuss a quantitative version of the Baum—Connes assembly
map.

Let T be a finitely generated group and let B be a I'-C*-algebra. We equip I' with
any word metric. Recall that if d is a positive number, then the Rips complex of degree
d is the set P4(T") of probability measures with support of diameter less than d. Then
P;(T) is a locally finite simplicial complex and provided with the simplicial topology,
P;(T") is endowed with a proper and cocompact action of T" by left translation. In [9], for
any ['-C*-algebra B, we construct quantitative assembly maps

HElgL KK (Co(Pa(l), B) = K27 (Byeal),
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with d > 0, € € (0,1/4) and r > rq ., where
[0,400) % (0,1/4)—(0,+00) : (d,&) — T4

is a function independent on B, non decreasing in d and non increasing in €. Moreover,
the maps /LF B , induce the usual assembly maps

pf gt KK (Co(Po(T)), B) = K. (Bxyeal),

ie., pf p, =13 opy ’;Bd* Let us recall now the definition of the quantitative assembly

maps. Observe first that any = in P4(T") can be written down in a unique way as a finite
convex combination

x = Z Ay ()04

yel

where 4., is the Dirac probability measure at v in I'. The functions
Ayt Py(T") — [0,1]
are continuous and y(Ay/) = Ay, for all v and +’ in T'. The function

. . 1/2y1/2
prd: I' — CQ(Pd(F)), Y = E )‘e/ >\'y/
yel’

is a projection of Cy(Py(I")) X eqI’ with propagation less than d. Let us set then rq. =
k7 c/a,d, where the control pair (az,kys) is as in Theorem 1.28. Recall that ks can be
chosen non increasing and in this case, 74 is non decreasing in d and non increasing
in €.

Definition 1.33. For any I'-C*-algebra A and any positive numbers ¢, r and d with e < 1/4
and r > rq ., we define the quantitative assembly map

pEn s KKT(Co(Pa(T)), A) = K27 (A e T)
P (Jreds v ( )) ([pF,dvo]ﬁ/-,T/)’

r
kj,s/aj

with &/ = % and r’ = and where the notation [pr 4, 0]/, is as in Definition 1.6.

Then according to point (ii) of Proposition 1.29, the map ,us’ " is a group ho-
momorphism. For any positive numbers d and d’ such that d < d’, we denote by
qa, a0 : Co(Py(T)) — Co(Py(T")) the homomorphism induced by the restriction from
Py (T) to Py(T). It is straightforward to check that if d, d’ and r are positive numbers

’
such that d < d" and r > rq ., then u? Ad = ,uF Ad 0 qq,q’ - Moreover, for every positive
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numbers €, ¢/, d, r and 7’ such that e <&’ <1/4, rqe <7, rge <7/, and r <71/, we get
by definition of a controlled morphism that

o i = i h
In [9] we introduced quantitative statements for the quantitative assembly maps. For
a I-C*-algebra A and positive numbers d,d’,r,r’',¢ and ¢ with d < d’, e < &’ < 1/4,
rae <1’ and r <1’ we set:

QIr a«(d,d,r,e) for any element x in KK (Co(Py(T)),A), if ,u;TAd*( ) = 0 in
K" (A Xpea 1), then ¢ 4 (x) = 0 in KK} (Co(Pa(T)), A).

QSr.a.(d,r,r' e,e") for every y in KET(A Xreq I'), there exists an element z in
KKT(Co(Pa(T)), A) such that 25 (z) = i7" (1),

The following results were then proved [9, Theorem 6.6].
Theorem 1.34. Let I be a discrete group.

(i) Assume that for any I'-C*-algebra A, the assembly map pr a . is one-to-one. Then
for any positive numbers d, € and r > rq. with e < 1/4 and r > ry, there exists
a positive number d' with d' > d such that QIr a(d,d’,r,€) is satisfied for every
'-C*-algebra A;

(ii) Assume that for any I'-C*-algebra A, the assembly map pur a. is onto. Then for
some positive number ag which not depends on I’ 07’ on A and such that with ag > 1
and for any positive numbers € and r with € < 5 —, there exist positive numbers d
and v’ withrq. <’ andr <71’ such that QSF,A(d r, 1 e, ape) is satisfied for every
I'-C*-algebra A.

In particular, if T satisfies the Baum—Connes conjecture with coefficients, then I' satisfies
points (i) and (ii) above.

In [10] we developed a geometric version of the controlled assembly maps and of the
quantitative statements in the following setting. Let 3 be a proper discrete metric space
and let A be a C*-algebra. Then the distance d on ¥ induces a filtration on AQK(¢2(%))
in the following way: let r be a positive number and T' = (T, 5/)(4,0)ex2 be an element
in AQK(£*(X)), with T,, o+ in A for any o and ¢’ in 2. Then 7 has propagation less that
rif Ty o+ = 0 for 0 and ¢’ in ¥ such that d(o, ¢’) > r. As for finitely generated group, we
define the Rips complex of degree d of ¥ as the set P;(X) of probability measure with
support of diameter less than d. Then P;(X) is a locally finite simplicial complex and is
locally compact when endowed with the simplicial topology. Let us define then

K.(Pa(2),4) 5= Jim  KK.(C(2), 4),
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where Z runs through compact subsets of Py(X). In turn we constructed in [10] local
quantitative coarse assembly maps

Vil Ku(Pa(R)), A)— K27 (A2K(6 (%)),

with d > 0, € (0,1/4) and r > rq.. The map I/gid* is natural in the C*-algebra
and induces in K-theory the index map, i.e. the maps 12" o y;’:f* is up to Morita
equivalence given for any compact subset Z of P;(X) by the morphism in the inductive
limit KK, (C(Z), A) — K.(A) induced by the map Z — {pt}. Moreover, the maps v5 %",
are compatible with structure morphisms and with inclusion of Rips complexes:

—e’sr’ e,r,d e',r'\d i / ’ /
o Ly OV A= Vs alk for any positive numbers €, &', 7,7’ and s such that e <&’ <

1/4,rqc <7rge <7/ and r <1

!
. V;,TAU,I*O‘J:I, o= V;i‘d* for any positive numbers €, r, d and d’ such that e < 1/4, d < d’

and rg . < 7, where
Qa0 KK« (Co(Pa (X)), A) = KK.(Co(Pa(X)), A)
is the homomorphism induced by the restriction from Py (X) to Py(X).

For d,d’,r,r’,e and ¢’ positive numbers with d < d', &' <e <1/4, rg. <randr’ <7,
we consider the following statements:

QIs ax(d,d' 1) for any element = in K,(P4(X), A), then Vgiid*(z) =0in K" (A®
K(¢3(X))) implies that a0 (x) =0in K (P (2), A).

QS5 ax(d,r, ' e,e) for every y in K (ARK(£2(X))), there exists an element z in
K. (Py(X), A) such that

;Td -,
velie (@) = 15" (y).

Recall that a proper discrete metric space ¥ with bounded geometry coarsely embeds
in a Hilbert space if there exist

e amap ¢: X — S where S is a Hilbert space;
e two maps p+ : RT — RY with lim, o p+ = +o00,

such that

p—(d(z,y)) < ll¢(x) = oY)l < pr(d(z,y))

for any x and y in X. Proper discrete metric spaces with bounded geometry that coarsely
embed into a Hilbert space provide numerous examples that satisfy the following state-
ment called the Quantitative Assembly Map estimates [10, Theorems 4.9 and 4.10].
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Theorem 1.35. Let > be a discrete metric space with bounded geometry that coarsely
embeds into a Hilbert space.

(i) For any positive numbers d, € and r withe < 1/4 andr > rq., there exists a positive
number d' with d’ > d for which QIs 4 +(d,d',r, €) is satisfied for any C*-algebra A.

(ii) There exists a positive number X\ > 1 such that for any positive numbers e and r’
with € < ﬁ, there exist positive numbers d and r with rq <1 and r’ <r for which
QSs ax(d,r, 7', Ne, €) is satisfied for any C*-algebra A.

2. Controlled Mayer—Vietoris pairs

In the construction of the boundary map of the Mayer—Vietoris six terms exact se-
quence in K-theory and for establishing exactness, the following result is a key point:
let A be a unital C*-algebra which is the sum of two closed ideals J; and Js. Then
any unitary u in A connected to the identity can be written as a product u = vyve of
two unitaries v; and vy lying respectively in the unitarization of J; and Js and as such
connected to the identity. In this section and in order to state a controlled version of the
K-theory Mayer—Vietoris six terms exact sequence, we investigate an analogue of this
result for a so-called coercive decomposition at a given order r into closed linear sub-
spaces A; and As. Every e-r-unitary connected to the identity is then up to rescaling by
a (universal) control pair and to stabilization, closed to a product of e-r-unitaries lying
respectively in the unitarization of some neighborhood C*-algebras of A; and As and
as such connected to the identity. These neighborhood C*-algebras can be viewed as the
ideals generated up to certain order respectively by A; and As. The strategy to prove
this result is first to obtain an approximation by a product of e-r-N-invertibles and then
to use in the setting of e-r- N-invertibles an analogue of the polar decomposition. We then
give the definition of a controlled Mayer—Vietoris pair which allows to define C*-algebras
with finite asymptotic nuclear decomposition in Section 5 and which is the framework
to state in Section 3 the Mayer—Vietoris controlled exact for quantitative K-theory. We
also discuss a few technical lemmas useful for establishing the latter.

2.1. e-r-N-invertible elements of a filtered C*-algebra

In [9, Section 7] is introduced the notion of e-r-N-invertible element of a unital Ba-
nach algebra. In this subsection, we study e-r-N-invertible elements for C*-algebras. In
particular, we state an analogue of the polar decomposition in the setting of e-r-unitaries.

Definition 2.1. Let A be a unital C*-algebra filtered by (A;)s>o and let €, r and N be
positive numbers with € < 1. An element z in A, is called e-r-N-invertible if ||z|| < N
and there exists y in A, such that |ly|| < N, ||lzy — 1|| < € and |lyz — 1|| < e. Such an
element y is called an e-r-N-inverse for x.
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Remark 2.2. If x is e-r-N-invertible, then z is invertible and for any e-r-N-inverse y
N

for x, we have |[z7! —y|| < ££

Definition 2.3. Let A be a unital C*-algebra filtered by (Ag)sso and let &, r and N be
positive numbers with ¢ < 1. Two e-r-N-invertibles in A are called homotopic if there
exists Z : [0,1] — A an e-r-N-invertible in A[0, 1] such that Z(0) = x and Z(1) = y.

In the setting of e-r-N-invertibles and of e-r-unitaries, there is the analogue of the
polar decomposition.

Lemma 2.4. For any positive number N there exists a control pair (a,l) and a positive
number N with N' > N such that the following holds.

For any filtered unital C*-algebra A filtered by (As)s>0, any positive numbers € and
r with € < ﬁ and every e-r-N-invertible element x of A, there exist h a positive
ae-ler-N'-invertible in A and u an ae-lor-unitary in A such that |||x| — k| < ae and
|z — uh|| < ae. Moreover we can choose u and h such that

o there exists a real polynomial function @ with Q(1) =1 such that u = zQ(x*x) and
h =ax*zQ(z*x);

e h admits a positive ae-l.7-N'-inverse;

e If x is homotopic to 1 as an e-r-N-invertible, then w is homotopic to 1 as an
ag-l.r-unitary.

Proof. According to Remark 2.2 and since ¢ < 1/4, if « is an e-r-N-invertible, then
x is invertible and [|z7!|| < 2N and hence |(z*x)~!|| < 4N2. This implies that the
spectrum of z*z is included in [q3z, N?]. Let to and ¢ be positive numbers such that
to < min(xz,1) and max(N?,1) < t;. Let us consider the power series Y a,t" of
t = —A— for ¢ in [0, 1] and let I. be the smallest integer such that

Vitt
= 1—t\*  min(yf,1)e
> (1) -

2
k=l.+1

and

> an(-t)F = 1/2

for all ¢ in [0,1 — t—?} Since > ap (m*iftl) converges to /I (z*z) "2 = /t1|z| 71, if

we set

0= g3 () i 3w ()

k=0 k=l.+1
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then @ is a polynomial of degree I such that Q(1) =1, Q(t) > 0 for every t in [to, 1] and
Q(x*x) — (x*2)~V/2|| < e. If we set u = 2Q(x*x), then u is a a-2l. + 1-unitary for some
a > 1 depending only on N. Set now h = u*x = x*xQ(z*x), then up to taking a large «,
there exists a control pair (o, k) and a positive number N’ depending only on N, with
N’ > N and such that v and h satisfy the required properties and Q(z*x) is a positive
ae-k.r-N'-inverse for h. Moreover, if (2¢).c[0,1] is @ homotopy of e-r-invertibles between
1 and x, then (2:Q(x}2¢))¢ec[o,1) is @ homotopy of ae-k.r-unitaries between 1 and u. O

The first step in order to obtain the main result of this section is to approximate
u
0

by a product elementary matrices with entries involving x; and x5. Let A be a unital
C*-algebra filtered by (As)s>0- For z and y in A, set

xw=(o 1)
v =(y 1)

Z(o.9) = XK@Y X (@) () = (Vb o)

element of the form ( uo*) for w an e-r unitary that decomposes into v = =1 + x5

and
and consider the commutators

and

Z'(z,y) =Y (y) ' X (2)"'Y(y) X (2) = <1y_1'$y 14+ y_ﬂcw—iy-xyxyac) :

Lemma 2.5. Let A be a unital C*-algebra filtered by (As)s>o and let € and r be positive

numbers with ¢ < 1/4. Let x1 and x2 in A, such that 1 + x4 is an e-r-unitary. Then
we have the inequality

I (01) 2z, ~)¥ () X o) X aa)¥ (-a5) Z'(or.~3) X (o) (7))

1+ X9 0
_< 0 :c*{—l—x;)H<3E'

Proof. Let us set u = x1 + x2. Consider the matrix
" 0 -1\ _ [(2u—wuu wu*—1
Wiu) = X(w)Y (—u*)X (u) (1 0 ) = ( 1— w'u u* > .

Since u is an e-r-unitary, then
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(5 2)-ve

< 3e.

We have
W) = X(e) X (¥ (-a)Y (o) X ()X ) (] ).
This, together with the definition of Z and Z’, implies that
W(u) = X(21)Z(z2, —27)Y (—27) X (21) X (22)Y (=23) Z' (21, —3)
x X (1) ((1) _01) . O
2.2. Coercive decomposition pair and R-neighborhood C*-algebras

We introduce in this subsection the basic ingredient to define controlled Mayer—
Vietoris pairs.

If A and A’ are two closed linear subspaces of a C*-algebra A such that A C A/,
we equip M, (A/A") = M, (A)/M,(A’") with the quotient C*-algebra norm, i.e. if z is a
element of M, (A), then ||z + M, (A")|| = inf{||z + y|; y € M, (A’)}. Then this family
of norms is a matrix norm on A/A’.

Definition 2.6. Let A be a C*-algebra filtered by (As)s>o and let r be a positive number.

« a coercive decomposition pair of degree r for A (or a coercive decomposition r-pair)
is a pair (A1, Ag) of closed linear subspaces of A, such that there exists a positive
number C satisfying the following: for any positive number s with s < r the inclusion
A1 NA; — A, induces an isomorphism

A1 NAg
A1 NAsN A, Ao N A

whose inverse is bounded in norm by C.

 a completely coercive decomposition pair of degree r for A (or a completely coercive
decomposition r-pair) is a pair (A1, Ag) of closed linear subspaces of A, such that
there exists a positive number C' satisfying the following: for any positive number s
with s < r the inclusion A; N As — A, induces a complete isomorphism

AN A
A1 NAsN A, Ag N Ag

whose inverse has complete norm bounded by C.

Please cite this article in press as: H. Oyono-Oyono, G. Yu, Quantitative K-theory and the Kiinneth
formula for operator algebras, J. Funct. Anal. (2019), https://doi.org/10.1016/j.jfa.2019.01.009




YJFAN:8179

28 H. Oyono-Oyono, G. Yu / Journal of Functional Analysis sse (ssee) ese—see

Remark 2.7. Let A be a C*-algebra filtered by (A;)s>0, let  be a positive number and
let (A1,As3) be a pair of closed linear subspaces of A,. Then (A1, As) is a coercive
decomposition pair of degree r for A if and only if there exists a positive number ¢ such
that for every positive number s with s < r and any = in A, there exists z1 in A1 N Ag
and x5 in Ay N Ay, both with norm at most ¢||z|| and such that @ = 21 + 2. In the same
way, (A1,As) is a completely coercive decomposition pair of degree r for A if and only
if there exists a positive number ¢ such that for every positive number s with s < r, any
integer n and any x in M, (A;), there exists 21 in M, (A1 N A;) and z9 in M, (Ax N Ay),
both with norm at most c||z|| and such that + = x1 + 5. The (completely) coercive
decomposition r-pair (A, Ay) is said to have coercitivity c.

The aim of this subsection is to show that for any coercive decomposition r-pair
(A1, Ag), there exists a control pair («,h) depending indeed only on the coercitivity,
such that up to stabilization, any e-s-unitary of A with 0 < € < ﬁ and 0 < s < hLE
can be approximated by a product of two ae-h.s-unitaries lying respectively in the
unitarization of some suitable neighborhood algebras of A; and A,. We first show using
Lemma 2.5 that this approximation exists in term of e-r-N-invertibles. Then we use the

analogue of the polar decomposition of Lemma 2.4 to conclude.

Definition 2.8. Let A be a C*-algebra filtered by (A)s>0. Let » and R be positive num-
bers and let A be a closed linear subspace of A,.. We define C*N(AT’R), the R-neighborhood
C*-algebra of A, as the C*-subalgebra of A generated by its R-neighborhood NX’R) =
A+Arp - A+A-Ar+Ar-A- Ap.

Notice that C’*NX’R) inherits from A a structure of filtered C*-algebra with
C*NX’SR) = C*NX’R) NA; for every positive number s. For a positive number s satisfying
s < r, we also denote by C*N(AS’R) for the R-neighborhood C*-algebra of AN Aj.

Lemma 2.9. For any positive number c, there exist positive numbers X\, C and N, with
A>1 and C > 1 such that the following holds.

Let A be a unital C*-algebra filtered by (As)sso, let v and € be positive numbers such
that € < ﬁ and let (A1, A3) be a coercive decomposition pair for A of degree r with
coercitivity c. Then for any e-r-unitary u in A homotopic to 1, there exist an integer k
and Py and Py in My(Ac,) such that

e P and Py are invertible;

o P,—1I; and PZ-_1 — I, are elements in the matriz algebra Mn(C*N(A:’jg),,) fori=1,2;

e |P|| < N and |P7|| < N fori=1,2;

o fori=1,2, there exists a homotopy (Pj¢)icjo,1) of invertible elements in My(Ac,)
between 1 and P; such that ||P; || < N, ||P1_tl|\ < N and P,y — I}, and Pi’_t1 — Iy are
elements in the matriz algebra Mn(C*NX;%b for every t in [0,1].

o || diag(u, Ix—1) — PiPa| < Ae.
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Proof. Let (ut)ic[0,1] be a homotopy of e-r-unitaries of A between u = ug and 1 = uy

and let tg =0 < t; < -+ <t =1 be a partition of [0, 1] such that ||us, —u,_,|| < € for
i=1,--- k. Set

V = diag(uty, - - - Uty , Ugy, - - - Uf, )
and
W = diag(1,uz,, ..., uf,_ |, Uty Uty_y5 1)
Then we have
| diag(u, Iog+1) — VW < || diag(u, Iog+1) — diag(uo, we, ug, s - - ug,uy, s o) |
+ || diag(uy, we, uf, s - - ug g, s Iry1) — diag(ueg, we, gy, - uguy, s T ||
+ ” diag(uto?utlu;}? cee 7utku>tkk,1afk+1)
— diag(uto,utlufg07 e U U U U Uy U 7UtkU:R)||

< 4e.

