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0. Introduction

The classical Künneth formula computes the (co)homology groups of the product 

of two topological spaces X and Y in terms of the (co)homology groups of X and Y . 

By Gelfand’s theorem, the category of locally compact spaces being naturally equiv-

alent to the category of commutative C∗-algebra by considering continuous functions 

vanishing at infinity, it is therefore natural to consider C∗-algebras as functions alge-

bras on noncommutative spaces. In this setting, cohomology is substituted by K-theory 

for C∗-algebras. K-theory for C∗-algebras has found important applications in topol-

ogy, geometry and mathematical physics. The Cartesian product for topological spaces 

corresponds to the (minimal) tensor product in the category of C∗-algebras. The Kün-

neth formula in K-theory computes the K-theory of the tensor product A⊗B of two 

C∗-algebras A and B in terms of the K-theory of A and B. In an important article 

[12], C. Schochet proved the Künneth formula in K-theory when one of the C∗-algebra 

is in the so called Bootstrap class. Other examples of C∗-algebras for which the Kün-

neth formula holds arise from crossed-product by groups that satisfy the Baum–Connes 

conjecture with coefficients [1]. If a given C∗-algebra A satisfies the Künneth formula in 

K-theory together with any C∗-algebra B, then A is exact in K-theory, i.e. every exten-
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sion of C∗-algebra gives rise by tensorization to a six-term exact sequence in K-theory [1, 

Remark 4.3]. In [11], inspired by [6], N. Ozawa provided a counterexample for exactness 

in K-theory and hence to the Künneth formula.

The aim of this paper is to develop techniques of quantitative operator K-theory to 

compute K-theory of C∗-algebras. In particular, we apply these techniques to provide 

new examples of C∗-algebras that satisfy the Künneth formula in K-theory. The concept 

of quantitative operator K-theory was first introduced in [14] and was set-up in full 

generality for filtered C∗-algebras in [9]. A standard way to compute (co)homology groups 

is by cutting and pasting using Mayer–Vietoris long exact sequence in (co)homology. 

In the category of C∗-algebras, the usual Mayer–Vietoris six terms exact sequence in 

K-theory requires the existence of non trivial ideals. But for simple C∗-algebras, non 

trivial ideal does not exist. The full power of quantitative K-theory is that a controlled 

version of the Mayer–Vietoris six terms exact sequence for a C∗-algebra A filtered by 

(Ar)r>0 can be stated, only involving neighborhood algebras of a suitable decomposition 

of Ar into closed linear subspaces Δ1 and Δ2. This neighborhood algebras can be viewed 

as the “ideal generated up to a certain order” by Δ1 and Δ2.

We introduce a concept of finite asymptotic nuclear decomposition for filtered 

C∗-algebras. This C∗-algebraic concept can be viewed as the noncommutative ana-

logue of metric spaces with finite asymptotic dimension. We establish an algorithm for 

computing K-theory of C∗-algebras with finite asymptotic nuclear decomposition. As a 

consequence, we prove the Künneth formula for C∗-algebras in this class. Essentially, 

the assumption of finite asymptotic nuclear dimension allows for some integer n to de-

compose at order r a C∗-algebra a A in n steps under controlled Mayer–Vietoris into 

C∗-algebras which are locally in the Bootstrap class. We can then compute inductively 

quantitative K-theory for C∗-algebras in this class using the controlled Mayer–Vietoris 

exact sequence. The K-theory is computed by taking limit of quantitative K-theory 

when the order goes to infinity.

The paper is organized as follows. In Section 1, we give from [9,10] an overview of 

quantitative K-theory. In Section 2 we introduce the concept of a controlled Mayer–

Vietoris pair. This is the key ingredient to define later on the class of C∗-algebras with 

finite asymptotic nuclear decomposition. Typical examples of these objects arise from 

Roe algebras and more generally from C∗-algebras of étale groupoïds. In Section 3 is 

stated for a controlled Mayer–Vietoris pair the controlled six term exact sequence. We 

apply this sequence to K-contractibility of C∗-algebra. Section 4 is devoted to the quan-

titative Künneth formula, which implies the Künneth formula in K-theory. We show 

that examples of filtered C∗-algebras for which the quantitative Künneth formula holds 

are provided by crossed product of C∗-algebras by finitely generated groups satisfying 

the Baum–Connes conjecture with coefficients. The main result of these section in that 

the quantitative Künneth formula is stable under decomposition by controlled Mayer–

Vietoris pair. In Section 5 we introduce the class of C∗-algebras with finite asymptotic 

nuclear decomposition and we show that these C∗-algebras satisfy the quantitative Kün-

neth formula. As a consequence, we show that the uniform Roe algebra of a discrete 
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metric space with bounded geometry and with finite asymptotic dimension satisfies the 

Künneth formula in K-theory.

The authors want to thank the referees for their very helpful comments.

1. Overview of quantitative K-theory

In this section, we recall the basic concepts of quantitative K-theory for filtered 

C∗-algebras and collect the main results of [9] concerning quantitative K-theory that 

we shall use throughout this paper. Roughly speaking, quantitative K-theory is the 

abelian groups of K-theory elements with a prescribed propagation and K-theory can 

be obtained as an inductive limit of quantitative K-groups (see Corollary 1.11). The key 

point is that quantitative K-theory is in numerous geometric situations more computable 

that usual K-theory. The structure of filtered C∗-algebras allows us to talk about the 

scale of elements in the C∗-algebras.

Definition 1.1. A filtered C∗-algebra A is a C∗-algebra equipped with a family (Ar)r>0

of closed linear subspaces indexed by positive numbers such that:

• Ar ⊂ Ar′ if r � r′;

• Ar is stable by involution;

• Ar · Ar′ ⊂ Ar+r′ ;

• the subalgebra 
⋃

r>0

Ar is dense in A.

If A is unital, we also require that the identity 1 is an element of Ar for every positive 

number r. The elements of Ar are said to have propagation r.

Many examples of filtered C∗-algebras arise from geometry. Typical examples are 

provided by Roe algebras, group and crossed-product algebra [9], groupoid algebras 

(see Section 2.4) and finitely generated C∗-algebras. Indeed all filtered C∗-algebras are 

associated with a length function: let A be a C∗-algebra and assume that there exists a 

function � : A → R+ ∪ {∞} such that

• �(0) = 0;

• �(x + y) � max{�(x), �(y)} for all x and y in A;

• �(x∗) = �(x) for all x in A;

• �(λx) = �(x) for all x in A and λ in C \ {0};

• �(xy) � �(x) + �(y) for all x and y in A;

• the set {x ∈ A such that �(x) � r} is closed in A for all positive numbers r;

• the disjoint union 
⋃

r>0{x ∈ A such that �(x) � r} is dense in A.

If we set Ar = {x ∈ A such that �(x) � r}, then A is filtered by (Ar)r>0. It is straight-

forward to show that the category of filtered C∗-algebras is equivalent to the category of 
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C∗-algebras equipped with a length function. For this reason, a C∗-algebra with a lengh 

function (or a filtration) is called a geometric C∗-algebra. In essence, we study geometric 

C∗-algebras just as group theorists study geometric group theory.

Let A and A′ be respectively C∗-algebras filtered by (Ar)r>0 and (A′
r)r>0. A homo-

morphism of C∗ -algebras φ : A−→A′ is a filtered homomorphism (or a homomorphism 

of filtered C∗-algebras) if φ(Ar) ⊂ A′
r for any positive number r. If A is not unital, let 

us denote by Ã its unitarization, i.e.,

Ã = {(x, λ); x ∈ A , λ ∈ C}

with the product

(x, λ)(x′, λ′) = (xx′ + λx′ + λ′x, λλ′)

for all (x, λ) and (x′, λ′) in Ã. Then Ã is filtered with

Ãr = {(x, λ); x ∈ Ar , λ ∈ C}.

We also define ρA : Ã → C; (x, λ) �→ λ.

1.1. Definition of quantitative K-theory

Let A be a unital filtered C∗-algebra. For any positive numbers r and ε with ε < 1/4, 

we call

• an element u in A an ε-r-unitary if u belongs to Ar, ‖u∗·u −1‖ < ε and ‖u ·u∗−1‖ < ε. 

The set of ε-r-unitaries on A will be denoted by Uε,r(A);

• an element p in A an ε-r-projection if p belongs to Ar, p = p∗ and ‖p2 − p‖ < ε. The 

set of ε-r-projections on A will be denoted by Pε,r(A).

Then ε is the called the control and r is called the propagation of the ε-r-projection or of 

the ε-r-unitary. Notice that an ε-r-unitary is invertible, and that if p is an ε-r-projection 

in A, then it has a spectral gap around 1/2 and then gives rise by functional calculus to 

a projection κ0(p) in A such that ‖p − κ0(p)‖ < 2ε.

Recall the following from [9, Lemma 1.7] the following result that will be used quite 

extensively throughout the paper.

Lemma 1.2. Let A be a C∗-algebra filtered by (Ar)r>0.

(i) If p is an ε-r-projection in A and q is a self-adjoint element of Ar such that ‖p −q‖ <
ε−‖p2−p‖

4 , then q is an ε-r-projection. In particular, if p is an ε-r-projection in A and 

if q is a self-adjoint element in Ar such that ‖p −q‖ < ε, then q is a 5ε-r-projection 

in A and p and q are connected by a homotopy of 5ε-r-projections.
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(ii) If A is unital and if u is an ε-r-unitary and v is an element of Ar such that 

‖u − v‖ < ε−‖u∗u−1‖
3 , then v is an ε-r-unitary. In particular, if u is an ε-r-unitary 

and v is an element of Ar such that ‖u − v‖ < ε, then v is an 4ε-r-unitary in A

and u and v are connected by a homotopy of 4ε-r-unitaries.

(iii) If p is a projection in A and q is a self-adjoint element of Ar such that ‖p −q‖ < ε
4 , 

then q is an ε-r-projection.

(iv) If A is unital and if u is a unitary in A and v is an element of Ar such that 

‖u − v‖ < ε
3 , then v is an ε-r-unitary.

Let us also mention the following result concerning homotopy up to stabilization of 

products of ε-r-unitaries [9, Corollary 1.8].

Lemma 1.3. Let ε and r be positive numbers with ε < 1/12 and let A be a unital filtered 

C∗-algebra.

(i) Let u and v be ε-r-unitaries in A, then diag(u, v) and diag(uv, 1) are homotopic as 

3ε-2r-unitaries in M2(A);

(ii) Let u be an ε-r-unitary in A, then diag(u, u∗) and I2 are homotopic as 3ε-2r-unita-

ries in M2(A).

For purpose of rescaling the control and the propagation of an ε-r-projection or of an 

ε-r-unitary, we introduce the following concept of control pair.

Definition 1.4. A control pair is a pair (λ, h), where

• λ is a positive number with λ > 1;

• h : (0, 1
4λ ) → (1, +∞); ε �→ hε is a map such that there exists a non-increasing map 

g : (0, 1
4λ ) → (1, +∞), with h � g.

The set of control pairs is equipped with a partial order: (λ, h) � (λ′, h′) if λ � λ′

and hε � h′
ε for all ε in (0, 1

4λ′ ).

Recall the following from [9, Corollary 1.31].

Proposition 1.5. There exists a control pair (α, k) such that the following holds:

For any unital filtered C∗-algebra A, any positive numbers ε and r with ε < 1
4α and 

any homotopic ε-r-projections q0 and q1 in Pε,r
n (A), then there is for some integers k

and l an αε-kεr-unitary W in Mn+k+l(A) such that

‖ diag(q0, Ik, 0l) − W diag(q1, Ik, 0l)W
∗‖ < αε.

For any n integer, we set Uε,r
n (A) = Uε,r(Mn(A)) and Pε,r

n (A) = Pε,r(Mn(A)). For 

any unital filtered C∗-algebra A, any positive numbers ε and r and any positive integer n, 

we consider inclusions
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Pε,r
n (A) ↪→ Pε,r

n+1(A); p �→
(

p 0
0 0

)

and

Uε,r
n (A) ↪→ Uε,r

n+1(A); u �→
(

u 0
0 1

)
.

This allows us to define

Uε,r
∞ (A) =

⋃

n∈N

Uε,r
n (A)

and

Pε,r
∞ (A) =

⋃

n∈N

Pε,r
n (A).

For a unital filtered C∗-algebra A, we define the following equivalence relations on 

Pε,r
∞ (A) × N and on Uε,r

∞ (A):

• if p and q are elements of Pε,r
∞ (A), l and l′ are positive integers, (p, l) ∼ (q, l′) if 

there exists a positive integer k and an element h of Pε,r
∞ (A[0, 1]) such that h(0) =

diag(p, Ik+l′) and h(1) = diag(q, Ik+l);

• if u and v are elements of Uε,r
∞ (A), u ∼ v if there exists an element h of U3ε,2r

∞ (A[0, 1])

such that h(0) = u and h(1) = v.

If p is an element of Pε,r
∞ (A) and l is an integer, we denote by [p, l]ε,r the equivalence 

class of (p, l) modulo ∼ and if u is an element of Uε,r
∞ (A) we denote by [u]ε,r its equivalence 

class modulo ∼.

Definition 1.6. Let r and ε be positive numbers with ε < 1/4. We define:

(i) Kε,r
0 (A) = Pε,r

∞ (A) × N/ ∼ for A unital and

Kε,r
0 (A) = {[p, l]ε,r ∈ Pε,r(Ã) × N/ ∼ such that rank κ0(ρA(p)) = l}

for A non unital (κ0(ρA(p)) being the spectral projection associated to ρA(p));

(ii) Kε,r
1 (A) = Uε,r

∞ (Ã)/ ∼, with Ã = A if A is already unital.

Then Kε,r
0 (A) turns to be an abelian group [9, Lemma 1.15], where

[p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r

for any [p, l]ε,r and [p′, l′]ε,r in Kε,r
0 (A). According to Corollary 1.3, Kε,r

1 (A) is equipped 

with a structure of abelian group such that
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[u]ε,r + [u′]ε,r = [diag(u, v)]ε,r,

for any [u]ε,r and [u′]ε,r in Kε,r
1 (A).

Recall from [9, Corollaries 1.19 and 1.21] that for any positive numbers r and ε with 

ε < 1/4, then the map

Kε,r
0 (C) → Z; [p, l]ε,r �→ rank κ0(p) − l

is an isomorphism and Kε,r
1 (C) = {0}.

We have for any filtered C∗-algebra A and any positive numbers r, r′, ε and ε′ with 

ε � ε′ < 1/4 and r � r′ natural group homomorphisms called the structure maps:

• ιε,r
0 : Kε,r

0 (A)−→K0(A); [p, l]ε,r �→ [κ0(p)] − [Il] (where κ0(p) is the spectral projec-

tion associated to p);

• ιε,r
1 : Kε,r

1 (A)−→K1(A); [u]ε,r �→ [u];

• ιε,r
∗ = ιε,r

0 ⊕ ιε,r
1 ;

• ιε,ε′,r,r′

0 : Kε,r
0 (A)−→Kε′,r′

0 (A); [p, l]ε,r �→ [p, l]ε′,r′ ;

• ιε,ε′,r,r′

1 : Kε,r
1 (A)−→Kε′,r′

1 (A); [u]ε,r �→ [u]ε′,r′ ;

• ιε,ε′,r,r′

∗ = ιε,ε′,r,r′

0 ⊕ ιε,ε′,r,r′

1 .

If some of the indices r, r′ or ε, ε′ are equal, we shall not repeat them in ιε,ε′,r,r′

∗ . The 

structure maps satisfy the obvious compatibilitity rules with respect to compositions. 

We have in the formalism of quantitative K-theory the analogue of the standard form 

for a K-theory class.

Lemma 1.7. Let A be a non unital filtered C∗-algebra. Let ε and s be positive numbers 

with ε < 1
36 . Then for any x in Kε,s

0 (A), there exist

• two integers k and n with k � n;

• a 9ε-s-projection q in Mn(Ã)

such that ρA(q) = diag(Ik, 0) and x = [q, k]9ε,s in K9ε,s
0 (A).

Proof. Let x be an element in Kε,s
0 (A), let p be an ε-s-projection in some Mn(Ã) and let k

be an integer with rank κ0(ρA(q)) = k and such that x = [p, k]ε,s. We can assume without 

loss of generality that k ≤ n. Let U be a unitary in Mn(C) such that U ·κ0(ρA(q)) ·U∗ =

diag(Ik, 0). Since U is homotopic to In as a unitary of Mn(C), we see that U · p · U∗ and 

p are homotopic as ε-s-projections in Mn(Ã). Set then

q′ = U · q · U∗ + diag(Ik, 0) − U · ρA(q) · U∗.

Since
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‖q′ − U · q · U∗‖ = ‖U · (κ0(ρA(p)) − ρA(p)) · U∗‖

= ‖κ0(ρA(p)) − ρA(p)‖

< 2ε,

we get according to Lemma 1.2 that q and q′ are homotopic 9ε-s-projections in Mn(Ã). 

Since ρA(q′) = diag(Ik, 0), we get the result. �

We have a similar result in the odd case.

Lemma 1.8. Let A be a non unital C∗-algebra filtered by (As)s>0. Let ε and s be positive 

numbers with ε < 1
84 .

(i) for any x in Kε,s
1 (A), there exists an 21ε-s-unitary u in Mn(Ã), such that ρA(u) =

In and ιε,21ε,s
1 (x) = [u]21ε,s in K21ε,s

1 (A);

(ii) if u and v are two ε-r-unitaries in Mn(Ã) such that ρA(u) = ρA(v) = In and 

[u]ε,s = [v]ε,s in Kε,r
1 (A), then there exists an integer k and a homotopy (wt)t∈[0,1] of 

21ε-s-unitaries of Mn+k(Ã) between diag(u, Ik) and diag(v, Ik) such that ρA(wt) =

In+k for every t in [0, 1].

Proof. Let v be an ε-r-unitary in some Mn(Ã) such that x = [v]ε,r. According to [9, Re-

mark 1.4], we have that ‖ρA(v)−1 −ρA(v∗)‖ < 2ε. In particular, ρA(v)−1 is a 7ε-runitary 

and ρA(v)−1 is homotopic to In as a 7ε-s-unitary of Mn(C), where C is provided with 

the trivial filtration [9, Lemma 1.20]. Hence, if we set u = ρA(v)−1v, then u is a 21ε-s

unitary of Mn(Ã) such that ρA(u) = In and u and v are homotopic as 21ε-s unitaries of 

Mn(Ã). Hence we have the equality

ιε,21ε,s
1 (x) = [v]21ε,s = [u]21ε,s. �

Let φ : A → B be a homomorphism of filtered C∗-algebras. Then φ preserves 

ε-r-projections and ε-r-unitaries and hence φ induces for any positive number r and 

any ε ∈ (0, 1/4) a group homomorphism

φε,r
∗ : Kε,r

∗ (A) −→ Kε,r
∗ (B).

Moreover quantitative K-theory is homotopy invariant with respect to homotopies that 

preserves propagation [9, Lemma 1.26]. There is also a quantitative version of Morita 

equivalence [9, Proposition 1.28].

Proposition 1.9. If A is a filtered algebra and H is a separable Hilbert space, then the 

homomorphism
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A → K (H ) ⊗ A; a �→

⎛
⎝

a
0

. . .

⎞
⎠

induces a (Z2-graded) group isomorphism (the Morita equivalence)

Mε,r
A : Kε,r

∗ (A) → Kε,r
∗ (K (H ) ⊗ A)

for any positive number r and any ε ∈ (0, 1/4).

The following observation establishes a connection between quantitative K-theory and 

classical K-theory (see [9, Remark 1.17]).

Proposition 1.10.

(i) Let A be a filtered C∗-algebra. For any positive number ε with ε < 1
4 and any 

element y of K∗(A), there exists a positive number r and an element x of Kε,r
∗ (A)

such that ιε,r
∗ (x) = y;

(ii) There exists a positive number λ0 such that for any C∗-algebra A, any positive 

numbers ε and r with ε < 1
4λ0

and any element x of Kε,r
∗ (A) for which ι∗ε, r(x) = 0

in K∗(A), then there exists a positive number r′ with r′ � r such that ιε,λ0ε,r,r′

∗ (x) =

0 in Kλε,r′

∗ (A).

As a consequence, we get the following approximation property.

Corollary 1.11. Let λ0 be as in Proposition 1.10. Then for any positive number ε with 

ε < 1
4λ0

and for any filtered C∗-algebra A, then

K∗(A) = lim
r

ιε,λ0ε,r
∗ (Kε,r

∗ (A)).

1.2. Quantitative objects

In order to study the functorial properties of quantitative K-theory, we introduced in 

[10] the concept of quantitative object.

Definition 1.12. A quantitative object is a family O = (Oε,r)0<ε<1/4,r>0 of abelian 

groups, together with a family of group homomorphisms

ιε,ε′,r,r′

O : Oε,r → Oε′,r′

for 0 < ε � ε′ < 1/4 and 0 < r ≤ r′ called the structure maps such that

• ιε,ε,r,r
O = IdOε,r for any 0 < ε < 1/4 and r > 0;

• ιε′,ε′′,r′,r′′

O ◦ ιε,ε′,r,r′

O = ιε,ε′′,r,r′′

O for any 0 < ε � ε′ � ε′′ < 1/4 and 0 < r � r′ � r′′.
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Example 1.13. Our prominent example will be of course quantitative K-theory

K∗(A) = (Kε,r
∗ (A))0<ε<1/4,r>0 of a filtered C∗-algebra A with structure maps ιε,ε′,r,r′

∗ :

Kε,r
∗ (A)−→Kε′,r′

∗ (A) for 0 < ε � ε′ < 1/4 and 0 < r � r′.

1.3. Controlled morphisms

In this subsection, we recall from [9, Section 2] the relevant notion of morphisms in 

the framework of quantitative objects.

Definition 1.14. Let (λ, h) be a control pair and let O = (Oε,r)0<ε<1/4,r>0 and O′ =

(O′ ε,r)0<ε<1/4,r>0 be quantitative objects. A (λ, h)-controlled morphism

F : O → O′

is a family F = (F ε,r)0<ε< 1
4λ ,r>0 of groups homomorphisms

F ε,r : Oε,r → O′ λε,hεr

such that for any positive numbers ε, ε′, r and r′ with 0 < ε � ε′ < 1
4λ , r � r′ and 

hεr � hε′r′, we have

F ε′,r′ ◦ ιε,ε′,r,r′

O = ι
λε,λε′,hεr,hε′ r′

O′ ◦ F ε,r.

When it is not necessary to specify the control pair, we will just say that F is a 

controlled morphism. In order to avoid overloading subscripts, from now on we shall not 

specify the range of ε and r in the quantitative objects and quantitative morphisms. 

Indeed, for a quantitative morphism, the range of ε is completely determined by the 

control pair. In the same way, to avoid overloading upperscript in the structure maps, 

we shall write ι−,ε′,r′

O for ιε,ε′,r,r′

O when ε and r in the source are implicit and ιε,r,−
O for 

ιε,ε′,r,r′

O when ε′ and r′ in the range are implicit. If both source and range are implicit 

we shall write ι−,−
O

If O = (Oε,r) is a quantitative object, let us define the identity (1, 1)-controlled 

morphism

IdO = (IdOε,r ) : O → O.

Recall that if A and B are filtered C∗-algebras and if F : K∗(A) → K∗(B) is a 

(λ, h)-controlled morphism, then F induces a morphism F : K∗(A) → K∗(B) uniquely 

defined by ιε,r
∗ ◦ F ε,r = F ◦ ιε,r

∗ .

In some situation, as for instance control boundary maps of controlled Mayer–Vietoris 

pair (see Section 3.2), we deal with family F ε,r : Oε,r → O′ λε,hεr of group morphism 

defined indeed only up to a certain order.
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Definition 1.15. Let (λ, h) be a control pair, let O = (Oε,s) and O′ = (O′ ε,s) be quanti-

tative objects and let r be a positive number. A (λ, h)-controlled morphism of order r

F : O → O′

is a family F = (F ε,s)0<ε< 1
4λ ,0<s< r

hε
of groups homomorphisms

F ε,s : Oε,s → O′ λε,hεs

such that for any positive numbers ε, ε′, s and s′ with 0 < ε � ε′ < 1
4λ , s � s′ < r and 

hεs � hε′s′, we have

F ε′,s′ ◦ ιε,s,−
O = ι

−,λε′,hε′ s′

O′ ◦ F ε,s.