For any matrix X in Moy (A), let us set X = diag(1, X, 1) in Mogy2(A). For every integer

i=—1,0,...,k, pick v; in Ay and w; in Ag such that u;, = v; +w; with ||v;|| < ¢||uy, || and
lwill < cllug,|]. Set z1 = diag(vo, . .., vk),x2 = diag(wo, . .., wx) , y1 = diag(vg, ..., v5_;)
and yo = diag(wg, ..., w}_;). Since we have

V = diag(zy + 2, 2] + x3)
and
W = diag(ys + 2, 7 +53),
then if we set
T(x,y) = X(2)Z(y, —z")Y (—27) X (2),
we deduce from Lemma 2.5 that
HVW — T(a1,22) T~ (—a, 1) U1 T(y1, y2) T~ (2, _yl)ﬁ;H < 9e

with U, = <2€ _Olk> in Ma;(C) and hence
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Let us show that

ef _ ~ fopeg
S($1,$2,y17y2)d:T(331,332)T Y=o, —21) U1 T(y1,y2) T (—y2, —y1)Us (3)

can be decomposed as a product P; P, with P, and P, satisfying the required properties.
Notice that as a product of elementary matrices, the matrix T'(x1,x3) is invertible. By
the definition of the neighborhood C*-algebra, T'(z1,z2) — Iog12 and T (21, 22) — Iop o
are elements in the matrix algebra M2k+2(C*N(AT1’T7)T). The same holds for T(yl, y2), and

we have similar properties for T'(—z3, —z1) and T(—yg, —y1) with respect to C*N(ATZZT%T.
In order to bring out some commutators, let us study the term

T(y1,y2) " Up 1 T~ (—22, —21) Up a1 T (y1, o)

which is the product of the four first terms in equation (3). Let us make the following
observations:

. )Z'(—yl)U,jHT_l(—xg, —xl)UkH)?(yl) — I5k49 is an element in the matrix algebra
M2k+2(C*NX;,2;r));

N Z‘l(yl,yg))?(—yl)U,jHT_l(—xQ, —xl)UkH)N((yl)Z(yl,yg) — Iokyo is an element in
the matrix algebra M2k+2(C*NX;721T7)T) (because Z~(y1,y2) — Iox = Z'(y1,y2) — ok
and Z(y1,y2) — oy are elements of the matrix algebra Mgk(C*NX;iT));

o Y1) Z (Y1, y2) X (~y1) Uy T~y 1) U1 X (1) Z(y1, 92)Y (y1) — Lo is an
element in the matrix algebra Moo (C’*NE’;BT);

o X(—2)Y (1) Z 1, y2) X (—y) Uy T H (=2, —21) Uk X (1) Z (1, 92)Y (1) X (1)
— Isp4o is an element in the matrix algebra Moy o (C*N(Arz)’gl)T).

Hence T'(y1, Y2) tUE AT (o, —2) U1 T(y1,y2) — Iopy1 is an element in the matrix

algebra M2k+2(C*NX2’T2)1T). Since 1 = vg + wg, then we have

(_01 (1)) = T (ve, we) T~ (—wy, —vg)-

Therefore there exists for ¢ = 1,2 an invertible matrix Q;(vg, wy) in Maog42(A) such that
Qi (v, wx) — Izk1o and Q;l(vk,wk) — Dopyo lie in M2k+2(C*Ng;’j})r) and

Q1 (vk, wi) Q2 (v, wi) = Up11Ug.

Therefore if we write S(x1,22,y1,y2) = P1 P> with

Py = T(x1,22) U1 T (y1, y2) U1 Q1 (vi, wy)

and
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Py = Qo (v, wi) U T (y1, y2) " Uy T~ (— 22, —21) U1 T (1, 42) T (—y2, —11) Uk
are invertible matrices of Maj12(A) such that

o Py — Iy and Pfl — Iy 2 are elements in the matrix algebra M2k+2(C*NXI’T2)1T).

e Py — Iopyo and P2_1 — Ik o are elements in the matrix algebra M2k+2(C’*N(AT2’4§5)r).

Since Py and P can be written as a product of a fixed number, say p, of matrices X (x)
or Y (z) with [|z|| < 2¢, we see that P; and P, have norm less than (2¢ + 1)P. According
to equation (2), we have

||diag(u7I2k+1) — P1P2|| < 13e.

The required homotopies are then

(T (txy, two) Up 1 T(tyr, ty2) Up oy Q1 (tor, twr) ) eefo, 1)

and

(Q2(tvg, twk)ﬁékf(tyh ty2) Uk 1 T~ (—tao, —fUCl)Uz+1T(ty17 ty2)
T (—tys, _tyl)ﬁ;)te[o,l]' O

Let us briefly explain how we deal with the non unital case. Let A be a non unital
filtered C*-algebra and let u be an e-r unitary in A such that u— 1 is in A. Assume that
u = x1 + xo with 1 — 27 and x5 lie in A. Proceeding as in the proof of Lemma 2.5, we
see that diag(u,u™) is 3e-close to the product of

P = Xle) X (@)Y ()X (') X(a)
and

n=xG) (Y §) Xy Caxexe (V).

Now if (A1, Ag) be a coercive decomposition pair for A of degree r with coercitivity ¢
and assume that in the above decomposition of ©u = z1 + 22 we have 1 — x1 in Ay and
o in Ao, we get then by a straightforward computation that P; — I has coefficient in
C*NXI’?;T) and P, — I has coefficient in C*Ngf;). Notice that in view of the proof of
Lemma 1.8, if under above assumption, u is connected to 1 as a e-r-unitary of A, then u
is connected to 1 by a homotopy of 21e-r-unitaries (u¢)efo,1] of A such that u, — 1 lies

in A for all ¢ in [0, 1]. Hence proceeding as in the proof of Lemma 2.9 we get:
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Lemma 2.10. For any positive number c, there exist positive numbers A\, C and N, with
A>1 and C > 1 such that the following holds.

Let A be a non unital C*-algebra filtered by (As)s>o0, let r and € be positive numbers
such that e < ﬁ and let (A1, As) be a coercive decomposition pair for A of degree v with
coercitivity c¢. Then for any e-r-unitary u in A homotopic to 1 and such that u — 1 lies
in A, there exist an integer k and P; and Ps in Mk(/NXCT) such that

e P; and Py are invertible;

o P,—1I and Pi_1 — I are elements in the matriz algebra Mn(C’*N(AMgl) fori=1,2;
o |P]| <N and |P7Y| < N fori=1,2; '

o fori=1,2, there exists a homotopy (Pj¢)tcjo,1) of invertible elements in M;(Acy)
between 1 and P; such that ||P; || < N, ||Pz_tl|\ < N and P,y — I}, and Piﬁl — I are
elements in the matriz algebra Mn(C’*NXZ%)r) for every t in [0, 1].

|| diag(u, Ix—1) — P1Ps|| < Ae.

Using the analogue of the polar decomposition stated in Lemma 2.4, we are now in
position to prove the approximation result in terms of e-r-unitaries.

Proposition 2.11. For every positive number c, there exists a control pair (a,l) such that
the following holds.

Let A be a unital C*-algebra filtered by (As)sso, let v and € be positive numbers such
that € < ﬁ and let (A1,As) be a coercive decomposition pair for A of degree r with
coercitivity c. Then for any e-r-unitary u in A homotopic to 1, there exist a positive

integer k and wy and wy two as-lor-unitaries in My (A) such that

o w; — I}, is an element in the matriz algebra Mk(C’*NX;’Zl) fori=1,2;

e fori=1,2, there exists a homotopy (w; ¢)icjo,1) of ae-l-T-unitaries between 1 and w;
such that w; ¢ — Ij, € M}e(C*NXﬁ:)T) for all t in [0,1].

o || diag(u, I—1) — wiwa|| < ae.

Proof. As in Lemma 2.9, let A\, C and N be positive numbers, k be an integer and P;

and P, be matrices of My (A¢,) such that || diag(u, Ix—1) — Py Ps|| < Ae. Since P, and P,

are e-Cr-N-invertible for every ¢ in (0, ﬁ), then according to Lemma 2.4, there exists

e a control pair (a,);
e wi an &-l /o r-unitary and hy an e-l. /,r-N-invertible both in

M2k:+2 (C*NX;AT) + (C)’

with h; positive and admitting a positive e-l. /- N-inverse;
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e wo an &-l ./ r-unitary and hg an e-k./or-N-invertible both in
M2k+2(C*N(AZ4T) +C),
with ha positive and admitting a positive e-l. /o r-N-inverse,
such that |Py —wihy|| < e, ||Py —waha|| < ¢, |||P1] —h1]] < € and ||| Py| — hz|| < &. Then
|lwyihihowy — diag(u, Iog11)]] < (2N + X+ 1)e (4)

and hence, up to replacing A by 4(2N + A + 1), we know according to Lemma 1.2 that
w = wihihowj is a Ae-4l. /o r-unitary. Let us prove that hihg is close to Iog 2.

Let R be a positive e-I. /,r-N-inverse for hy. Then we have ||wjw — hihows|| < 2Ae
and then ||hjwfw — hawj || < 4ANe. This implies that

|Rijwiw(hjwiw)* — howl(howy)*|| < 16ANEe.

Since ||Bjwiw(h)wiw)* — hi?|| < 3AN2e and ||how} (how})* — h3|| < 3AN2¢, we deduce
that there exists A’ > A depending only on A and N such that ||1}* —h2|| < Xe. But, since
h and hy are e-l. /o r-N-invertible with e < 1/2, their spectrum is bounded below by ﬁ
The square root is Lipschitz on the set of positive elements of A with spectrum bounded
below by ﬁ (this can be checked easily by holomorphic functional calculus), thus there
exists a positive number M, depending only on N such that ||k} — ha|| < MMNe. Since
hY is an e-l. /o7~ N-inverse for hy, we finally obtain that ||hihy — Iopqa|| < (1+NMN)e.

Combining this inequality with equation (4), we know that there exist a positive
number N’ > 1, depending only on N and )\ such that

|lwiws — diag(u, Iogp11)|| < N'e.

According to Lemma 2.4, w; = PiQ(P;P;) where @ is polynomial and such that
Q(1) = 1. Since P; — Ip;12 lies in C’*N(ATIAT), then the same holds for wy — Isx42 and

similarly, wg — Iogyo lies in O*NX;4T)~ 0

Proceeding similarly, Lemma 2.10 allows to deal with the non unital case.

Proposition 2.12. For every positive number c, there exists a control pair (a,1) such that
the following holds.

Let A be a non unital C*-algebra filtered by (A,)r>o, let r and € be positive numbers
such that € < i and let (A1, Az) be a coercive decomposition pair for A of degree r with
coercitivity c. Then for any e-r-unitary u in A homotopic to 1 and such that u — 1 lies
in A, there exist a positive integer k and wy and we two ae-lcr-unitaries in Mk(fl) such

that
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o w; — Iy is an element in the matrix algebra Mk(C*N(A:’Bl:)T) fori=1,2;
e fori=1,2, there exists a homotopy (w; )ic(o,1) of ac-l-r-unitaries between 1 and w;

such that w; ¢ — I, € M;C(C*NXEZ)T) for all t in [0,1].

| diag(u, Ix—1) — wiws|| < ae.
2.3. Controlled Mayer—Vietoris pair

In this subsection, we introduce the controlled Mayer—Vietoris pair that allows to
decompose at a given order r a filtered C*-algebra A into a completely coercive decom-
position (A1, Az). This controlled Mayer—Vietoris pair gives rise to a controlled six-terms
exact sequence that compute the quantitative K-theory at order r of A in terms of the
controlled K-theory of some attached neighborhood C*-algebras of A1, Ay and A; NAs.
These neighborhood C*-algebras are roughly speaking C*-algebras that contains a quan-
titative ideal associated to the underlying linear subspaces. Our prominent examples of
controlled Mayer—Vietoris pair will be given by Roe algebras.

Definition 2.13. Let A be a C*-algebra filtered by (As)s>0, let r be a positive number
and let A be a closed linear subspace of A,.. Then a sub-C*-algebra B of A is called an
r-controlled A-neighborhood-C*-algebra if

o B is filtered by (BN A.)rs0;
« C*N{" C B.

Remark 2.14. In view of Propositions 2.11 and 2.12, the second assumption in the above
definition guarantees that the controlled boundary in the controlled Mayer—Vietoris exact
sequence in well defined.

Example 2.15. Let ¥ be a discrete metric space with bounded geometry and consider
C*(X) the Roe Algebra of . Recall that C*(X) is the closure of the algebra of locally
compact and finite propagation operators on £?(X)®.5#, where J# is a fixed separable
Hilbert space. Then C*(X) is filtered by the propagation. For r a positive number, let
(Xi)ien be a family of finite subsets of ¥ with uniformly bounded diameter which is
R-disjoint (i.e., d(X;,X;) > R if i # j) for some positive number R > 12r. Let us
consider the set A C C*(X), of locally compact operators on ¢2(¥)®.# with support in

{(z,y) eEx Dz e U X;, d(z,y) <r}.
ieN

For a positive number s, let us set X; ; = {z € X, such that d(z, X;) < s}. If s < R/2,
then (X;s)ien is a family of (R — 2s)-disjoint subsets of ¥ with uniformly bounded
diameter. Consider then the subalgebra Aa of C*(X) of operators with support in
Llien Xi,s X X; 5. Then
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Ap = [ # (P (X s)0) = (H xf(ﬁ?(Xi,s)@%(%ﬂ))

ieN i€N
and Ap is for every s with 5r < s < R/2 an r-controlled A-neighborhood-C*-algebra.

Definition 2.16. Let S; and Sy be two subsets of a C*-algebra A. The pair (S7,52) is
said to have complete intersection approxzimation property (CIA) if there exists ¢ > 0
such that for any positive number ¢, any € M, (S1) and y € M,,(S2) for some n and
||z —y|| < e, then there exists z € M, (51 N Sz) satisfying

|z —z|| <ce, |lz—yl|l <ce.
The positive number ¢ is called the coercitivity of the pair (S, S2).

In the above definition, we note that the inequalities ||z — y|| < € and ||z — z|| < ce
implies ||z — y|| < (¢ + 1)e. Hence we can remove the condition ||z — y|| < ¢z up to
replacing the constant ¢ by ¢+ 1.

Definition 2.17. Let A be a C*-algebra filtered by (As)s>0 and let 7 be a positive number.
An r-controlled weak Mayer—Vietoris pair for A is a quadruple (A1, Ay, Aa,, Aa,) such
that for some positive number c.

(i) (A1, As) is a completely coercive decomposition pair for A of order r with coerci-
tivity c.
(ii) Aa, is an r-controlled A;-neighborhood-C*-algebra for ¢ = 1,2;
(iii) the pair (Aa, s, Ana,,s) has the CIA property with coercitivity ¢ as defined above
for any positive number s with s < r.

The positive number c is called the coercitivity of the r-controlled weak Mayer—Vietoris
pair (Al, AQ, AA1 s AA2)~

Remark 2.18. In the above definition,

(i) (A1NAs, AaNA,, Ap,, Aa,) is an s-controlled Mayer—Vietoris pair for any 0 < s < r
with same coercitivity as (A1, Ao, Aa,, AA, ).
(ii) Aa, N Ag, is filtered by (Aa, r» N Aa, r)r>o0-

In order to ensure some persistence properties for the controlled Mayer—Vietoris exact
sequence (see Corollary 3.6), we need to strenghen condition (iii) of Definition 2.17.

Definition 2.19. Let A be a C*-algebra filtered by (As)s>o and let r be a positive number.
An r-controlled Mayer—Vietoris pair for A is a quadruple (A, Ag, Aa,, Aa,) such that
for some positive number c.
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(i) (A1,As) is a completely coercive decomposition pair for A of order r with coerci-
tivity c.
(ii) Aa, is an r-controlled A;-neighborhood-C*-algebra for ¢ = 1,2;
(iii) the pair (Aa, s, A, s) has the CIA property for any positive number s with coerci-
tivity ¢ as defined above.

The positive number c is called the coercitivity of the r-controlled Mayer—Vietoris pair
(Alv Ao, AAl’ AAQ)'

If A is a unital C*-algebra filtered by (As)sso and if (Ay, Ao, Aa,, Aa,) is an

r-controlled Mayer—Vietoris pair, we will view Aa, the unitarization of Aa, as Aa, +
C -1 C A and similarly for Ax, and Ax, N An,.

Example 2.20. Let (X, d) be a proper metric discrete space, let X® and X® be subsets
in ¥ such that ¥ = X® U X®@ and let r be a positive number. Assume that X =
Uien XV and X@ = U;jen X, where (XV);eny and (X?);en are families of R-disjoint
subsets of ¥ with uniformly bounded diameter for some positive number R > 10r. Let
us consider as in Example 2.15 for j = 1,2 the sets A; C C*(X), of locally compact
operators on £2(X)®. with support in

{(z,9) €T xS 2€ X9 d(z,y) <7}

and let us consider then the subalgebra A, of C*(¥) of operators with support in
Usen Xi(?s) X X(fs) for some fixed positive number s with 57 < s < R/2. Let Xx@ for i

i

integer be the characteristic function of
{z € X such that d(:c,XZ@)) < 5r}.
Set

v C* (X)) .
O*(®)—C(E) 2= D s oxx ),
€N
Then ¥ is norm decreasing. Since ¥ (z3) = x2 for every zs in Aa,, we obtain

[W(z1) — @2 < [Jo1 — 22|

for every x1 in M, (Aa,) and z2 in M, (Ana,). Since ¥(zq) lies in M,,(Aa, N An,), we
see that (A1, Ag, Ap,, Aa,) is an r-controlled Mayer—Vietoris pair with coercitivity 1.

In next lemma, we show that in the context of controlled Mayer—Vietoris pairs, the
pairs as in Proposition 2.11 arising respectively from an e-s-unitary and from its adjoint
are up to stabilization homotopically adjoint. This result will be needed for the proof of
Theorem 4.12 in Section 4.3.
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Proposition 2.21. For every positive number c, there exists a control pair (c,l) such that
the following holds.

Let A be any unital filtered C*-algebra, let r be any positive number, let (A1, Ag, Ap,,
Anp,) be any r-controlled Mayer—Vietoris pair for A at order r with coercitivity ¢, and
1) and r < r'. Assume that for some
e-r-unitary u in some M, (A), there exist two e-r'-unitaries v1 and v} in Mn(gzl) and

let € and 1’ be positive numbers with € € (0

two e-r'-unitaries vy and vh in My (An,) such that |u —vivs| < & and ||u* —v|vh| <.
Then there exists an integer k and v} and vl respectively ae-l.r'-unitaries in M, (Aa,)
and My 1+1(Ana,) such that

o [ diag(u®, Ir) — vfv3 ]| < ae;

o v} is homotopic to diag(v}, Ix) as an as-lor'-unitary in My (Aa,) fori=1,2.

Moreover, if v; — I, and v} —I,, lie in M, (An,) fori = 1,2 then v} and vy can be chosen
such that v — L1y lies in Mp4k(An,) fori=1,2.

Proof. Let (,) be a control pair as in Proposition 2.11. Since pzij (v;) and pzij (v%)
are for 7 = 1,2 homotopic to I,, as 8e-s-unitaries of M, (C) for every positive number s
[9, Lemma 1.20], then up to replacing o by 90«, there exists an integer k& and wy and
wg be two ae-2l.r-unitaries respectively in Mo,k (Aa,) and Mo, (Aa,) such that if

. -1 -1 .
we set W; = dlag(pAAj (Uj)7pAA1 (v%), Ix) for j = 1,2, then

o [[Widiag(u,u”, I)Wa — wiws|| < ae;
o wj — Iopyy is in Moy 1 (Aa;) for j =1,2.
e wj is homotopic to I, as an ae-2l.r-unitaries in Ma, 41 (Ana;) for j =1,2.
Then
|Widiag(vive, vivh, I )We — wiws|| < (o + 2)e
and hence we have
|| diag(vy, o'y, In)Wiwi — diag(va, vy, I)Waws|| < 5(cx + 1)e.

Since PAs, (diag(vj, v}, Ix)W;) = Iapii for j = 1,2 and in view of CIA property, there
exist v in Mo, (A) with propagation less than (2l. + 1)7’ such that

°« U — I2n+k is in M2n+k(AA1 N AAg)Q
o || diag(ve, v}, I ) Waws — v|| < 5e(a + 1)g;
o ||diag(v},v'], I)Wiwy — v|| < 5e(a+ 1)e.

In particular some control pair (o/,1’) depending only on c.
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o v is an o/-l-r'-unitary in Mo, 11 (Aa, N Ap,);
« v is homotopic to diag(v},v}", I) as an o/-I.-r"-unitary in M, x(An,);

o v is homotopic to diag(ve,vh, I) as an o/-IL-r'-unitary in Map,4x(Aa,).

Let us set v{ = diag(vy, Intx) - v and vy = v* - diag(vh, In+k). Then v{ and v4 satisfy
the required properties for some suitable control pair depending only on ¢. O

2.4. Controlled Mayer—Vietoris pair associated to groupoids

In this section, we discuss the example of a controlled Mayer—Vietoris pair associated
to groupoids. Our method in this paper provides a different approach to the controlled
Mayer—Vietoris sequence in the context of crossed product C*-algebras in [5]. Recall first
the definition of a proper symmetric length on an étale groupoid.

Definition 2.22. Let G be an étale groupoid, with compact base space X. A proper
symmetric length on G is a continuous proper map £ : G — R such that

e {(y) =0 if and only if 7 is a unit of G;
o () =4L(y71) for any v in G;
o Uy-v") <A(y)+£(H) for any v and v’ in G composable.

Let G be an étale groupoid with compact base space X and source map and range
map r,s : G — X equipped with a symmetric and proper length £. Then, if we set

G, = {v € G; such that £(y) <},
then the reduced C*-algebra C}(G) of G is filtered by (C}(G)s)r>0 with
Cr(G)r = {f € Cc(G) with support in G, }
for all positive number r.
Remark 2.23. In [2] is developed a more general notion of filtered C*-algebras and the
definition of quantitative K-theory is extended to this setting. A filtered structure in
this sense can be defined on reduced C*-algebras of étale without involving a length.
For every open subset V' of X and every positive number r, set
V. ={s(7),y € G, and r(y) € V} = {r(7) ,y € G, and s(y) € V'}.

Then V. is an open subset of X and V C V,.. If Y and Z are subsets of X, then we
set Gy = {y € G;s(y) € Y},GZ = {y € G;x(y) € Z} and G¥ = Gy N GZ. For every
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open subset V of X and every positive number r, let gg’“) be the subgroupoid of g“//
generated by g“fﬂ, = g“// N g}. Then g&“’ is an open subgroupoid of G. Let us set

Ay ={f € Cy(Gv) with support in G, }.

Then Ay is a closed linear subspace of C*(G),. and for every positive number R and R’
with r < R < R’, then we have C*NTR CCr (QVR’(R ) In particular, if R > 57, then

(gVR’ ) is a r-controlled Ay -neighborhood-C*-algebra.

Let V() and V® be two open subsets of X such that X = VD UV, Fix R > 5r.
Set Ay = Ay a) and Ay = Ay o). Using partition of unity relatively to V) and V@,
we see that (A1, As) is a completely coercive decomposition pair of order r for C}_,(G)

. e . (R) s (VB
with coercitivity 1. Let us set also Aa, = C., QV(U and Ax, = CF., QV(2)

Let s be a positive number with s < r, let € be a positive number, let 21 be an element
of M, (Aa, s) and let zo be an element of M, (A, s) such that ||x; — z2|| < e. Let

(1) (2)
a2} and af, be respectively elements in M, (C’c (QVR ’(R)>) and M, (Cc (Q“:@) ’(R)>)
R

v
such that ||z} — 21| < € and ||z} — x2|| < . Let K be a compact subset of Vg) such that
all coefficients of x5, have support in GE and let h : X — [0,1] be a continuous function
with support in Vlg) and such that h(z) = 1 for all z in K. The Schur multiplication
(i.e. the pointwise multiplication) by hos-hor

C.(G) > C.(G); f— f-hos-hor

extends to a completely positive map

¢ red( ) — O:ed(g)

of complete norm less than 1 and such that ¢(x}) = zf and ¢(z}) belongs to
Crea <gv?1>’(R)> NCrea ( V’é)’(R)) - Moreover
l¢(a1) = @2l < ll@(@h) — @l + [l — 2o

< [lo(zh) — d(zh)ll +¢

< ot — ol +e

< 4e.
Hence, (Al, Ay, Cr (gv(l)’ B) Cra (gv(z)’ ) ) is for every & > 5r a r-controlled
weak Mayer—Vietoris pair for C’:ed(g)) with coercitivity 5. Assume that there exists a

positive number C such that for every compact subset K of V(?) there exists a continuous
function i : X — [0, 1] with support in V(2 that satisfies the following:
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o h(z)=1forall zin K;
e the Schur multiplication by h os - h or extends to a completely bounded map ® :
(G) = CF.,(G) with complete norm bounded by C and such that for any z in

*
red

(2)
C. (g&;;(m) with support in GE | then ®(z) = z,
R

1) (2)
then <A1,A2,Cj€d (g‘t{g)’(R)) ,Cr g (g‘t@y(m)) is for every R > 5r a r-controlled
R R

Mayer—Vietoris pair for C¥,;(G)) with coercitivity ¢ depending only on C.

T

3. Controlled Mayer—Vietoris six terms exact sequence in quantitative K-theory

In this section, we establish for a control Mayer—Vietoris pair associated to a filtered
C*-algebra A a controlled exact sequence that allows to compute quantitative K-theory
of A up to a certain order. We follow the route of the proof in the K-theory case.
We first check controlled exactness in the middle. Using Propositions 2.11 and 2.12
and the CIA property, we then define the quantitative boundary map mimicking the
construction of the Mayer—Vietoris boundary map in usual K-theory. The thickness
of the neighborhood algebras guarantees that this quantitative boundary map is well
defined. We prove eventually the control exactness at the source and at the range of the
quantitative boundary map to complete the statement of the controlled six terms exact
sequence. Notice that exactness at the source and at the range is indeed persistent at any
order (see Corollary 3.6 Lemma 3.8). This strenghening of controlled exactness is crucial
to compute quantitative K-theory out of the controlled Mayer—Vietoris exact sequence
(see the proof of Theorems 3.14 and 4.12). We end the section with an application to
computation of K-theory of obstruction C*-algebras.

Notation 3.1. Let A be a unital C*-algebra filtered by (A, ),>0, let 7 be a positive number
and let (Aq,Ag, Aa,, Aa,) be a r-controlled Mayer—Vietoris pair for A. We denote by
Iay P AN, = A gn, T AN, = Agara, P A, N AN, = Aay and ga, A, 2 Ay, N A, —
Ap, the obvious inclusion maps.

3.1. Controlled half-exactness in the middle

Proposition 3.2. For every positive number c, there exists a control pair (a,l) such that
for any filtered C*-algebra A, any positive number r and any r-controlled weak Mayer—
Vietoris pair (A1, Ao, An,, An,) for A with coercitivity c, then the composition

) (JAI,AQ,*JAQ,AI,*) ) (JAI,*—]AZ,*)
_—

Ki(Aa, N A, K.(A)

Ke(Aa,) ® Ki(Aa,

is (o, l)-ezact at order .
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Proof. Let us first assume that A is unital. In the even case let y; and yo be respectively
element in K;'*(Aa,) and K;°(An,) such that 5X° (y1) = 530 ,(y2) in K" (A). In view
of Lemma 1.7, we can assume up to rescaling ¢ that there exist integer m and n with

m < n and two e-r-projections ¢; and g2 in M, (A) such that

o ¢ —diag(I,,,0) is an element in the matrix algebra M, (Aa,);

q2 — diag(I,,,0) is an element in the matrix algebra M, (An,);
o Y1 = [q1,Mes;
o Y2 = g2, m]c s

Up to stabilization, we can also assume that ¢; and gs are homotopic as e-s-projections
in M, (A). Let (e, k) be the control pair of Proposition 1.5. Up to stabilization there
exists u a ae-kes-unitary in M, (A) such that [|[u*¢q1u — ¢2]] < ae. Up to replacing u by
diag(u, u*), q1 by diag(q1,0) and g2 by diag(gz,0), we can assume in view of Lemma 1.3
that u is homotopic to I, as a 3ae-2ks-unitary in M, (A). According to Proposition 2.11,
then for some control pair (A,!) depending only on (a, k) and ¢ with (o, k) < (A,1) and
up to stabilization, there exist w; and ws some Ae-k.s unitaries in M, (A) such that

e w; — I is an element in the matrix algebra Mn(C’*NX;?‘l:L) fori=1,2;
o |Jwigrwi — wegawi|| < Ae.

Notice that wjqiwy — diag(l,,,0) is an element in the matrix algebra M, (Aa, (21.+1)s)
and waqow; — diag(l,,,0) is an element in the matrix algebra M, (Aa, (21.41)s). By
Definition 2.16 of the CIA property, there exists y in

M (Any,21.+1)s N A 21+1)s)

such that

ly — (wiqrwy — diag(y,,0))[| < Ace
and

ly — (wagows — diag(I,,,0))[| < Ace.
Let us set then

p =y + diag(1,,,0).

Since ||p — wiqwi| < Ace and ||p — waqawi]|| < Ace, up to stabilization, in view of the
proof of [9, Lemma 1.9] and according to [9, Lemma 1.7], we know that for some control

pair (o/,1') depending only on (a, k) and ¢ and such that ((c+1)A,21+1) < (o/,1’), then
for j=1,2
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o wiquwy is an o/-I.s-projection in M, (A, );
e wiquw; is homotopic to g1 as an o’-I.s-projections in M, (Aa,);

e p is connected to wigiwy as an o’-I.s-projections in M, (Aa,);
and

o wygaws is an o/-l.s-projection in M, (A, );
e waqows is homotopic to ¢o as an o’-ILs-projections in M, (An,);

e p is connected to wigaws as an -l s-projections in M, (Aa,).

a'e,lls

Now if we set © = [p, m]acirs in Ky <" (Aa, N Aa,), we have that

04/5»1'55 —a'el’s
Ia, A, (@) =105 ()

I's

in Kfls’ “(Aa,) and

Sak (@) = e )

in K51 (Aa,).

A similar proof can be carried out in the odd case but we can also use the controlled
Bott periodicity [10, Lemma 4.6]. The non unital case can be proved in a similar way
using Lemma 2.12, noticing that in view of the proof of Proposition 1.5 and following the
proof of the unital case above, we can assume that u which is now a ape-kp, cs-unitary
in M,,(A) is such that u — I,, has coefficient in A (see the proofs of [9, Lemma 1.11 and
Corollary 1.31]). O

3.2. Quantitative boundary maps for controlled Mayer—Vietoris pair

In this subsection, we introduce the quantitative boundary map that fits into the
controlled Mayer—Vietoris sequence for quantitative K-theory of filtered C*-algebras.

Lemma 3.3. For every positive number ¢, there exists a control pair (A, k) such that the
following holds:

Let A be a unital C*-algebra filtered by (As)sso, let r be a positive number and let
(A1, Ag, Ap,, Ap,) be a r-controlled weak Mayer—Vietoris pair for A with coercitivity c.
Let € and s be positive numbers with € < ﬁ and s < r/2, let m and n be integers and
let w in U2 (A), v in U5 (A) and wy, wy be e-s-unitaries in M}, (A) such that

o w; — Intm s an element in the matriz algebra My 1m(Aa,) fori=1,2;
o || diag(u,v) —wiws|| < €.

Then,
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(i) there exists a Ae-kes-projection q in My tm(A) such that
o q—diag(I,,0) is an element in the matriz algebra My 1m(Aa, N AA,);
o llg — wi diag(Ly, 0)wi || < Ae;
o llg — w2 diag(ln, 0)w3|| < Ae;
(ii) if ¢ and ¢ are two Ae-kes-projections in My, (A) that satisfy the first point, then
(@) xe ks = [0 ) re kes 0 Ko(Aa, NAA,).

(iii) Let (wi,wz) and (wi,wy) be two pairs of e-s-unitaries in M.}, (A) satisfying

the assumption of the lemma and let q and ¢’ be \e-kes-projections in My, 4, (A)
that satisfy the first point relatively to respectively (wi,ws) and (w],w)), then
[qan]ke,kgs = [q/an])\e,kgs mn KO(AAl N AAQ)-

Proof. Since diag(u,v) is an e-s-unitary, we have that

1w} diag(Tn, 0)w1 — w} diag(u, v) diag(T,, 0) diag(u®, v*)us
= ||w] diag(l, — uu, 0)w ||

< 2e.
Since ||wy diag(u,v) — we|| < 4e, we deduce that
|lwy diag(L,,, 0)wy — we diag(I,, 0)ws|| < 8e.

With notations as in Definition 2.19, let y be an element in My, ym (A, ,, VA4, ,,) such
that

||wy diag(L,, 0)wy — diag(I,,,0) — y|| < 8ce
and
lly — ws diag(I,,,0)w; — diag(I,,0)|| < 8ce
and set
q =y + diag(I,,0).

Then q is close to a 2e-2s-projection and thus we obtain in view of Lemma 1.2 that there
exists a control pair (A, k), depending only on ¢ such that the conclusion of the first point
is satisfied. With notations as in Lemma 3.3 and in view of Lemma 1.2, if ¢ and ¢’ are
Ae-kes-projections of M, 1, (A) that satisfies the first point, then

[%n]lo/\a,kss = [q/u n]lO)\s,kEs-

If (wy,w2) and (w},wh) are two pairs of e-s-unitaries in M7} (A) that satisfy the

assumption of the lemma and let ¢ and ¢’ be \e-k.s-projections in M, 1, (A) that satisfy
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the first point relatively to (w1, ws) and (w},w}). Then |Jwiws — wjw}|| < 2¢ and hence
|wh we — wiwi*|| < 10e. Hence using the CIA condition, we see that there exists v
in My4m(Aas) such that v — Iy, is in My, (Aa, N Aa,), |lv — wijw*|| < 10ce and
|wh*ws — v|| < 10ce. Since we have then |[w; — v*w]| < 30ce and |jwe — whov|| < 30ce
the last point is consequence of [9, Lemma 1.9] and of the second point applied to
45¢ce, (w1, ws),q and v*¢'v. O

Remark 3.4. We have a similar statement in the non-unital case with u in US*(A) and

v in US*(A) such that u — I,, and v — I,;, have coefficients in A

We are now in position to define the boundary map associated to a controlled Mayer—
Vietoris pair. Let A be a filtered C*-algebra and let (A1, Az, Aa,, Aa,) be a r-controlled
weak Mayer—Vietoris pair for A with coercitivity ¢. Assume first that A is unital.

Let (o, 1) be a control pair as is Proposition 2.11. For any positive numbers ¢ and s
with e < ;= and s < /2 and any e-s-unitary u in M, (A), let v be an e-s-unitary in some
M., (A) such that diag(u, v) is homotopic to I, 1, as a 3e-2s-unitary in M, 4., (A), we can
take for instance v = u* (see Lemma 1.3). Since C*fo’gs) C A, as afiltered subalgebra
for i = 1,2, then according to Proposition 2.11 and up to replacing v by diag(v, Ij,) for
some integer k, there exists wy and wy two 3ae-2l5.r-unitaries in M,, 1, (A) such that

o w; — It is an element in the matrix algebra M, (Aa, 21,.5) for i =1,2;

o fori = 1,2, there exists a homotopy (wj,¢)¢e[o,1] of 3ae-2l3. s-unitaries between 1 and
w; such that w; ; — I 4., is an element in the matrix algebra M, (Aa, 1,.5) for all
tin [0, 1].

o || diag(u,v) — wiws]|| < 3ae.

Let (A, k) be the control pair of Lemma 3.3 (recall that (A, k) depends only on ¢). Then

if € is in (0, ﬁ), there exists a 3aAe-2l3.kzqes-projection ¢ in M, 1., (A) such that

e g —diag(l,,0) is an element in the matrix algebra

Mn—i—m(AAl,zzSEkgaas N AA2,215k3a55);

o |lg — wi diag(I,,0)w| < 3ale;
o ||l¢ —wediag(l,, 0)ws|| < 3ale.