As for general controlled morphism, we shall not specify if not necessary the range of 

ε and s as there are uniquely determined by the underlying control pair and order.

If (λ, h) and (λ′, h′) are two control pairs, define

h ∗ h′ : (0,
1

4λλ′ ) → (1, +∞); ε �→ hλ′εh′
ε.

Then (λλ′, h ∗h′) is again a control pair. Let O = (Oε,r), O′ = (O′ ε,r) and O′′ = (O′′ ε,r)

be quantitative objects, let

F = (F ε,r) : O → O′

be a (αF , kF )-controlled morphism, and let

G = (Gε,r) : O′ → O′′

be a (αG , kG)-controlled morphism. Then G ◦ F : O → O′′ is for (α, k) = (αGαF , kG ∗ kF )

the (α, k)-controlled morphism defined by the family

(GαF ε,kF,εr ◦ F ε,r : Oε,r → O′′αε,kr
). (1)

Notice that if let F : O → O′ and G : O′ → O′′ are respectively a (αF , kF )-controlled 

morphism and (αG , kG)-controlled morphism of order r, then equation (1) defines a 

(αGαF , kG ∗ kF )-controlled morphism G ◦ F : O → O′′ of order r.

Notation 1.16. Let (λ, h) be a control pair and let O = (Oε,r) and O′ = (O′ ε,r) be 

quantitative objects and let F = (F ε,r) : O → O′ (resp. G = (Gε,r) : O → O′) be 

a (αF , kF )-controlled morphism (resp. a (αG , kG)-controlled morphism). Then we write 

F (λ,h)∼ G if
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• (αF , kF ) � (λ, h) and (αG , kG) � (λ, h);

• for every ε in (0, 1
4λ ) and r > 0, then

ι−,λε,hεr
O′ ◦ F ε,r = ι−,λε,hεr

O′ ◦ Gε,r.

Definition 1.17. Let F : O1 → O′
1, F : O2 → O′

2, G : O1 → O2 and G′ : O′
1 → O′

2 be 

controlled morphisms and let (λ, h) be a control pair. Then the diagram (or the square)

O1
G−−−−→ O2

F
⏐⏐�

⏐⏐�F ′

O′
1

G′

−−−−→ O′
2

is called (λ, h)-commutative (or (λ, h)-commutes) if G′ ◦ F (λ,h)∼ F ′ ◦ G. The definition 

of (λ, h)-commutative diagram can be obviously extended to the setting of controlled 

morphism of order r.

Recall from [10] the definition of controlled isomorphisms.

Definition 1.18. Let (λ, h) be a control pair, and let F : O → O′ be a (αF , kF )-controlled 

morphism with (αF , kF ) � (λ, h). F is called (λ, h)-invertible or a (λ, h)-isomorphism if 

there exists a controlled morphism G : O′ → O such that G ◦ F (λ,h)∼ IdO and F ◦ G (λ,h)∼
IdO′ . The controlled morphism G is called a (λ, h)-inverse for G.

In particular, if A and B are filtered C∗-algebras and if G : K∗(A) → K∗(B) is a 

(λ, h)-isomorphism, then the induced morphism G : K∗(A) → K∗(B) is an isomorphism 

and its inverse is induced by a controlled morphism (indeed induced by any (λ, h)-inverse 

for F).

In order to state in Section 4 the quantitative Künneth formula, we will need the 

more general notion of quantitative isomorphism. Let O1 = (Oε,s
1 ) and O2 = (Oε,s

2 ) be 

quantitative objects. For a (α, h)-controlled morphism

F = (F ε,s) : O1 → O2,

consider the following statements:

QIF (ε, ε′, s, s′) we assume that 0 < ε � ε′ < 1
4α and 0 < s � s′. If x is an element in 

Oε,s
1 such that F ε,s(x) = 0 in Oαε,hεs

2 , then ι−,ε′,s′

O1
(x) = 0 in Oε′,s′

1 ;

QSF (ε, ε′, s, s′) we assume that 0 < ε � ε′ < 1
4α and 0 < s � hε′s′. If y is an element in 

Oε,s
2 , there exists an element x in Oε′,s′

1 such that F ε′,s′

(x) = ι
−,αε′,hε′ s′

O2
(y) in 

O
αε′,hε′ s′

2 .
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Definition 1.19.

• Let O1 = (Oε,s
1 ) and O2 = (Oε,s

2 ) be quantitative objects. Then a quantitative 

isomorphism

F : O1 → O2

is an (α, h)-controlled morphism F = (F ε,r) for some control pair (α, h) that satisfies 

the following: there exists a positive number λ0, with λ0 � 1 such that

– for any positive numbers ε and s with ε < 1
4αλ0

there exists a positive number s′

with s � s′ such that QIF (ε, λ0ε, s, s′) is satisfied;

– for any positive numbers ε and s with ε < 1
4α , there exists a positive number s′

with s � s′hλ0ε such that QSF (ε, λ0ε, s, s′) is satisfied. The positive number λ0 is 

called the rescaling of the quantitative isomorphism F .

• A uniform family of quantitative isomorphisms if a family (Fi)i∈I where, Fi : Oi →
O′

i is for any i in I an (α, h)-controlled morphism for a given control pair (α, h) such 

that there exists a positive number λ0, with λ0 � 1 for which the following holds

– for any positive numbers ε and s with ε < 1
4αλ0

there exists a positive number s′

with s � s′ such that QIFi
(ε, λ0ε, s, s′) is satisfied for any i in I;

– for any positive numbers ε and s with ε < 1
4α , there exists a positive number s′

with s � s′hα0ε such that QSFi
(ε, λ0ε, s, s′) is satisfied for any i in I.

In particular, if A and B are filtered C∗-algebras and if G : K∗(A) → K∗(B) is a quanti-

tative isomorphism, then the induced morphism G : K∗(A) → K∗(B) is an isomorphism 

(but its inverse is no more given by a quantitative isomorphism).

1.4. Controlled exact sequences

In this subsection, we recall the controlled exact sequence for quantitative objects. 

This controlled exact sequence is an important tool in computing quantitative K-theory 

for filtered C∗-algebras.

Definition 1.20. Let (λ, h) be a control pair,

• Let O = (Oε,s), O′ = (O′ε, s) and O′′ = (O′′
ε,s) be quantitative objects and let

F = (F ε,s) : O → O′

be a (αF , kF )-controlled morphism and let

G = (Gε,s) : O′ → O′′

be a (αG , kG)-controlled morphism. Then the composition
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O F→ O′ G→ O′′

is said to be (λ, h)-exact at O′ if G ◦ F = 0 and if for any 0 < ε < 1
4 max{λαF ,αG} , any 

s > 0 and any y in O′ ε,s such that Gε,s(y) = 0 in O′′ε, r, there exists an element x

in Oλε,hεs such that

F λε,hλεs(x) = ι
−,αF λε,kF,λεhεs
O′ (y)

in O′ αF λε,kF,λεhεs.

• A sequence of controlled morphisms

· · · Ok−1
Fk−1−→ Ok

Fk−→ Ok+1
Fk+1−→ Ok+2 · · ·

is called (λ, h)-exact if for every k, the composition

Ok−1
Fk−1−→ Ok

Fk−→ Ok+1

is (λ, h)-exact at Ok.

• the notion of (λ, h)-exactness of a composition and of a sequence can obviously be 

extended to the setting of controlled morphism of order r.

Notice that the constraint on the range of ε is the definition of (λ, h)-exatness is fixed 

in such a way that F λε,• and Gε,• make sense.

1.5. Six terms controlled exact sequence in quantitative K-theory

Examples of controlled exact sequences in quantitative K-theory are provided by 

controlled six term exact sequences associated to a completely filtered extensions of 

C∗-algebras [9, Section 3].

Definition 1.21. Let A be a C∗-algebra filtered by (Ar)r>0, let J be an ideal of A and 

set Jr = J ∩ Ar. The extension of C∗-algebras

0 → J → A → A/J → 0

is called a completely filtered extension of C∗-algebras if the bijective continuous linear 

map

Ar/Jr−→(Ar + J)/J

induced by the inclusion Ar ↪→ A is a complete isometry i.e. for any integer n, any 

positive number r and any x in Mn(Ar), then
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inf
y∈Mn(Jr)

‖x + y‖ = inf
y∈Mn(J)

‖x + y‖.

Notice that in this case, the ideal J is filtered by (Ar ∩ J)r>0 and A/J is filtered 

by (Ar + J)r>0. A particular case of completely filtered extension of C∗-algebra is the 

case of filtered and semi-split extension of C∗-algebras [9, Lemma 3.3] (or a semi-split 

extension of filtered algebras) i.e. extension

0 → J → A → A/J→0,

where

• A is filtered by (Ar)r>0;

• there exists a completely positive (complete) norm decreasing cross-section

s : A/J → A

such that

s(Ar + J) ⊆ Ar

for any number r > 0.

For any extension of C∗-algebras

0 → J → A → A/J → 0,

we denote by ∂J,A : K∗(A/J) → K∗(J) the associated (odd degree) boundary map in 

K-theory.

Proposition 1.22. There exists a control pair (αD, kD) such that for any completely filtered 

extension of C∗-algebras

0 −→ J −→ A
q−→ A/J −→ 0,

there exists a (αD, kD)-controlled morphism of odd degree

DJ,A = (∂ε,r
J,A) : K∗+1(A/J) → K∗(J)

which induces in K-theory ∂J,A : K∗(A/J) → K∗+1(J).

Moreover the controlled boundary map enjoys the usual naturally properties with 

respect to extensions (see [9, Remark 3.8]).
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Theorem 1.23. There exists a control pair (λ, h) such that for any completely filtered 

extension of C∗-algebras

0 −→ J
j−→ A

q−→ A/J −→ 0,

then the following six-term sequence is (λ, h)-exact

K0(J)
j∗−−−−→ K0(A)

q∗−−−−→ K0(A/J)

DJ,A


⏐⏐ DJ,A

⏐⏐�

K1(A/J)
q∗←−−−− K1(A)

j∗←−−−− K1(J)

1.6. KK-theory and controlled morphisms

In this subsection, we discuss compatibility of Kasparov’s KK-theory with quantita-

tive K-theory of filtered C∗-algebras.

Let A be a C∗-algebra and let B be a filtered C∗-algebra filtered by (Br)r>0. Let us 

define A⊗Br as the closure in the spatial tensor product A⊗B of the algebraic tensor 

product of A and Br. Then the C∗-algebra A⊗B is filtered by (A⊗Br)r>0. If f : A1 → A2

is a homomorphism of C∗-algebras, let us set

fB : A1⊗B → A2⊗B; a⊗b �→ f(a)⊗b.

Recall from [4] that for C∗-algebras A1, A2 and B, Kasparov defined a tensorization 

map

τB : KK∗(A1, A2) → KK∗(A1⊗B, A2⊗B).

If B is a filtered C∗-algebra, then for any z in KK∗(A1, A2) the morphism

K∗(A1⊗B)−→K∗(A2⊗B); x �→ x⊗A1⊗BτB(z)

is induced by a controlled morphism which enjoys compatibility properties with Kasparov 

product [9, Theorem 4.4].

Theorem 1.24. There exists a control pair (αT , kT ) such that

• for any filtered C∗-algebra B;

• for any C∗-algebras A1 and A2;

• for any element z in KK∗(A1, A2),

there exists a (αT , kT )-controlled morphism TB(z) : K∗(A1⊗B) → K∗(A2⊗B) with 

TB(z) = (τ ε,r
B ) of same degree as z that induces in K-theory the right multiplication 

by τB(z).
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Moreover TB(•) enjoys the following properties:

Proposition 1.25. For any filtered C∗-algebra B and any C∗-algebras A1 and A2,

(i) for any elements z and z′ in KK∗(A1, A2), we have

TB(z + z′) = TB(z) + TB(z′).

(ii) Let A′
1 be a C∗-algebras and let f : A1 → A′

1 be a homomorphism of C∗-algebras, 

then TB(f∗(z)) = TB(z) ◦ fB,∗ for all z in KK∗(A′
1, A2).

(iii) Let A′
2 be a C∗-algebra and let g : A′

2 → A2 be a homomorphism of C∗-algebras 

then TB(g∗(z)) = gB,∗ ◦ TB(z) for any z in KK∗(A1, A′
2).

(iv) TB([IdA1
]) 

(αT ,kT )∼ IdK∗(A1⊗B).

(v) For any C∗-algebra D and any element z in KK∗(A1, A2), we have TB(τD(z)) =

TB⊗D(z).

For any element in KK1 corresponding to a semi-split extension, up to a rescaling, 

the TB is given by the controlled boundary map associated to the tensorized extension:

Proposition 1.26. For any filtered C∗-algebra B and any semi-split extension of 

C∗-algebras 0 → J → A → A/J → 0 with corresponding element [∂J,A] of KK1(A/J, J)

that implements the boundary map, we have

TB([∂J,A])
(αT ,kT )∼ DJ⊗B,A⊗B.

The controlled tensorization morphism TB is compatible with Kasparov products.

Theorem 1.27. There exists a control pair (λ, h) such that the following holds:

let A1, A2 and A3 be separable C∗-algebras and let B be a filtered C∗-algebra. Then 

for any z in KK∗(A1, A2) and any z′ in KK∗(A2, A3), we have

TB(z⊗A2
z′)

(λ,h)∼ TB(z′) ◦ TB(z).

We also have in the case of finitely generated group a controlled version of the Kas-

parov transformation. Let Γ be a finitely generated group. Recall that a length on Γ is 

a map � : Γ → R+ such that

• �(γ) = 0 if and only if γ is the identity element e of Γ;

• �(γγ′) � �(γ) + �(γ′) for all element γ and γ′ of Γ.

• �(γ) = �(γ−1).

In what follows, we will assume that � is a word length arising from a finite generating 

symmetric set S, i.e., �(γ) = inf{d such that γ = γ1 · · · γd with γ1, . . . , γd in S}. Let 
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us denote by B(e, r) the ball centered at the neutral element of Γ with radius r, i.e., 

B(e, r) = {γ ∈ Γ such that �(γ) � r}. Let A be a separable Γ-C∗-algebra, i.e., a separable 

C∗-algebra provided with an action of Γ by automorphisms. For any positive number r, 

we set

(A�redΓ)r
def
== {f ∈ Cc(Γ, A) with support in B(e, r)}.

Then the C∗-algebra A�redΓ is filtered by ((A�redΓ)r)r>0. Moreover if f : A → B is a 

Γ-equivariant morphism of C∗-algebras, then the induced homomorphism fΓ : A�redΓ →
B�redΓ is a filtered homomorphism. Recall from [4] that for any Γ-C∗-algebras A and 

B, there exists a natural transformation

JΓ : KKΓ
∗ (A, B) → KK∗(A�redΓ, B�redΓ)

called the Kasparov transformation that preserves Kasparov products. The Kasparov 

transformation admits a quantitative version [9, Section 5].

Theorem 1.28. There exists a control pair (αJ , kJ ) such that

• for any separable Γ-C∗-algebras A and B;

• For any z in KKΓ
∗ (A, B),

there exists a (αJ , kJ )-controlled morphism

J red
Γ (z) : K∗(A �red Γ) → K∗(B�redΓ)

with J red
Γ (z) = (Jred,ε,r

Γ (z)) of same degree as z that induces in K-theory right multipli-

cation by Jred
Γ (z).

Moreover, J red
Γ (•) satisfies the following properties.

Proposition 1.29. For any separable Γ-C∗-algebras A and B,

(i) for any z and z′ in KKΓ
∗ (A, B), then

J red
Γ (z + z′) = J red

Γ (z) + J red
Γ (z′).

(ii) For any Γ-C∗-algebra A′, any homomorphism f : A → A′ of Γ-C∗-algebras and any 

z in KKΓ
∗ (A′, B), then J red

Γ (f∗(z)) = J red
Γ (z) ◦ fΓ,∗.

(iii) For any Γ-C∗-algebra B′, any homomorphism g : B → B′ of Γ-C∗-algebras and 

any z in KKΓ
∗ (A, B), then J red

Γ (g∗(z)) = gΓ,∗ ◦ J red
Γ (z).

(iv) J red
Γ (IdA) 

(αJ ,kJ )∼ IdK∗(A�redΓ).
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For any element in KKΓ
1 corresponding to a Γ-equivariant semi-split extension, up to 

a rescaling, then J red
Γ is given by the controlled boundary map associated to the reduced 

crossed-product extension:

Proposition 1.30. Let

0 → J → A → A/J → 0

be a semi-split exact sequence of Γ-C∗-algebras and let [∂J,A] be the element of 

KKΓ
1 (A/J, J) that implements the boundary map ∂J,A. Then we have

J red
Γ ([∂J,A])

(αJ ,kJ )∼ DJ�redΓ,A�redΓ.

Eventually, the controlled Kasparov transformation is compatible with Kasparov prod-

ucts.

Theorem 1.31. There exists a control pair (λ, h) such that the following holds: for ev-

ery separable Γ-C∗-algebras A, B and D, any elements z in KKΓ
∗ (A, B) and z′ in 

KKΓ
∗ (B, D), then

J red
Γ (z ⊗B z′)

(λ,h)∼ J red
Γ (z′) ◦ J red

Γ (z).

Remark 1.32. We can choose (αJ , kJ ) such that (αJ , kJ ) = (αT , kT ). In this case, for 

any Γ-C∗-algebra A, any C∗-algebras D1 and D2 equipped with the trivial action of Γ

and any z in KK∗(D1, D2), then

TA�redΓ,∗(z) = J red
Γ (τA,∗(z)).

We have a similar result for maximal crossed products.

1.7. Quantitative assembly maps

In this subsection, we discuss a quantitative version of the Baum–Connes assembly 

map.

Let Γ be a finitely generated group and let B be a Γ-C∗-algebra. We equip Γ with 

any word metric. Recall that if d is a positive number, then the Rips complex of degree 

d is the set Pd(Γ) of probability measures with support of diameter less than d. Then 

Pd(Γ) is a locally finite simplicial complex and provided with the simplicial topology, 

Pd(Γ) is endowed with a proper and cocompact action of Γ by left translation. In [9], for 

any Γ-C∗-algebra B, we construct quantitative assembly maps

με,r,d
Γ,B,∗ : KKΓ

∗ (C0(Pd(Γ)), B) → Kε,r
∗ (B�redΓ),
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with d > 0, ε ∈ (0, 1/4) and r � rd,ε, where

[0, +∞) × (0, 1/4)−→(0, +∞) : (d, ε) �→ rd,ε

is a function independent on B, non decreasing in d and non increasing in ε. Moreover, 

the maps με,r,d
Γ,B,∗ induce the usual assembly maps

μd
Γ,B,∗ : KKΓ

∗ (C0(Ps(Γ)), B) → K∗(B�redΓ),

i.e., μd
Γ,B,∗ = ιε,r

∗ ◦ με,r,d
Γ,B,∗. Let us recall now the definition of the quantitative assembly 

maps. Observe first that any x in Pd(Γ) can be written down in a unique way as a finite 

convex combination

x =
∑

γ∈Γ

λγ(x)δγ ,

where δγ is the Dirac probability measure at γ in Γ. The functions

λγ : Pd(Γ) → [0, 1]

are continuous and γ(λγ′) = λγγ′ for all γ and γ′ in Γ. The function

pΓ,d : Γ → C0(Pd(Γ)); γ �→
∑

γ∈Γ

λ1/2
e λ1/2

γ

is a projection of C0(Pd(Γ))�redΓ with propagation less than d. Let us set then rd,ε =

kJ ,ε/αJ
d, where the control pair (αJ , kJ ) is as in Theorem 1.28. Recall that kJ can be 

chosen non increasing and in this case, rd,ε is non decreasing in d and non increasing 

in ε.

Definition 1.33. For any Γ-C∗-algebra A and any positive numbers ε, r and d with ε < 1/4

and r � rd,ε, we define the quantitative assembly map

με,r,d
Γ,A,∗ : KKΓ

∗ (C0(Pd(Γ)), A) → Kε,r
∗ (A �red Γ)

z �→
(
Jred,ε′,r′

Γ (z)
)

([pΓ,d, 0]ε′,r′) ,

with ε′ = ε
αJ

and r′ = r
kJ ,ε/αJ

and where the notation [pΓ,d, 0]ε′,r′ is as in Definition 1.6.

Then according to point (ii) of Proposition 1.29, the map με,r,d
Γ,A is a group ho-

momorphism. For any positive numbers d and d′ such that d � d′, we denote by 

qd,d′ : C0(Pd′(Γ)) → C0(Pd(Γ)) the homomorphism induced by the restriction from 

Pd′(Γ) to Pd(Γ). It is straightforward to check that if d, d′ and r are positive numbers 

such that d � d′ and r � rd′,ε, then με,r,d
Γ,A = με,r,d′

Γ,A ◦ qd,d′,∗. Moreover, for every positive 
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numbers ε, ε′, d, r and r′ such that ε � ε′ � 1/4, rd,ε � r, rd,ε′ � r′, and r < r′, we get 

by definition of a controlled morphism that

ι−,ε′,r′

∗ ◦ με,r,d
Γ,A,∗ = με′,r′,d

Γ,A,∗ .

In [9] we introduced quantitative statements for the quantitative assembly maps. For 

a Γ-C∗-algebra A and positive numbers d, d′, r, r′, ε and ε′ with d � d′, ε � ε′ < 1/4, 

rd,ε � r′ and r � r′ we set:

QIΓ,A,∗(d, d′, r, ε) for any element x in KKΓ
∗ (C0(Pd(Γ)), A), if με,r,d

Γ,A,∗(x) = 0 in 

Kε,r
∗ (A �red Γ), then q∗

d,d′(x) = 0 in KKΓ
∗ (C0(Pd′(Γ)), A).

QSΓ,A,∗(d, r, r′, ε, ε′) for every y in Kε,r
∗ (A �red Γ), there exists an element x in 

KKΓ
∗ (C0(Pd(Γ)), A) such that με′,r′,d

Γ,A,∗ (x) = ι−,ε′,r′

∗ (y).

The following results were then proved [9, Theorem 6.6].

Theorem 1.34. Let Γ be a discrete group.

(i) Assume that for any Γ-C∗-algebra A, the assembly map μΓ,A,∗ is one-to-one. Then 

for any positive numbers d, ε and r � rd,ε with ε < 1/4 and r � rd, there exists 

a positive number d′ with d′ � d such that QIΓ,A(d, d′, r, ε) is satisfied for every 

Γ-C∗-algebra A;

(ii) Assume that for any Γ-C∗-algebra A, the assembly map μΓ,A,∗ is onto. Then for 

some positive number α0 which not depends on Γ or on A and such that with α0 > 1

and for any positive numbers ε and r with ε < 1
4α0

, there exist positive numbers d

and r′ with rd,ε � r′ and r � r′ such that QSΓ,A(d, r, r′, ε, α0ε) is satisfied for every 

Γ-C∗-algebra A.

In particular, if Γ satisfies the Baum–Connes conjecture with coefficients, then Γ satisfies 

points (i) and (ii) above.