In view of second point of Lemma 3.3, the class [¢, n]sare 215 kgaes 1D
3ade,2l3:k3acs
K; sefiBacf (AN, NAnp,)

does not depend on the choice of ¢. Set then o, = 3aA and

1
ke : (0, 1o ) —>(1,+OO), €+ 2scksae
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and define 82?:22,*([145,5) = [¢,n]a,ek,s and let us prove that we define in this way a
morphism

azlem,* P K70 (A) — Kgce’kcs(AAl NAp,).
It is straightforward to check that (compare with [13, Chapter 8]).

o two different choices of elements satisfying the conclusion of Lemma 3.3 relative
to diag(u,v) give rise to homotopic elements in ngj’kDS(AAl N Aa,) (this is a
consequence of Lemma 3.3).

o Replacing u by diag(u, I,,) and v by diag(v, I);) gives also rise to the same element

of K§oM*(An, N Ap,).
Applying now Proposition 2.11 to the r-controlled Mayer—Vietoris pair
(€([0,1], A1), €([0,1], Az), C([0, 1], Aa, ), C([0, 1], Aa,))
for the C*-algebra C([0, 1], A) filtered by (C([0,1], As))s>0, we see that 82?22’*([11]5,5)

o only depends on the class of u in K7°(A);

+ does not depend on the choice of v such that diag(u,v) is connected to I,,4; in

U38,25 (A)

n+j :
In the non unital case 82?’22 , is defined similarly by using point (ii) of Remark 3.4,
noticing that in view of Lemma 1.8 and up to replacing € by 3¢, every element x in
K (A) is the class of a e-r-unitary u in M, (A) such that u — I,, has coefficients in A.
It is straightforward to check that 8&'&2 , is compatible with the structure morphisms.
Let us consider D{ | A, , = (82?:1%’*) where ¢ runs through (0, ﬁ) and s runs through

(0, ). Then

D, pgs : K1(A) = Ko(Aa, N An,)

is a odd degree («., k.)-controlled morphism of order r.

Let us now define the boundary map in the even case using controlled Bott pe-
riodicity. For A a closed subspace in an C*-algebra, let us define its suspension as
SA = Cp((0,1),A). Let [0] be the element of KK;(C,Cy(0,1)) that implements the
extension

0 — Co(0,1) = Cp[0,1) ¥ C — 0,

where evy : Cy[0,1)—C is the evaluation at 0. Then [J] is an invertible element of
KK;(C,Cy(0,1)) and in view of Proposition 1.26 and according to [9, Lemma 4.6],
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Ts([0]) : K«(B) = K«(SB)
is a (a1, k7)-controlled isomorphism of degree one with controlled inverse
T([0]™Y) : K.(SB) = K.(B).

Let A be a C*-algebra filtered by (As)sso, let 7 be a positive number and let
(A1, Mg, Ap,, Ap,) be a r-controlled weak Mayer—Vietoris pair for A with coercitivity c.
Then (SA;1,SA2,SAA,,SAp,) is a r-controlled weak Mayer—Vietoris pair for SA (fil-
tered by (SA;)r>o) with coercitivity c. Set then A = oz?,—ac and he = k7 ara.cke,a.ckee-
Let us define in the even case the quantitative boundary map for the r-controlled Mayer—
Vietoris pair (A1, Az, Ax,, Aa,) as the (A, h)-controlled morphism of order r

DX, aye 2= Tan, nan, (017 0 DEa, a0 © Ta([0]) : Ko(A)—/C1 (A, N An,).

For sake of simplicity, we will rescale (a., k.) to (A, h) and use the same control pair in
the odd and in the even case for the definition of

def
IDAhAm* - DoAl,Ag,* D DlAl,Az,* K (A)—>IC*+1(AA1 N AAz)

as a odd degree (ag, kc)-controlled morphism of order r. Notice that the quantitative
boundary map of a r-controlled weak Mayer—Vietoris pair is natural in the following
sense: let A and B be filtered C*-algebras, let (A1, Ag, Aa,, Aa,) and (A, Ay, Bar, Bay)
be respectively r-controlled weak Mayer—Vietoris pairs for A and B with coercitivity ¢
and let f : A — B be a filtered morphism such that f(A;) C A}, f(Az) C A, f(Aa,) C
By andf(Aa,) € Bay,. Then we have

J/An,nAnyx © Payn,x = Dag,ay 0 fu, (5)
where f/a, nan, © Aa, N Aa, = Bay N Bay is the restriction of f to Aa, N Aa,.
3.8. The controlled sixz-term exact sequence

In this subsection, we prove the controlled exactness at order r at the source and at
the range of Da, a,.«, stating as a consequence the Mayer—Vietoris controlled six term
exact sequence associated to a r-controlled Mayer—Vietoris. Let us start with controlled
exactness at the source.

Lemma 3.5. There exists a control pair (A1) such that

o for any unital filtered C*-algebra A filtered by (As)s>o and any subalgebras Ay and
As of A such that Ay, As and A1 N As are respectively filtered by (A1 N Ay )rso0, (A2N
A7z)7->0 and (A1 N A2 n A,-)7->0;
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o for any positive number € with £ < ﬁ any integers n and m and any e-r-unitaries
uy in M, (A) and ug in M,,(A4);
e for any e-r-unitaries v and ve respectively in Mn+m(j4vl) and Mn+m(:4V2) such that
— || diag(ul, Ug) — ’U1’UQ|| <ég;
— there exists an e-r-projection q in M,im(A) such that ¢ — diag(I,,0) is in
My ym (A1 N Az), |lg — vf diag(L,,0)v1|| < € and [g,n]., =0 in K" (A1 N As).
Then there exists an integer k and Ae-l.r-unitaries wy and wo respectively in M, i (:4:)
and Mn+k(;{;) such that || diag(uy, I,) — diag(wiws)|| < Ae. Moreover, if v; — Ly lies
in My (A;) for i = 1,2 then wy and we can be chosen such that w; — L1k lies in
My ym(A;) fori=1,2
Proof. Up to replacing us, v1 and wy respectively by diag(us,Iy), diag(vy, I) and
diag(vg, I) for some integer k, we can assume that ¢ is homotopic to diag(l,,0) as

an e-r-projection in M, ,,,(A; N As). According to Lemma 1.5, there exist

e a control pair (a, h); -
o up to stabilization an ae-her-unitary v in M, 1, (Aa, N Aa,) with v — Iy, in
My im(Aa, NAn,)
such that
llg — v diag(I,, 0)v*|| < ae.
Up to take a larger control pair («, k), we can assume that
||v} diag(I,,0)v; — v diag(I,,0)v"| < ae
and
|lve diag (1, 0)v; — v diag(,,0)v"| < ae
and hence even indeed that
[lv*v] diag(I,,, 0)viv — diag(I,,,0)|| < ae
and
[lv*ve diag(L,, 0)vsv — diag(I,,0)|| < ae.

Hence, for some control pair (¢/, ') depending only on («, h), there exist o/e-h. s-unitaries

—_— —_— —_—

v] in M,(Aa,), v in My, (Aa,), vy in M,(Ap,), v§ in M, (Aa,) such that |jvyv —

Please cite this article in press as: H. Oyono-Oyono, G. Yu, Quantitative K-theory and the Kiinneth
formula for operator algebras, J. Funct. Anal. (2019), https://doi.org/10.1016/j.jfa.2019.01.009




YJFAN:8179

48 H. Oyono-Oyono, G. Yu / Journal of Functional Analysis sse (ssee) ese—see

diag(vi,v])|] < &’e and |[v*vy — diag(vh, v5)|| < o’e. Thus, for a control pair (o, h”)
depending only on (a/, k') we have,

| ding(ur, uz) — diag(vhvh, of )] < a”e.

Hence we deduce that |ju; — vjvh|| < &’e. O

As a consequence, we get the following controlled exactness result at the source of
DA, ,A,,« that persists at any order.

Corollary 3.6. For any positive number c, there exists a control pair (A1) such that

o for any filtered C*-algebra A;

e for any positive number r and any r-controlled weak Mayer—Vietoris pair (A1, Ag,
Ap,, An,) for A with coercitivity c;

o for any positive numbers €, €' and r’ with 0 < aee <& < ﬁ and 7" = keer

then for any y in K7 (A) such that

L*—f LA Z:,Az,*(y) =0
in Kf/’rl (Aa, N An,), there exist x1 in K157 (Aa,) and zo in K357 (Ap,) such
that

7’)\ /,l i A /’l ! A /’l !
T () = aa, T (@) = o, ().

Proof. Let us assume for sake of simplicity that A is unital, the non unital being similar
(just extra notation are added). Let y be an element in K5 (A) such that ;" o
O A,-(y) = 0in KS"'(Aa, N An,). Let (A1) be the controlled pair of Lemma 3.5
and let u be an e-r-unitary in some M, (A) such that y = [u].,. Then according to
the definition of 8271"7A2,*(y), we see by using Lemma 3.5 that up to replacing u by
diag(u, I;,) for some integer m, there exists two Ae’-l/7’-unitaries wy and woy respectively
in M, (An,) and M, (Apa,) such that |[u — wiws|| < Ae’. Then u is homotopic to wyw,
as a 4\e’-lor'-unitary in M, (A). From this we deduce that

— A’ 201"
LT (y) = [w1w2]4)\5’,2lg/r’

= [w1]4/\5’,2l5/r’ + [w2}4,\e',2zs,r'

e’ 207 e’ 207
= ]4A18,*2 . (.’L‘]) + 1722(5,*2 = (CCQ)

With xry = [w1]4>\5/,215,,«/ in K?AE’QZET,(AAI) and T = [w2]4>\5,215,r/ in KilAs’Zla/T,(AAz). O

In particular, at order r, we obtain the following controlled exactness result.
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Proposition 3.7. For any positive number ¢, there exists a control pair (o, 1) such that for
any C*-algebra A filtered by (As)s>0, any positive number r and any r-controlled weak
Mayer—Vietoris pair (A1, Ao, An,, An,) for A with coercitivity ¢ then the composition

K (An,) @ Ky (An,) 222270520 0 (A) 220220 k(A N Ag,)
is (a,l)-exact at order r.
Let us prove now the controlled exactness at the range of Da, A, «-
Lemma 3.8. There exists a control pair (A, h) such that the following holds:

o Let A be a unital C*-algebra filtered by (A,)r>o and let A1 and As be subalgebras of
A such that Ay, Ay and A1NAg are respectively filtered by (A1NA.)r>0, (A2NA.)r>0
and (A1 N As N A)rso;

e let € and s be positive numbers with € < ﬁ;

e let n /ap\gl/N be positive integers with n < N and let p an e-s projection in
Mp (A1 N As) such that pa,na,(p) = diag(1,,0).

Assume that

o p is homotopic to diag(1,,0) as an e-s-projection in My (A1);

e p is homotopic to diag(1,,0) as an e-s-projection in My (As).

Then there exist an integer N’ with N’ > N, and four \e-h.s-unitaries wy and wo in
Mp:(A), uw in My(A) and v in My:_,(A) such that

o w; — Ins is an element in My:(A;) fori=1,2;

||wy diag(l,, 0)wy — diag(p,0)|| < Ae
and
||ws diag(I,,, 0)w; — diag(p, 0)]] < Ae.
o fori=1,2, then w; is connected to I+ by a homotopy of Ae-hes-unitaries (w; ¢)iecio,1)
in Mn+(A) such that w; ¢ — In+ is in M/ (A;) for all t in [0, 1].

o | diag(u,v) — wiws|| < Ae.

Proof. Let (o, k) be the control pair of Proposition 1.5, then there exist up to stabiliza-
tion
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e wp an ae-k.s-unitary in MN(;lvl);

e wo an ae-kes-unitary in My (As),
such that
|lwy diag (L, 0)wy — p|| < are
and
e diag(L,, )} — pll < ne.
Up to replacing wyand wy respectively by pa, (wy)w; and wapa,(wy ') and up to re-
placing « by 4, we can assume that wy — Iy is an element in the matrix algebra My (A7)
and we — Iy is an element in the matrix algebra My (As3). Hence there exists a control
pair (o/, k"), depending only on (o, k) and that we can choose larger such that
wiws diag(I,, 0)wsw} — diag(Ln, )| < o’e (6)
and
|wswy diag(I,,, 0)wowy — diag(I,,,0)|| < oe. (7)
Up to replacing w; ,ws, p and (o, k") respectively by diag(wq,w?), diag(ws,w3),
diag(p,0) and (3a,2k), we can assume that w; for ¢ = 1,2 is connected to Iy by a
homotopy of ae-k.s-unitaries (w; ¢)¢eo,1] in My (A) such that w;; — In is in My (A4;)
for all ¢ in [0, 1]. Equations (6) and (7) imply that for a control pair (", k"), depending

only on (¢, k), there exist u and v some o’e-k! s-unitaries respectively in M, (A4) and
Mpy_p(A) such that

|| diag(u, v) — wyws| < &’e. O

Proposition 3.9. For every positive number c, there exists a control pair (c,1) such that
for any filtered C*-algebra A, any positive number r and any r-controlled weak Mayer—
Vietoris pair (A1, Ao, Ax,, Ap,) for A of order r with coercitivity c, then the composition

DAy, (9a1,80,%:002,A7 %)

K:l(A) Ko (AA1 n AA2) ICO(AA1> ® Ko (AAz)

is (o, 1)-ezact at order r.

Proof. As in the previous proposition, let us assume that A is unital. Let y be an
element in K*(Aa, N An,) such that 53° 1, (y) = 0in K;°(Aa,) and 53 (y)=0

2,1,

in K5°(Ana,). Let p be an e-r-projection in some My (Aa, N Aa,) and n be an integer
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such that y = [p,n]. s. In view of Lemma 1.7 and up to replacing € by 5e, we can assume
without loss of generality that N > n and that

PAAlﬁAAZ (p) = dla‘g(In7 0)

Up to stabilization, we can also assume that

 p is homotopic diag([l,,0) as an e-s-projection in My (ZZI);
o p is homotopic diag([,,0) as an e-s-projection in My (Aa,).

Let (o, k) be a control pair, N’ be an integer with N’ > N, let w; and ws be in
ULF*(A), let u be in U2S*<5(A) and let v be in Us*(A) that satisfy all together the
conclusion of Lemma 3.8. Since || diag(u,v) —wiws|| < ae, we can up to replacing (o, k)
by (4a,2k) and in view of Lemma 1.2 moreover assume that diag(u,v) is homotopic to

I}y as an ae-her-unitary of My+(A). Since

|lwy diag(1,,,0)w; — diag(p, 0)|| < ae
and

|lws diag (I, 0)ws — diag(p, 0)| < ae

and in view of the definition of the quantitative boundary map of a control Mayer—
Vietoris pair, there exists a control pair (o', k") depending only on («, k) and ¢ such
that

’ ,k/
s new([Warekrs) = [Py e arace,s bt ke ses:

Hence, if we set = [u]arc x5, We get

o'e,kls (l‘) N La,a'acs,s,k;kc,xgs(y)

A, A\ T) = L o

Collecting together Propositions 3.2, 3.7 and 3.9 and using naturality of quantita-
tive Bott isomorphism, we obtain the controlled six terms exact sequence (at order r)
associated to a weak r-controlled Mayer—Vietoris sequence.

Theorem 3.10. For every positive number c, there exists a control pair (A, h) such that for
any C*-algebra A filtered by (As)sso, any positive number r and any r-controlled weak
Mayer—Vietoris pair (A1, As, Aa,, An,) for A, we have a (A, h)-exact six term exact
sequence at order r:

(181,80,%:980,A1 ) JAL x—JAg x
%

KO(AAl n AAQ)

Ko(Aa,) ® Ko(Aa,) Ko(A)

T’DAI‘A%* DAI,A'Z,*‘L

AL« —IAg (3a1.,80,%1005,071 %)
o e P U

Ki(A) Ki(Aa,) ® K1(Aa,) Ki(Aa, NAa,)
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3.4. Quantitatively K -contractible C*-algebra

In numerous cases, the proof of the Baum—Connes conjecture and of its generalization
amounts to proving that the K-theory of some obstruction algebra vanishes. In [14],
the second author proved the Novikov conjecture for finitely generated groups with
finite asymptotic dimension by showing that the obstruction C*-algebra corresponding
to the localization C*-algebra is quantitatively K-contractible (which implies that its
K-theory vanishes). In this subsection, we apply the controlled Mayer—Vietoris six-term
exact sequence to quantitative K-contractibility.

Definition 3.11. Let A be a filtered C*-algebra. A is called quantitatively K-contractible
if there exists a positive number Ay > 1 that satisfies the following:

for any positive numbers € and r with € < ﬁ, there exists a positive number 7’ with

' > r such that (575"« K57(A)— K2 (A) is the zero map (we say that A is
K-contractible with rescaling \g).

Example 3.12.

(i) Recall that a separable C*-algebra B is K-contractible if the class of the identity
map Idp : B — B vanishes in KK, (B, B). According to point (iv) of Proposi-
tion 1.25, if B is K-contractible, then A®B is quantitatively K-contractible for any
filtered C*-algebra A. Moreover, the rescaling does not depend on A or on B;

(ii) Let I’ be a finitely generated group and let A be a C*-algebra provided with an
action of I" by automorphisms. Assume that
e the group I' satisfies the Baum—Connes conjecture with coefficients;

o for any finite subgroup F of " the K,.(A x F) = 0.

Then Ax,..qI" is quantitatively K-contractible and the rescaling does not depend on T or
on A. Indeed, under these assumptions, the left hand side of the (quantitative) Baum—
Connes assembly map is vanishing [1]. The quantitative K-contractibility for Ax .40 is
then a consequence of the Quantitative Assembly Map estimates of Theorem 1.34.

Remark 3.13. It can be proved that there exists a universal rescaling for quantitative
K-contractibility, i.e. there exists a positive number \g with Ag > 1 such that every
quantitatively K-contractible C'*-algebra is indeed quantitatively K-contractible with
rescaling Ag.

Theorem 3.14. Let A be a filtered C*-algebra. Assume that there exist positive numbers \g
and c, with A\g = 1 such that for every positive number r there exists a weak r-controlled
Mayer—Vietoris pair (A1, Aa, Aa,, An,) with coercitivity ¢ and with Aa,, Aa, and Ax, N
An, quantitatively K -contractible with rescaling No. Then there exists a positive number
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A1 depending only on Ay and on ¢ such that A is quantitatively K -contractible with
rescaling M.

Proof. Let (A1) be the controlled pair of Corollary 3.6 and set \; = AN2a., let
and 7 be positive numbers with ¢ < ;53— and let y be an element in K" (A). Let
(A1, Aq, Ap,, AA,) be a weak r-controlled Mayer—Vietoris pair for A with coercitivity ¢
and Aa,, Aa, and Ax, N A, quantitatively K-contractible with rescaling Ag. Let 7’ be
a positive number with ' > k. .r such that

L_v)‘OQCEJJ(Z) -0

in Ki‘”aca’w (Aa, N Ap,) for all z in Kfcg’kc’ar(AAl N Aa,). Since

—Aoace,r’ e,r _
L 09N pya(y) =0

in Kfcs’kc’ET(AAl N Aa,) and according to Corollary 3.6, then if we set A = a.Ag, there

. AN ey AN ey
exist an element xq in K" V<" (Aa,) and an element x5 in K7~ ©"*"" (Aa,) such that

_ ’ !’ 2 / ! !/
NS gy = N ST () — NN ().

Let " be a positive number with " > [y.r’ such that for i = 1, 2,
L—,)\o)\/\le,r” (Z) =0

in K7 (Ap)) for all z in Ko S'V<" (44,). Then we eventually obtain that

_ " e 1 _ " e 1
' JALE,T ( 1€,T o1 JALE,T (551) 1€,T

Y) =Ja, — I, Ol
= 0.