In [10] we developed a geometric version of the controlled assembly maps and of the 

quantitative statements in the following setting. Let Σ be a proper discrete metric space 

and let A be a C∗-algebra. Then the distance d on Σ induces a filtration on A⊗K(�2(Σ))

in the following way: let r be a positive number and T = (Tσ,σ′)(σ,σ′)∈Σ2 be an element 

in A⊗K(�2(Σ)), with Tσ,σ′ in A for any σ and σ′ in Σ2. Then T has propagation less that 

r if Tσ,σ′ = 0 for σ and σ′ in Σ such that d(σ, σ′) > r. As for finitely generated group, we 

define the Rips complex of degree d of Σ as the set Pd(Σ) of probability measure with 

support of diameter less than d. Then Pd(Σ) is a locally finite simplicial complex and is 

locally compact when endowed with the simplicial topology. Let us define then

K∗(Pd(Σ), A)
def
== lim

Z⊆Pd(Σ)
KK∗(C(Z), A),
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where Z runs through compact subsets of Pd(Σ). In turn we constructed in [10] local 

quantitative coarse assembly maps

νε,r,d
Σ,A,∗ : K∗(Pd(Σ)), A)−→Kε,r

∗ (A⊗K(�2(Σ))),

with d > 0, ε ∈ (0, 1/4) and r � rd,ε. The map νε,r,d
Σ,•,∗ is natural in the C∗-algebra 

and induces in K-theory the index map, i.e. the maps ιε,r
∗ ◦ νε,r,d

Σ,A,∗ is up to Morita 

equivalence given for any compact subset Z of Pd(Σ) by the morphism in the inductive 

limit KK∗(C(Z), A) → K∗(A) induced by the map Z → {pt}. Moreover, the maps ν•,•,•
Σ,A,∗

are compatible with structure morphisms and with inclusion of Rips complexes:

• ι−,ε′,r′

∗ ◦ νε,r,d
Σ,A,∗ = νε′,r′,d

Σ,A,∗ for any positive numbers ε, ε′, r, r′ and s such that ε � ε′ <

1/4, rd,ε � r, rd,ε′ � r′ and r � r′;

• νε,r,d′

Σ,A,∗◦q∗
d,d′ = νε,r,d

Σ,A,∗ for any positive numbers ε, r, d and d′ such that ε < 1/4, d � d′

and rd′,ε � r, where

q∗
d,d′ : KK∗(C0(Pd′(Σ)), A) → KK∗(C0(Pd(Σ)), A)

is the homomorphism induced by the restriction from Pd′(Σ) to Pd(Σ).

For d, d′, r, r′, ε and ε′ positive numbers with d � d′, ε′ � ε < 1/4, rd,ε � r and r′ � r, 

we consider the following statements:

QIΣ,A,∗(d, d′, r, ε) for any element x in K∗(Pd(Σ), A), then νε,r,d
Σ,A,∗(x) = 0 in Kε,r

∗ (A⊗
K(�2(Σ))) implies that q∗

d,d′(x) = 0 in K∗(Pd′(Σ), A).

QSΣ,A,∗(d, r, r′, ε, ε′) for every y in Kε′,r′

∗ (A⊗K(�2(Σ))), there exists an element x in 

K∗(Pd(Σ), A) such that

νε,r,d
Σ,A,∗(x) = ι−,ε,r

∗ (y).

Recall that a proper discrete metric space Σ with bounded geometry coarsely embeds 

in a Hilbert space if there exist

• a map φ : Σ → H where H is a Hilbert space;

• two maps ρ± : R+ → R+ with lim+∞ ρ± = +∞,

such that

ρ−(d(x, y)) � ‖φ(x) − φ(y)‖ � ρ+(d(x, y))

for any x and y in Σ. Proper discrete metric spaces with bounded geometry that coarsely 

embed into a Hilbert space provide numerous examples that satisfy the following state-

ment called the Quantitative Assembly Map estimates [10, Theorems 4.9 and 4.10].
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Theorem 1.35. Let Σ be a discrete metric space with bounded geometry that coarsely 

embeds into a Hilbert space.

(i) For any positive numbers d, ε and r with ε < 1/4 and r � rd,ε, there exists a positive 

number d′ with d′ � d for which QIΣ,A,∗(d, d′, r, ε) is satisfied for any C∗-algebra A.

(ii) There exists a positive number λ > 1 such that for any positive numbers ε and r′

with ε < 1
4λ , there exist positive numbers d and r with rd,ε � r and r′ � r for which 

QSΣ,A,∗(d, r, r′, λε, ε) is satisfied for any C∗-algebra A.

2. Controlled Mayer–Vietoris pairs

In the construction of the boundary map of the Mayer–Vietoris six terms exact se-

quence in K-theory and for establishing exactness, the following result is a key point: 

let A be a unital C∗-algebra which is the sum of two closed ideals J1 and J2. Then 

any unitary u in A connected to the identity can be written as a product u = v1v2 of 

two unitaries v1 and v2 lying respectively in the unitarization of J1 and J2 and as such 

connected to the identity. In this section and in order to state a controlled version of the 

K-theory Mayer–Vietoris six terms exact sequence, we investigate an analogue of this 

result for a so-called coercive decomposition at a given order r into closed linear sub-

spaces Δ1 and Δ2. Every ε-r-unitary connected to the identity is then up to rescaling by 

a (universal) control pair and to stabilization, closed to a product of ε-r-unitaries lying 

respectively in the unitarization of some neighborhood C∗-algebras of Δ1 and Δ2 and 

as such connected to the identity. These neighborhood C∗-algebras can be viewed as the 

ideals generated up to certain order respectively by Δ1 and Δ2. The strategy to prove 

this result is first to obtain an approximation by a product of ε-r-N -invertibles and then 

to use in the setting of ε-r-N -invertibles an analogue of the polar decomposition. We then 

give the definition of a controlled Mayer–Vietoris pair which allows to define C∗-algebras 

with finite asymptotic nuclear decomposition in Section 5 and which is the framework 

to state in Section 3 the Mayer–Vietoris controlled exact for quantitative K-theory. We 

also discuss a few technical lemmas useful for establishing the latter.

2.1. ε-r-N -invertible elements of a filtered C∗-algebra

In [9, Section 7] is introduced the notion of ε-r-N -invertible element of a unital Ba-

nach algebra. In this subsection, we study ε-r-N -invertible elements for C∗-algebras. In 

particular, we state an analogue of the polar decomposition in the setting of ε-r-unitaries.

Definition 2.1. Let A be a unital C∗-algebra filtered by (As)s>0 and let ε, r and N be 

positive numbers with ε < 1. An element x in Ar is called ε-r-N -invertible if ‖x‖ � N

and there exists y in Ar such that ‖y‖ � N, ‖xy − 1‖ < ε and ‖yx − 1‖ < ε. Such an 

element y is called an ε-r-N -inverse for x.
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Remark 2.2. If x is ε-r-N -invertible, then x is invertible and for any ε-r-N -inverse y

for x, we have ‖x−1 − y‖ ≤ εN
1−ε .

Definition 2.3. Let A be a unital C∗-algebra filtered by (As)s>0 and let ε, r and N be 

positive numbers with ε < 1. Two ε-r-N -invertibles in A are called homotopic if there 

exists Z : [0, 1] → A an ε-r-N -invertible in A[0, 1] such that Z(0) = x and Z(1) = y.

In the setting of ε-r-N -invertibles and of ε-r-unitaries, there is the analogue of the 

polar decomposition.

Lemma 2.4. For any positive number N there exists a control pair (α, l) and a positive 

number N ′ with N ′ � N such that the following holds.

For any filtered unital C∗-algebra A filtered by (As)s>0, any positive numbers ε and 

r with ε < 1
4α and every ε-r-N -invertible element x of A, there exist h a positive 

αε-lεr-N ′-invertible in A and u an αε-lεr-unitary in A such that ‖|x| − h‖ < αε and 

‖x − uh‖ < αε. Moreover we can choose u and h such that

• there exists a real polynomial function Q with Q(1) = 1 such that u = xQ(x∗x) and 

h = x∗xQ(x∗x);

• h admits a positive αε-lεr-N ′-inverse;

• If x is homotopic to 1 as an ε-r-N -invertible, then u is homotopic to 1 as an 

αε-lεr-unitary.

Proof. According to Remark 2.2 and since ε < 1/4, if x is an ε-r-N -invertible, then 

x is invertible and ‖x−1‖ < 2N and hence ‖(x∗x)−1‖ < 4N2. This implies that the 

spectrum of x∗x is included in [ 1
4N2 , N2]. Let t0 and t1 be positive numbers such that 

t0 < min( 1
4N2 , 1) and max(N2, 1) < t1. Let us consider the power series 

∑
antn of 

t �→ 1√
1+t

for t in [0, 1] and let lε be the smallest integer such that

+∞∑

k=lε+1

|ak|
(

1 − t1

t1

)k

<
min(

√
t1, 1)ε

2

and

lε∑

k=0

ak(−t)k
� 1/2

for all t in [0, 1 − t0

t1
]. Since 

∑
an

(
x∗x−t1

t1

)n

converges to 
√

t1(x∗x)−1/2 =
√

t1|x|−1, if 

we set

Q(t) =
1√
t1

lε∑

k=0

ak

(
t − t1

t1

)k

+
1√
t1

+∞∑

k=lε+1

ak

(
1 − t1

t1

)k
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then Q is a polynomial of degree lε such that Q(1) = 1, Q(t) � 0 for every t in [t0, t1] and 

‖Q(x∗x) − (x∗x)−1/2‖ < ε. If we set u = xQ(x∗x), then u is a α-2lε + 1-unitary for some 

α > 1 depending only on N . Set now h = u∗x = x∗xQ(x∗x), then up to taking a large α, 

there exists a control pair (α, k) and a positive number N ′ depending only on N , with 

N ′ � N and such that u and h satisfy the required properties and Q(x∗x) is a positive 

αε-kεr-N ′-inverse for h. Moreover, if (xt)t∈[0,1] is a homotopy of ε-r-invertibles between 

1 and x, then (xtQ(x∗
t xt))t∈[0,1] is a homotopy of αε-kεr-unitaries between 1 and u. �

The first step in order to obtain the main result of this section is to approximate 

element of the form 
(

u 0
0 u∗

)
for u an ε-r unitary that decomposes into u = x1 + x2

by a product elementary matrices with entries involving x1 and x2. Let A be a unital 

C∗-algebra filtered by (As)s>0. For x and y in A, set

X(x) =

(
1 x
0 1

)

and

Y (y) =

(
1 0
y 1

)

and consider the commutators

Z(x, y) = X(x)Y (y)X(x)−1Y (y)−1 =

(
1 + xy + xyxy −xyx

yxy 1 − yx

)

and

Z ′(x, y) = Y (y)−1X(x)−1Y (y)X(x) =

(
1 − xy −xyx

yxy 1 + yx + yxyx

)
.

Lemma 2.5. Let A be a unital C∗-algebra filtered by (As)s>0 and let ε and r be positive 

numbers with ε < 1/4. Let x1 and x2 in Ar such that x1 + x2 is an ε-r-unitary. Then 

we have the inequality

‖X(x1)Z(x2, −x∗
1)Y (−x∗

1)X(x1)X(x2)Y (−x∗
2) Z ′(x1, −x∗

2)X(x2)

(
0 −1
1 0

)

−
(

x1 + x2 0
0 x∗

1 + x∗
2

)∥∥∥∥ < 3ε.

Proof. Let us set u = x1 + x2. Consider the matrix

W (u) = X(u)Y (−u∗)X(u)

(
0 −1
1 0

)
=

(
2u − uu∗u uu∗ − 1

1 − u∗u u∗

)
.

Since u is an ε-r-unitary, then
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∥∥∥∥
(

u 0
0 u∗

)
− W (u)

∥∥∥∥ < 3ε.

We have

W (u) = X(x1)X(x2)Y (−x∗
1)Y (−x∗

2)X(x1)X(x2)

(
0 −1
1 0

)
.

This, together with the definition of Z and Z ′, implies that

W (u) = X(x1)Z(x2, −x∗
1)Y (−x∗

1)X(x1)X(x2)Y (−x∗
2)Z ′(x1, −x∗

2)

× X(x2)

(
0 −1
1 0

)
. �

2.2. Coercive decomposition pair and R-neighborhood C∗-algebras

We introduce in this subsection the basic ingredient to define controlled Mayer–

Vietoris pairs.

If Δ and Δ′ are two closed linear subspaces of a C∗-algebra A such that Δ ⊆ Δ′, 

we equip Mn(Δ/Δ′) ∼= Mn(Δ)/Mn(Δ′) with the quotient C∗-algebra norm, i.e. if x is a 

element of Mn(Δ), then ‖x + Mn(Δ′)‖ = inf{‖x + y‖; y ∈ Mn(Δ′)}. Then this family 

of norms is a matrix norm on Δ/Δ′.

Definition 2.6. Let A be a C∗-algebra filtered by (As)s>0 and let r be a positive number.

• a coercive decomposition pair of degree r for A (or a coercive decomposition r-pair) 

is a pair (Δ1, Δ2) of closed linear subspaces of Ar such that there exists a positive 

number C satisfying the following: for any positive number s with s � r the inclusion 

Δ1 ∩ As ↪→ As induces an isomorphism

Δ1 ∩ As

Δ1 ∩ Δ2 ∩ As

∼=−→ As

Δ2 ∩ As

whose inverse is bounded in norm by C.

• a completely coercive decomposition pair of degree r for A (or a completely coercive 

decomposition r-pair) is a pair (Δ1, Δ2) of closed linear subspaces of Ar such that 

there exists a positive number C satisfying the following: for any positive number s

with s � r the inclusion Δ1 ∩ As ↪→ As induces a complete isomorphism

Δ1 ∩ As

Δ1 ∩ Δ2 ∩ As

∼=−→ As

Δ2 ∩ As

whose inverse has complete norm bounded by C.
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Remark 2.7. Let A be a C∗-algebra filtered by (As)s>0, let r be a positive number and 

let (Δ1, Δ2) be a pair of closed linear subspaces of Ar. Then (Δ1, Δ2) is a coercive 

decomposition pair of degree r for A if and only if there exists a positive number c such 

that for every positive number s with s � r and any x in As, there exists x1 in Δ1 ∩ As

and x2 in Δ2 ∩ As, both with norm at most c‖x‖ and such that x = x1 + x2. In the same 

way, (Δ1, Δ2) is a completely coercive decomposition pair of degree r for A if and only 

if there exists a positive number c such that for every positive number s with s � r, any 

integer n and any x in Mn(As), there exists x1 in Mn(Δ1 ∩ As) and x2 in Mn(Δ2 ∩ As), 

both with norm at most c‖x‖ and such that x = x1 + x2. The (completely) coercive 

decomposition r-pair (Δ1, Δ2) is said to have coercitivity c.

The aim of this subsection is to show that for any coercive decomposition r-pair 

(Δ1, Δ2), there exists a control pair (α, h) depending indeed only on the coercitivity, 

such that up to stabilization, any ε-s-unitary of A with 0 < ε � 1
4α and 0 < s � r

hε

can be approximated by a product of two αε-hεs-unitaries lying respectively in the 

unitarization of some suitable neighborhood algebras of Δ1 and Δ2. We first show using 

Lemma 2.5 that this approximation exists in term of ε-r-N -invertibles. Then we use the 

analogue of the polar decomposition of Lemma 2.4 to conclude.

Definition 2.8. Let A be a C∗-algebra filtered by (As)s>0. Let r and R be positive num-

bers and let Δ be a closed linear subspace of Ar. We define C∗N
(r,R)
∆ , the R-neighborhood 

C∗-algebra of Δ, as the C∗-subalgebra of A generated by its R-neighborhood N
(r,R)
∆ =

Δ + AR · Δ + Δ · AR + AR · Δ · AR.

Notice that C∗N
(r,R)
∆ inherits from A a structure of filtered C∗-algebra with 

C∗N
(r,R)
∆,s = C∗N

(r,R)
∆ ∩As for every positive number s. For a positive number s satisfying 

s � r, we also denote by C∗N
(s,R)
∆ for the R-neighborhood C∗-algebra of Δ ∩ As.

Lemma 2.9. For any positive number c, there exist positive numbers λ, C and N , with 

λ > 1 and C > 1 such that the following holds.

Let A be a unital C∗-algebra filtered by (As)s>0, let r and ε be positive numbers such 

that ε < 1
4λ and let (Δ1, Δ2) be a coercive decomposition pair for A of degree r with 

coercitivity c. Then for any ε-r-unitary u in A homotopic to 1, there exist an integer k

and P1 and P2 in Mk(ACr) such that

• P1 and P2 are invertible;

• Pi − Ik and P −1
i − Ik are elements in the matrix algebra Mn(C∗N

(r,4r)
∆i,Cr) for i = 1, 2;

• ‖Pi‖ < N and ‖P −1
i ‖ < N for i = 1, 2;

• for i = 1, 2, there exists a homotopy (Pi,t)t∈[0,1] of invertible elements in Mk(ACr)

between 1 and Pi such that ‖Pi,t‖ < N, ‖P −1
i,t ‖ < N and Pi,t − Ik and P −1

i,t − Ik are 

elements in the matrix algebra Mn(C∗N
(r,4r)
∆i,Cr) for every t in [0, 1].

• ‖ diag(u, Ik−1) − P1P2‖ < λε.



JID:YJFAN AID:8179 /FLA [m1L; v1.252; Prn:8/02/2019; 14:55] P.29 (1-89)

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis ••• (••••) •••–••• 29

Proof. Let (ut)t∈[0,1] be a homotopy of ε-r-unitaries of A between u = u0 and 1 = u1

and let t0 = 0 < t1 < · · · < tk = 1 be a partition of [0, 1] such that ‖uti
− uti−1

‖ < ε for 

i = 1, · · · , k. Set

V = diag(ut0
, . . . , utk

, u∗
t0

, . . . , u∗
tk

)

and

W = diag(1, u∗
t0

, . . . , u∗
tk−1

, ut0
, . . . , utk−1

, 1).

Then we have

‖ diag(u, I2k+1) − V W ‖ � ‖ diag(u, I2k+1) − diag(u0, ut1
u∗

t1
, . . . , utk

u∗
tk

, Ik+1)‖
+ ‖ diag(ut0

, ut1
u∗

t1
, . . . , utk

u∗
tk

, Ik+1) − diag(ut0
, ut1

u∗
t0

, . . . , utk
u∗

tk−1
, Ik+1)‖

+ ‖ diag(ut0
, ut1

u∗
t0

, . . . , utk
u∗

tk−1
, Ik+1)

− diag(ut0
, ut1

u∗
t0

, . . . , utk
u∗

tk−1
, ut0

u∗
t0

, ut1
u∗

t1
, . . . , utk

u∗
tk

)‖
< 4ε.

For any matrix X in M2k(A), let us set X̃ = diag(1, X, 1) in M2k+2(A). For every integer 

i = −1, 0, . . . , k, pick vi in Δ1 and wi in Δ2 such that uti
= vi+wi with ‖vi‖ � c‖uti

‖ and 

‖wi‖ � c‖uti
‖. Set x1 = diag(v0, . . . , vk) , x2 = diag(w0, . . . , wk) , y1 = diag(v∗

0 , . . . , v∗
k−1)

and y2 = diag(w∗
0 , . . . , w∗

k−1). Since we have

V = diag(x1 + x2, x∗
1 + x∗

2)

and

W = d̃iag(y1 + y2, y∗
1 + y∗

2),

then if we set

T (x, y) = X(x)Z(y, −x∗)Y (−x∗)X(x),

we deduce from Lemma 2.5 that

∥∥∥V W − T (x1, x2)T −1(−x2, −x1)Uk+1T̃ (y1, y2)T̃ −1(−y2, −y1)Ũk

∥∥∥ < 9ε

with Uk =

(
0 −Ik

Ik 0

)
in M2k(C) and hence

∥∥∥diag(u, I2k+1) − T (x1, x2)T −1(−x2, −x1)Uk+1T̃ (y1, y2)T̃ −1(−y2, −y1)Ũk

∥∥∥ < 13ε (2)
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Let us show that

S(x1, x2, y1, y2)
def
== T (x1, x2)T −1(−x2, −x1)Uk+1T̃ (y1, y2)T̃ −1(−y2, −y1)Ũk (3)

can be decomposed as a product P1P2 with P1 and P2 satisfying the required properties. 

Notice that as a product of elementary matrices, the matrix T (x1, x2) is invertible. By 

the definition of the neighborhood C∗-algebra, T (x1, x2) −I2k+2 and T −1(x1, x2) −I2k+2

are elements in the matrix algebra M2k+2(C∗N
(r,r)
∆1,7r). The same holds for T̃ (y1, y2), and 

we have similar properties for T (−x2, −x1) and T̃ (−y2, −y1) with respect to C∗N
(r,r)
∆2,7r. 

In order to bring out some commutators, let us study the term

T̃ (y1, y2)−1U∗
k+1T −1(−x2, −x1)Uk+1T̃ (y1, y2)

which is the product of the four first terms in equation (3). Let us make the following 

observations:

• X̃(−y1)U∗
k+1T −1(−x2, −x1)Uk+1X̃(y1) − I2k+2 is an element in the matrix algebra 

M2k+2(C∗N
(r,2r)
∆2,9r);

• Z̃−1(y1, y2)X̃(−y1)U∗
k+1T −1(−x2, −x1)Uk+1X̃(y1)Z̃(y1, y2) − I2k+2 is an element in 

the matrix algebra M2k+2(C∗N
(r,2r)
∆2,17r) (because Z−1(y1, y2) − I2k = Z ′(y1, y2) − I2k

and Z(y1, y2) − I2k are elements of the matrix algebra M2k(C∗N
(r,r)
∆2,4r));

• Ỹ (y∗
1)Z̃−1(y1, y2)X̃(−y1)U∗

k+1T −1(−x2, −x1)Uk+1X̃(y1)Z̃(y1, y2)Ỹ (y1) −I2k+2 is an 

element in the matrix algebra M2k+2(C∗N
(3r,r)
∆2,19r);

• X̃(−x1)Ỹ (y∗
1)Z̃−1(y1, y2)X̃(−y1)U∗

k+1T −1(−x2, −x1)Uk+1X̃(y1)Z̃(y1, y2)Ỹ (y1)X(x1)

− I2k+2 is an element in the matrix algebra M2k+2(C∗N
(r,4r)
∆2,21r).

Hence T̃ (y1, y2)−1U∗
k+1T −1(−x2, −x1)Uk+1T̃ (y1, y2) − I2k+1 is an element in the matrix 

algebra M2k+2(C∗N
(r,r)
∆2,21r). Since 1 = vk + wk, then we have

(
0 1

−1 0

)
= T (vk, wk)T −1(−wk, −vk).

Therefore there exists for i = 1, 2 an invertible matrix Qi(vk, wk) in M2k+2(A) such that 

Qi(vk, wk) − I2k+2 and Q−1
i (vk, wk) − I2k+2 lie in M2k+2(C∗N

(r,r)
∆i,7r) and

Q1(vk, wk)Q2(vk, wk) = Uk+1Ũk.

Therefore if we write S(x1, x2, y1, y2) = P1P2 with

P1 = T (x1, x2)Uk+1T̃ (y1, y2)U∗
k+1Q1(vk, wk)

and



JID:YJFAN AID:8179 /FLA [m1L; v1.252; Prn:8/02/2019; 14:55] P.31 (1-89)

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis ••• (••••) •••–••• 31

P2 = Q2(vk, wk)Ũ∗
k T̃ (y1, y2)−1U∗

k+1T −1(−x2, −x1)Uk+1T̃ (y1, y2)T̃ −1(−y2, −y1)Ũk

are invertible matrices of M2k+2(A) such that

• P1 − I2k+2 and P −1
1 − I2k+2 are elements in the matrix algebra M2k+2(C∗N

(r,r)
∆1,21r).

• P2 − I2k+2 and P −1
2 − I2k+2 are elements in the matrix algebra M2k+2(C∗N

(r,4r)
∆2,35r).

Since P1 and P2 can be written as a product of a fixed number, say p, of matrices X(x)

or Y (x) with ‖x‖ < 2c, we see that P1 and P2 have norm less than (2c + 1)p. According 

to equation (2), we have

‖diag(u, I2k+1) − P1P2‖ < 13ε.

The required homotopies are then

(T (tx1, tx2)Uk+1T̃ (ty1, ty2)U∗
k+1Q1(tvk, twk))t∈[0,1]

and

(Q2(tvk, twk)Ũ∗
k T̃ (ty1, ty2)−1Uk+1T −1(−tx2, −tx1)U∗

k+1T̃ (ty1, ty2)

T̃ −1(−ty2, −ty1)Ũk)t∈[0,1]. �

Let us briefly explain how we deal with the non unital case. Let A be a non unital 

filtered C∗-algebra and let u be an ε-r unitary in Ã such that u − 1 is in A. Assume that 

u = x1 + x2 with 1 − x1 and x2 lie in A. Proceeding as in the proof of Lemma 2.5, we 

see that diag(u, u∗) is 3ε-close to the product of

P1 = X(x2)X(x1)Y (−x∗
1)X(x1)

(
0 −1
1 0

)
X(−x2)

and

P2 = X(x2)

(
0 1

−1 0

)
X(−x1)Y (−x∗

2)X(x1)X(x2)

(
0 −1
1 0

)
.

Now if (Δ1, Δ2) be a coercive decomposition pair for A of degree r with coercitivity c

and assume that in the above decomposition of u = x1 + x2 we have 1 − x1 in Δ1 and 

x2 in Δ2, we get then by a straightforward computation that P1 − I2 has coefficient in 

C∗N
(r,2r)
∆1,5r and P2 − I2 has coefficient in C∗N

(r,2r)
∆2,5r . Notice that in view of the proof of 

Lemma 1.8, if under above assumption, u is connected to 1 as a ε-r-unitary of Ã, then u

is connected to 1 by a homotopy of 21ε-r-unitaries (ut)t∈[0,1] of Ã such that ut − 1 lies 

in A for all t in [0, 1]. Hence proceeding as in the proof of Lemma 2.9 we get:
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Lemma 2.10. For any positive number c, there exist positive numbers λ, C and N , with 

λ > 1 and C > 1 such that the following holds.

Let A be a non unital C∗-algebra filtered by (As)s>0, let r and ε be positive numbers 

such that ε < 1
4λ and let (Δ1, Δ2) be a coercive decomposition pair for A of degree r with 

coercitivity c. Then for any ε-r-unitary u in Ã homotopic to 1 and such that u − 1 lies 

in A, there exist an integer k and P1 and P2 in Mk(ÃCr) such that

• P1 and P2 are invertible;

• Pi − Ik and P −1
i − Ik are elements in the matrix algebra Mn(C∗N

(r,5r)
∆i,Cr) for i = 1, 2;

• ‖Pi‖ < N and ‖P −1
i ‖ < N for i = 1, 2;

• for i = 1, 2, there exists a homotopy (Pi,t)t∈[0,1] of invertible elements in Mk(ÃCr)

between 1 and Pi such that ‖Pi,t‖ < N, ‖P −1
i,t ‖ < N and Pi,t − Ik and P −1

i,t − Ik are 

elements in the matrix algebra Mn(C∗N
(r,5r)
∆i,Cr) for every t in [0, 1].

• ‖ diag(u, Ik−1) − P1P2‖ < λε.

Using the analogue of the polar decomposition stated in Lemma 2.4, we are now in 

position to prove the approximation result in terms of ε-r-unitaries.

Proposition 2.11. For every positive number c, there exists a control pair (α, l) such that 

the following holds.

Let A be a unital C∗-algebra filtered by (As)s>0, let r and ε be positive numbers such 

that ε < 1
4α and let (Δ1, Δ2) be a coercive decomposition pair for A of degree r with 

coercitivity c. Then for any ε-r-unitary u in A homotopic to 1, there exist a positive 

integer k and w1 and w2 two αε-lεr-unitaries in Mk(A) such that

• wi − Ik is an element in the matrix algebra Mk(C∗N
(r,4r)
∆i,lεr) for i = 1, 2;

• for i = 1, 2, there exists a homotopy (wi,t)t∈[0,1] of αε-lεr-unitaries between 1 and wi

such that wi,t − Ik ∈ Mk(C∗N
(r,4r)
∆i,lεr) for all t in [0, 1].

• ‖ diag(u, Ik−1) − w1w2‖ < αε.

Proof. As in Lemma 2.9, let λ, C and N be positive numbers, k be an integer and P1

and P2 be matrices of Mk(ACr) such that ‖ diag(u, Ik−1) − P1P2‖ < λε. Since P1 and P2

are ε-Cr-N -invertible for every ε in (0, 1
4λ ), then according to Lemma 2.4, there exists

• a control pair (α, l);

• w1 an ε-lε/αr-unitary and h1 an ε-lε/αr-N -invertible both in

M2k+2(C∗N
(r,4r)
∆1

+ C),

with h1 positive and admitting a positive ε-lε/αr-N -inverse;
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• w2 an ε-lε/αr-unitary and h2 an ε-kε/αr-N -invertible both in

M2k+2(C∗N
(r,4r)
∆2

+ C),

with h2 positive and admitting a positive ε-lε/αr-N -inverse,

such that ‖P1 − w1h1‖ < ε , ‖P ∗
2 − w2h2‖ < ε, ‖|P1| − h1‖ < ε and ‖|P ∗

2 | − h2‖ < ε. Then

‖w1h1h2w∗
2 − diag(u, I2k+1)‖ < (2N + λ + 1)ε (4)

and hence, up to replacing λ by 4(2N + λ + 1), we know according to Lemma 1.2 that 

w = w1h1h2w∗
2 is a λε-4lε/αr-unitary. Let us prove that h1h2 is close to I2k+2.

Let h′
1 be a positive ε-lε/αr-N -inverse for h1. Then we have ‖w∗

1w − h1h2w∗
2‖ < 2λε

and then ‖h′
1w∗

1w − h2w∗
2‖ < 4λNε. This implies that

‖h′
1w∗

1w(h′
1w∗

1w)∗ − h2w∗
2(h2w∗

2)∗‖ < 16λNε.

Since ‖h′
1w∗

1w(h′
1w∗

1w)∗ − h′
1

2‖ < 3λN2ε and ‖h2w∗
2(h2w∗

2)∗ − h2
2‖ < 3λN2ε, we deduce 

that there exists λ′ � λ depending only on λ and N such that ‖h′
1

2−h2
2‖ < λ′ε. But, since 

h′
1 and h2 are ε-lε/αr-N -invertible with ε < 1/2, their spectrum is bounded below by 1

2N . 

The square root is Lipschitz on the set of positive elements of A with spectrum bounded 

below by 1
2N (this can be checked easily by holomorphic functional calculus), thus there 

exists a positive number M , depending only on N such that ‖h′
1 − h2‖ < Mλ′ε. Since 

h′
1 is an ε-lε/αr-N -inverse for h1, we finally obtain that ‖h1h2 − I2k+2‖ < (1 + λ′MN)ε.

Combining this inequality with equation (4), we know that there exist a positive 

number λ′′ > 1, depending only on N and λ′ such that

‖w1w∗
2 − diag(u, I2k+1)‖ < λ′′ε.

According to Lemma 2.4, w1 = P1Q(P ∗
1 P1) where Q is polynomial and such that 

Q(1) = 1. Since P1 − I2k+2 lies in C∗N
(r,4r)
∆1

, then the same holds for w1 − I2k+2 and 

similarly, w2 − I2k+2 lies in C∗N
(r,4r)
∆2

. �

Proceeding similarly, Lemma 2.10 allows to deal with the non unital case.

Proposition 2.12. For every positive number c, there exists a control pair (α, l) such that 

the following holds.

Let A be a non unital C∗-algebra filtered by (Ar)r>0, let r and ε be positive numbers 

such that ε < 1
4α and let (Δ1, Δ2) be a coercive decomposition pair for A of degree r with 

coercitivity c. Then for any ε-r-unitary u in Ã homotopic to 1 and such that u − 1 lies 

in A, there exist a positive integer k and w1 and w2 two αε-lεr-unitaries in Mk(Ã) such 

that
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• wi − Ik is an element in the matrix algebra Mk(C∗N
(r,5r)
∆i,lεr) for i = 1, 2;

• for i = 1, 2, there exists a homotopy (wi,t)t∈[0,1] of αε-lεr-unitaries between 1 and wi

such that wi,t − Ik ∈ Mk(C∗N
(r,5r)
∆i,lεr) for all t in [0, 1].

• ‖ diag(u, Ik−1) − w1w2‖ < αε.

2.3. Controlled Mayer–Vietoris pair

In this subsection, we introduce the controlled Mayer–Vietoris pair that allows to 

decompose at a given order r a filtered C∗-algebra A into a completely coercive decom-

position (Δ1, Δ2). This controlled Mayer–Vietoris pair gives rise to a controlled six-terms 

exact sequence that compute the quantitative K-theory at order r of A in terms of the 

controlled K-theory of some attached neighborhood C∗-algebras of Δ1, Δ2 and Δ1 ∩Δ2. 

These neighborhood C∗-algebras are roughly speaking C∗-algebras that contains a quan-

titative ideal associated to the underlying linear subspaces. Our prominent examples of 

controlled Mayer–Vietoris pair will be given by Roe algebras.

Definition 2.13. Let A be a C∗-algebra filtered by (As)s>0, let r be a positive number 

and let Δ be a closed linear subspace of Ar. Then a sub-C∗-algebra B of A is called an 

r-controlled Δ-neighborhood-C∗-algebra if

• B is filtered by (B ∩ Ar)r>0;

• C∗N
(r,5r)
∆ ⊆ B.

Remark 2.14. In view of Propositions 2.11 and 2.12, the second assumption in the above 

definition guarantees that the controlled boundary in the controlled Mayer–Vietoris exact 

sequence in well defined.

Example 2.15. Let Σ be a discrete metric space with bounded geometry and consider 

C∗(Σ) the Roe Algebra of Σ. Recall that C∗(Σ) is the closure of the algebra of locally 

compact and finite propagation operators on �2(Σ)⊗H , where H is a fixed separable 

Hilbert space. Then C∗(Σ) is filtered by the propagation. For r a positive number, let 

(Xi)i∈N be a family of finite subsets of Σ with uniformly bounded diameter which is 

R-disjoint (i.e., d(Xi, Xj) � R if i �= j) for some positive number R � 12r. Let us 

consider the set Δ ⊆ C∗(Σ)r of locally compact operators on �2(Σ)⊗H with support in

{
(x, y) ∈ Σ × Σ; x ∈

⋃

i∈N

Xi, d(x, y) � r
}

.

For a positive number s, let us set Xi,s = {x ∈ Xi such that d(x, Xi) < s}. If s < R/2, 

then (Xi,s)i∈N is a family of (R − 2s)-disjoint subsets of Σ with uniformly bounded 

diameter. Consider then the subalgebra A∆ of C∗(Σ) of operators with support in 

�i∈N Xi,s × Xi,s. Then
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A∆
∼=
∏

i∈N

K (�2(Xi,s)⊗H ) ∼=
(
∏

i∈N

K (�2(Xi,s)⊗K (H )

)

and A∆ is for every s with 5r < s < R/2 an r-controlled Δ-neighborhood-C∗-algebra.

Definition 2.16. Let S1 and S2 be two subsets of a C∗-algebra A. The pair (S1, S2) is 

said to have complete intersection approximation property (CIA) if there exists c > 0

such that for any positive number ε, any x ∈ Mn(S1) and y ∈ Mn(S2) for some n and 

||x − y|| < ε, then there exists z ∈ Mn(S1 ∩ S2) satisfying

||z − x|| < cε, ||z − y|| < cε.

The positive number c is called the coercitivity of the pair (S1, S2).

In the above definition, we note that the inequalities ||x − y|| < ε and ||z − x|| < cε

implies ||z − y|| < (c + 1)ε. Hence we can remove the condition ||z − y|| < cε up to 

replacing the constant c by c + 1.

Definition 2.17. Let A be a C∗-algebra filtered by (As)s>0 and let r be a positive number. 

An r-controlled weak Mayer–Vietoris pair for A is a quadruple (Δ1, Δ2, A∆1
, A∆2

) such 

that for some positive number c.

(i) (Δ1, Δ2) is a completely coercive decomposition pair for A of order r with coerci-

tivity c.

(ii) A∆i
is an r-controlled Δi-neighborhood-C∗-algebra for i = 1, 2;

(iii) the pair (A∆1,s, A∆2,s) has the CIA property with coercitivity c as defined above 

for any positive number s with s � r.

The positive number c is called the coercitivity of the r-controlled weak Mayer–Vietoris 

pair (Δ1, Δ2, A∆1
, A∆2

).

Remark 2.18. In the above definition,

(i) (Δ1∩As, Δ2∩As, A∆1
, A∆2

) is an s-controlled Mayer–Vietoris pair for any 0 < s � r

with same coercitivity as (Δ1, Δ2, A∆1
, A∆2

).

(ii) A∆1
∩ A∆2

is filtered by (A∆1,r ∩ A∆2,r)r>0.

In order to ensure some persistence properties for the controlled Mayer–Vietoris exact 

sequence (see Corollary 3.6), we need to strenghen condition (iii) of Definition 2.17.

Definition 2.19. Let A be a C∗-algebra filtered by (As)s>0 and let r be a positive number. 

An r-controlled Mayer–Vietoris pair for A is a quadruple (Δ1, Δ2, A∆1
, A∆2

) such that 

for some positive number c.
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(i) (Δ1, Δ2) is a completely coercive decomposition pair for A of order r with coerci-

tivity c.

(ii) A∆i
is an r-controlled Δi-neighborhood-C∗-algebra for i = 1, 2;

(iii) the pair (A∆1,s, A∆2,s) has the CIA property for any positive number s with coerci-

tivity c as defined above.

The positive number c is called the coercitivity of the r-controlled Mayer–Vietoris pair 

(Δ1, Δ2, A∆1
, A∆2

).

If A is a unital C∗-algebra filtered by (As)s>0 and if (Δ1, Δ2, A∆1
, A∆2

) is an 

r-controlled Mayer–Vietoris pair, we will view Ã∆1
the unitarization of A∆1

as A∆1
+

C · 1 ⊆ A and similarly for A∆2
and A∆1

∩ A∆2
.

Example 2.20. Let (Σ, d) be a proper metric discrete space, let X(1) and X(2) be subsets 

in Σ such that Σ = X(1) ∪ X(2) and let r be a positive number. Assume that X(1) =

∪i∈NX
(1)
i and X(2) = ∪i∈NX

(2)
i , where (X

(1)
i )i∈N and (X

(2)
i )i∈N are families of R-disjoint 

subsets of Σ with uniformly bounded diameter for some positive number R � 10r. Let 

us consider as in Example 2.15 for j = 1, 2 the sets Δj ⊆ C∗(Σ)r of locally compact 

operators on �2(Σ)⊗H with support in

{
(x, y) ∈ Σ × Σ; x ∈ X(j), d(x, y) � r

}

and let us consider then the subalgebra A∆j
of C∗(Σ) of operators with support in ⋃

i∈N
X

(j)
i,s × X

(j)
i,s for some fixed positive number s with 5r < s < R/2. Let χ

X
(2)
i,5r

for i

integer be the characteristic function of

{x ∈ Σ such that d(x, X
(2)
i ) � 5r}.

Set

Ψ : C∗(Σ)−→C∗(Σ); x �→
∑

i∈N

χ
X

(2)
i,5r

xχ
X

(2)
i,5r

.

Then Ψ is norm decreasing. Since Ψ(x2) = x2 for every x2 in A∆2
, we obtain

‖Ψ(x1) − x2‖ � ‖x1 − x2‖

for every x1 in Mn(A∆1
) and x2 in Mn(A∆2

). Since Ψ(x1) lies in Mn(A∆1
∩ A∆2

), we 

see that (Δ1, Δ2, A∆1
, A∆2

) is an r-controlled Mayer–Vietoris pair with coercitivity 1.

In next lemma, we show that in the context of controlled Mayer–Vietoris pairs, the 

pairs as in Proposition 2.11 arising respectively from an ε-s-unitary and from its adjoint 

are up to stabilization homotopically adjoint. This result will be needed for the proof of 

Theorem 4.12 in Section 4.3.
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Proposition 2.21. For every positive number c, there exists a control pair (α, l) such that 

the following holds.

Let A be any unital filtered C∗-algebra, let r be any positive number, let (Δ1, Δ2, A∆1
,

A∆2
) be any r-controlled Mayer–Vietoris pair for A at order r with coercitivity c, and 

let ε and r′ be positive numbers with ε ∈ (0, 1
4α ) and r � r′. Assume that for some 

ε-r-unitary u in some Mn(A), there exist two ε-r′-unitaries v1 and v′
1 in Mn(Ã∆1

) and 

two ε-r′-unitaries v2 and v′
2 in Mn(Ã∆2

) such that ‖u − v1v2‖ < ε and ‖u∗ − v′
1v′

2‖ < ε. 

Then there exists an integer k and v′′
1 and v′′

2 respectively αε-lεr′-unitaries in Mn+k(Ã∆1
)

and Mn+k(Ã∆2
) such that

• ‖ diag(u∗, Ik) − v′′
1 v′′

2 ‖ < αε;

• v′′
i is homotopic to diag(v∗

i , Ik) as an αε-lεr′-unitary in Mn+k(Ã∆i
) for i = 1, 2.

Moreover, if vi −In and v′
i −In lie in Mn(A∆i

) for i = 1, 2 then v′′
1 and v′′

2 can be chosen 

such that v′′
i − In+k lies in Mn+k(A∆i

) for i = 1, 2.

Proof. Let (α, l) be a control pair as in Proposition 2.11. Since ρ−1
A∆j

(vj) and ρ−1
A∆j

(v′
j)

are for j = 1, 2 homotopic to In as 8ε-s-unitaries of Mn(C) for every positive number s

[9, Lemma 1.20], then up to replacing α by 90α, there exists an integer k and w1 and 

w2 be two αε-2lεr-unitaries respectively in M2n+k(A∆1
) and M2n+k(A∆2

) such that if 

we set Wj = diag(ρ−1
A∆j

(vj), ρ−1
A∆1

(v′
j), Ik) for j = 1, 2, then

• ‖W1 diag(u, u∗, Ik)W2 − w1w2‖ < αε;

• wj − I2n+k is in M2n+k(A∆j
) for j = 1, 2.

• wj is homotopic to I2n+k as an αε-2lεr-unitaries in M2n+k(A∆j
) for j = 1, 2.

Then

‖W1diag(v1v2, v′
1v′

2, Ik)W2 − w1w2‖ < (α + 2)ε

and hence we have

‖ diag(v∗
1 , v′∗

1, Ik)W ∗
1 w1 − diag(v2, v′

2, Ik)W2w∗
2‖ < 5(α + 1)ε.

Since ρA∆j
(diag(vj , v′

j , Ik)Wj) = I2n+k for j = 1, 2 and in view of CIA property, there 

exist v in M2n+k(A) with propagation less than (2lε + 1)r′ such that

• v − I2n+k is in M2n+k(A∆1
∩ A∆2

);

• ‖ diag(v2, v′
2, Ik)W2w∗

2 − v‖ < 5c(α + 1)ε;

• ‖ diag(v∗
1 , v′∗

1, Ik)W ∗
1 w1 − v‖ < 5c(α + 1)ε.

In particular some control pair (α′, l′) depending only on c.
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• v is an α′-l′
ε-r′-unitary in M2n+k( ˜A∆1

∩ A∆2
);

• v is homotopic to diag(v∗
1 , v′

1
∗
, Ik) as an α′-l′

ε-r′-unitary in M2n+k(Ã∆1
);

• v is homotopic to diag(v2, v′
2, Ik) as an α′-l′

ε-r′-unitary in M2n+k(Ã∆2
).

Let us set v′′
1 = diag(v′

1, In+k) · v and v′′
2 = v∗ · diag(v′

2, In+k). Then v′′
1 and v′′

2 satisfy 

the required properties for some suitable control pair depending only on c. �

2.4. Controlled Mayer–Vietoris pair associated to groupoïds

In this section, we discuss the example of a controlled Mayer–Vietoris pair associated 

to groupoïds. Our method in this paper provides a different approach to the controlled 

Mayer–Vietoris sequence in the context of crossed product C∗-algebras in [5]. Recall first 

the definition of a proper symmetric length on an étale groupoïd.

Definition 2.22. Let G be an étale groupoïd, with compact base space X. A proper 

symmetric length on G is a continuous proper map � : G → R+ such that

• �(γ) = 0 if and only if γ is a unit of G;

• �(γ) = �(γ−1) for any γ in G;

• �(γ · γ′) � �(γ) + �(γ′) for any γ and γ′ in G composable.

Let G be an étale groupoïd with compact base space X and source map and range 

map r, s : G → X equipped with a symmetric and proper length �. Then, if we set

Gr = {γ ∈ G; such that �(γ) � r},

then the reduced C∗-algebra C∗
r (G) of G is filtered by (C∗

r (G)r)r>0 with

C∗
r (G)r = {f ∈ Cc(G) with support in Gr}

for all positive number r.

Remark 2.23. In [2] is developed a more general notion of filtered C∗-algebras and the 

definition of quantitative K-theory is extended to this setting. A filtered structure in 

this sense can be defined on reduced C∗-algebras of étale without involving a length.

For every open subset V of X and every positive number r, set

Vr = {s(γ) , γ ∈ G̊r and r(γ) ∈ V } = {r(γ) , γ ∈ G̊r and s(γ) ∈ V }.

Then Vr is an open subset of X and V ⊆ Vr. If Y and Z are subsets of X, then we 

set GY = {γ ∈ G; s(γ) ∈ Y } , GZ = {γ ∈ G; r(γ) ∈ Z} and GY
X = GY ∩ GZ . For every 
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open subset V of X and every positive number r, let GV,(r)
V be the subgroupoïd of GV

V

generated by GV
V,r = GV

V ∩ G̊r. Then GV,(r)
V is an open subgroupoïd of G. Let us set

ΔV = {f ∈ C0(GV ) with support in Gr}.

Then ΔV is a closed linear subspace of C∗
r (G)r and for every positive number R and R′

with r ≤ R < R′, then we have C∗Nr,R
∆V

⊆ C∗
r

(
GV ′

R,(R′)

V ′
R

)
. In particular, if R > 5r, then 

C∗
r

(
GVR,(R)

VR

)
is a r-controlled ΔV -neighborhood-C∗-algebra.

Let V (1) and V (2) be two open subsets of X such that X = V (1) ∪ V (2). Fix R > 5r. 

Set Δ1 = ΔV (1) and Δ2 = ΔV (2) . Using partition of unity relatively to V (1) and V (2), 

we see that (Δ1, Δ2) is a completely coercive decomposition pair of order r for C∗
red(G)

with coercitivity 1. Let us set also A∆1
= C∗

red

(
GV

(1)
R ,(R)

V
(1)

R

)
and A∆2

= C∗
red

(
GV

(2)
R ,(R)

V
(2)

R

)
. 

Let s be a positive number with s � r, let ε be a positive number, let x1 be an element 

of Mn (A∆1,s) and let x2 be an element of Mn (A∆2,s) such that ‖x1 − x2‖ < ε. Let 

x′
1 and x′

2 be respectively elements in Mn

(
Cc

(
GV

(1)
R ,(R)

V
(1)

R

))
and Mn

(
Cc

(
GV

(2)
R ,(R)

V
(2)

R

))

such that ‖x′
1 −x1‖ < ε and ‖x′

2 −x2‖ < ε. Let K be a compact subset of V
(2)

R such that 

all coefficients of x′
2 have support in GK

K and let h : X → [0, 1] be a continuous function 

with support in V
(2)

R and such that h(z) = 1 for all z in K. The Schur multiplication 

(i.e. the pointwise multiplication) by h ◦ s · h ◦ r

Cc(G) → Cc(G); f �→ f · h ◦ s · h ◦ r

extends to a completely positive map

φ : C∗
red(G) → C∗

red(G)

of complete norm less than 1 and such that φ(x′
2) = x′

2 and φ(x′
1) belongs to 

C∗
red

(
GV

(1)
R ,(R)

V
(1)

R

)

s

⋂
C∗

red

(
GV

(2)
R ,(R)

V
(2)

R

)

s

. Moreover

‖φ(x′
1) − x2‖ � ‖φ(x′

1) − x′
2‖ + ‖x′

2 − x2‖
� ‖φ(x′

1) − φ(x′
2)‖ + ε

� ‖x′
1 − x′

2‖ + ε

� 4ε.