A, (m2)

Hence A is quantitatively K-contractible with rescaling A;. O
4. Quantitative Kiinneth formula

The Kunneth formula computes the K-theory of the minimal tensor product A®QB of
two C*-algebras A and B in terms of the K-theory of A and B. More precisely, K, (A®B)

fits into a natural extension
0—K.(A)®K,.(B)—K,.(A®B)— Tor(K,(A), K.(B))—0, (8)

where the inclusion map is given by the external product in K-theory. We say that a
C*-algebra A satisfies the Kiinneth formula in K-theory if the formula of equation (8)
holds for any C*-algebra B. In [12], C. Schochet proved using a geometric resolution
that a C*-algebra A satisfies the Kiinneth formula in K-theory if and only if for every
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C*-algebra B such that K,(B) is a free abelian group, then the external product in
K-theory

K, (A)®K,.(B)—K,.(A®B)

is an isomorphism. The quantitative Kiinneth formula in K-theory was then proved for
any C*-algebra A in the Bootstrap class (see Definition 5.1). Using the above char-
acterization, we formulate in this section a quantitative Kiinneth formula for filtered
C*-algebras which implies the classical one. We show that this quantitative version of
the Kiinneth formula is asymptotically hereditary with respect to decomposition under
controlled Mayer—Vietoris (nuclear) pairs. We also show that finitely generated groups for
which the Baum—Connes conjecture with coefficient holds provides numerous examples
of filtered C'*-algebras that satisfy the quantitative Kiinneth formula in K-theory.

4.1. Statement of the formula
Recall that if A and B are C*-algebras, then there is a morphism
wa,B« : Ki(A)®K,(B)—K.(A®B)

given by the external Kasparov product i.e., wa g «(2®y) = zQ74(y) for all x in K,(A)
and y in K,.(B). Indeed, in the case of unital C*-algebras, if p and ¢ are respectively
projections in M, (A) and M (B) and if u and v are respectively unitary elements in
M, (A) and My(B), then

wa,B.«([P®[d]) = [pRql;

wa,B.+([u]©[q]) = [udq + L& (Ix — q)];

wa,B«([PI®[0]) = [p&v + (In — p)®L4].
Let A be a C*-algebra filtered by (4,),>o and let B be a C*-algebra (with a triv-
ial filtration). Recall that A®B is then filtered by (A,®B),>0. Let us consider then

the quantitative object K.(A)®K.(B) = (K" (A)®K.(B)). With notations of Theo-
rem 1.24, define the (a7, k7)-control morphism

Qi = (@5p) : (AR KL(B) = K.(ADB),

Wilp KT (A)OKL(B) = K (ABB); z@y = 757" (4)(x).
Then the controlled morphism €4 g . induces the map wa, g . in K-theory, i.e.,
&7 o wZTB7* = WA, B« O (Li’T®IdK*(B)) (9)

for every positive numbers r and € with 0 < & < ﬁ.
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Remark 4.1. Let A be a unital filtered C*-algebra and let B be a unital C*algebra. Let
¢ and r be positive numbers with € < ﬁ7

(i) for any e-r-projection p in some M, (A), any integer | and any projection ¢
in some My(B) then WZ,TB,*([Z)’ Uer®lg)) = [p®g + LIy — q)7lk]0¢757h7’,5"' in
Kg79M T (A9 B);

(ii) for any e-r-unitary w in some M, (A) and any projection ¢ in some My (B) then
Wii'p o ([ler®la) = (48 + L@k~ Dlarenr oo 0 K7 (AGB).

The quantitative morphism €, o . is compatible with the Kasparov tensorization (con-
trolled) morphism.

Lemma 4.2. There exists a control pair (o, k) such that the following assertion holds:

For any filtered C*-algebra A, for any separable C*-algebras By, Bs, D1 and
Dy, any z in KK.(B1,Bs) and any z' in KK.(Dy,Ds), the following diagram is
(a, k)-commutative.

WA®B1,Dq,*

K«(A®B1)RK,(D1) K.(A®B1®D1)
TA(z>®(-®z’>l n(mﬁz)@fsz(z'»l :
K.(A®By)®K, (Dy) —25222, ¢ (A® By@Dy)

where ez’ : K(D1) — K, (D2) is right multiplication by z’.

Proof. Let y be an element of K,(D7). According to point (v) of Proposition 1.25 and
to Theorem 1.27, there exists a control pair (A, h) such that

Tawn, W®2) o Ta(z) W Ta(z075, (1) @75, ().

Since the external Kasparov is commutative, we have
2878,(y) = 78, ()7, (2)

Using once again Theorem 1.27 and up to rescaling the control pair (A, h), we get that

Ah
Taws: (122') 0 Ta(2) X Ta(r, (2)978,(+)) © Tas, (1)
and hence the diagram is commutative. 0O

Definition 4.3. Let A be a filtered C*-algebra and let Ag be a positive number with
Ao = 1. We say that A satisfies the quantitative Kiinneth formula with rescaling Ag if

Q4 B« K(A)RK.(B) - K.(A®B)
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is a quantitative isomorphism with rescaling Ay for every C*-algebra B such that K. (B)
is free abelian group.

Remark 4.4. If a filtered C*-algebra A satisfies the quantitative Kiinneth formula, then
according to equation (9)

is an isomorphism for every C*-algebra B such that K,.(B) is free and hence the
C*-algebra A satisfies the Kiinneth formula in K-theory

The next theorem provides many examples of filtered C*-algebras that satisfy the
quantitative Kiinneth formula and will be proved in Section 4.4.

Theorem 4.5. Let ' be a finitely generated group, let A be a I'-C*-algebra. Assume that

o T satisfies the Baum—Connes conjecture with coefficients.
o For each subgroup K of I, the crossed product algebra A x K satisfies the Kiinneth
formula.

Then A x,. T satisfies the quantitative Kinneth formula, i.e., for any C*-algebra B such
that K.(B) is a free abelian group,

Qasrpa  Ka(A 3, D)@K, (B) = K. ((A %, T)®B)

is a quantitative isomorphism with rescaling that does not depend on T or on A.

Moreover, under the above assumption, when the C*-algebra A runs through family of
I-C*-algebras and B runs through C*-algebras such that K.(B) is a free abelian group,
the family of quantitative isomorphisms (Qax,r.B)a,B s uniform.

The proof of these two results relies indeed on the quantitative statements of The-
orem 1.34 which hold for groups that satisfy the Baum—Connes conjecture with co-
efficients. Similarly, using the geometric quantitative statements of Section 1.7 and
Theorem 1.35, we can prove the following result:

Theorem 4.6. Let Y be a discrete proper metric space with bounded geometry that coarsely
embeds into a Hilbert space. If A satisfies the Kiinneth formula, then AQ# ((*(X)) satis-
fies the quantitative Kiinneth formula with rescaling that does not depend on 3 or on A.

Remark 4.7. As for quantitative K-contractibility (see Remark 3.13), it can be proved
that there exists a universal rescaling for the quantitative Kiinneth formula.
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4.2. Quantitative Kinneth formula and controlled Mayer—Vietoris pairs

In this subsection, we state a permanence result (that we shall prove in next subsec-
tion) for the quantitative Kiinneth formula with respect to controlled Mayer—Vietoris
pairs which satisfy a nuclear type condition.

Definition 4.8. Let A be a C*-algebra filtered by (A;)s>o and let 7 be a positive number.
An r-controlled nuclear Mayer—Vietoris pair is a quadruple (A1, Ag, Aa,, Aa,), where
A; and Ay are closed linear subspaces of A, stable under involution and Aa, and Aa,
are respectively r-controlled A; and As-neighborhood-C*-algebras such that for some
positive number ¢ and for any C*-algebra B

(i) (A1®B,A2®B) is a coercive decomposition pair for A®B of order r with coerci-
tivity c;

(ii) the pair (Aa, s®B,Aa, s®B) has the CIA property with coercitivity ¢ for any
positive number s.

The positive number c is called the coercitivity of the r-controlled nuclear Mayer—Vietoris
pair (A1, Az, An,, An,).

Remark 4.9.

(i) Notice that Aa,®B and Aa,®B are respectively r-controlled A;®B and
As® B-neighborhood-C*-algebras.

(ii) Condition (ii) amounts to the following: for any positive numbers ¢ and s, any «
in Aa, s®B and any y in Aa, s®B such that ||z — y|| < €, then there exists z in
(Aa, s N Aa, s)®B satistying

2 —all < ce, Iz —yll < ce.

Example 4.10. Replacing M, (C) with B, we see that Example 2.20 and examples of
Section 2.4 are indeed r-controlled nuclear Mayer—Vietoris pairs (with the same coerci-
tivity).

Next lemma shows that the controlled boundary maps of a r-controlled nuclear Mayer—
Vietoris pair are indeed compatible with Kasparov external product.

Lemma 4.11. For any positive number c, there exists a control pair (o, h) such that the fol-
lowing is satisfied: let (A1, Ao, An,, An,) be an r-controlled nuclear Mayer—Vietoris pair
with coercitivity ¢, let B and B’ be two C*-algebras and z be an element in KK,(B, B'),
then

(et,h
T(aa,nAn,)x(2) 0 DajeB, a0~ Dajon,arep © Tax(z).
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Proof. We first deal with the case z even. According to [7, Lemma 1.6.9], there exists a
C*-algebra D and homomorphisms 6 : D — B and n: D — B’ such that

o the element [0] of KK, (D, B) induced by 6 is invertible.
o z=n([0]7).

Let 04 : AQB' — A®D and aAAlﬁAAz s (Aa, N AA2)®BI — (AA1 N Aa,)®D be the
homorphisms induced by 6 on tensor products and define similarly 74 : AQB’ — A®D
and 14, nAa, ¢ (Aa, NAA,)®B" — (Aa, NAa,)®D the homomorphisms induced by 7.

By naturality of quantitative boundary morphism of r-controled Mayer—Vietoris pairs
(see equation (5) of Section 3.2), we get that

Oan,nAn, « ©DajeB 008 = Dajep,aep 004,

According to Proposition 1.25, the control morphisms 64, and 0a, na,,« are
(a7, k7)-invertible with (a7, ky)-inverses respectively given by 7Ta.([f]7!) and
EAIQAAQ,*([G]*I) and hence, there exists a control pair («, k) depending only on ¢
and (a7, k1) such that

_ a,k _
Dayon ases o Tax (0] % Tan,nAn, +([017") 0 Da,ep.aseD-

Then, using the bifunctoriality of T4 . (see Proposition 1.25), we obtain

Dpyepnsen © Tax(z) = Da,opases © Ta([0]7") ona.

(a,k) _
N Tan,nan, +([0]71) 0 Dayon,nseD 014,

(a,k) 1
~ 7j4A1 OAA27*([9] )o NAA; NAp, * © Dp,@B,A:0B

(a,k)
~ 7j4A1 mAsz*(z) °©Da,eB,2:0B;

where the third line is once again the consequence of naturality of quantitative boundary
morphism of r-controled Mayer—Vietoris pairs (see equation (5) of Section 3.2). If z is an
odd element, recall that [J] is the invertible element of K K;(C,C(0,1)) implementing
the boundary morphism of the extension

0—C(0,1)—C(0,1] =% C—0.

Then there exists a control pair (a, k) depending only on ¢ and on the control pairs of
Theorems 1.24 and 1.27 such that

0
7-AA1 NAA, * (Z) o DA1®B,A2®B

(e,k) _
R Tan,nany +(2) © Tan,nan,)o8+(10171) 0 Dsa o n.50,08,« © Taes,«([0))
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(a,k) —
~ UAIOAAQ,*(Z) °© 7—(AA10AA2),*(TB([5] 1)) ° Dé‘Al@B,SAg@B,* o Tags,«([0])

(ev,k) _
~" Tan,nAns, «(TB([0] Y®pz)o D}S‘A1®B,SA2®B,* o Tagn.«([0])

(a,k) _
~ Dyn,ep.5a00m .+ 0 Tax(Ts([0)71)@52) 0 Taw(75,4([0])

(k) 1
~ DSA1®B’,SA2®B’,* © TA,*(Z),

where

e the first "% holds by definition of DY ¢ A,055

k) . . i
o the second () is a consequence of point (v) of Proposition 1.25;
K
e the third and fifth (k) are consequences of Theorem 1.27;

k) .
the fourth (k) is a consequence of the even case.

Similarly, we can prove that there exists a control pair («, k) depending only on ¢ and
on the control pair of Theorems 1.24 and 1.27 such that

1 (k) ~0
TAAlmAAQ,*(Z)ODAl(X)B,Ag@B ~ DSA1®B,SA2®B,*O7;L*(Z)

and hence we obtain the result in the odd case. O

We are known in position to state the main result of this section. If A a filtered
C*-algebra admits at every order r a decomposition into an r-controlled nuclear Mayer—
Vietoris pair such that for every pieces involved in the decomposition, the quantitative
Kiinneth formula holds, then the C*-algebra A satisfies the quantitative Kiinneth for-
mula.

Theorem 4.12. Let A be a filtered C*-algebra. Assume there exist positive numbers ¢ and
Ao with Ag = 1 that satisfies the following: for any positive number r, there exists an
r-controlled nuclear Mayer—Vietoris pair (A1, Ao, Ax,, An,) with coercitivity ¢ such that
Ap,, Ap, and Aa, N Ap, satisfies the quantitative Kinneth formula with rescaling Ag.

Then A satisfies the quantitative Kinneth formula with rescaling A1 for a positive
number A1 with \y > 1 depending only on ¢ and \g.

The proof of this theorem will be given in next subsection.
4.83. Proof of Theorem 4.12
The idea of the proof of Theorem 4.12 is to use the controlled exactness persistence

properties stated in Corollary 3.6 and Lemma 3.8 to carry out a controlled five lemma
argument. This requires some preliminary work in order to formulate the quantitative
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Kiinneth formula in terms of an (even degree) controlled morphism between quantitative
K-theory groups.

4.3.1. Preliminaries

We denote by SB = Cy((0,1), B) the suspension algebra of a C*-algebra B. Let A
be a filtered C*-algebra, let B be a C*-algebra and let [0] be the invertible element in
KK;(C,C(0,1)) that implements the boundary of the Bott extension, 0 — Cy(0,1) —
Cp[0,1) ©¥ C — 0. Applying Lemma 4.2 to z = Idc and 2’ = 75([]), we see that we
only have to consider the odd case

QA,B,* : ICl(A)®KQ(B) D ]CQ(A)@Kl(B)—Hcl(A@B)

Let Ty = {(z1, 22) such that |z;| = |22| = 1} be the two torus. Let us view (0,1)? as
an open subset of T? via the inclusion map (0,1)? < T2; (s,t) = (379, e2™).

Lemma 4.13. Possibly rescaling the control pair (ap, kp), then for any filtered C*-algebra A,
the filtered and semi-split extension of filtered C*-algebras

0—S2A4 245 O(Ty, A) 4 O(T, \ (0, 1), A)—0 (10)
has a vanishing controlled boundary map
D52A70(T27A) : K*(C(TQ \ (0, 1)2, A))H’C*+1(52A)

Proof. By using controlled Bott periodicity [9, Lemma 4.6] and in view of [9, Proposition
3.19], we only need to check that the result holds for

Ds24,0(15,4) : K1(C(T2\ (0,1)%, A))—Ko(S?A).
But
C(T2 \ (0,1)%, A) = {(f1, f2) € C(T, A) ® C(T, A) such that fi(1) = fo(1)}.  (11)
Let (f1, f2) be an e-r-unitary in C (T3 \ (0,1)?, A) and define then
up g 2 T2 A5 (21, 22) = fi(21) f1 (1) fa(z2)

Then uy, f, is a 9e-3r-unitary in C'(T2, A). Moreover, under the identification of equation
(11), we have

qA(“fl,fz) = (flfl*(l)fl(l)a fl(l)ff(l)f2)

and hence
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HqA(ufl,ﬁ) - (fl»fZ)” < 3e.

We deduce that uy, r, is an almost lift for (f1, f2) in the extension of Equation (10). Hence
the result holds by construction of the controlled boundary map in the odd case. O

In consequence, by using the controlled six term exact sequence (Theorem 1.23) as-
sociated to the semi-split and filtered extension of equation (10), then if we set

kerga . <= (kerqy”, : K7 (C(Ta, A))— K27 (C(T2 \ (0,1)%, A))),
we obtain the following corollary.

Corollary 4.14. There exists a controlled pair (A, h) such that for any filtered C*-alge-
bra A, then

Jas: Ku(S?A)— kerqa .
is a (X, h)-controlled isomorphism.

Notice that, by construction of the controlled boundary map associated to controlled
Mayer—Vietoris pair (A1, Az, Aa,, Aa,), we have that

QAn,NAx, @B © Do(m2,44,),0(T2,40,) 5 = DCo(T2\]0,1[2,44,),Co (T2\]0,1[2,44, )+ © AR B *-
(12)

Let us define with notation of Corollary 4.14 the quantitative object O.(A,B) =
(0.7"(A, B)) as

OL(A, B) = O}(A, B) & O} (A, B) == ker qagp .
Set z = [0]®@T¢,(0,1)([0]) and define then the (o2, hy * hy)-controlled morphism
JA®B,x © 7-A®B(Z) o QA,B,* Ky (A)@Ko(B) S¥) IC*+1(A)®K1 (B)—>O;(A, B)

Since z is an invertible element in K Ko(C, Cy((0,1)?)) and hence, according to Theo-
rem 1.27 and to Corollary 4.14,

o if Q4 p .« is a quantitative isomorphism with rescaling A¢ then there exists a positive
number A; depending only on \g with Ay > 1 such that jagp.« 0 Tags(2) © Q4 B«
is a quantitative isomorphism with rescaling A1;

o if jagp« 0 Tagn(2) 0 Qa B« is a quantitative isomorphism with rescaling A;, then
there exists a positive number A\g depending only on A; with Ao > 1 such that Q4 B «
is a quantitative isomorphism with rescaling Ag.
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According to Lemma 4.2, we get that

(AR

Ta(2) o Qape X Qsasm. 0 (Ta([@)@75(10]) (13)

for some control pair (A, k) that does not depend on A or on B. Let us define the
quantitative object O, (4, B) = (0" (A, B)) as

0.(A, B) 2L K, (A)@Ky(B) & K.(SA)@Ky(SB)

and denote for positive numbers ¢, ¢/, and r’ with e <&’ < 1/4 and r < 7’ respectively
by (57" 2 027 (A, B)—05"" (A, B) and (g5 05" (A, B)—0.= " (A, B) the
structure morphisms corresponding to O*(A,Bj and O, (A, B). For (ar,kr) = (\h),
let us define the (ar, kx)-controlled morphism

Faps=(Fy'p,) O(A B)—0L(A, D)

by
Fiy (@) = 3537 o oty M (2)ow "y, (2)
+io 0 dabhe T o wilp (&)

Notice that F, p . is obviously natural with respect to filtered morphisms. Since [0]
is invertible in K K;(C,C(0,1)) and according to equation (13) and Theorem 1.27, The-
orem 4.12 is equivalent to the following statement:

Let A be a filtered C*-algebra. Assume there exist positive numbers ¢ and \g with
Ao = 1 that satisfies the following: for any positive number 7, there exists an r-controlled
nuclear Mayer—Vietoris pair (A1, Ag, Aa,, Aa,) with coercitivity ¢ such that for any
C*-algebra B with K, (B) free abelian, then Fan, B Fas, Bx and Fa, nAn, B« are
quantitative isomorphisms with rescaling Ag. Then for any C*-algebra B with K, (B) free
abelian, the controlled morphism F4 p . is a quantitative isomorphism with coercitivity
A1 for a positive number A\; with A\; > 1 depending only on Ay and c.

Notice that, by controlled Bott periodicity, we only need to consider the odd case.

4.3.2. Notations
Let us introduce some notations that we will use throughout the proof. Let v be a
unitary in a unital C*-algebra B. Define the unitary R, in My(B)

R, : [0’ ]_]_>U2(B)’ t— (S(l)) . ( cos I Slnz) ] (vo* (1)) ) (COSZ 751'nt;)’

— sin & ; tm sin & im
sin 5~ cos 5 sin 5= cos

and the projection of My(B)

Py [0,1]—My(B); t = Ry(t) - (§ 0) Ri(t).
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Define also

Ppots : [0,1] x [0,1] = My(C); (s,t) = Rezms (£) - (§ ) Rizims ().

Then, if we view the 2-sphere S? as the one point compactification of (0,1)2, then
Pgott is a rank one projection in My(C(S?)) and [Pgot] — [1] is a generator for
Ko(Co((0,1)2)) 2 7.

For an r-controlled nuclear Mayer—Vietoris pair (A, Az, Aa,, Aa,) with respect to a
filtered C*-algebra A, let

JAL,0,% = (JZT,O,*) : O*(AA1’B)—>O*(A7B)7

JA2,0,% = (]ZZ,O,*) : O*(AA2’B)—>O*(A7B)7

JAL, 05,0, = (]2?7A2,O7*) s (AAl NAp,, B)—>O*(AA1?B)

and

JA2, 01,05 = (.72;A1,O7*) : O*(AAl n AAQvB)HO*(AAQaB)

be the morphisms respectively induced by the inclusions of C*-algebras ja, : Aa, — A,
NN AA2 — A, JAL A - AAl N AAQ — AAl and JAs, At AA1 ﬂAAz — AAz' In the same
way, we define

JAlaOIV* = (]ZZ,O',*) : O;(AANB>—>O;(A7B)7
JAs,0" = (]2;0/,*) : O;(AA27B>_>O;(A7B)7

I81,05,00 5 = (UR) ay.000) 2 Ou(Aa, N Aa,, B)—0.(Aa,, B)

and
JAS,AL,O % = (]2;A1,@/’*) : OL(AAl N AA27B)_>O:<(AA2aB)

4.3.8. Computation of F}'y .

Let us now compute FZ”% (z) for A a unital filtered C*-algebra, B a unital C*-algebra
and z an element in Oy (A, B).

Let us consider first the case z = [u]. »®[p] where u is an e-r-unitary in some M, (A)
and p is a projection in some M,,(B). Let us set vy, = u®p + [, (L, — p). Then v, ,
is an e-r-unitary in My, (A®B). According to Remark 4.1, then

. h € ,
FZ’,%’*([U]&TQ@[])]) = JZ)T: RUSHIS 73" (2) (Vu,p)-

It is well known that z = [Ppott] — [P1] (with Py = diag(1,0)). Let us define for v and «’
some e-r-unitaries in M, (A) and p a projection in M,,(B)
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Wu’u/’p Ty — Mn(A)®Mm(B)®M4((C)

(62”3’ e?mt) s Vu,p@ Pott (5,t) 0 .
0 Vu/ p Py

Then Wy, p is an e-r-unitary in C(Tsq, M, (A)@M,,(B)®M,(C)). Moreover, if v’ = u*
then we see that qa g «[Wu.u pler =0 in K7 (C(T2 \ (0,1)?, A®B)) and

FZ7,%,*([U]E,T®[p]) = [Wuu* plazehr, o (14)

Consider now the case z = [u]. ,®([p] — [p(0)]), where u is an e-r-unitary in some
M, (SA) and p is a projection in some M,,(SB).
For e-r-unitaries u and v’ in M,,(SA) and a projection p in M, (SA), set

Wéyulvp Ty — Mn(A)(X)Mm(B)@MQ(C)
2ums 2wt Vu(s),p(t) 0 >
e e — .
( ) ( 0 vw(s)po)
Then W, ., is an e-r-unitary in C(Tq, M, (A)@M,(B)@M2(C)) and we can easily
check that [W) . ] is in

O (A, B) = ker . : Ki"(C(Ts, A)— K57 (C(T5 \ (0,1)%, 4)

for all positive numbers ¢ and r with ¢ € (0,1/4). Moreover, according to Remark 4.1,
we have

Fi'pa([uler®((p] = k) = Wi, ux plarehr oo (15)

Consider now the case x = [¢, m]. »®[p], where ¢ is an e-r-projection in some M, (A),
m is an integer with m < n and p is a projection in some My (B). Let us set when q is
an e-r-projection in some M, (A), m is a positive number and p; and py are projections
in some M (B)

E _ (a®p1 + Pr®(lk — p1) 0
41mP1,P2 0 Pn—m®(lk - p2) + (In - q)®p2

with P,, = diag(l,,,0) in M, (C) C M,(A). Then E, ., p, p, I8 an e-r-projection in
Mojn (A®B). According to Lemma 4.2, we have that

Fapx(7) = Qa B« ([0, e »@([p]®2)).

Since [p|®z = [p@Ppott] — [p@P1] in Ko(S%B), we see according to Remark 4.1 that

Ff\:}i,*([qa Mle,r®P]) = [Egm,pPsow . po Py s 210K]e - (16)

Please cite this article in press as: H. Oyono-Oyono, G. Yu, Quantitative K-theory and the Kiinneth
formula for operator algebras, J. Funct. Anal. (2019), https://doi.org/10.1016/j.jfa.2019.01.009




YJFAN:8179

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis sse (ssse) eee—see 65

Consider finally the case of z = [¢/, m/].»®([p}] — [p5]), where ¢’ is an e-r-projection
in some M, (SA), m’ is an integer and p} and p} are projections in some My (SB), with
P1(0) = p5(0). Then

FZ’7%7*([q/,m/]E7T®([pﬁ] - [pIQ])) = [Eq/,m’,p’l,p'gank]&r' (17)

4.8.4. QI-condition

Let (A1, As, Ap,, Aa,) be an r-controlled nuclear Mayer—Vietoris pair with coercitiv-
ity ¢ such that for any C*-algebra B with K, (B) free abelian, then Fan, B> FAn,,Bx
and Fa, naa,,B,« are quantitative isomorphisms with rescaling Ao. Let us check that
there exists a positive number A\; depending only on A\g and ¢, with A\; > 1 such that
for any positive numbers ¢ and s with ¢ in (0, ﬁ) and s < ;Z—, then F' . satisfies
the @I-condition of Definition 1.19. We can assume without loss of generality that A
and B are unital. Moreover, up to replacing B by B & C, we can assume that there
exists a system of generators of Ky(B) given by classes of projections. Let us fix such
a system of generators for Ky(B) and let us fix also a system of generators for K (B).
As discussed in Section 4.3.1, we only need to consider the odd case, i.e. show that the
control morphism F4 . : O1(4, B)— O} (A, B) satisfies the required conditions.

According to Lemma 4.11, there exists a control pair (a, h) depending only on ¢ with
(ae, ke) < (a, h) such that

Fan,nAny B © (Daya, «@Tdgy () © Dsa, 58, «@Ldk,(sB))

(a,h)
R Daon,aseB.s 0 FAB (18)

at order r. For ¢ in (0, ﬁ), let 77 be a positive numbers with 7 > h.r such that

- F
1" (@) =0
. Jhe Jhe
for all x in K" (Aa, N Aa,)®K.(B) such that inlm;Ava*(gc) =0.
The following proposition is the analogue of the first steps of the injectivity part of
the classical five lemma.

Proposition 4.15. There exists a control pair (A, h) depending only on Ao and ¢ such that
for any positive numbers e, s and v’ with ¢ < ﬁ, s < ﬁ and v’ > v, for any x in
O7”°(A, B) such that Fyp(x) =0 in 0,7 *7<%(A, B), there exist

e an element D in 02" (Ax,, B) and an element 2® in O} (Aa,, B);

o an integer n and an e-s-unitary Wy in M, (C(Te, A®B));

e for i = 1,2, a Ae-h.r'-unitary Wi in M, (C(Ty, A®B)) with Wéi) — I, in
M, (C(T?, Apn,®B));
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such that

& = her! Ae,her’ Ae,her
(D) e (x) = s (W) + ST (),
( ) [ a:]oz}-s k}‘g’l" _0 Zn O/a]:E k]:ET(A B) ,
(111) [ 35 ])\a]:s kr xeher! s in O/ Aarekr acher (AA”B) and F[:\E hEBr*( (z)) —
Wa
|

])\O{]:E k]: reher’ fO?” 1= 1 2
(iv) W — WEOWE|| < Ae.

Proof. The proof of the proposition is quite long so we split it in several steps.
Step 1: Let = be an element in O]°(A, B). Then there exist integers [ and [’ and

o fori=1,...1
— an e-s-unitary u; in some M, (A);
— a projection p; in some M,,,(B) with [p;] in the prescribed system of generators
for Ko(B);
o fori=1,...1
— an e-s-unitary w} in some M, (5‘74),
— a projection pj in some M, (SB) with [p] — [p;(0)] in the prescribed system of
generators for K (SB);

such that

l

Z[uz . ®[pi] +Z e s@([pi] = [Pi(0)-

=1
Assume that Fy%  (2) = 0 in 0,°7=k7.<5( A B). Using Morita equivalence, and up
to replacing A by M, (A) and B by M,,(B) with n = ny +...n; +nj +...n}, and
m=mq+...m;+mj +...mj, we can assume that n, = m; =1fori=1,...,1 and

n,=m}=1fori=1,...,1'. Using Lemma 1.8, we can moreover assume without loss of
generality that u}(0) = u(1) = I, for i =1,...,I’. Let us set

2 u1,ui,p1

W ug,uj,pr
’ U /
uy,ul*,py

W/

UL/ 7“1/ 7171/

Then W, is an e-s-unitary in Moo (C(T2, A®B)) and [W,]. s is in O1°(A, B).
In view of equations (14) and (15), we see that [Wilarekr.s = Fip . (¢) = 0 in
O,lafe,k]:,sS(A, B) C Kf‘fe’kf’as(C(Tg, A®B)).
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Step 2: Let (a, h) be the control pair of equation (18), then we have

ag,hes

F oy A, Bx O Lo © (8ZT,A2,*®IdKo(B)) & ag’ZI,SAQ,*@’IdKo(SB)) (z) =0. (20)

Since [p1], ..., [pi] belong to the prescribed system of generator for Ky(B) and [p}] —
P1(0)],...,[p)] — [p;(0)] belong to the prescribed system of generator for Ki(B), we
deduce from equation (20) and from the choice of " that

—,Xoae,r’ £,8 . _
LT 0 O3] Ay kltiles =0

fori=1,...,1 and

1N 0 058, gy Wlti]es =0
for i = 1,...,I". According to Lemma 3.5 and in view of the definition of 93° »_ .,
then for a control pair (), k) depending only on ¢, there exists for i = 1,...,n and up

to replacing u; by some diag(u;, I,,,—1) for some integer n; two Algae-ky,qe7'-unitaries
UZ(I) and vgz) respectively in M,,,(Aa,) and M,,,(Aa,), with vgl) — I, and vl@) — I,

respectively in M,,,(Aa,) and M,,,(Aa,) and such that
[lu; — vgl)vfz)H < AoQce.

Since we also have

—,Xoae,r’ €,r * _
10T 00X A, Ui les =0,

according to Proposition 2.21 and up to rescaling (), k), we can assume that there exists
two ANgae-ky aer -unitaries vg(l) and v§(2) respectively in M,,, (Aa,) and M,,,(Aa,) with

2(1) — I, and 02(2) — I, respectively in M, (Ana,) and M, (Aa,) and such that

v,

luy — o PP < Agae

i)

and v/U )+

is homotopic to v;”’" as an AAgae-k,qe7'-unitary in M,, (;4_2) for j =1,2.
In the same way, up to replacing u; by some diag(uj,I,,_1) for some integer

n!, there exists two A\gae-ky,aer’-unitaries w;!) and wg(l) in M,/ (SAa,) and two

Moae-ky,aer-unitaries w;(? and wg(z) in M,:(SAa,) such that

li

= w! M| < AMoae,

—w; Mw; P < Aae,

g(j) as an A\oae-kx,aer’-unitary in M, (SAa,) for j =

1,2 and w;V(0) = w;@©0) = wM©0) = WP0) = Ly for i = 1,...,I'. In

(4)*

and w; "’ is homotopic to w,;
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particular, W ) . and W o) ) for j = 1,2 and ¢ = 1,...,1 are homotopic
i Y i 7
ANoae-kxgaer’-unitaries in My, (Aa,) and W1/1)(j) (e and Ww§j> W@ for j = 1,2 and
i Wi ’
i=1,...,I" are homotopic Agae-kx,acr’-unitaries in My, (Aa;)-

Step 3: According to Lemmas 1.2 and 1.3 and up to replacing A by 12\, we have that

l

— AMoag,2kxnacr’ Aoae,2kxnaer’ 1
vol "T () =g T d ey 5y (O [0 Tasgae 2kagacr @ [Pi])
=1
A 2k ! !
ag, aeT 2
+ e @I, () (Y057 Iarac 26rg e @IDi)
=1
AN 2k ! v
ae, aeT 1
+ Joans 0 @Tdiey(s5) (D [0 argac2brgacr @([PE] = [PF(0)])
=1
A 2k ! .
ae, el 2
+agane 0 @Idicy(s5) ([0 Iaroae 2kagaer @([P1] = [0 (0)])
=1
(21)
Let us set for j = 1,2
A 2k ! !
1 «e, aeT j
.’E(J) :jA;j* ro ®IdKO(B) Z[vz(j)]kkoasﬂkxoag?"®[pi]
=1
A 2k ! a
ag, aeT j
+a5ans 0 @ldicysp) | [0 Iarac 2k gaer @ (0] = [P5(0)]
=1

and

W _ WU;j)7v;(1)7pl -
) =

wi’ w

w’ ., )
w;}]) ;w{/ @ 717;/

Since ngj ) and

Please cite this article in press as: H. Oyono-Oyono, G. Yu, Quantitative K-theory and the Kiinneth
formula for operator algebras, J. Funct. Anal. (2019), https://doi.org/10.1016/j.jfa.2019.01.009




YJFAN:8179

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis sse (ssse) eee—see 69
Wv§'7)7v1(j>*,p1
WU;J>7vl(j)*7pl ,
wi wy D pp 7
W:U;-j),wl,(j)*,p;,

are homotopic as Agae-ky,q-r'-unitaries in MN(AZJ.), with N =ny +...n +2(n} +
...+ n},), we deduce that

AMoag,kxgaeT’ ;
Cay, " (W xrpae krgaer = 0-

Hence =z, 22, W, Wél) and Wf) satisfy the required condition for some suitable
control pair. O

End of the proof of the QI-statement. To prove the QQI-statement, we follow the steps
of the proof of the injectivity part of the five lemma.

Step 1: Let  be an element in O7°(A, B) such that Fy% (z) = 0. Let " be a
positive number such that 7’ > rZ. With notations of Proposition 4.15, applying Propo-
sition 2.11 to W, up to rescaling (A, k) and to replacing Wél) and ng) respectively by
diag(ngl), I;) and diag( 2, I;) for some integer j, there exist for any positive number
ein (0, /) two Ae-her/-unitaries W{ and W} in some M, (C(T2, A®B)) such that

o W/ —1I, is an element in the matrix algebra M, (C(Tq, Aa,®B)) for i = 1,2;
o for i = 1,2, there exists a homotopy (W} ;):e[0,1] of Ae-h.r'-unitaries between I,, and
W/ such that W/, — Iy € M,(C(Tg, Ax,®B)) for all ¢ in [0,1].

o IWOWE —wiws|| < Ae.

Up to replacing A by 5\, we can assume indeed that ||[W/" 0 _ w3 3(32)*|| < de. If we
apply the C'IA property to W{*ngl) — I, and W2’W£2)*
V' in M, (C(T2, AQB)_,) such that

— I,, we get that there exists

o WIWE — V|| < e
o WIWED* — V|| < edey
e V' =1, lies in M,(C(Ta, (Aa, N Aa,)®B)).

In particular, in view of Lemma 1.2, V' is a 4(c+3) Ae-2her’-unitary in M, (C(Ty, (Aa, N
Aa,)®B))) homotopic to W{*Wél) (resp. to WQ’WI@)*) as a 4(c + 3)Ae-2h.r’-unitary in
M,,(C(Ty, Ap,®B)) (resp. in M, (C (T2, Ax,®B))).

Step 2: We construct now out of ¥V’ an almost unitary whose class is (up to rescaling)

in 034(C+3)A5’4h”/ (Aa, N Aa,, B) and which have the same image as [V']4(c43)re,2h. 1
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in Kf(Hg))‘EAhET (C(Ty, Ar,®B)) (resp. K4(C+3))‘6 Aher’ (C(T3, Aa,®B)) under the map

4(c+3)Ae,2h 1’ 4(c+3)Ae,2he 1’
JC(Ty. 21 6 B),C(Ta, Aa@B) e (TESP JCi(Ty, Ao B),C(Ta,0,0B),¢)- et s define

V’n : Tg P Mgn(A®B)
VI*(l,l)VI(Z1,ZQ)

(21,22) +— V' (21, 1)V(1,1)
V' (1,29)V'(1,1)

If we set X = 12(c + 3)A, then

o V, is a Ne-4dhr'-unitary in M, (C (T2, ARB));

o Vi —Isy is in M3, (C(T2, (Aa, N Aa,)®B)):;

. [V })\/5 ah.r lies in O/)\ e dher! (Aa, NAp,, B).
Then we have

NN (Valveanar) = W WO e anrr = (WO e an., (22)

where the second equality holds because W7 is connected to I,, as a A'e-4h.r'-unitary of

Mn(ST/IA/I ). In the same way, we have

]225:2}15,:9’,*([Va:]/\’eAhgr’) = _[WQEQ)]/\'EA}LET,' (23)

Step 3: Let 7’ be a positive integer with kx x,xer” > 4k.r’ such that for any z in
O/ ST (AN N An,, B), there exists y in 02" (Ax, N An,, B) such that

—XoNare,k Ie r’ Ao\
Lo TR (2) = FAOAlé,XAz,B*(?/)

Then there exists 2’ in Oi\‘)’\/’T”(AA1 N Ana,, B) such that

Ao\
[Vm])\OAla]:87k]:,)\0)\/5T FAOAlri;;Az,B *( /)'

Hence we have

Mo e, r” Ao e, r” / AoXare, kg, AoX e '
AAI,B,* ]Al,Ag,O *( ) ]Al,Ag,O * ([VI]AOAIQFEJC;,AO)\/ET”)

1
= [Wag )]AO)\,Oéfsﬁkf,k(J)\’ET”

= P 0N (@) (24)

where the first equality holds by naturality of F, p ., the second equality holds in view
of equation (22) and the last equality is a consequence of Proposition 4.15. In the same
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way, using equation (23), we get that

Ao e, XoXe,r” no_ XoX e —XoXNer /1 (2)
Apy Bo¥ O]A27A1,O,*(x )= _FAAz,B,* OLlo (™). (25)

Step 4: Let R be a positive number, with R > r” such that

—22\"e,R
LO7*0 : (y) = 0

for all y in O>‘°>‘/E’T” (Aa,, B) such that ij“i)fl%r:(y) =0and j = 1, 2. In particular, from
B,
equations (24) and (25), we deduce

ANTER o NoXTer oy S NNER (1))

Lok IAy, 04,0, =lo,
and
—X2\"e R Ao\’ —AeNe, R, (2
Lo O]AOZ,AEDTO @) = Lo« (z ( ))~
Since 157, Aeher! (z) = 20 + (2 this establishes the QI-statement.