Hence, 

(
Δ1, Δ2, C∗

red

(
GV

(1)
R ,(R)

V
(1)

R

)
, C∗

red

(
GV

(2)
R ,(R)

V
(2)

R

))
is for every R > 5r a r-controlled 

weak Mayer–Vietoris pair for C∗
red(G)) with coercitivity 5. Assume that there exists a 

positive number C such that for every compact subset K of V (2), there exists a continuous 

function h : X → [0, 1] with support in V (2) that satisfies the following:
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• h(z) = 1 for all z in K;

• the Schur multiplication by h ◦ s · h ◦ r extends to a completely bounded map Φ :

C∗
red(G) → C∗

red(G) with complete norm bounded by C and such that for any x in 

Cc

(
GV

(2)
R ,(R)

V
(2)

R

)
with support in GK

K , then Φ(x) = x,

then 

(
Δ1, Δ2, C∗

red

(
GV

(1)
R ,(R)

V
(1)

R

)
, C∗

red

(
GV

(2)
R ,(R)

V
(2)

R

))
is for every R > 5r a r-controlled 

Mayer–Vietoris pair for C∗
red(G)) with coercitivity c depending only on C.

3. Controlled Mayer–Vietoris six terms exact sequence in quantitative K-theory

In this section, we establish for a control Mayer–Vietoris pair associated to a filtered 

C∗-algebra A a controlled exact sequence that allows to compute quantitative K-theory 

of A up to a certain order. We follow the route of the proof in the K-theory case. 

We first check controlled exactness in the middle. Using Propositions 2.11 and 2.12

and the CIA property, we then define the quantitative boundary map mimicking the 

construction of the Mayer–Vietoris boundary map in usual K-theory. The thickness 

of the neighborhood algebras guarantees that this quantitative boundary map is well 

defined. We prove eventually the control exactness at the source and at the range of the 

quantitative boundary map to complete the statement of the controlled six terms exact 

sequence. Notice that exactness at the source and at the range is indeed persistent at any 

order (see Corollary 3.6 Lemma 3.8). This strenghening of controlled exactness is crucial 

to compute quantitative K-theory out of the controlled Mayer–Vietoris exact sequence 

(see the proof of Theorems 3.14 and 4.12). We end the section with an application to 

computation of K-theory of obstruction C∗-algebras.

Notation 3.1. Let A be a unital C∗-algebra filtered by (Ar)r>0, let r be a positive number 

and let (Δ1, Δ2, A∆1
, A∆2

) be a r-controlled Mayer–Vietoris pair for A. We denote by 

j∆1
: A∆1

→ A , j∆2
: A∆2

→ A , j∆1,∆2
: A∆1

∩ A∆2
→ A∆1

and j∆2,∆1
: A∆1

∩ A∆2
→

A∆2
the obvious inclusion maps.

3.1. Controlled half-exactness in the middle

Proposition 3.2. For every positive number c, there exists a control pair (α, l) such that 

for any filtered C∗-algebra A, any positive number r and any r-controlled weak Mayer–

Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) for A with coercitivity c, then the composition

K∗(A∆1
∩ A∆2

)
(j∆1,∆2,∗,j∆2,∆1,∗)−−−−−−−−−−−−−→ K∗(A∆1

) ⊕ K∗(A∆2
)

(j∆1,∗−j∆2,∗)−−−−−−−−−→ K∗(A)

is (α, l)-exact at order r.
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Proof. Let us first assume that A is unital. In the even case let y1 and y2 be respectively 

element in Kε,s
0 (A∆1

) and Kε,s
0 (A∆2

) such that jε,s
∆1,∗(y1) = jε,s

∆2,∗(y2) in Kε,s
0 (A). In view 

of Lemma 1.7, we can assume up to rescaling ε that there exist integer m and n with 

m � n and two ε-r-projections q1 and q2 in Mn(A) such that

• q1 − diag(Im, 0) is an element in the matrix algebra Mn(A∆1
);

• q2 − diag(Im, 0) is an element in the matrix algebra Mn(A∆2
);

• y1 = [q1, m]ε,s;

• y2 = [q2, m]ε,s.

Up to stabilization, we can also assume that q1 and q2 are homotopic as ε-s-projections 

in Mn(A). Let (α, k) be the control pair of Proposition 1.5. Up to stabilization there 

exists u a αε-kεs-unitary in Mn(A) such that ‖u∗q1u − q2‖ < αε. Up to replacing u by 

diag(u, u∗), q1 by diag(q1, 0) and q2 by diag(q2, 0), we can assume in view of Lemma 1.3

that u is homotopic to In as a 3αε-2kεs-unitary in Mn(A). According to Proposition 2.11, 

then for some control pair (λ, l) depending only on (α, k) and c with (α, k) � (λ, l) and 

up to stabilization, there exist w1 and w2 some λε-kεs unitaries in Mn(A) such that

• wi − Ik is an element in the matrix algebra Mn(C∗N
(r,4r)
∆i,lεs) for i = 1, 2;

• ‖w∗
1q1w1 − w2q2w∗

2‖ < λε.

Notice that w∗
1q1w1 − diag(Im, 0) is an element in the matrix algebra Mn(A∆1,(2lε+1)s)

and w2q2w∗
2 − diag(Im, 0) is an element in the matrix algebra Mn(A∆2,(2lε+1)s). By 

Definition 2.16 of the CIA property, there exists y in

Mn(A∆1,(2lε+1)s ∩ A∆2,(2lε+1)s)

such that

‖y − (w∗
1q1w∗

1 − diag(In, 0))‖ < λcε

and

‖y − (w2q2w∗
2 − diag(In, 0))‖ < λcε.

Let us set then

p = y + diag(Im, 0).

Since ‖p − w∗
1q1w1‖ < λcε and ‖p − w2q2w∗

2‖ < λcε, up to stabilization, in view of the 

proof of [9, Lemma 1.9] and according to [9, Lemma 1.7], we know that for some control 

pair (α′, l′) depending only on (α, k) and c and such that ((c +1)λ, 2l +1) � (α′, l′), then 

for j = 1, 2
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• w∗
1q1w1 is an α′-l′

εs-projection in Mn(Ã∆1
);

• w∗
1q1w1 is homotopic to q1 as an α′-l′

εs-projections in Mn(Ã∆1
);

• p is connected to w∗
1q1w1 as an α′-l′

εs-projections in Mn(Ã∆1
);

and

• w2q2w∗
2 is an α′-l′

εs-projection in Mn(Ã∆2
);

• w2q2w2 is homotopic to q2 as an α′-l′
εs-projections in Mn(Ã∆2

);

• p is connected to w∗
2q2w2 as an α′-l′

εs-projections in Mn(Ã∆2
).

Now if we set x = [p, m]α′ε,l′
εs in K

α′ε,l′
εs

0 (A∆1
∩ A∆2

), we have that

j
α′ε,l′

εs
∆1,∆2

(x) = ι−,α′ε,l′
εs(y1)

in K
α′ε,l′

εs
∗ (A∆1

) and

j
α′ε,l′

εs
∆2,∆1

(x) = ι−,α′ε,l′
εs(y2)

in K
α′ε,l′

εs
∗ (A∆2

).

A similar proof can be carried out in the odd case but we can also use the controlled 

Bott periodicity [10, Lemma 4.6]. The non unital case can be proved in a similar way 

using Lemma 2.12, noticing that in view of the proof of Proposition 1.5 and following the 

proof of the unital case above, we can assume that u which is now a αhε-kh,εs-unitary 

in Mn(Ã) is such that u − In has coefficient in A (see the proofs of [9, Lemma 1.11 and 

Corollary 1.31]). �

3.2. Quantitative boundary maps for controlled Mayer–Vietoris pair

In this subsection, we introduce the quantitative boundary map that fits into the 

controlled Mayer–Vietoris sequence for quantitative K-theory of filtered C∗-algebras.

Lemma 3.3. For every positive number c, there exists a control pair (λ, k) such that the 

following holds:

Let A be a unital C∗-algebra filtered by (As)s>0, let r be a positive number and let 

(Δ1, Δ2, A∆1
, A∆2

) be a r-controlled weak Mayer–Vietoris pair for A with coercitivity c. 

Let ε and s be positive numbers with ε < 1
4λ and s � r/2, let m and n be integers and 

let u in Uε,s
n (A), v in Uε,s

m (A) and w1, w2 be ε-s-unitaries in Mε,s
n+m(A) such that

• wi − In+m is an element in the matrix algebra Mn+m(A∆i
) for i = 1, 2;

• ‖ diag(u, v) − w1w2‖ < ε.

Then,
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(i) there exists a λε-kεs-projection q in Mn+m(A) such that

• q − diag(In, 0) is an element in the matrix algebra Mn+m(A∆1
∩ A∆2

);

• ‖q − w∗
1 diag(In, 0)w1‖ < λε;

• ‖q − w2 diag(In, 0)w∗
2‖ < λε;

(ii) if q and q′ are two λε-kεs-projections in Mn+m(A) that satisfy the first point, then 

[q, n]λε,kεs = [q′, n]λε,kεs in K0(A∆1
∩ A∆2

).

(iii) Let (w1, w2) and (w′
1, w′

2) be two pairs of ε-s-unitaries in Mε,s
n+m(A) satisfying 

the assumption of the lemma and let q and q′ be λε-kεs-projections in Mn+m(A)

that satisfy the first point relatively to respectively (w1, w2) and (w′
1, w′

2), then 

[q, n]λε,kεs = [q′, n]λε,kεs in K0(A∆1
∩ A∆2

).

Proof. Since diag(u, v) is an ε-s-unitary, we have that

‖w∗
1 diag(In, 0)w1 − w∗

1 diag(u, v) diag(In, 0) diag(u∗, v∗)w1‖
= ‖w∗

1 diag(In − u∗u, 0)w1‖
< 2ε.

Since ‖w∗
1 diag(u, v) − w2‖ < 4ε, we deduce that

‖w∗
1 diag(In, 0)w1 − w2 diag(In, 0)w∗

2‖ < 8ε.

With notations as in Definition 2.19, let y be an element in Mn+m(A∆1,2s
∩ A∆2,2s

) such 

that

‖w∗
1 diag(In, 0)w1 − diag(In, 0) − y‖ < 8cε

and

‖y − w2 diag(In, 0)w∗
2 − diag(In, 0)‖ < 8cε

and set

q = y + diag(In, 0).

Then q is close to a 2ε-2s-projection and thus we obtain in view of Lemma 1.2 that there 

exists a control pair (λ, k), depending only on c such that the conclusion of the first point 

is satisfied. With notations as in Lemma 3.3 and in view of Lemma 1.2, if q and q′ are 

λε-kεs-projections of Mn+m(A) that satisfies the first point, then

[q, n]10λε,kεs = [q′, n]10λε,kεs.

If (w1, w2) and (w′
1, w′

2) are two pairs of ε-s-unitaries in Mε,s
n+m(A) that satisfy the 

assumption of the lemma and let q and q′ be λε-kεs-projections in Mn+m(A) that satisfy 
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the first point relatively to (w1, w2) and (w′
1, w′

2). Then ‖w1w2 − w′
1w′

2‖ < 2ε and hence 

‖w′
2

∗
w2 − w′

1w1
∗‖ < 10ε. Hence using the CIA condition, we see that there exists v

in Mn+m(A2s) such that v − In+m is in Mn+n(A∆1
∩ A∆2

), ‖v − w′
1w1

∗‖ < 10cε and 

‖w′
2

∗
w2 − v‖ < 10cε. Since we have then ‖w1 − v∗w′

1‖ < 30cε and ‖w2 − w′
2v‖ < 30cε

the last point is consequence of [9, Lemma 1.9] and of the second point applied to 

45cε, (w1, w2) , q and v∗q′v. �

Remark 3.4. We have a similar statement in the non-unital case with u in Uε,s
n (Ã) and 

v in Uε,s
m (Ã) such that u − In and v − Im have coefficients in A

We are now in position to define the boundary map associated to a controlled Mayer–

Vietoris pair. Let A be a filtered C∗-algebra and let (Δ1, Δ2, A∆1
, A∆2

) be a r-controlled 

weak Mayer–Vietoris pair for A with coercitivity c. Assume first that A is unital.

Let (α, l) be a control pair as is Proposition 2.11. For any positive numbers ε and s

with ε < 1
4α and s � r/2 and any ε-s-unitary u in Mn(A), let v be an ε-s-unitary in some 

Mm(A) such that diag(u, v) is homotopic to In+m as a 3ε-2s-unitary in Mn+m(A), we can 

take for instance v = u∗ (see Lemma 1.3). Since C∗N
(2s,8s)
∆i

⊂ A∆i
as a filtered subalgebra 

for i = 1, 2, then according to Proposition 2.11 and up to replacing v by diag(v, Ik) for 

some integer k, there exists w1 and w2 two 3αε-2l3εr-unitaries in Mn+m(A) such that

• wi − In+m is an element in the matrix algebra Mn+m(A∆i,2l3εs) for i = 1, 2;

• for i = 1, 2, there exists a homotopy (wi,t)t∈[0,1] of 3αε-2l3εs-unitaries between 1 and 

wi such that wi,t − In+m is an element in the matrix algebra Mn+m(A∆i,l3εs) for all 

t in [0, 1].

• ‖ diag(u, v) − w1w2‖ < 3αε.

Let (λ, k) be the control pair of Lemma 3.3 (recall that (λ, k) depends only on c). Then 

if ε is in (0, 1
12αλ ), there exists a 3αλε-2l3εk3αεs-projection q in Mn+m(A) such that

• q − diag(In, 0) is an element in the matrix algebra

Mn+m(A∆1,2l3εk3αεs
∩ A∆2,2lεk3αεs

);

• ‖q − w∗
1 diag(In, 0)w1‖ < 3αλε;

• ‖q − w2 diag(In, 0)w∗
2‖ < 3αλε.

In view of second point of Lemma 3.3, the class [q, n]3αλε,2l3εk3αεs in

K3αλε,2l3εk3αεs
0 (A∆1

∩ A∆2
)

does not depend on the choice of q. Set then αc = 3αλ and

kc :

(
0,

1

4αc

)
−→(1, +∞), ε �→ 2l3εk3αε
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and define ∂ε,s,1
∆1,∆2,∗([u]ε,s) = [q, n]αcε,kcs and let us prove that we define in this way a 

morphism

∂ε,s,1
∆1,∆2,∗ : Kε,s

1 (A) → Kαcε,kcs
0 (A∆1

∩ A∆2
).

It is straightforward to check that (compare with [13, Chapter 8]).

• two different choices of elements satisfying the conclusion of Lemma 3.3 relative 

to diag(u, v) give rise to homotopic elements in PαDε,kDs
n+j (A∆1

∩ A∆2
) (this is a 

consequence of Lemma 3.3).

• Replacing u by diag(u, Im) and v by diag(v, Ik) gives also rise to the same element 

of Kαcε,kcs
0 (A∆1

∩ A∆2
).

Applying now Proposition 2.11 to the r-controlled Mayer–Vietoris pair

(C([0, 1], Δ1), C([0, 1], Δ2), C([0, 1], A∆1
), C([0, 1], A∆2

))

for the C∗-algebra C([0, 1], A) filtered by (C([0, 1], As))s>0, we see that ∂ε,s,1
∆1,∆2,∗([u]ε,s)

• only depends on the class of u in Kε,s
1 (A);

• does not depend on the choice of v such that diag(u, v) is connected to In+j in 

U3ε,2s
n+j (A).

In the non unital case ∂ε,s,1
∆1,∆2,∗ is defined similarly by using point (ii) of Remark 3.4, 

noticing that in view of Lemma 1.8 and up to replacing ε by 3ε, every element x in 

K1(A) is the class of a ε-r-unitary u in Mn(Ã) such that u − In has coefficients in A. 

It is straightforward to check that ∂•,•,1
∆1,∆2,∗ is compatible with the structure morphisms. 

Let us consider D1
∆1,∆2,∗ = (∂ε,s,1

∆1,∆2,∗) where ε runs through (0, 1
4αc

) and s runs through 

(0, r
kc,ε

). Then

D1
∆1,∆2,∗ : K1(A) → K0(A∆1

∩ A∆1
)

is a odd degree (αc, kc)-controlled morphism of order r.

Let us now define the boundary map in the even case using controlled Bott pe-

riodicity. For Δ a closed subspace in an C∗-algebra, let us define its suspension as 

SΔ = C0((0, 1), Δ). Let [∂] be the element of KK1(C, C0(0, 1)) that implements the 

extension

0 → C0(0, 1) → C0[0, 1)
ev0→ C → 0,

where ev0 : C0[0, 1)→C is the evaluation at 0. Then [∂] is an invertible element of 

KK1(C, C0(0, 1)) and in view of Proposition 1.26 and according to [9, Lemma 4.6],
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TB([∂]) : K∗(B) → K∗(SB)

is a (αT , kT )-controlled isomorphism of degree one with controlled inverse

TB([∂]−1) : K∗(SB) → K∗(B).

Let A be a C∗-algebra filtered by (As)s>0, let r be a positive number and let 

(Δ1, Δ2, A∆1
, A∆2

) be a r-controlled weak Mayer–Vietoris pair for A with coercitivity c. 

Then (SΔ1, SΔ2, SA∆1
, SA∆2

) is a r-controlled weak Mayer–Vietoris pair for SA (fil-

tered by (SAr)r>0) with coercitivity c. Set then λ = α2
T αc and hε = kT ,αT αcεkc,αcεkc,ε. 

Let us define in the even case the quantitative boundary map for the r-controlled Mayer–

Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) as the (λ, h)-controlled morphism of order r

D0
∆1,∆2,∗

def
== TA∆1

∩A∆2
,∗([∂]−1) ◦ D1

S∆1,S∆2,∗ ◦ TA([∂]) : K0(A)−→K1(A∆1
∩ A∆2

).

For sake of simplicity, we will rescale (αc, kc) to (λ, h) and use the same control pair in 

the odd and in the even case for the definition of

D∆1,∆2,∗
def
== D0

∆1,∆2,∗ ⊕ D1
∆1,∆2,∗ : K∗(A)−→K∗+1(A∆1

∩ A∆2
)

as a odd degree (αc, kc)-controlled morphism of order r. Notice that the quantitative 

boundary map of a r-controlled weak Mayer–Vietoris pair is natural in the following 

sense: let A and B be filtered C∗-algebras, let (Δ1, Δ2, A∆1
, A∆2

) and (Δ′
1, Δ′

2, B∆′
1
, B∆′

2
)

be respectively r-controlled weak Mayer–Vietoris pairs for A and B with coercitivity c

and let f : A → B be a filtered morphism such that f(Δ1) ⊆ Δ′
1, f(Δ2) ⊆ Δ′

2, f(A∆1
) ⊆

B∆′
1

andf(A∆2
) ⊆ B∆′

2
. Then we have

f/A∆1
∩A∆2

,∗ ◦ D∆1,∆2,∗ = D∆′
1,∆′

2,∗ ◦ f∗, (5)

where f/A∆1
∩A∆2

: A∆1
∩ A∆2

→ B∆′
1

∩ B∆′
2

is the restriction of f to A∆1
∩ A∆2

.

3.3. The controlled six-term exact sequence

In this subsection, we prove the controlled exactness at order r at the source and at 

the range of D∆1,∆2,∗, stating as a consequence the Mayer–Vietoris controlled six term 

exact sequence associated to a r-controlled Mayer–Vietoris. Let us start with controlled 

exactness at the source.

Lemma 3.5. There exists a control pair (λ, l) such that

• for any unital filtered C∗-algebra A filtered by (As)s>0 and any subalgebras A1 and 

A2 of A such that A1, A2 and A1 ∩A2 are respectively filtered by (A1 ∩Ar)r>0, (A2 ∩
Ar)r>0 and (A1 ∩ A2 ∩ Ar)r>0;



JID:YJFAN AID:8179 /FLA [m1L; v1.252; Prn:8/02/2019; 14:55] P.47 (1-89)

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis ••• (••••) •••–••• 47

• for any positive number ε with ε < 1
4λ any integers n and m and any ε-r-unitaries 

u1 in Mn(A) and u2 in Mm(A);

• for any ε-r-unitaries v1 and v2 respectively in Mn+m(Ã1) and Mn+m(Ã2) such that

– ‖ diag(u1, u2) − v1v2‖ < ε;

– there exists an ε-r-projection q in Mn+m(A) such that q − diag(In, 0) is in 

Mn+m(A1 ∩ A2), ‖q − v∗
1 diag(In, 0)v1‖ < ε and [q, n]ε,r = 0 in Kε,r

0 (A1 ∩ A2).

Then there exists an integer k and λε-lεr-unitaries w1 and w2 respectively in Mn+k(Ã1)

and Mn+k(Ã2) such that ‖ diag(u1, Ik) − diag(w1w2)‖ < λε. Moreover, if vi − In+k lies 

in Mn+k(Ai) for i = 1, 2 then w1 and w2 can be chosen such that wi − In+k lies in 

Mn+m(Ai) for i = 1, 2

Proof. Up to replacing u2, v1 and v2 respectively by diag(u2, Ik), diag(v1, Ik) and 

diag(v2, Ik) for some integer k, we can assume that q is homotopic to diag(In, 0) as 

an ε-r-projection in Mn+m(Ã1 ∩ A2). According to Lemma 1.5, there exist

• a control pair (α, h);

• up to stabilization an αε-hεr-unitary v in Mn+m( ˜A∆1
∩ A∆2

) with v − In+m in 

Mn+m(A∆1
∩ A∆2

)

such that

‖q − v diag(In, 0)v∗‖ < αε.

Up to take a larger control pair (α, h), we can assume that

‖v∗
1 diag(In, 0)v1 − v diag(In, 0)v∗‖ < αε

and

‖v2 diag(In, 0)v∗
2 − v diag(In, 0)v∗‖ < αε

and hence even indeed that

‖v∗v∗
1 diag(In, 0)v1v − diag(In, 0)‖ < αε

and

‖v∗v2 diag(In, 0)v∗
2v − diag(In, 0)‖ < αε.

Hence, for some control pair (α′, h′) depending only on (α, h), there exist α′ε-h′
εs-unitaries 

v′
1 in Mn(Ã∆1

), v′′
1 in Mm(Ã∆1

), v′
2 in Mn(Ã∆2

), v′′
2 in Mm(Ã∆2

) such that ‖v1v −
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diag(v′
1, v′′

1 )‖ < α′ε and ‖v∗v2 − diag(v′
2, v′′

2 )‖ < α′ε. Thus, for a control pair (α′′, h′′)

depending only on (α′, h′) we have,

‖ diag(u1, u2) − diag(v′
1v′

2, v′′
1 v′′

2 )‖ < α′′ε.

Hence we deduce that ‖u1 − v′
1v′

2‖ < α′′ε. �

As a consequence, we get the following controlled exactness result at the source of 

D∆1,∆2,∗ that persists at any order.

Corollary 3.6. For any positive number c, there exists a control pair (λ, l) such that

• for any filtered C∗-algebra A;

• for any positive number r and any r-controlled weak Mayer–Vietoris pair (Δ1, Δ2,

A∆1
, A∆2

) for A with coercitivity c;

• for any positive numbers ε, ε′ and r′ with 0 < αcε � ε′ < 1
4λ and r′ � kc,εr

then for any y in Kε,r
1 (A) such that

ι−,ε′,r′

∗ ◦ ∂ε,r
∆1,∆2,∗(y) = 0

in Kε′,r′

1 (A∆1
∩ A∆2

), there exist x1 in K
λε′,lε′ r′

1 (A∆1
) and x2 in K

λε′,lε′ r′

1 (A∆2
) such 

that

ι
−,λε′,lε′ r′

∗ (y) = j
λε′,lε′ r′

∆1,∗ (x1) − j
λε′,lε′ r′

∆2,∗ (x2).