4.83.5. QS-condition
Let (A1,A2,Aa,,Ar,) be an r-controlled nuclear Mayer—Vietoris pair with co-
ercitivity ¢ for A such that for any C*-algebra B with K,(B) free abelian, then
]:AAl B> ]-"AAQ,B7* and ]:AAlﬂAszB»* are quantitative isomorphisms with rescaling \g.
Let us check that F4 p . satisfies the QS-condition of Definition 1.19. As for the
QI-condition, we can assume without loss of generality that A and B are unital and
that there exists a system of generators of Ky(B) given by classes of projections. Let
us fix such a system of generator for Ky(B) and fix also a system of generator for
Ky(SB). We also only need to consider the odd case, i.e. show that the control mor-
phism F4 g . : O1(4, B)—O} (A, B) satisfies the required conditions.
) and let ri

Let £ be a positive number with ¢ in (0 be a positive number

1

? 4)\()DLC

with ke or < kr xpa. Erg:( ) such that for any y in O;acs’k“’ET(AAl NAp,, B), there exists
Fe(1)

an element z in O, 0% " (Aa, N Aa,, B) such that

—Aoacareky, AogaeT Fe. () _ pAoace, rFe (1) ( )
Lor « Yy AnyNAny, By

F1) < 5(2)

Let rz 5@ e 5 positive number with rz such that

F.(2)
Loi‘asr (z)=0

Qe T Qe T]:( )
for all = in K% (A, N An,)®K.(B) such that Fytey p(@) = 0. Next

proposition can be viewed as the first steps of the surject1v1ty part of the five lemma.
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Proposition 4.16. There exists a control pair (A h) depending only on ¢ and Mg with
(cte,ke) < (A, h) such that for any positive numbers € and r’ with € in (0,7;) and
7"5}-’(2) < 1’ the following is satisfied:

For any element y in 0" (A, B) C K" (C(T?, A®B)), there exists

o an element z, in OAE’hET' (A, B);

e a positive integer n, and two N'e-hlr'-unitaries Wy, and W in My, (C(Tz, A®B));

o for j = 1,2 a Ae-h.r'-unitary W;J) in Ma,, (C(Ty, A®B)) wzth Wéj) — Iy, in
Mgny (C(TQ, AAj ®B>),

o a Ae-her'-projection g, in Moy, (C(T2, (Aa, N Aa,)®B))

such that

A
o Wylsareksachor is in OP7<72T (A BY and FAT (2) = Wy xare b schors
ace, e ke e, hir’ 867“
gy mylrener =100 C(T2,A1®B),C(T2,A2®B) (y).

| diag(W,, W)) — Wi WPl < e;
[WED* diag(I,,, )WY — g,]| < Ae.

Proof. We follow the steps of the beginning of the proof of the surjectivity part of the
five lemma.

Step 1: According to equation (12), we see that y' = BZJ(TTQ Any),C(TaAny ) .(y) be-
longs to O)*=F<"(Ax, N Ap,, B). Set R = r? 7" Then there exists an element = in
0o =R (Ax, N Ap,, B) such that

Y k R i
(9/ 0QcaFERF Ngace (y’) = FA\OAC:HEAIZTB,*(:E)'

There exist two integers [ and I’ and

o fori=1,...1
— an Aga.e-R-projection g; in some M, (AAmAz) and an integer k;;
— a projection p; in some M,,,(B) with [p;] in the prescribed system of generators
for Ko(B);
o fori=1,...10 o
— an A\ga.e-R-projection ¢; in some M,/ (SAa, N Aa,) and an integer k;;
— a projection p} in some M,, (SB) such that [p}]—[p}(0)] is in the prescribed system
of generators for K;(SB);

such that
l/

l
Z Gis kilroace r®1pi] + Y15 kilreae.n@ (D] — [5(0)])-

1=1
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By Morita equivalence, up to replacing B by M,,(B) with m = my +...m; + m} +

..mj,, we can assume that m; = 1 fori =1,...,l and m, =1 for i =1,...,l". Using
Lemma 1.7, we can moreover assume without loss of generality that ¢; — diag(I,,0) is
in My, (Aa, N Anp,) fori=1,...,1 and that ¢;(0) = ¢;(1) = diag(/};,0) fori=1,...,1".
Set

E‘Ilvnlvpl®PBott:pl®Pl

q/ — Eqin1,01®Ppote,pi@ Py E
y q1,m1,p1,p1(0)

Eqini.p}.p1(0)
In view of equations (16) and (17),

—Xoacare,kr, AOQCR(y/)

/
Loy« = [qyany]koaca}'&kﬁxoach

with ny, =2(n1 +...+n) +nf +... +nj.
Step 2: By naturality of F, p ., we obtain

Aoace,R Aoace,R _
Fy B O In) A0, (2) =0

: Aoae kFEAgacR
in O 0T e (A5 B) and

Aoaee,r’ Aoace, R -
AnyoBox O JnyA004(2) =0

in O/ Aoacare,kr xga. R (AA )
29
Let 7’ be a positive number with r7 " < /. Since [p;] for i =1,... 1 and [p;] — [p;(0)]
for i+ = 1,...,0' are respectively in the prescribed system of generator of Ky(B) and
Ky(SB) and by definition of rT® | we deduce that

. ])Alojgszr*([q“ ki])\gacs,r’) —0in K(’)\SO‘CE”J(AAI) fori=1,...,1;
o AN [0l K, r) = O in KGOS (S, ) for i = 1,1
. Jigfif*([qz, il e ) = 0 10 K000 (A, for i = 1,1
o T (e K aganen) = 0 in K057 (SAn,) fori=1,..., 1"

Let (A, h) be the control pair of Lemma 3.8. Then for ¢ = 1,...1 and up to stabilization,
we can assume that n, = 2k; and that there exists vl(l) and vz@) two AA%ace—hAgacar’
unitaries in Ma,,, (4) and u; and u} two )\A%acs—h)\gacar' unitaries in M, (A) such that

. UZ(j) — I, is an element in M, (Ax;) for j =1,2;

[oV* diag(Ir,, 0)0") — g < AN2avee
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and

||U§2) diag(Ik”O)vl@)* — qill < Miaes;

e for j =1,2, then ’Uz(j) is connected tQ I,,, by a homotopy of )\Agacs—h/\gacar”—unitaries
(Ugt))te[O,l] in My, (A) such that v;]t) — Iyp, is in M, (An,) for all ¢ in [0, 1];
o || diag(ug, uf) — vi(l)vZ(Q)H < A\3ae.

In the same way, for ¢ = 1,...1" and up to stabilization, we can assume that n} = 2k/
and that there exists wgl) and w§2) two ANjaee-hyz,, .7 unitaries in M, (SA) and uj
and u” two Ajoee-hx a7’ unitaries in M, (SA) such that

. ng) — I,y is an element in M, (SAx;) for j =1,2;

wiM* diag(Ii,, 0)w” — gl|| < AM2ace

and
||w§2) diag(lk;,O)w?)* — gl < Miace;

e forj=1,2, then ng) is connected to I,,; by a homotopy of )\)\8acs—h/\gacer’—unitaries
(U/gt))te[o,l] in M,,;(SA) such that wz(f) — Iy is in My, (SAa;) for all ¢ in [0,1];

o u(0) = wi(1) = ui"(0) = ui” (1) = Ippy;

. 1 (2
o || diag(u},ul) — wl( )wg )|| < AM\3ae.
Step 3: Let us set A = AZa. and for any ¢ in (0, ;57) set AL = haxza.e- Consider the
element of Oi‘ eoher (A,B)

zy = [n1]venr ®[pr] + - 4 [wlye e P + [ui]xve e @([P1] = [PLO)]) + -

+ [up]xve e @([p1] = [p1 (0)]).
If we set

[/[/ ’
U1,uy,P1

W ’
Uy,up,pL
"

1" /
Uy Uy Py

W;// 11

1 Wy Py
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then W, is a XNe-hlr'-unitary in Ms, (C(T2, A®B)). Using Lemmas 1.2 and 1.3
and up to replacing (XN, h’) by (12X,2h'), then for ¢ = 1,...0 (resp. for i =
1,.. l’) diag(uf, I),) is homotopic to diag(u}, Iy,) (resp. dlag( i', 1) is homotopic to
diag(uy”, I )) as a N'e-h/r'-unitary in M, (A) (resp. in M, (SA)). Hence we deduce that
[Wy]arx\’&kf,wsh’ar/ belongs to O’laf)‘,e’kﬁ”ah;rl (A, B) and in view of equations (14) and
(15), we see that

)\ h/ ’
[Wy]a;Xs,kFN hlr’ — FA EB * (ZZ/)

: Nekg o hir! i
in Q)7 ©FFNRT (A B). In the same way, if we set

W,

’
Uy,U1,P1

W up,uL,pl

)
1" " /
Uy ,U P

W//// !

Uy Uy 7pll

then W, is also an \'e-hlr'-unitary in Ma, (C(Tq, ARDB)).

Step 4: For i =1,...,land j = 1,2, let vg(j) be the matrix in M,,, (A) obtained from
v;) by flipping the k; first and the k;-last coordinates, and define similarly wg(j ) in
M, (Z) fori=1,...,I" and 7 = 1,2. Up to replacing ' by 2)\’, we have that

. v;(l) and v:-(z) are Ne-hlr' unitaries in M, (A);

o/ M* diag(Iy,, 0)v!Y) — (I, — G)|| < Ne
and

lo® diag(Z,,,, 0)0;*" — (I, — G)|| < Ne.
| diag(uf, u;) — v} Vo[ < Ne,

where ¢; is obtained from ¢; by flipping the k; first and the k; last coordinates. Similarly,
fori=1,...1', we have

. wg(l) and wé(z) are two Ne-hLr’ unitaries in M, (SA)
. wg(j) — I, is an element in My, (SAa;) for j =1,2;

V" diag (T, 0)w, M) — (I — @) < 2Ne
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and
i diag(l,;. 00w} ™" — (I, — @) < Ne.
o |l diag(uf,uf) — wiMw® | < Ne,

where qz is obtained from ¢} by flipping the k] first and the k] last coordinates. Then we

have
. ’
H dlag(Wu,i7u;7pl s Wué,ui,pi) — W,Ui(l)’v;(l)’piW,Ui(Q)’vg(2)’pi H < MNe
and
* . / /
”in(l),vg(l),pi - diag(Py;, Py,) - in(l)yv£(1>1pi o E‘]ivkhpi@PBottvpi@Pl | <Ne,
with

’
EQiak?ivpi@PBottapi ®P1

qi®pi®Ppott + P, @(I2 — pi®@Ppott) 0
0 P, @(Iz — pi@P1) + (In, — G:)®pi@Py

for ¢ = 1...[. Similarly, we have

l diag(Wﬁy,u;//,p;a Wug”,u”,p;) -W i<1>7w;<1>7p;,W i<2)w;<2),p;)|| <N,

i w w

and

W 0 a0 - diag(Pry, Pry) - W;im,wgw,p; — By ol < N,
for i =1...l' with
B _ (4@, + Py (Iz2 = pi) 0 )
%:kips P ()P 0 Pr@(Ia = pj(0) + (In; — ¢))@p;(0)) )

From this we deduce that there exist Wg(,l) and W;Q) two A-hLr’-unitaries in
My, (C(T2, A®B)) such that

. y(i) — Iy, is in Moy, (C(T2, Ap,®B)) fori=1,...n;
o |l diag(W,, Wy) — W Wy || < Ve
o WiV diag(L,,, 0)WY — g, < Ne,
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where

’
Eﬂh k1,1 ®Ppott,p1@P1

E/
Gy = q1,k1,p1®@Ppote,pt®@ Py o
Y a{k{ 9} P} (0)
Eq1, k)., 00, (0)
Clearly g, is N'e-h_r'-projection in My, (C(T2, A®B)) such that

1 _ = XNehr! e,r
9y nylvene = [y nylvenr = 1077 02 00m, Ao B).C(Ts 000 8) ()

and hence zy, gy, ny, Wy, Wé, Wy(l) and W;z) satisfy the required conditions for some
suitable control pair. O

End of the proof of the QS-statement. Let (X, h) be a control pair as in Proposi-
tion 4.16, let € be a positive number in (0, 7%), let y be an element in O} (A4, B) and let
s 2y Qyy My, Wy, W, Wy(l) and Wf) as in the proposition. Let u be an e-r unitary in
some M, (C (T2, A®B)), let u; and us be ace-k. r-unitaries in some Mo, (C (T2, A®B))
and let ¢ be an ace-k. r-projection in Moy, (C(T2, A®B)) such that

o u; — Iy is in My, (C(Te, A®B) for i =1,2;

o || diag(u, u*) — ujus|| < aee;

o q—diag(I,,0) is in My, (C(Ts, (Aa, N Anr,)®B));
o |lg — v} diag(L,,0)v1|| < aeg;

o ||lg — vo diag(I,,0)vs|| < aee;

o —y = [uley;

e, _
i ac(TTQ,A1®B),c(T2,A2®B)(_il/) = [%n]acs,kc,ar'

Then applying Lemma 3.5 to diag(u, W, ), diag(u*, W) and to the matrices respectively

obtained from diag(us, szl)), diag(us, Wf)) and diag(q, ¢,) by swapping the order of
coordinates n + 1,...,2n and 2n + 1,...,2n 4+ n,, we see that for a controlled pair
(XN, 1) depending only on A and ¢, and if € is in (0, 1), there exist U; and U, some
Ne-hLr’-unitary in some M, (C (T, A®B)) with Uy — I,y in M,/(C(Ts, Aa,®B)) and
Us — I,y in M,/ (C(Ty, Aa,®B)) such that

,7)\/ ,h, /
[Uilvener + [Uslve e = (Wylnenr — ol ()

in K """ (C(T,, A®B)). Up to replacing U for j = 1,2 by

T2—>M3n/; (21, 22) — diag(U;‘(l, l)Uj(zl, 2’2), UT(Z1, 1)Uj(1, 1), U;(l, ZQ)UJ'(L 1)),

J

and (X', R') by (3N, 2h'), we can assume that [Uj]xc n,s belongs to Oi’\/s’h;r,(AAj,B).
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Let 7" be a positive number with kz yx,xer”’ = hLr’ such that for j = 1,2, any
positive number ¢ in (0, #{)/\,) and any z in O;A € her (Aa;, B), there exists an element
x in O*)‘O’\IE’T”(AAJ.,B) such that

—Xoare kx xon’ r’ Ao\ e.r
’ ’ yAQATE — oA E,T
Lo « (2) = An, B ().

Let then zl(jj) be for j = 1,2 an element in 01A°A/E’7',/(AAj,B) such that

-, Ao\ k " ’ " .
L(’)/if 0N ERE xgaeT ([Uz‘b\’e,h’gr’): A\OA/:’%’T* (Zy])).

Let us set

~ 77)\)\/ ,h/R /\/\/’// )\)\/,//
gy =10, " ) — N ok () — e (57)

in Oi‘o)‘ ="<"" (4, B). By naturality of Fe,B,+, We see then that

XoNer” /~ —,aF\ )\’e,k ) r’
IS )

and hence the @)S-condition is satisfied.
4.4. Quantitative Kinneth formula for crossed-product C*-algebras

We shall next discuss the connection between the Baum—-Connes conjecture and the
quantitative Kiinneth formula. The connection between the usual Baum—Connes conjec-
ture and the Kiinneth formula was studied in [1].

Before proving Theorem 4.5, recall that article [1] introduced an equivariant analogue
of the map we e for the topological K-theory of a locally compact group G (i.e., the
left-hand side of the Baum—Connes assembly map). Let A be a G-C*-algebra and let B
be a C*-algebra. The C*-algebra B can be viewed as a G-C*-algebra with the trivial
action of G and we equip A®B with the diagonal action. Then the elements in K, (B)
can be viewed as element of K¢(B). If X is a G-proper space, the map

Wi h . KKS(Cy(X), A)RK.(B) = KKS(Co(X), AR B); 20y > 274(y),
is compatible with inclusion of G-proper cocompact spaces and hence gives rise to a
morphism

WG KM@, A)®K.(B) — K!P(G, A®B).

Theorem 4.17. Let T' be a discrete group and let A be a I'-C*-algebra. Assume that for
every finite subgroup F of T, the C*-algebra A x F satisfies the Kiinneth formula, then
for any C*-algebra B such that K.(B) is a free abelian group and any positive number d
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BT KK (Co(Py(T)), A)RKL(B) — KK (Co(Py(T)), A®B)

5 *
s an isomorphism.

Proof. (Compare with the proof of [1, Lemma 1.7]) The action of I on P,(T") is simplicial
and up take a barycentric subdivision of Py(T"), we can assume that P;(T") is a locally
finite and finite dimension typed simplicial complex, equipped with a simplicial and type
preserving action of I'. Let Z, - - - , Z, be the skeleton decomposition of P4(I"). Then Z; is
a simplicial complex of dimension j, locally finite and equipped with a proper, cocompact
and type preserving simplicial action of I'. Let us prove by induction on j that

WiH . KKS(Co(Z), ARK.(B) = KK (Co(Z;), A®B)

is an isomorphism. The 0-skeleton Zj is a finite union of orbits and thus, for j = 0, it is
enough to prove that

YT KK (Co(T/F), A)RK.(B) — KKC(Cy(Z;), A®B)

is an isomorphism when F is a finite subgroup of I". Let us recall from [8] that for every
C*-algebra B equipped with an action of I'; there is a natural restriction isomorphism

Respp, : KKL(T'/F,B)—KK}(C,B) 2 K.(B x F).