Proof. Let us assume for sake of simplicity that A is unital, the non unital being similar 

(just extra notation are added). Let y be an element in Kε,r
1 (A) such that ι−,ε′,r′

∗ ◦
∂ε,r

∆1,∆2,∗(y) = 0 in Kε′,r′

1 (A∆1
∩ A∆2

). Let (λ, l) be the controlled pair of Lemma 3.5

and let u be an ε-r-unitary in some Mn(A) such that y = [u]ε,r. Then according to 

the definition of ∂ε,r
∆1,∆2,∗(y), we see by using Lemma 3.5 that up to replacing u by 

diag(u, Im) for some integer m, there exists two λε′-lε′r′-unitaries w1 and w2 respectively 

in Mn(Ã∆1
) and Mn(Ã∆2

) such that ‖u − w1w2‖ < λε′. Then u is homotopic to w1w2

as a 4λε′-lε′r′-unitary in M2n(A). From this we deduce that

ι
−,4λε′,2lε′ r′

∗ (y) = [w1w2]4λε′,2lε′ r′

= [w1]4λε′,2lε′ r′ + [w2]4λε′,2lε′ r′

= j
4λε′,2lε′ r′

∆1,∗ (x1) + j
4λε′,2lε′ r′

∆2,∗ (x2)

with x1 = [w1]4λε′,2lε′ r′ in K4λε,2lεr′

1 (A∆1
) and x2 = [w2]4λε,2lε′ r′ in K

4λε,2lε′ r′

1 (A∆2
). �

In particular, at order r, we obtain the following controlled exactness result.
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Proposition 3.7. For any positive number c, there exists a control pair (α, l) such that for 

any C∗-algebra A filtered by (As)s>0, any positive number r and any r-controlled weak 

Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) for A with coercitivity c then the composition

K1(A∆1
) ⊕ K1(A∆2

)
j∆1,∗−j∆2,∗−−−−−−−−→ K1(A)

D∆1,∆2,∗−−−−−−→ K0(A∆1
∩ A∆2

)

is (α, l)-exact at order r.

Let us prove now the controlled exactness at the range of D∆1,∆2,∗.

Lemma 3.8. There exists a control pair (λ, h) such that the following holds:

• Let A be a unital C∗-algebra filtered by (Ar)r>0 and let A1 and A2 be subalgebras of 

A such that A1, A2 and A1∩A2 are respectively filtered by (A1∩Ar)r>0, (A2∩Ar)r>0

and (A1 ∩ A2 ∩ Ar)r>0;

• let ε and s be positive numbers with ε < 1
4λ ;

• let n and N be positive integers with n � N and let p an ε-s projection in 

MN (Ã1 ∩ A2) such that ρA1∩A2
(p) = diag(In, 0).

Assume that

• p is homotopic to diag(In, 0) as an ε-s-projection in MN (Ã1);

• p is homotopic to diag(In, 0) as an ε-s-projection in MN (Ã2).

Then there exist an integer N ′ with N ′ � N , and four λε-hεs-unitaries w1 and w2 in 

MN ′(A), u in Mn(A) and v in MN ′−n(A) such that

• wi − IN ′ is an element in MN ′(Ai) for i = 1, 2;

•

‖w∗
1 diag(In, 0)w1 − diag(p, 0)‖ < λε

and

‖w2 diag(In, 0)w∗
2 − diag(p, 0)‖ < λε.

• for i = 1, 2, then wi is connected to IN ′ by a homotopy of λε-hεs-unitaries (wi,t)t∈[0,1]

in MN ′(A) such that wi,t − IN ′ is in MN ′(Ai) for all t in [0, 1].

• ‖ diag(u, v) − w1w2‖ < λε.

Proof. Let (α, k) be the control pair of Proposition 1.5, then there exist up to stabiliza-

tion
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• w1 an αε-kεs-unitary in MN (Ã1);

• w2 an αε-kεs-unitary in MN (Ã2),

such that

‖w∗
1 diag(In, 0)w1 − p‖ < αhε

and

‖w2 diag(In, 0)w∗
2 − p‖ < αhε.

Up to replacing w1and w2 respectively by ρA1
(w−1

1 )w1 and w2ρA2
(w−1

2 ) and up to re-

placing α by 4α, we can assume that w1−IN is an element in the matrix algebra MN (A1)

and w2 − IN is an element in the matrix algebra MN (A2). Hence there exists a control 

pair (α′, k′), depending only on (α, k) and that we can choose larger such that

‖w1w2 diag(In, 0)w∗
2w∗

1 − diag(In, 0)‖ < α′ε (6)

and

‖w∗
2w∗

1 diag(In, 0)w2w1 − diag(In, 0)‖ < α′ε. (7)

Up to replacing w1 , w2, p and (α′, k′) respectively by diag(w1, w∗
1), diag(w2, w∗

2), 

diag(p, 0) and (3α, 2k), we can assume that wi for i = 1, 2 is connected to IN by a 

homotopy of αε-kεs-unitaries (wi,t)t∈[0,1] in MN (A) such that wi,t − IN is in MN (Ai)

for all t in [0, 1]. Equations (6) and (7) imply that for a control pair (α′′, k′′), depending 

only on (α′, k′), there exist u and v some α′′ε-k′′
ε s-unitaries respectively in Mn(A) and 

MN−n(A) such that

‖ diag(u, v) − w1w2‖ < α′′ε. �

Proposition 3.9. For every positive number c, there exists a control pair (α, l) such that 

for any filtered C∗-algebra A, any positive number r and any r-controlled weak Mayer–

Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) for A of order r with coercitivity c, then the composition

K1(A)
D∆1,∆2,∗−−−−−−→ K0(A∆1

∩ A∆2
)

(j∆1,∆2,∗,j∆2,∆1,∗)−−−−−−−−−−−−−→ K0(A∆1
) ⊕ K0(A∆2

)

is (α, l)-exact at order r.

Proof. As in the previous proposition, let us assume that A is unital. Let y be an 

element in Kε,s
0 (A∆1

∩ A∆2
) such that jε,s

∆1,∆2,∗(y) = 0 in Kε,s
0 (A∆1

) and jε,s
∆2,∆1,∗(y) = 0

in Kε,s
0 (A∆2

). Let p be an ε-r-projection in some MN ( ˜A∆1
∩ A∆2

) and n be an integer 
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such that y = [p, n]ε,s. In view of Lemma 1.7 and up to replacing ε by 5ε, we can assume 

without loss of generality that N � n and that

ρA∆1
∩A∆2

(p) = diag(In, 0).

Up to stabilization, we can also assume that

• p is homotopic diag(In, 0) as an ε-s-projection in MN (Ã∆1
);

• p is homotopic diag(In, 0) as an ε-s-projection in MN (Ã∆2
).

Let (α, k) be a control pair, N ′ be an integer with N ′ � N , let w1 and w2 be in 

Uαε,kεs
N ′ (A), let u be in Uαε,kεs

n (A) and let v be in Uαε,kεs
N ′−n (A) that satisfy all together the 

conclusion of Lemma 3.8. Since ‖ diag(u, v) − w1w2‖ < αε, we can up to replacing (α, k)

by (4α, 2k) and in view of Lemma 1.2 moreover assume that diag(u, v) is homotopic to 

I ′
N as an αε-hεr-unitary of MN ′(A). Since

‖w∗
1 diag(In, 0)w1 − diag(p, 0)‖ < αε

and

‖w2 diag(In, 0)w∗
2 − diag(p, 0)‖ < αε

and in view of the definition of the quantitative boundary map of a control Mayer–

Vietoris pair, there exists a control pair (α′, k′) depending only on (α, k) and c such 

that

∂
α′ε,k′

εs
∆1,∆2,∗([u]α′′ε,k′

εs) = [p, l]ε,α′αcε,s,k′
εkc,λεs.

Hence, if we set x = [u]α′ε,k′
εs, we get

∂
α′ε,k′

εs
∆1,∆2,∗(x) = ι

ε,α′αcε,s,k′
εkc,λεs

∗ (y). �

Collecting together Propositions 3.2, 3.7 and 3.9 and using naturality of quantita-

tive Bott isomorphism, we obtain the controlled six terms exact sequence (at order r) 

associated to a weak r-controlled Mayer–Vietoris sequence.

Theorem 3.10. For every positive number c, there exists a control pair (λ, h) such that for 

any C∗-algebra A filtered by (As)s>0, any positive number r and any r-controlled weak 

Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) for A, we have a (λ, h)-exact six term exact 

sequence at order r:

K0(A∆1
∩ A∆2

)
(j∆1,∆2,∗,j∆2,∆1,∗)

−−−−−−−−−−−−→ K0(A∆1
) ⊕ K0(A∆2

)
j∆1,∗−j∆2,∗

−−−−−−−−→ K0(A)


⏐⏐D∆1,∆2,∗ D∆1,∆2,∗

⏐⏐�

K1(A)
j∆1,∗−j∆2,∗

←−−−−−−−− K1(A∆1
) ⊕ K1(A∆2

)
(j∆1,∆2,∗,j∆2,∆1,∗)

←−−−−−−−−−−−− K1(A∆1
∩ A∆2

)

.
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3.4. Quantitatively K-contractible C∗-algebra

In numerous cases, the proof of the Baum–Connes conjecture and of its generalization 

amounts to proving that the K-theory of some obstruction algebra vanishes. In [14], 

the second author proved the Novikov conjecture for finitely generated groups with 

finite asymptotic dimension by showing that the obstruction C∗-algebra corresponding 

to the localization C∗-algebra is quantitatively K-contractible (which implies that its 

K-theory vanishes). In this subsection, we apply the controlled Mayer–Vietoris six-term 

exact sequence to quantitative K-contractibility.

Definition 3.11. Let A be a filtered C∗-algebra. A is called quantitatively K-contractible

if there exists a positive number λ0 � 1 that satisfies the following:

for any positive numbers ε and r with ε < 1
4λ0

, there exists a positive number r′ with 

r′ � r such that ιε,λ0ε,r,r′

∗ : Kε,r
∗ (A)−→Kλ0ε,r′

∗ (A) is the zero map (we say that A is 

K-contractible with rescaling λ0).

Example 3.12.

(i) Recall that a separable C∗-algebra B is K-contractible if the class of the identity 

map IdB : B → B vanishes in KK∗(B, B). According to point (iv) of Proposi-

tion 1.25, if B is K-contractible, then A⊗B is quantitatively K-contractible for any 

filtered C∗-algebra A. Moreover, the rescaling does not depend on A or on B;

(ii) Let Γ be a finitely generated group and let A be a C∗-algebra provided with an 

action of Γ by automorphisms. Assume that

• the group Γ satisfies the Baum–Connes conjecture with coefficients;

• for any finite subgroup F of Γ the K∗(A � F ) = 0.

Then A�redΓ is quantitatively K-contractible and the rescaling does not depend on Γ or 

on A. Indeed, under these assumptions, the left hand side of the (quantitative) Baum–

Connes assembly map is vanishing [1]. The quantitative K-contractibility for A�redΓ is 

then a consequence of the Quantitative Assembly Map estimates of Theorem 1.34.

Remark 3.13. It can be proved that there exists a universal rescaling for quantitative 

K-contractibility, i.e. there exists a positive number λ0 with λ0 � 1 such that every 

quantitatively K-contractible C∗-algebra is indeed quantitatively K-contractible with 

rescaling λ0.

Theorem 3.14. Let A be a filtered C∗-algebra. Assume that there exist positive numbers λ0

and c, with λ0 � 1 such that for every positive number r there exists a weak r-controlled 

Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) with coercitivity c and with A∆1
, A∆2

and A∆1
∩

A∆2
quantitatively K-contractible with rescaling λ0. Then there exists a positive number 
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λ1 depending only on λ0 and on c such that A is quantitatively K-contractible with 

rescaling λ1.

Proof. Let (λ, l) be the controlled pair of Corollary 3.6 and set λ1 = λλ2
0αc, let ε

and r be positive numbers with ε < 1
4λ1

and let y be an element in Kε,r
∗ (A). Let 

(Δ1, Δ2, A∆1
, A∆2

) be a weak r-controlled Mayer–Vietoris pair for A with coercitivity c

and A∆1
, A∆2

and A∆1
∩ A∆2

quantitatively K-contractible with rescaling λ0. Let r′ be 

a positive number with r′ � kc,εr such that

ι−,λ0αcε,r′

(z) = 0

in Kλ0αcε,r′

∗ (A∆1
∩ A∆2

) for all z in K
αcε,kc,εr
∗ (A∆1

∩ A∆2
). Since

ι−,λ0αcε,r′ ◦ ∂ε,r
∆1,∆2,∗(y) = 0

in K
αcε,kc,εr
∗ (A∆1

∩ A∆2
) and according to Corollary 3.6, then if we set λ′ = αcλ0, there 

exist an element x1 in K
λλ′ε,lλ′εr′

1 (A∆1
) and an element x2 in K

λλ′ε,lλ′εr′

1 (A∆2
) such that

ι
−,λλ′ε,lλ′εr′

∗ (y) = j
λλ′ε,lλ′εr′

∆1,∗ (x1) − j
λλ′,lλ′εr′

∆2,∗ (x2).

Let r′′ be a positive number with r′′ � lλ′εr′ such that for i = 1, 2,

ι−,λ0λλ′ε,r′′

(z) = 0

in Kλ0λλ′ε,r′′

1 (A∆i
) for all z in K

λλ′ε,lλ′εr′

1 (A∆i
). Then we eventually obtain that

ι−,λ1ε,r′′

∗ (y) = jλ1ε,r′′

∆1,∗ ◦ ι−,λ1ε,r′′

∗ (x1) − jλ1ε,r′′

∆2,∗ ◦ ι−,λ1ε,r′′

∗ (x2)

= 0.

Hence A is quantitatively K-contractible with rescaling λ1. �

4. Quantitative Künneth formula

The Künneth formula computes the K-theory of the minimal tensor product A⊗B of 

two C∗-algebras A and B in terms of the K-theory of A and B. More precisely, K∗(A⊗B)

fits into a natural extension

0−→K∗(A)⊗K∗(B)−→K∗(A⊗B)−→ Tor(K∗(A), K∗(B))−→0, (8)

where the inclusion map is given by the external product in K-theory. We say that a 

C∗-algebra A satisfies the Künneth formula in K-theory if the formula of equation (8)

holds for any C∗-algebra B. In [12], C. Schochet proved using a geometric resolution 

that a C∗-algebra A satisfies the Künneth formula in K-theory if and only if for every 
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C∗-algebra B such that K∗(B) is a free abelian group, then the external product in 

K-theory

K∗(A)⊗K∗(B)−→K∗(A⊗B)

is an isomorphism. The quantitative Künneth formula in K-theory was then proved for 

any C∗-algebra A in the Bootstrap class (see Definition 5.1). Using the above char-

acterization, we formulate in this section a quantitative Künneth formula for filtered 

C∗-algebras which implies the classical one. We show that this quantitative version of 

the Künneth formula is asymptotically hereditary with respect to decomposition under 

controlled Mayer–Vietoris (nuclear) pairs. We also show that finitely generated groups for 

which the Baum–Connes conjecture with coefficient holds provides numerous examples 

of filtered C∗-algebras that satisfy the quantitative Künneth formula in K-theory.

4.1. Statement of the formula

Recall that if A and B are C∗-algebras, then there is a morphism

ωA,B,∗ : K∗(A)⊗K∗(B)−→K∗(A⊗B)

given by the external Kasparov product i.e., ωA,B,∗(x⊗y) = x⊗τA(y) for all x in K∗(A)

and y in K∗(B). Indeed, in the case of unital C∗-algebras, if p and q are respectively 

projections in Mn(A) and Mk(B) and if u and v are respectively unitary elements in 

Mn(A) and Mk(B), then

ωA,B,∗([p]⊗[q]) = [p⊗q];

ωA,B,∗([u]⊗[q]) = [u⊗q + In⊗(Ik − q)];

ωA,B,∗([p]⊗[v]) = [p⊗v + (In − p)⊗Ik].

Let A be a C∗-algebra filtered by (Ar)r>0 and let B be a C∗-algebra (with a triv-

ial filtration). Recall that A⊗B is then filtered by (Ar⊗B)r>0. Let us consider then 

the quantitative object K∗(A)⊗K∗(B) = (Kε,r
∗ (A)⊗K∗(B)). With notations of Theo-

rem 1.24, define the (αT , kT )-control morphism

ΩA,B,∗ = (ωε,r
A,B) : K∗(A)⊗K∗(B) → K∗(A⊗B),

by

ωε,r
A,B,∗ : Kε,r

∗ (A)⊗K∗(B) → Kε,r
∗ (A⊗B); x⊗y �→ τ

αT ε,hT ,εr
A (y)(x).

Then the controlled morphism ΩA,B,∗ induces the map ωA,B,∗ in K-theory, i.e.,

ιε,r
∗ ◦ ωε,r

A,B,∗ = ωA,B,∗ ◦
(
ιε,r
∗ ⊗IdK∗(B)

)
(9)

for every positive numbers r and ε with 0 < ε < 1
4αT

.



JID:YJFAN AID:8179 /FLA [m1L; v1.252; Prn:8/02/2019; 14:55] P.55 (1-89)

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis ••• (••••) •••–••• 55

Remark 4.1. Let A be a unital filtered C∗-algebra and let B be a unital C∗algebra. Let 

ε and r be positive numbers with ε < 1
4αT

,

(i) for any ε-r-projection p in some Mn(A), any integer l and any projection q

in some Mk(B) then ωε,r
A,B,∗([p, l]ε,r⊗[q]) = [p⊗q + Il⊗(Ik − q), lk]αT ε,hT ,εr in 

K
αT ε,hT ,εr
0 (A⊗B);

(ii) for any ε-r-unitary u in some Mn(A) and any projection q in some Mk(B) then 

ωε,r
A,B,∗([u]ε,r⊗[q]) = [u⊗q + In⊗(Ik − q)]αT ε,hT ,εr in K

αT ε,hT ,εr
1 (A⊗B).

The quantitative morphism Ω•,•,∗ is compatible with the Kasparov tensorization (con-

trolled) morphism.

Lemma 4.2. There exists a control pair (α, k) such that the following assertion holds:

For any filtered C∗-algebra A, for any separable C∗-algebras B1, B2, D1 and 

D2, any z in KK∗(B1, B2) and any z′ in KK∗(D1, D2), the following diagram is 

(α, k)-commutative.

K∗(A⊗B1)⊗K∗(D1)
ωA⊗B1,D1,∗−−−−−−−−→ K∗(A⊗B1⊗D1)

TA(z)⊗(•⊗z′)

⏐⏐� TA(τD1 (z)⊗τB2 (z′))

⏐⏐�

K∗(A⊗B2)⊗K∗(D2)
ωA⊗B2,D2,∗−−−−−−−−→ K∗(A⊗B2⊗D2)

,

where •⊗z′ : K∗(D1) → K∗(D2) is right multiplication by z′.

Proof. Let y be an element of K∗(D1). According to point (v) of Proposition 1.25 and 

to Theorem 1.27, there exists a control pair (λ, h) such that

TA⊗B2
(y⊗z′) ◦ TA(z)

(λ,h)∼ TA(z⊗τB2
(y)⊗τB2

(z′)).

Since the external Kasparov is commutative, we have

z⊗τB2
(y) = τB1

(y)⊗τD1
(z)

Using once again Theorem 1.27 and up to rescaling the control pair (λ, h), we get that

TA⊗B2
(y⊗z′) ◦ TA(z)

(λ,h)∼ TA(τD1
(z)⊗τB2

(z′)) ◦ TA⊗B1
(y)

and hence the diagram is commutative. �

Definition 4.3. Let A be a filtered C∗-algebra and let λ0 be a positive number with 

λ0 � 1. We say that A satisfies the quantitative Künneth formula with rescaling λ0 if

ΩA,B,∗ : K∗(A)⊗K∗(B) → K∗(A⊗B)
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is a quantitative isomorphism with rescaling λ0 for every C∗-algebra B such that K∗(B)

is free abelian group.

Remark 4.4. If a filtered C∗-algebra A satisfies the quantitative Künneth formula, then 

according to equation (9)

ωA,B,∗ : K∗(A)⊗K∗(B)−→K∗(A⊗B)

is an isomorphism for every C∗-algebra B such that K∗(B) is free and hence the 

C∗-algebra A satisfies the Künneth formula in K-theory

The next theorem provides many examples of filtered C∗-algebras that satisfy the 

quantitative Künneth formula and will be proved in Section 4.4.

Theorem 4.5. Let Γ be a finitely generated group, let A be a Γ-C∗-algebra. Assume that

• Γ satisfies the Baum–Connes conjecture with coefficients.

• For each subgroup K of Γ, the crossed product algebra A � K satisfies the Künneth 

formula.

Then A �r Γ satisfies the quantitative Künneth formula, i.e., for any C∗-algebra B such 

that K∗(B) is a free abelian group,

ΩA�rΓ,B,∗ : K∗(A �r Γ)⊗K∗(B) → K∗((A �r Γ)⊗B)

is a quantitative isomorphism with rescaling that does not depend on Γ or on A.

Moreover, under the above assumption, when the C∗-algebra A runs through family of 

Γ-C∗-algebras and B runs through C∗-algebras such that K∗(B) is a free abelian group, 

the family of quantitative isomorphisms (ΩA�rΓ,B)A,B is uniform.

The proof of these two results relies indeed on the quantitative statements of The-

orem 1.34 which hold for groups that satisfy the Baum–Connes conjecture with co-

efficients. Similarly, using the geometric quantitative statements of Section 1.7 and 

Theorem 1.35, we can prove the following result:

Theorem 4.6. Let Σ be a discrete proper metric space with bounded geometry that coarsely 

embeds into a Hilbert space. If A satisfies the Künneth formula, then A⊗K (�2(Σ)) satis-

fies the quantitative Künneth formula with rescaling that does not depend on Σ or on A.

Remark 4.7. As for quantitative K-contractibility (see Remark 3.13), it can be proved 

that there exists a universal rescaling for the quantitative Künneth formula.
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4.2. Quantitative Künneth formula and controlled Mayer–Vietoris pairs

In this subsection, we state a permanence result (that we shall prove in next subsec-

tion) for the quantitative Künneth formula with respect to controlled Mayer–Vietoris 

pairs which satisfy a nuclear type condition.

Definition 4.8. Let A be a C∗-algebra filtered by (As)s>0 and let r be a positive number. 

An r-controlled nuclear Mayer–Vietoris pair is a quadruple (Δ1, Δ2, A∆1
, A∆2

), where 

Δ1 and Δ2 are closed linear subspaces of Ar stable under involution and A∆1
and A∆2

are respectively r-controlled Δ1 and Δ2-neighborhood-C∗-algebras such that for some 

positive number c and for any C∗-algebra B

(i) (Δ1⊗B, Δ2⊗B) is a coercive decomposition pair for A⊗B of order r with coerci-

tivity c;

(ii) the pair (A∆1,s⊗B, A∆2,s⊗B) has the CIA property with coercitivity c for any 

positive number s.

The positive number c is called the coercitivity of the r-controlled nuclear Mayer–Vietoris 

pair (Δ1, Δ2, A∆1
, A∆2

).

Remark 4.9.

(i) Notice that A∆1
⊗B and A∆2

⊗B are respectively r-controlled Δ1⊗B and

Δ2⊗B-neighborhood-C∗-algebras.

(ii) Condition (ii) amounts to the following: for any positive numbers ε and s, any x

in A∆1,s⊗B and any y in A∆2,s⊗B such that ||x − y|| < ε, then there exists z in 

(A∆1,s ∩ A∆2,s)⊗B satisfying

||z − x|| < cε, ||z − y|| < cε.

Example 4.10. Replacing Mn(C) with B, we see that Example 2.20 and examples of 

Section 2.4 are indeed r-controlled nuclear Mayer–Vietoris pairs (with the same coerci-

tivity).

Next lemma shows that the controlled boundary maps of a r-controlled nuclear Mayer–

Vietoris pair are indeed compatible with Kasparov external product.

Lemma 4.11. For any positive number c, there exists a control pair (α, h) such that the fol-

lowing is satisfied: let (Δ1, Δ2, A∆1
, A∆2

) be an r-controlled nuclear Mayer–Vietoris pair 

with coercitivity c, let B and B′ be two C∗-algebras and z be an element in KK∗(B, B′), 

then

T(A∆1
∩A∆2

),∗(z) ◦ D∆1⊗B,∆2⊗B
(α,h)∼ D∆1⊗B′,∆2⊗B′ ◦ TA,∗(z).
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Proof. We first deal with the case z even. According to [7, Lemma 1.6.9], there exists a 

C∗-algebra D and homomorphisms θ : D → B and η : D → B′ such that

• the element [θ] of KK∗(D, B) induced by θ is invertible.

• z = η∗([θ]−1).

Let θA : A⊗B′ → A⊗D and θA∆1
∩A∆2

: (A∆1
∩ A∆2

)⊗B′ → (A∆1
∩ A∆2

)⊗D be the 

homorphisms induced by θ on tensor products and define similarly ηA : A⊗B′ → A⊗D

and ηA∆1
∩A∆2

: (A∆1
∩ A∆2

)⊗B′ → (A∆1
∩ A∆2

)⊗D the homomorphisms induced by η.

By naturality of quantitative boundary morphism of r-controled Mayer–Vietoris pairs 

(see equation (5) of Section 3.2), we get that

θA∆1
∩A∆2

,∗ ◦ D∆1⊗B′,∆2⊗B′ = D∆1⊗D,∆2⊗D ◦ θA,∗.

According to Proposition 1.25, the control morphisms θA,∗ and θA∆1
∩A∆2

,∗ are 

(αT , kT )-invertible with (αT , kT )-inverses respectively given by TA,∗([θ]−1) and

TA∆1
∩A∆2

,∗([θ]−1) and hence, there exists a control pair (α, k) depending only on c

and (αT , kT ) such that

D∆1⊗B′,∆2⊗B′ ◦ TA,∗([θ]−1)
(α,k)∼ TA∆1

∩A∆2
,∗([θ]−1) ◦ D∆1⊗D,∆2⊗D.

Then, using the bifunctoriality of TA,∗ (see Proposition 1.25), we obtain

D∆1⊗B′,∆2⊗B′ ◦ TA,∗(z) = D∆1⊗B′,∆2⊗B′ ◦ TA,∗([θ]−1) ◦ ηA,∗

(α,k)∼ TA∆1
∩A∆2

,∗([θ]−1) ◦ D∆1⊗D,∆2⊗D ◦ ηA,∗

(α,k)∼ TA∆1
∩A∆2

,∗([θ]−1) ◦ ηA∆1
∩A∆2

,∗ ◦ D∆1⊗B,∆2⊗B

(α,k)∼ TA∆1
∩A∆2

,∗(z) ◦ D∆1⊗B,∆2⊗B ,

where the third line is once again the consequence of naturality of quantitative boundary 

morphism of r-controled Mayer–Vietoris pairs (see equation (5) of Section 3.2). If z is an 

odd element, recall that [∂] is the invertible element of KK1(C, C(0, 1)) implementing 

the boundary morphism of the extension

0−→C(0, 1)−→C(0, 1]
ev0−→ C−→0.

Then there exists a control pair (α, k) depending only on c and on the control pairs of 

Theorems 1.24 and 1.27 such that

TA∆1
∩A∆2

,∗(z) ◦ D0
∆1⊗B,∆2⊗B

(α,k)∼ TA∆1
∩A∆2

,∗(z) ◦ T(A∆1
∩A∆2

)⊗B,∗([∂]−1) ◦ D1
S∆1⊗B,S∆2⊗B,∗ ◦ TA⊗B,∗([∂])
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(α,k)∼ TA∆1
∩A∆2

,∗(z) ◦ T(A∆1
∩A∆2

),∗(τB([∂]−1)) ◦ D1
S∆1⊗B,S∆2⊗B,∗ ◦ TA⊗B,∗([∂])

(α,k)∼ TA∆1
∩A∆2

,∗(τB([∂]−1)⊗Bz) ◦ D1
S∆1⊗B,S∆2⊗B,∗ ◦ TA⊗B,∗([∂])

(α,k)∼ D1
S∆1⊗B′,S∆2⊗B′,∗ ◦ TA,∗(τB([∂]−1)⊗Bz) ◦ TA,∗(τB,∗([∂]))

(α,k)∼ D1
S∆1⊗B′,S∆2⊗B′,∗ ◦ TA,∗(z),

where

• the first 
(α,k)∼ holds by definition of D0

∆1⊗B,∆2⊗B ;

• the second 
(α,k)∼ is a consequence of point (v) of Proposition 1.25;

• the third and fifth 
(α,k)∼ are consequences of Theorem 1.27;

• the fourth 
(α,k)∼ is a consequence of the even case.

Similarly, we can prove that there exists a control pair (α, k) depending only on c and 

on the control pair of Theorems 1.24 and 1.27 such that

TA∆1
∩A∆2

,∗(z) ◦ D1
∆1⊗B,∆2⊗B

(α,k)∼ D0
S∆1⊗B,S∆2⊗B,∗ ◦ TA,∗(z)

and hence we obtain the result in the odd case. �

We are known in position to state the main result of this section. If A a filtered 

C∗-algebra admits at every order r a decomposition into an r-controlled nuclear Mayer–

Vietoris pair such that for every pieces involved in the decomposition, the quantitative 

Künneth formula holds, then the C∗-algebra A satisfies the quantitative Künneth for-

mula.

Theorem 4.12. Let A be a filtered C∗-algebra. Assume there exist positive numbers c and 

λ0 with λ0 � 1 that satisfies the following: for any positive number r, there exists an 

r-controlled nuclear Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) with coercitivity c such that 

A∆1
, A∆2

and A∆1
∩ A∆2

satisfies the quantitative Künneth formula with rescaling λ0.

Then A satisfies the quantitative Künneth formula with rescaling λ1 for a positive 

number λ1 with λ1 � 1 depending only on c and λ0.

The proof of this theorem will be given in next subsection.

4.3. Proof of Theorem 4.12

The idea of the proof of Theorem 4.12 is to use the controlled exactness persistence 

properties stated in Corollary 3.6 and Lemma 3.8 to carry out a controlled five lemma 

argument. This requires some preliminary work in order to formulate the quantitative 
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Künneth formula in terms of an (even degree) controlled morphism between quantitative 

K-theory groups.

4.3.1. Preliminaries

We denote by SB = C0((0, 1), B) the suspension algebra of a C∗-algebra B. Let A

be a filtered C∗-algebra, let B be a C∗-algebra and let [∂] be the invertible element in 

KK1(C, C(0, 1)) that implements the boundary of the Bott extension, 0 → C0(0, 1) →
C0[0, 1) 

ev0→ C → 0. Applying Lemma 4.2 to z = IdC and z′ = τB([∂]), we see that we 

only have to consider the odd case

ΩA,B,∗ : K1(A)⊗K0(B) ⊕ K0(A)⊗K1(B)−→K1(A⊗B).

Let T2 = {(z1, z2) such that |z1| = |z2| = 1} be the two torus. Let us view (0, 1)2 as 

an open subset of T2 via the inclusion map (0, 1)2 ↪→ T2; (s, t) �→ (e2ıπs, e2ıπt).

Lemma 4.13. Possibly rescaling the control pair (αD, kD), then for any filtered C∗-algebra A, 

the filtered and semi-split extension of filtered C∗-algebras

0−→S2A
jA−→ C(T2, A)

qA−→ C(T2 \ (0, 1)2, A)−→0 (10)

has a vanishing controlled boundary map

DS2A,C(T2,A) : K∗(C(T2 \ (0, 1)2, A))−→K∗+1(S2A).

Proof. By using controlled Bott periodicity [9, Lemma 4.6] and in view of [9, Proposition 

3.19], we only need to check that the result holds for

DS2A,C(T2,A) : K1(C(T2 \ (0, 1)2, A))−→K0(S2A).

But

C(T2 \ (0, 1)2, A) ∼= {(f1, f2) ∈ C(T, A) ⊕ C(T, A) such that f1(1) = f2(1)}. (11)

Let (f1, f2) be an ε-r-unitary in C(T2 \ (0, 1)2, A) and define then

uf1,f2
: T2−→A; (z1, z2) �→ f1(z1)f∗

1 (1)f2(z2)

Then uf1,f2
is a 9ε-3r-unitary in C(T2, A). Moreover, under the identification of equation 

(11), we have

qA(uf1,f2
) = (f1f∗

1 (1)f1(1), f1(1)f∗
1 (1)f2)

and hence
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‖qA(uf1,f2
) − (f1, f2)‖ < 3ε.

We deduce that uf1,f2
is an almost lift for (f1, f2) in the extension of Equation (10). Hence 

the result holds by construction of the controlled boundary map in the odd case. �

In consequence, by using the controlled six term exact sequence (Theorem 1.23) as-

sociated to the semi-split and filtered extension of equation (10), then if we set

ker qA,∗
def
== (ker qε,r

A,∗ : Kε,r
∗ (C(T2, A))−→Kε,r

∗ (C(T2 \ (0, 1)2, A))),

we obtain the following corollary.

Corollary 4.14. There exists a controlled pair (λ, h) such that for any filtered C∗-alge-

bra A, then

jA,∗ : K∗(S2A)−→ ker qA,∗

is a (λ, h)-controlled isomorphism.

Notice that, by construction of the controlled boundary map associated to controlled 

Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

), we have that

qA∆1
∩A∆2

⊗B,∗ ◦ DC(T2,A∆1
),C(T2,A∆2

),∗ = DC0(T2\]0,1[2,A∆1
),C0(T2\]0,1[2,A∆2

),∗ ◦ qA⊗B,∗.

(12)

Let us define with notation of Corollary 4.14 the quantitative object O′
∗(A, B) =

(O′
∗

ε,r
(A, B)) as

O′
∗(A, B) = O′

0(A, B) ⊕ O′
1(A, B)

def
== ker qA⊗B,∗.

Set z = [∂]⊗τC0(0,1)([∂]) and define then the (α2
T , hT ∗ hT )-controlled morphism

jA⊗B,∗ ◦ TA⊗B(z) ◦ ΩA,B,∗ : K∗(A)⊗K0(B) ⊕ K∗+1(A)⊗K1(B)−→O′
∗(A, B).

Since z is an invertible element in KK0(C, C0((0, 1)2)) and hence, according to Theo-

rem 1.27 and to Corollary 4.14,

• if ΩA,B,∗ is a quantitative isomorphism with rescaling λ0 then there exists a positive 

number λ1 depending only on λ0 with λ1 � 1 such that jA⊗B,∗ ◦ TA⊗B(z) ◦ ΩA,B,∗
is a quantitative isomorphism with rescaling λ1;

• if jA⊗B,∗ ◦ TA⊗B(z) ◦ ΩA,B,∗ is a quantitative isomorphism with rescaling λ1, then 

there exists a positive number λ0 depending only on λ1 with λ0 � 1 such that ΩA,B,∗
is a quantitative isomorphism with rescaling λ0.
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According to Lemma 4.2, we get that

TA(z) ◦ ΩA,B,∗
(λ,h)∼ ΩSA,SB,∗ ◦ ((TA([∂])⊗τB([∂])) (13)

for some control pair (λ, k) that does not depend on A or on B. Let us define the 

quantitative object O∗(A, B) = (Oε,r
∗ (A, B)) as

O∗(A, B)
def
== K∗(A)⊗K0(B) ⊕ K∗(SA)⊗K0(SB)

and denote for positive numbers ε, ε′, r and r′ with ε � ε′ < 1/4 and r � r′ respectively 

by ιε,ε′,r,r′

O,∗ : Oε,r
∗ (A, B)−→Oε′,r′

∗ (A, B) and ιε,ε′,r,r′

O′,∗ : O′
∗

ε,r
(A, B)−→O′

∗
ε′,r′

(A, B) the 

structure morphisms corresponding to O∗(A, B) and O′
∗(A, B). For (αF , kF ) = (λ, h), 

let us define the (αF , kF )-controlled morphism

FA,B,∗ = (F ε,r
A,B,∗) : O∗(A, B)−→O′

∗(A, B)

by

F ε,r
A,B,∗(x ⊕ x′) = j

αF ε,kF,εr
A⊗B,∗ ◦ ι−,−

O′,∗ ◦ τ
αT ε,kT ,εr
A (z)◦ωε,r

A,B,∗(x)

+ ι−,−
O′,∗ ◦ j

αT ε,kT ,εr
A⊗B,∗ ◦ ωε,r

A,B,∗(x′).

Notice that F•,B,∗ is obviously natural with respect to filtered morphisms. Since [∂]

is invertible in KK1(C, C(0, 1)) and according to equation (13) and Theorem 1.27, The-

orem 4.12 is equivalent to the following statement:

Let A be a filtered C∗-algebra. Assume there exist positive numbers c and λ0 with 

λ0 � 1 that satisfies the following: for any positive number r, there exists an r-controlled 

nuclear Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) with coercitivity c such that for any 

C∗-algebra B with K∗(B) free abelian, then FA∆1
,B,∗, FA∆2

,B,∗ and FA∆1
∩A∆2

,B,∗ are 

quantitative isomorphisms with rescaling λ0. Then for any C∗-algebra B with K∗(B) free 

abelian, the controlled morphism FA,B,∗ is a quantitative isomorphism with coercitivity 

λ1 for a positive number λ1 with λ1 � 1 depending only on λ0 and c.

Notice that, by controlled Bott periodicity, we only need to consider the odd case.

4.3.2. Notations

Let us introduce some notations that we will use throughout the proof. Let v be a 

unitary in a unital C∗-algebra B. Define the unitary Rv in M2(B)

Rv : [0, 1]−→U2(B); t �→
(

v 0
0 1

)
·
(

cos tπ
2 sin tπ

2

− sin tπ
2 cos tπ

2

)
·
(

v∗ 0
0 1

)
·
(

cos tπ
2 − sin tπ

2

sin tπ
2 cos tπ

2

)
,

and the projection of M2(B)

Pv : [0, 1]−→M2(B); t �→ Rv(t) ·
(

1 0
0 0

)
R∗

v(t).
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Define also

PBott : [0, 1] × [0, 1] → M2(C); (s, t) �→ Re2ıπs(t) ·
(

1 0
0 0

)
R∗

e2ıπs(t).

Then, if we view the 2-sphere S2 as the one point compactification of (0, 1)2, then 

PBott is a rank one projection in M2(C(S2)) and [PBott] − [1] is a generator for 

K0(C0((0, 1)2)) ∼= Z.

For an r-controlled nuclear Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) with respect to a 

filtered C∗-algebra A, let

j∆1,O,∗ = (jε,r
∆1,O,∗) : O∗(A∆1

, B)−→O∗(A, B),

j∆2,O,∗ = (jε,r
∆2,O,∗) : O∗(A∆2

, B)−→O∗(A, B),

j∆1,∆2,O,∗ = (jε,r
∆1,∆2,O,∗) : O∗(A∆1

∩ A∆2
, B)−→O∗(A∆1

, B)

and

j∆2,∆1,O,∗ = (jε,r
∆2,∆1,O,∗) : O∗(A∆1

∩ A∆2
, B)−→O∗(A∆2

, B)

be the morphisms respectively induced by the inclusions of C∗-algebras j∆1
: A∆1

↪→ A, 

j∆2
: A∆2

↪→ A, j∆1,∆2
: A∆1

∩ A∆2
↪→ A∆1

and j∆2,∆1
: A∆1

∩A∆2
↪→ A∆2

. In the same 

way, we define

j∆1,O′,∗ = (jε,r
∆1,O′,∗) : O′

∗(A∆1
, B)−→O′

∗(A, B),

j∆2,O′,∗ = (jε,r
∆2,O′,∗) : O′

∗(A∆2
, B)−→O′

∗(A, B),

j∆1,∆2,O′,∗ = (jε,r
∆1,∆2,O′,∗) : O′

∗(A∆1
∩ A∆2

, B)−→O′
∗(A∆1

, B)

and

j∆2,∆1,O′,∗ = (jε,r
∆2,∆1,O′,∗) : O′

∗(A∆1
∩ A∆2

, B)−→O′
∗(A∆2

, B)

4.3.3. Computation of F ε,r
A,B,∗

Let us now compute F ε,r
A,B(x) for A a unital filtered C∗-algebra, B a unital C∗-algebra 

and x an element in Oε,r
∗ (A, B).

Let us consider first the case x = [u]ε,r⊗[p] where u is an ε-r-unitary in some Mn(A)

and p is a projection in some Mm(B). Let us set vu,p = u⊗p + In⊗(Im − p). Then vu,p

is an ε-r-unitary in Mnm(A⊗B). According to Remark 4.1, then

F ε,r
A,B,∗([u]ε,r⊗[p]) = j

αT ε,hkT ,εr

A,∗ ◦ τ ε,r
A (z)(vu,p).

It is well known that z = [PBott] − [P1] (with P1 = diag(1, 0)). Let us define for u and u′

some ε-r-unitaries in Mn(A) and p a projection in Mm(B)
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Wu,u′,p : T2 −→ Mn(A)⊗Mm(B)⊗M4(C)

(e2ıπs, e2ıπt) �→
(

vu,p⊗PBott(s,t) 0
0 vu′,p⊗P1

)
.

Then Wu,u′,p is an ε-r-unitary in C(T2, Mn(A)⊗Mm(B)⊗M4(C)). Moreover, if u′ = u∗

then we see that qA,B,∗[Wu,u∗,p]ε,r = 0 in Kε,r
1 (C(T2 \ (0, 1)2, A⊗B)) and

F ε,r
A,B,∗([u]ε,r⊗[p]) = [Wu,u∗,p]αF ε,hF,εr. (14)

Consider now the case x = [u]ε,r⊗([p] − [p(0)]), where u is an ε-r-unitary in some 

Mn(S̃A) and p is a projection in some Mm(S̃B).

For ε-r-unitaries u and u′ in Mn(S̃A) and a projection p in Mn(S̃A), set

W ′
u,u′,p : T2 −→ Mn(A)⊗Mm(B)⊗M2(C)

(e2ıπs, e2ıπt) �→
(

vu(s),p(t) 0
0 vu′(s),p(0)

)
.

Then W ′
u,u′,p is an ε-r-unitary in C(T2, Mn(A)⊗Mm(B)⊗M2(C)) and we can easily 

check that [W ′
u,u∗,p]ε,r is in

O′
1

ε,r
(A, B) = ker qε,r

A,∗ : Kε,r
1 (C(T2, A))−→Kε,r

1 (C(T2 \ (0, 1)2, A))

for all positive numbers ε and r with ε ∈ (0, 1/4). Moreover, according to Remark 4.1, 

we have

F ε,r
A,B,∗([u]ε,r⊗([p] − [Ik])) = [W ′

u,u∗,p]αF ε,hF,εr. (15)

Consider now the case x = [q, m]ε,r⊗[p], where q is an ε-r-projection in some Mn(A), 

m is an integer with m � n and p is a projection in some Mk(B). Let us set when q is 

an ε-r-projection in some Mn(A), m is a positive number and p1 and p2 are projections 

in some Mk(B)

Eq,m,p1,p2
=

(
q⊗p1 + Pm⊗(Ik − p1) 0

0 Pn−m⊗(Ik − p2) + (In − q)⊗p2

)

with Pm = diag(Im, 0) in Mn(C) ⊆ Mn(A). Then Eq,m,p1,p2
is an ε-r-projection in 

M2kn(A⊗B). According to Lemma 4.2, we have that

FA,B,∗(x) = ΩA,B,∗([q, m]ε,r⊗([p]⊗z)).

Since [p]⊗z = [p⊗PBott] − [p⊗P1] in K0(S2B), we see according to Remark 4.1 that

F ε,r
A,B,∗([q, m]ε,r⊗[p]) = [Eq,m,p⊗PBott,p⊗P1

, 2nk]ε,r. (16)
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Consider finally the case of x = [q′, m′]ε,r⊗([p′
1] − [p′

2]), where q′ is an ε-r-projection 

in some Mn(S̃A), m′ is an integer and p′
1 and p′

2 are projections in some Mk(S̃B), with 

p′
1(0) = p′

2(0). Then

F ε,r
A,B,∗([q′, m′]ε,r⊗([p′

1] − [p′
2])) = [Eq′,m′,p′

1,p′
2
, nk]ε,r. (17)

4.3.4. QI-condition

Let (Δ1, Δ2, A∆1
, A∆2

) be an r-controlled nuclear Mayer–Vietoris pair with coercitiv-

ity c such that for any C∗-algebra B with K∗(B) free abelian, then FA∆1
,B,∗, FA∆2

,B,∗
and FA∆1

∩A∆2
,B,∗ are quantitative isomorphisms with rescaling λ0. Let us check that 

there exists a positive number λ1 depending only on λ0 and c, with λ1 � 1 such that 

for any positive numbers ε and s with ε in (0, 1
4λ1

) and s � r
αF,ε

, then F ε,s
A,B,∗ satisfies 

the QI-condition of Definition 1.19. We can assume without loss of generality that A

and B are unital. Moreover, up to replacing B by B ⊕ C, we can assume that there 

exists a system of generators of K0(B) given by classes of projections. Let us fix such 

a system of generators for K0(B) and let us fix also a system of generators for K1(B). 

As discussed in Section 4.3.1, we only need to consider the odd case, i.e. show that the 

control morphism FA,B,∗ : O1(A, B)−→O′
1(A, B) satisfies the required conditions.

According to Lemma 4.11, there exists a control pair (α, h) depending only on c with 

(αc, kc) � (α, h) such that

FA∆1
∩A∆2

,B,∗ ◦
(
D∆1,∆2,∗⊗IdK0(B) ⊕ DS∆1,S∆2,∗⊗IdK0(SB)

)

(α,h)∼ D∆1⊗B,∆2⊗B,∗ ◦ FA,B,∗ (18)

at order r. For ε in (0, 1
4αλ0

), let rF
ε be a positive numbers with rF

ε � hεr such that

ι
−,λ0αε,rF

ε

O,∗ (x) = 0

for all x in Kαε,hεr
∗ (A∆1

∩ A∆2
)⊗K∗(B) such that F αε,hεr

A∆1
∩A∆2

,B,∗(x) = 0.

The following proposition is the analogue of the first steps of the injectivity part of 

the classical five lemma.

Proposition 4.15. There exists a control pair (λ, h) depending only on λ0 and c such that 

for any positive numbers ε, s and r′ with ε < 1
4λ , s � r

kF,ε
and r′ � rF

ε , for any x in 

Oε,s
1 (A, B) such that F ε,s

A,B(x) = 0 in O′
1

αF ,kF,εs
(A, B), there exist

• an element x(1) in Oλε,hεr′

1 (A∆1
, B) and an element x(2) in Oλε,hεr′

1 (A∆2
, B);

• an integer n and an ε-s-unitary Wx in Mn(C(T2, A⊗B));

• for i = 1, 2, a λε-hεr′-unitary W
(i)
x in Mn(C(T2, A⊗B)) with W

(i)
x − In in 

Mn(C(T2, A∆i
⊗B));
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such that

(i) ι−,λε,hεr′

O,1 (x) = jλε,hεr′

∆1,O,∗(x(1)) + jλε,hεr′

∆2,O,∗(x(2));

(ii) [Wx]αF ε,kF,εr = 0 in O′
1

αF ε,kF,εr
(A, B);

(iii) [W
(i)
x ]λαF ε,kF,λεhεr′ is in O′

1
λαF ε,kF,λεhεr′

(A∆i
, B) and F λε,hεr′

A∆i
,B,∗(x(i)) =

[W
(i)
x ]λαF ε,kF,λεhεr′ for i = 1, 2;

(iv) ‖Wx − W
(1)
x W

(2)
x ‖ < λε.

Proof. The proof of the proposition is quite long so we split it in several steps.

Step 1: Let x be an element in Oε,s
1 (A, B). Then there exist integers l and l′ and

• for i = 1, . . . l

– an ε-s-unitary ui in some Mni
(A);

– a projection pi in some Mmi
(B) with [pi] in the prescribed system of generators 

for K0(B);

• for i = 1, . . . l′

– an ε-s-unitary u′
i in some Mn′

i
(S̃A);

– a projection p′
i in some Mm′

i
(S̃B) with [p′

i] − [p′
i(0)] in the prescribed system of 

generators for K1(SB);

such that

x =
l∑

i=1

[ui]ε,s⊗[pi] +
l′∑

i=1

[u′
i]ε,s⊗([p′

i] − [p′
i(0)]).

Assume that F ε,s
A,B,∗(x) = 0 in O′

1
αF ε,kF,εs

(A, B). Using Morita equivalence, and up 

to replacing A by Mn(A) and B by Mm(B) with n = n1 + . . . nl + n′
1 + . . . n′

l′ and 

m = m1 + . . . ml + m′
1 + . . . m′

l′ , we can assume that ni = mi = 1 for i = 1, . . . , l and 

n′
i = m′

i = 1 for i = 1, . . . , l′. Using Lemma 1.8, we can moreover assume without loss of 

generality that u′
i(0) = u′

i(1) = Iki
for i = 1, . . . , l′. Let us set

Wx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wu1,u∗
1 ,p1

. . .
Wul,u∗

l ,pl

W ′
u′

1,u′
1

∗,p′
1

. . .
W ′

u′
l′ ,u′

l′
∗,p′

l′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Then Wx is an ε-s-unitary in M2(2l+l′)(C(T2, A⊗B)) and [Wx]ε,s is in O′
1

ε,s
(A, B). 