By naturality, this isomorphism respects also Kasparov products (using the same argu-
ment as in the proof of Lemma 4.11). Therefore, we have the following commutative

diagram
JT/ET
KKI(Co(T/F),AoK,(B) —2% KKLI(Cy(I'/F), A®B)
Res‘;,n*l JResgf;:ﬁ
K.(Ax F)®K,(B)  —220 K, (Ax F®B)

The bottom row being by assumption an isomorphism, the top row is then also an
isomorphism. Let us assume that we have proved that wifé)l;r is an isomorphism. Then
the short exact sequence

0—)00(Zj \Zj,1)—>CO(Zj)—>Co(Zj,1)—>O
gives rise to an natural long exact sequence

— KK (Co(Zj_1),0)— KK~ (Co(Z;),0)—KKL(Co(Z; \ Z;j—1), o)
— KK (Co(Zj-1),e)
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and thus by naturality and since K,.(B) is a free abelian group, we get a commutative
diagram

KK (Co(Zj-1), A)® -+ — KK[(Co(Z;), A)® -+ — KK (Co(Z;\ Zj—1),A) - — KK, ,(Co(Z;-1),A)® -
25| 7| w2y | | :
KK (Co(Z;-1),--- — KK[(Co(Z;),--- — KK (Co(Z;\Z;-1),--- — KK ,(Co(Zj-1)---

Let &; be the interior of the standard j-simplex. Since the action of I' is type pre-
serving, then Z; \ Z;_; is equivariantly homeomorphic to ¢; x ¥;, where ¥; is the set of
center of j-simplices of Z;, and where I' acts trivially on &;. This identification, together
with Bott periodicity, provides a commutative diagram

KK[(Co(Zj\ Zj_1), A)RK.(B) —— KK ,(Co(%;), A)OK.(B)
Zj\zjfl,rl Ej,r,*l
WAB,* WA B, *
KK (Co(Zj\ Zj-1),A®B) —— KK 1(Co(%;),A®B)
By the first step of induction, wif;* is an isomorphism, and hence wifgij’l’r is

an isomorphism. Using the induction hypothesis and the five lemma, we conclude that
wij ]’BF , Is an isomorphism. O

Lemma 4.18. There exists a positive number g and a function

1
(07+OO) X (07 4_>\0> : (da 5) = Ttli,s

non decreasing in d and non increasing in € with rq. < vy for all € in (0, ﬁ) and
d > 1 such that the following holds:

for any finitely generated group T', any I'-C*-algebra A, any C*-algebra B and any
positive numbers €, v and d with € < ﬁ and r > 7"21,57 then we have

e,r e,r,d _ arekrerd T, Py (T)
WaAxr,B,x © (MF,A,*®IdK*(B)) = Hr AgB,x °WABx -

Proof. Let z be an element in KK (Cy(Py(T)),A) and let y be an element in K,(B).
Then

Wi me (57 (2) (pr.a Olerr) @)
= T ) 0 T ) (0,01, )

r
kJ,E/

for ¢’ = o% and r’ = The result is then a consequence of Remark 1.32. O

QJ.
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Proof of Theorem 4.5. Let Ay and (0, +00) X (0, sV
Let ap be a positive number in as in Theorem 1.34, let € and r be positive num-
bers with ¢ < m
QSr,a(d, e, e, T, R) is satisfied for every I'-C*-algebra A. Let d’ be a positive number

) ; (d,e) /= 1y . as in Lemma 4.18.
. Let d and R be positive numbers with R > r(’i,s such that

such that QI a(d, d', arape, k1 a0e R) is satisfied for every I'-C*-algebra A. Let us prove
the @QS-statement Definition 1.19.

Let y be an element in K" ((AX.cqI')®@B). Since (AX,eql)@B = (AQB) X eql’ and
QSr, aep(d, €, ape, r, R) is satisfied, there exists an element 21 in KK} (Co(Py(T')), A®B)
such that

L*—7a05,R( ape,R,d (Zl)

Y) = pp ARB,*

According to Theorem 4.17 there exists zg in KK (Co(Py(T)), A)RK, (B) such that z; =
w}:‘”g‘fg)(zo). Now if we set ¢’ = agAoe and v’ = k7 4, R, then z = MF’A " ®Zd;< B)(20)

is in K" (AX,0ql)® K, (B) and from Lemma 4.18 we deduce that

*—,OzT&‘/ ’k:T‘F;/ ’l‘/ ( )

= WEA;:F,B,*(QE)'

Let us prove the QI-statement. Let z be an element in K:" (A X,eq I)®K.(B)
such that wZ;F’B’*(a:) = 0 in KfTE’kT’ET((ANTedF)(@B), let 29 be an element in
KKI(Co(Py(T)), A)® K. (B) such that

1SR T e (g (2) = piy P9 Tdxc, () (20)

and let us set

I, Py(T
21 = Wy, Bdi )(ZO)-

According to Lemma 4.18, we have that

OCTaoeakT,aosR7d _
MF,A@B,* (Zl) =0

in KfTQUE’kT’aoaR((Amredf)(@B) and hence since QIr app(d, d', aTae, k1 o0 R) is sat-

isfied, we have qga «(21) = 0 in KK} (Co(Py(T)), A®B). According to Theorem 4.17

. T,P,(T) . . - .
and since w, Bdi is compatible with inclusion

Pd(F) — Pd/ (F)7

we deduce that gq.4 +(20) = 0 in KKF(C’O(Pd/( ), AYRK.(B). Set ¢’ = ape and pick
any positive number 7’ such that v’ > R and v’ > r¢ o,.. Then we have

D @ Ty, gy (3) = (100 @Td (1)) 0 ppy Y @ Tdie (1) (20)

(L
0. O
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5. C*-algebras with finite asymptotic nuclear decomposition and quantitative
Kiinneth formula

In this section, we introduce the concept of finite asymptotic nuclear decomposi-
tion for filtered C*-algebras. For a C*-algebra A in this class, there exist an integer n
such that for any positive number r, we can decompose A, in n steps using controlled
Mayer—Vietoris pairs into locally Bootstrap C*-algebras (see Definition 5.2). We prove
the quantitative Kiinneth formula for C*-algebras with finite asymptotic nuclear decom-
position. We deduce from this that uniform Roe algebras of discrete metric spaces with
bounded geometry and finite asymptotic dimension satisfy the Kiinneth formula.

5.1. Locally bootstrap C*-algebras

Let us first recall the definition of the bootstrap category.

Definition 5.1. The bootstrap category N is the smallest class of nuclear separable
C*-algebras such that

(i) NV contains C;
(ii) N is closed under countable inductive limits;
(iii) N is stable under extension, i.e. for any extension of C*-algebras

0>J—>A—>A/J—0,

if any two of the C*-algebras are in A then so is the third;
(iv) NV is closed under K K-equivalence.

Next we introduce the concept of locally bootstrap C*-algebras.

Definition 5.2. A filtered C*-algebra A with filtration (A, ), is called locally bootstrap if
for all positive number s there exists a positive number r with r > s and a sub-C'*-algebra
A®) of A such that

o A®) belongs to the bootstrap class;
o« A, C AL C A,

Proposition 5.3. There exists a positive number \g with A\g = 1 such that any locally
bootstrap C*-algebra satisfies the quantitative Kinneth formula with rescaling \g.

Proof. Let Ay be as in the second part of Proposition 1.10 and let B be a separable
C*-algebra with K,(B) free abelian. Let us prove first the @QI-statement of Defini-
tion 1.19.
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Let € and s be positive numbers with € < )\O%. Let then r be a positive number with

r 2> ks and let A®) be a C*-algebra such that A() belongs to the bootstrap class and
Ag, s C A() C A,. Then A®) is filtered by (A(S) N Ag)s>0 and the filtration is indeed
finite, i.e. A®) N Ay = A®) for any positive number s’ with s’ > r. Let us consider the
commutative diagram

K (A)0K.(B) —— Ko (A)@K,(B) 210, per Ao K, (B)

wa,s w5=S ws,r
A,B,* A(S) B« A(S) B«

—arekrer

Kfra’kT’Es(A(@B) KfTe’kT’ES(A(s)Q@B) Lx [(;ﬂ)q.e,kf’sr(14(3)(83)7

where the left bottom and left top maps are induced by the inclusion Ay C AS) for any
s' < kres. Let « be an element in K3°(A)® K. (B) such that w’; . (x) = 0 and let then
yin K" (AG)®K,(B) be the image of  under the compositions of the top row. Then

e,r

Als) B *(y) = 0 and hence

w

WA, g 0 (17@Tdi, (5))(y) = 127 0wl 5 (¥) =0,
Since A®) is in the bootstrap class, then
wae g Ki(A)QK,(B) — K. (A®B)
is an isomorphism and hence (15" ®Idg, (5))(y) = 0 in K, (A®))®K.(B). Since K.(B)

is free abelian and according to Proposition 1.10, there exists a positive number 7/, with
r’ > r such that

(7= @Idg, () (y) = 0

in Koo (ANQK, (B). But since A®) has propagation less than r, then (15 %" ®
Idg.(p))(y) = 0 in K297 (A®))@K,(B). Hence composing with the map

K2 (ANQK, (B)— K" (A)9 K, (B)
induced by the inclusion A®) < A, we get then that
(1" @ldg, () (x) = 0.
Let us prove now the Q.S-statement of Definition 1.19. Let s and e be positive numbers
with € < m, let r be a positive number and let A®) be a C*-algebra such that A®*)

belongs to the bootstrap class and Ay C A(B) C A,. Let z be an element in some
K°(A®B) and let 2’ in K;°(A®)®B) be the image of z under the map
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K5*(A®B) — K*(A®®B)

induced by the inclusion A, € A®). Since A®*) is in the bootstrap class, there exists ¥ in
K (A®)®K,(B) such that 15°(2") = wy p.(y) in K.(A®®B). Since any element of
A(®) has propagation less than r, there exists an element z in Kf’T(A(S)®B) such that
(15" ®Idk, (5))(x) =y in K. (A®))®K,.(B). Since

arekrer e,r _ e,r
Lx OWAE) By — WA® B x © (5 ®IdK*(B))7
—,ar,kr cm .
we get that w7 ) and ¢y " (2') have same image under the ma
A(s) B«

ke ook (A B)— K, (A®®B).

Hence, according to Proposition 1.10, there exists a positive number ', with v’ > k. .7,
such that

—Xoare,r &r _ = Xoare,r [t
ly Wi g (T) =L ().
But since AS,S) = AS,) for all " > r we get that
—Aoarekr AgeT g1 _ =xoare ke ageT g
* WA(S)’B,*(CC) = lx (Z )

Composing with the map
Kfr)\oi,kr,sr(A(s)®B>_>Kfr)\0€7kr,sT<A®B)

induced by the inclusion A®) < A, we get then that

Xo&,” (1N _  —sAoQrEkr xgeT
A,B,*(aj ) Uk (Z),
where 2’ is the image of L:’)\OE’T@ICZK*(B)(SC) under the composition

K257 (AP @B)— K27 (A®B)
induced by the inclusion A®) — A. O

We will need a uniform version of Proposition 5.3

Definition 5.4. A family of filtered C*-algebras (A;);en is uniformly locally bootstrap if
for all integer ¢ and for all positive number s, there exist a positive number r with r > s
and a sub-C*-algebra AES) of A; such that for all integer i,
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. Ags) belongs to the bootstrap class;
- A CAYCA,

(A; being filtered by (Air)r>0).
Proposition 5.3 can be extended to uniformly locally bootstrap families of C*-algebras.

Proposition 5.5. There exists a positive number Ay with A\g > 1 such that any uni-
formly locally bootstrap family (A;)ien of filtered C*-algebras and any C*-algebra B with
K. (B)-free abelian then

Q4,8 : Ki(Ai) QKL (B)— K. (Ai®B))ien
is a uniform family of quantitative isomorphisms with rescaling Ay
5.2. Finite asymptotic nuclear decomposition

Let us define C}?;)n 4 as the class of uniformly locally bootstrap families of C"*-algebras.

Then we define by induction C}?ﬂd as the class of family A for which there exists a
positive number ¢ such that for every positive number r, the following is satisfied:

there exists a family A®) in CJ(CZ;;) and for any C*-algebra A in A" an r-controlled
nuclear Mayer—Vietoris pair (A1, Ag, Aa,, Aa,) with coercitivity ¢ for A with Aa,, Aa,
and AA1 N AAQ in A(2).

Define then Cyqpnq as the class of families A such that A is in C](cz)n o for some integer n.
Theorem 4.12 obviously admits a uniform version for families and hence, together with
Proposition 5.3, we obtain the following result.

Proposition 5.6. Let A be a family in Cyang. Then there exists a positive number X 4 with
Aa = 1 such that for any C*-algebra B with K.(B) free abelian, then

(QA,B,* K (A)®K* (B)—>]C* (A®B))A€.A

is a uniform family of quantitative isomorphisms with rescaling A4 (indeed A only de-
pends on n such that A lies in C}Zld.

Definition 5.7. A filtered C*-algebra A has finite asymptotic nuclear decomposition if
the single family {A} is in Cqna.

As a consequence of Proposition 5.6, we obtain

Theorem 5.8. If A is a filtered C*-algebra with finite asymptotic nuclear decomposition,
then the quantitative Kiinneth formula holds for A.
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Corollary 5.9. If A is a filtered C*-algebra with finite asymptotic nuclear decomposition,
then A satisfies the Kiinneth formula in K-theory, i.e. there exists a natural short exact
sequence

0— K.(A)®K.(B)— K.(A® B) = Tor(K.(A),K.(B)) = 0
for any other C*-algebra B.

Typical examples of family of filtered C*-algebra in Cyurnq are provided by spaces with
asymptotic dimension. Recall that for a metric space X and a positive number 7, a cover
(U;)ien has r-multiplicity n if any ball of radius r in X intersects at most n elements in
(Us)ien.

Definition 5.10. Let X be a proper discrete metric space. Then ¥ has finite asymptotic
dimension if there exists an integer m such that for any positive number r, there exists
a uniformly bounded cover (U;);en with finite r-multiplicity m -+ 1. The smallest integer
that satisfies this condition is called the asymptotic dimension of X.

Recall the following characterization of finite asymptotic dimension.

Proposition 5.11. Let 3 be a proper discrete metric space and let m be an integer. Then
the following assertions are equivalent:

(i) X has asymptotic dimension m;
(ii) For every positive number r there exist m + 1 subsets XM XD of B such
that

e U=XWuy..  .uxm+),

o fori=1,...m+1, then X is the r-disjoint union of a family (X,gi))keN
of subsets of X with uniformly bounded diameter, i.e. X = UkeNX,ii),
di(Xlgi),Xl(i)) > r if k # | and there exists a positive number C such
diam X,Ei) < C for all integer k.

Example 5.12. If T' is a tree, then T has asymptotic dimension equal to 1.
Let 3 be a proper metric space with asymptotic dimension m, then there exists a

sequence of positive numbers (Ry)ren and for any integer k a cover (Ui(k))ieN of ¥ such
that

e Rjpi1 > 4Ry for every integer k;
. Ui(k) has diameter less than Ry, for every integer ¢ and k;

o for any integer k, the Rj-multiplicity of (Ui(kﬂ))ieN ism+ 1.

The sequence (Ry)ren is called the m-growth of X.
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Lemma 5.13. Let m be an integer, let (Ri)ren be a sequence of positive numbers such
that Ryy1 > 4Ry for every integer k. Let (3;)ien be a family of proper metric spaces
with asymptotic dimension m and m-growth (Ry)ren. Then for any family (A;)ier in
the bootstrap category, the family (A;@# (02(%;)))ien belongs to Cand.

Proof. Let us equip ¥ = ]_L-eN Y; with a distance ds; such that the inclusion »; < X are
isometric for all integer ¢ and ds(3;, X;) < ¢+ j for all integers ¢ and j with ¢ # j. Then
¥ has asymptotic dimension m and hence according to [3], the metric space ¥ embeds
uniformly in a product of trees H?:1 T;. Let d be the metric on X = H;’:l T; and d;
the distance on X; when 4 runs through integers. Then there exist two non-decreasing
functions py : [0,4+00) — [0, +00) and for every integer i a map f; : 3; — [[;_, 7} such
that

° limr¢—>+oo Pi(T> = +00;
o p_(di(z,y)) < d(fi(z), fi(y)) < p+(di(z,y)) for all integer ¢ and all x and y in %;.

If n =1, then X is a tree and then the result holds in view of Examples 2.15, 2.20 and
5.12. A straightforward induction shows that if ¥ embeds uniformly in a product of n
trees, then (4; @ ((*(%;)))ien is in Ciang. O

In order to study the structure of Roe algebras we need to add some infinite product
decompositions in the quantitative decomposition process.

Definition 5.14. Let (A(®));c; be a family of filtered C*-algebras. Then the uniform prod-
ucts of (A®);e;, denoted by [];-; A®) is the closure of

{(zi)ier € HAS“, r >0}

i€l

in Hie[ A equipped with the supremium norm. The uniform product HZLH A is then
obviously a filtered C*-algebra.

It is proved in [10, Lemma 1.11] that the quantitative K-theory of a uniform product
of a stable filtered C*-algebra is computable in term of the quantitative K-theory of the
algebras of the family.

Definition 5.15. A C*-algebra is said to be of finite asymptotic nuclear w-decomposition
if there exists a positive number ¢ and an integer n such that for any positive num-
ber r, there exists a r-controlled Mayer—Vietoris pair (A1, Ag, Aa,, Aa,) that satisfies
the following.

There exist three families of filtered C*-algebras (B;(cl))keN , (B,(f))keN and (B,gl’Q))keN
in Cfqng such that Aa,, Aa, and Aa, N Aa, are respectively isomorphic as filtered
C*-algebras to [[¥ey BL, [[tey BY and [} oy B2,
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If the C*-algebras in the families (B,(fl))keN , (B,(f))keN and (B,(fl’2))k€N are stable, then
A is said to be of stably asymptotic finite nuclear m-decomposition.

Proposition 5.16. If > is a proper metric set of bounded geometry and with finite
asymptotic dimension. Then the uniform Roe algebra C¥(X) has asymptotic finite nu-
clear w-decomposition and the Roe algebra C*(X) has stably asymptotic finite nuclear
w-decomposition.

Proof. Let us prove de result for C*(X), the proof for C*(X) being similar. Let us fix zg
in ¥ and let r be a positive number. Let us fix s and R two positive numbers such that
10r < 2s < R. Set for k integer

X" = {& € ¥ such that 2kR < d(x,z0) < (2k + 1)R}
and
= {x € ¥ such that (2k + 1)R < d(z,z0) < (2k + 2)R}.

Then ¥ = X(MWUX® and X@ is for i = 1,2 the R-disjoint union of the family (X;E;i))keN-
Let A; be for i = 1,2 the set of element in CY(X) with support in

{(z,y) € ¥ x ¥ such that d(z,y) <r and z € XV}

Since Y has bounded geometry, then with notations of Example 2.15, there exists a
controlled Mayer—Vietoris (A, Ag, Aa,, Aa,) of order r and coercitivity 1 such that

Aa, = [T (x5
keN
for i = 1,2 and
AA1 ﬂAAQ H K £2 X(Z )((Z ))
(k,l)eN?

The result is now a consequence of Lemma 5.13. O

Proceeding similarly we can prove the quantitative Kiinneth formula for uniform Roe
algebras of spaces with finite asymptotic dimension.

Theorem 5.17. If X is a discrete proper metric set of bounded geometry and with finite
asymptotic dimension. Then the uniform Roe algebra C¥(X) satisfies the quantitative
Kiinneth formula for some rescaling .
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