In view of equations (14) and (15), we see that [Wx]αF ε,kF,εs = F ε,s
A,B,∗(x) = 0 in 

O′
1

αF ε,kF,εs
(A, B) ⊆ K

αF ε,kF,εs
1 (C(T2, A⊗B)).
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Step 2: Let (α, h) be the control pair of equation (18), then we have

F αε,hεs
A∆1

∩A∆2
,B,∗ ◦ ι−,−

O,∗ ◦
(

∂ε,s
∆1,∆2,∗⊗IdK0(B)) ⊕ ∂ε,s

S∆1,S∆2,∗⊗IdK0(SB)

)
(x) = 0. (20)

Since [p1], . . . , [pl] belong to the prescribed system of generator for K0(B) and [p′
1] −

[p′
1(0)], . . . , [p′

l′ ] − [p′
l′(0)] belong to the prescribed system of generator for K1(B), we 

deduce from equation (20) and from the choice of r′ that

ι−,λ0αε,r′

∗ ◦ ∂ε,s
∆1,∆2,∗[ui]ε,s = 0

for i = 1, . . . , l and

ι−,λ0αε,r′

∗ ◦ ∂ε,s
S∆1,S∆2,∗[u′

i]ε,s = 0

for i = 1, . . . , l′. According to Lemma 3.5 and in view of the definition of ∂ε,s
∆1,∆2,∗, 

then for a control pair (λ, k) depending only on c, there exists for i = 1, . . . , n and up 

to replacing ui by some diag(ui, Ini−1) for some integer ni two λλ0αε-kλ0αεr′-unitaries 

v
(1)
i and v

(2)
i respectively in Mni

(Ã∆1
) and Mni

(Ã∆2
), with v

(1)
i − Ini

and v
(2)
i − Ini

respectively in Mni
(A∆1

) and Mni
(A∆2

) and such that

‖ui − v
(1)
i v

(2)
i ‖ < λλ0αcε.

Since we also have

ι−,λ0αε,r′

∗ ◦ ∂ε,r
∆1,∆2

[u∗
i ]ε,s = 0,

according to Proposition 2.21 and up to rescaling (λ, k), we can assume that there exists 

two λλ0αε-kλ0αεr′-unitaries v′
i
(1)

and v′
i
(2)

respectively in Mni
(Ã∆1

) and Mni
(Ã∆2

) with 

v′
i
(1) − Ini

and v′
i
(2) − Ini

respectively in Mni
(A∆1

) and Mni
(A∆2

) and such that

‖u∗
i − v′

i
(1)

v′
i
(2)‖ < λλ0αε

and v′
i
(j)

is homotopic to v
(j)∗
i as an λλ0αε-kλ0αεr′-unitary in Mni

(Ã∆i
) for j = 1, 2.

In the same way, up to replacing u′
i by some diag(u′

i, In′
i−1) for some integer 

n′
i, there exists two λλ0αε-kλ0αεr′-unitaries wi

(1) and w′
i
(1)

in Mn′
i
(S̃A∆1

) and two 

λλ0αε-kλ0αεr′-unitaries wi
(2) and w′

i
(2)

in Mn′
i
(S̃A∆2

) such that

‖u′
i − wi

(1)wi
(2)‖ < λλ0αε,

‖u′
i
∗ − w′

i
(1)

w′
i
(2)‖ < λλ0αε,

and w′
i
(j)

is homotopic to w
(j)∗
i as an λλ0αε-kλ0αεr′-unitary in Mn′

i
(S̃A∆i

) for j =

1, 2 and wi
(1)(0) = wi

(2)(0) = w′
i
(1)

(0) = w′
i
(2)

(0) = In′
i

for i = 1, . . . , l′. In 
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particular, W
v

(j)
i ,vi

(j)∗ and W
v

(j)
i ,v′

i
(j) for j = 1, 2 and i = 1, . . . , l are homotopic 

λλ0αε-kλ0αεr′-unitaries in M4ni
(Ã∆j

) and W ′
w

(j)
i ,wi

(j)∗
and W

w
(j)
i ,w′

i
(j) for j = 1, 2 and 

i = 1, . . . , l′ are homotopic λλ0αε-kλ0αεr′-unitaries in M2n′
i
(Ã∆j

).

Step 3: According to Lemmas 1.2 and 1.3 and up to replacing λ by 12λ, we have that

ι
−,λλ0αε,2kλ0αεr′

O,∗ (x) =j
λλ0αε,2kλ0αεr′

∆1,∗ ⊗IdK0(B)(

l∑

i=1

[v
(1)
i ]λλ0αε,2kλ0αεr′⊗[pi])

+ j
λλ0αε,2kλ0αεr′

∆2,∗ ⊗IdK0(B)(
l∑

i=1

[v
(2)
i ]λλ0αε,2kλ0αεr′⊗[pi])

+ j
λλ0αε,2kλ0αεr′

S∆1,∗ ⊗IdK0(SB)(
l′∑

i=1

[w
(1)
i ]λλ0αε,2kλ0αεr′⊗([p′

i] − [p′
i(0)]))

+ j
λλ0αε,2kλ0αεr′

S∆2,∗ ⊗IdK0(SB)(
l′∑

i=1

[w
(2)
i ]λλ0αε,2kλ0αεr′⊗([p′

i] − [p′
i(0)]))

(21)

Let us set for j = 1, 2

x(j) = j
λλ0αε,2kλ0αεr′

∆1,∗ ⊗IdK0(B)

(
l∑

i=1

[v
(j)
i ]λλ0αε,2kλ0αεr′⊗[pi]

)

+ j
λλ0αε,2kλ0αεr′

S∆1,∗ ⊗IdK0(SB)

⎛
⎝

l′∑

i=1

[w
(j)
i ]λλ0αε,2kλ0αεr′⊗([p′

i] − [p′
i(0)]

⎞
⎠

and

W (j)
x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W
v

(j)
1 ,v′

1
(j),p1

. . .
W

v
(j)
l ,v′

l
(j),pl

W ′
w

(j)
1 ,w′

1
(j),p′

1

. . .
W ′

w
(j)

l′ ,w′
l′

(j),p′
l′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since W
(j)
x and
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W
v

(j)
1 ,v1

(j)∗,p1

. . .
W

v
(j)
l ,vl

(j)∗,pl

W ′
w

(j)
1 ,w1

(j)∗,p′
1

. . .
W ′

w
(j)

l′ ,wl′ (j)∗,p′
l′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

are homotopic as λλ0αε-kλ0αεr′-unitaries in MN (Ã∆j
), with N = n1 + . . . nl + 2(n′

1 +

. . . + n′
l′), we deduce that

q
λλ0αε,kλ0αεr′

A∆j
[W (j)

x ]λλ0αε,kλ0αεr′ = 0.

Hence x(1), x(2), Wx, W
(1)
x and W

(2)
x satisfy the required condition for some suitable 

control pair. �

End of the proof of the QI-statement. To prove the QI-statement, we follow the steps 

of the proof of the injectivity part of the five lemma.

Step 1: Let x be an element in Oε,s
1 (A, B) such that F ε,s

A,B,∗(x) = 0. Let r′ be a 

positive number such that r′ � rF
ε . With notations of Proposition 4.15, applying Propo-

sition 2.11 to Wx, up to rescaling (λ, h) and to replacing W
(1)
x and W

(2)
x respectively by 

diag(W
(1)
x , Ij) and diag(W

(2)
x , Ij) for some integer j, there exist for any positive number 

ε in (0, 1
4λ ) two λε-hεr′-unitaries W ′

1 and W ′
2 in some Mn(C(T2, A⊗B)) such that

• W ′
i − In is an element in the matrix algebra Mn(C(T2, A∆i

⊗B)) for i = 1, 2;

• for i = 1, 2, there exists a homotopy (W ′
i,t)t∈[0,1] of λε-hεr′-unitaries between In and 

W ′
i such that W ′

i,t − Ik ∈ Mn(C(T2, A∆i
⊗B)) for all t in [0, 1].

• ‖W
(1)
x W

(2)
x − W ′

1W ′
2‖ < λε.

Up to replacing λ by 5λ, we can assume indeed that ‖W ′
1

∗
W

(1)
x − W ′

2W
(2)∗
x ‖ < λε. If we 

apply the CIA property to W ′
1

∗
W

(1)
x − In and W ′

2W
(2)∗
x − In, we get that there exists 

V ′ in Mn(C(T2, A⊗B)hεr′) such that

• ‖W ′
1

∗
W

(1)
x − V ′‖ < cλε;

• ‖W ′
2W

(2)∗
x − V ′‖ < cλε;

• V ′ − In lies in Mn(C(T2, (A∆1
∩ A∆2

)⊗B)).

In particular, in view of Lemma 1.2, V ′ is a 4(c +3)λε-2hεr′-unitary in Mn(C̃(T2, (A∆1
∩

A∆2
)⊗B))) homotopic to W ′

1
∗
W

(1)
x (resp. to W ′

2W
(2)∗
x ) as a 4(c + 3)λε-2hεr′-unitary in 

Mn(C̃(T2, A∆1
⊗B)) (resp. in Mn(C̃(T2, A∆2

⊗B))).

Step 2: We construct now out of V ′ an almost unitary whose class is (up to rescaling) 

in O′
1

4(c+3)λε,4hεr′

(A∆1
∩ A∆2

, B) and which have the same image as [V ′]4(c+3)λε,2hεr′
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in K
4(c+3)λε,4hεr′

1 (C(T2, A∆1
⊗B)) (resp. K

4(c+3)λε,4hεr′

1 (C(T2, A∆2
⊗B)) under the map 

j
4(c+3)λε,2hεr′

C(T2,∆1⊗B),C(T2,∆2⊗B),∗ (resp. j
4(c+3)λε,2hεr′

C(T2,∆2⊗B),C(T2,∆1⊗B),∗). Let us define

Vx : T2 : −→ M3n(A⊗B)

(z1, z2) �→

⎛
⎝

V ′∗(1, 1)V ′(z1, z2)
V ′∗(z1, 1)V ′(1, 1)

V ′∗(1, z2)V ′(1, 1)

⎞
⎠ .

If we set λ′ = 12(c + 3)λ, then

• Vx is a λ′ε-4hεr′-unitary in Mn(C(T2, A⊗B));

• Vx − I3n is in M3n(C(T2, (A∆1
∩ A∆2

)⊗B));

• [Vx]λ′ε,4hεr′ lies in O′
1

λ′ε,4hεr′

(A∆1
∩ A∆2

, B).

Then we have

jλ′ε,4hεr′

∆1,∆2,O′,∗([Vx]λ′ε,4hεr′) = [W ′
1

∗
W (1)

x ]λ′ε,4hεr′ = [W (1)
x ]λ′ε,4hεr′ , (22)

where the second equality holds because W ′
1 is connected to In as a λ′ε-4hεr′-unitary of 

Mn(S̃A∆1
). In the same way, we have

jλ′ε,4hεr
∆2,∆1,O′,∗([Vx]λ′ε,4hεr′) = −[W (2)

x ]λ′ε,4hεr′ . (23)

Step 3: Let r′′ be a positive integer with kF,λ0λ′εr′′ � 4kεr′ such that for any z in 

O′
∗

λ′ε,4kεr′

(A∆1
∩ A∆2

, B), there exists y in Oλ0λ′ε,r′′

∗ (A∆1
∩ A∆2

, B) such that

ι
−,λ0λ′αF ε,kF,λ0λ′εr′′

O′,∗ (z) = F λ0λ′ε,r′′

A∆1
∩A∆2

,B,∗(y).

Then there exists x′ in Oλ0λ′,r′′

1 (A∆1
∩ A∆2

, B) such that

[Vx]λ0λ′αF ε,kF,λ0λ′εr′′ = F λ0λ′ε,r′′

A∆1
∩A∆2

,B,∗(x′).

Hence we have

F λ0λ′ε,r′′

A∆1
,B,∗ ◦ jλ0λ′ε,r′′

∆1,∆2,O,∗(x′) = j
λ0λ′αF ε,kF,λ0λ′εr′′

∆1,∆2,O′,∗ ([Vx]λ0λ′αF ε,kF,λ0λ′εr′′)

= [W (1)
x ]λ0λ′αF ε,kF,λ0λ′εr′′

= F λ0λ′ε,r′′

A∆1
,B,∗ ◦ ι−,λ0λ′ε,r′′

O,∗ (x(1)) (24)

where the first equality holds by naturality of F•,B,∗, the second equality holds in view 

of equation (22) and the last equality is a consequence of Proposition 4.15. In the same
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way, using equation (23), we get that

F λ0λ′ε,r′′

A∆2
,B,∗ ◦ jλ0λ′ε,r′′

∆2,∆1,O,∗(x′) = −F λ0λ′ε,r′′

A∆2
,B,∗ ◦ ι−,λ0λ′ε,r′′

O,∗ (x(2)). (25)

Step 4: Let R be a positive number, with R � r′′ such that

ι
−,λ2

0λ′′ε,R
O,∗ (y) = 0

for all y in Oλ0λ′ε,r′′

1 (A∆j
, B) such that F λ0λ′ε,r′′

A∆j
,B,∗ (y) = 0 and j = 1, 2. In particular, from 

equations (24) and (25), we deduce

ι
−,λ2

0λ′′ε,R
O,∗ ◦ jλ0λ′′ε,r′′

∆1,∆2,O,∗(x′) = ι
−,λ2

0λ′ε,R
O,∗ (x(1))

and

ι
−,λ2

0λ′′ε,R
O,∗ ◦ jλ0λ′′ε,r′′

∆2,∆1,O,∗(x′) = −ι
−,λ2

0λ′ε,R
O,∗ (x(2)).

Since ι−,λε,hεr′

O,∗ (x) = x(1) + x(2), this establishes the QI-statement.

4.3.5. QS-condition

Let (Δ1, Δ2, A∆1
, A∆2

) be an r-controlled nuclear Mayer–Vietoris pair with co-

ercitivity c for A such that for any C∗-algebra B with K∗(B) free abelian, then 

FA∆1
,B,∗, FA∆2

,B,∗ and FA∆1
∩A∆2

,B,∗ are quantitative isomorphisms with rescaling λ0. 

Let us check that FA,B,∗ satisfies the QS-condition of Definition 1.19. As for the 

QI-condition, we can assume without loss of generality that A and B are unital and 

that there exists a system of generators of K0(B) given by classes of projections. Let 

us fix such a system of generator for K0(B) and fix also a system of generator for 

K0(SB). We also only need to consider the odd case, i.e. show that the control mor-

phism FA,B,∗ : O1(A, B)−→O′
1(A, B) satisfies the required conditions.

Let ε be a positive number with ε in (0, 1
4λ0αc

) and let r
F,(1)
ε be a positive number 

with kc,εr � kF,λ0αcεr
F,(1)
ε such that for any y in O′

∗
αcε,kc,εr

(A∆1
∩A∆2

, B), there exists 

an element x in O∗
λ0αcε,rFε,(1)

(A∆1
∩ A∆2

, B) such that

ι
−,λ0αcαF ε,kF,λ0αc rFε,(1)

O′,∗ (y) = F λ0αcε,rFε,(1)

A∆1
∩A∆2

,B,∗(x).

Let r
F,(2)
ε be a positive number with r

F,(1)
ε � r

F,(2)
ε such that

ι
−,λ2

0αcε,rF,(2)
ε

O,∗ (x) = 0

for all x in K
λ0αcε,rF,(1)

ε∗ (A∆1
∩ A∆2

)⊗K∗(B) such that F
λ0αcε,rF,(1)

ε

A∆1
∩A∆2

,B,∗(x) = 0. Next 

proposition can be viewed as the first steps of the surjectivity part of the five lemma.
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Proposition 4.16. There exists a control pair (λ, h) depending only on c and λ0 with 

(αc, kc) � (λ, h) such that for any positive numbers ε and r′ with ε in (0, 1
4λ ) and 

r
F,(2)
ε � r′ the following is satisfied:

For any element y in O′ ε,r
1 (A, B) ⊆ Kε,r

1 (C(T2, A⊗B)), there exists

• an element zy in Oλε,hεr′

1 (A, B);

• a positive integer ny and two λ′ε-h′
εr′-unitaries Wy and W ′

y in Mny
(C(T2, A⊗B));

• for j = 1, 2 a λε-hεr′-unitary W
(j)
y in M2ny

(C(T2, A⊗B)) with W
(j)
y − I2ny

in 

M2ny
(C(T2, A∆j

⊗B));

• a λε-hεr′-projection qy in M2ny
(C(T2, (A∆1

∩ A∆2
)⊗B))

such that

• [Wy]λαF ε,kF,λεhεr′ is in O′
1

λαF ε,kF,λεr′

(A, B) and F λε,hεr′

A,B,∗ (zy) = [Wy]λαF ε,kF,λεhεr′ ;

• [qy, ny]λε,hεr′ = ι
αcε,λε,kc,εr,h′

εr′

O′,∗ ◦ ∂ε,r
C(T2,∆1⊗B),C(T2,∆2⊗B)(y).

• ‖ diag(Wy, W ′
y) − W

(1)
y W

(2)
y ‖ < λε;

• ‖W
(1)∗
y diag(Iny

, 0)W
(1)
y − qy‖ < λε.

Proof. We follow the steps of the beginning of the proof of the surjectivity part of the 

five lemma.

Step 1: According to equation (12), we see that y′ = ∂ε,r
C(T2,A∆1

),C(T2,A∆2
),∗(y) be-

longs to O′
0

αcε,kc,εr
(A∆1

∩ A∆2
, B). Set R = r

F,(1)
ε . Then there exists an element x in 

O0
λ0αcε,R(A∆1

∩ A∆2
, B) such that

ι
−,λ0αcαF ε,kF,λ0αcεR

O′,∗ (y′) = F λ0αcε,R
A∆1

∩A∆2
,B,∗(x).

There exist two integers l and l′ and

• for i = 1, . . . l

– an λ0αcε-R-projection qi in some Mni
( ˜A∆1

∩ A∆2
) and an integer ki;

– a projection pi in some Mmi
(B) with [pi] in the prescribed system of generators 

for K0(B);

• for i = 1, . . . l′

– an λ0αcε-R-projection q′
i in some Mn′

i
( ˜SA∆1

∩ A∆2
) and an integer k′

i;

– a projection p′
i in some Mm′

i
(S̃B) such that [p′

i] −[p′
i(0)] is in the prescribed system 

of generators for K1(SB);

such that

x =

l∑

i=1

[qi, ki]λ0αcε,R⊗[pi] +

l′∑

i=1

[q′
i, k′

i]λ0αcε,R⊗([p′
i] − [p′

i(0)]).
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By Morita equivalence, up to replacing B by Mm(B) with m = m1 + . . . ml + m′
1 +

. . . m′
l′ , we can assume that mi = 1 for i = 1, . . . , l and m′

i = 1 for i = 1, . . . , l′. Using 

Lemma 1.7, we can moreover assume without loss of generality that qi − diag(Iki
, 0) is 

in Mni
(A∆1

∩ A∆2
) for i = 1, . . . , l and that q′

i(0) = q′
i(1) = diag(Ik′

i
, 0) for i = 1, . . . , l′. 

Set

q′
y =

⎛
⎜⎜⎜⎜⎜⎝

Eq1,n1,p1⊗PBott,p1⊗P1

. . .
Eql,nl,pl⊗PBott,pl⊗P1

Eq′
1,n′

1,p′
1,p′

1(0)

. . .
Eq′

l,n′
l,p′

l,p′
l(0)

⎞
⎟⎟⎟⎟⎟⎠

In view of equations (16) and (17),

ι
−,λ0αcαF ε,kF,λ0αc R

O′,∗ (y′) = [q′
y, ny]λ0αcαF ε,kF,λ0αc R,

with ny = 2(n1 + . . . + nl) + n′
1 + . . . + n′

l.

Step 2: By naturality of F•,B,∗, we obtain

F λ0αcε,R
A∆1

,B,∗ ◦ jλ0αcε,R
∆1,∆2,O,∗(x) = 0

in O′
0

λ0αcαF ε,kF,λ0αc R
(A∆1

, B) and

F λ0αcε,r′

A∆2
,B,∗ ◦ jλ0αcε,R

∆2,∆1,O,∗(x) = 0

in O′
0

λ0αcαF ε,kF,λ0αc R
(A∆2

, B).

Let r′ be a positive number with r
F,(2)
ε � r′. Since [pi] for i = 1, . . . , l and [p′

i] − [p′
i(0)]

for i = 1, . . . , l′ are respectively in the prescribed system of generator of K0(B) and 

K0(SB) and by definition of r
F,(2)
ε , we deduce that

• j
λ2

0αcε,r′

∆1,∆2,∗([qi, ki]λ2
0αcε,r′) = 0 in K

λ2
0αcε,r′

0 (A∆1
) for i = 1, . . . , l;

• j
λ2

0αcε,r′

S∆1,S∆2,∗([q′
i, k

′
i]λ2

0αcε,r′) = 0 in K
λ2

0αcε,r′

0 (SA∆1
) for i = 1, . . . , l′;

• j
λ2

0αcε,r′

∆2,∆1,∗([qi, ki]λ2
0αcε,r′) = 0 in K

λ2
0αcε,r′

0 (A∆2
) for i = 1, . . . , l;

• j
λ2

0αcε,r′

S∆2,S∆1,∗([q′
i, k

′
i]λ2

0αcε,r′) = 0 in K
λ2

0αcε,r′

0 (SA∆2
) for i = 1, . . . , l′.

Let (λ, h) be the control pair of Lemma 3.8. Then for i = 1, . . . l and up to stabilization, 

we can assume that ni = 2ki and that there exists v
(1)
i and v

(2)
i two λλ2

0αcε-hλ2
0αcεr′

unitaries in M2ni
(A) and ui and u′

i two λλ2
0αcε-hλ2

0αcεr′ unitaries in Mni
(A) such that

• v
(j)
i − Ini

is an element in Mni
(A∆j

) for j = 1, 2;

•

‖v
(1)∗
i diag(Iki

, 0)v
(1)
i − qi‖ < λλ2

0αcε
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and

‖v
(2)
i diag(Iki

, 0)v
(2)∗
i − qi‖ < λλ2

0αcε;

• for j = 1, 2, then v
(j)
i is connected to Ini

by a homotopy of λλ2
0αcε-hλ2

0αcεr′′-unitaries 

(v
(j)
i,t )t∈[0,1] in Mni

(A) such that v
(j)
i,t − I2ni

is in Mni
(A∆j

) for all t in [0, 1];

• ‖ diag(ui, u
′
i) − v

(1)
i v

(2)
i ‖ < λλ2

0αcε.

In the same way, for i = 1, . . . l′ and up to stabilization, we can assume that n′
i = 2k′

i

and that there exists w
(1)
i and w

(2)
i two λλ2

0αcε-hλ2
0αcεr′ unitaries in Mn′

i
(S̃A) and u′′

i

and u′′′
i two λλ2

0αcε-hλ0αcεr′ unitaries in Mn′
i
(S̃A) such that

• w
(j)
i − In′

i
is an element in Mn′

i
(SA∆j

) for j = 1, 2;

•

‖w
(1)∗
i diag(Iki

, 0)w
(1)
i − q′

i‖ < λλ2
0αcε

and

‖w
(2)
i diag(Ik′

i
, 0)w

(2)∗
i − q′

i‖ < λλ2
0αcε;

• for j = 1, 2, then w
(j)
i is connected to In′

i
by a homotopy of λλ2

0αcε-hλ2
0αcεr′-unitaries 

(w
(j)
i,t )t∈[0,1] in Mn′

i
(S̃A) such that w

(j)
i,t − In′

i
is in Mn′

i
(SA∆j

) for all t in [0, 1];

• u′′
i (0) = u′′

i (1) = u′′′
i (0) = u′′′

i (1) = I2n′
i
;

• ‖ diag(u′
i, u

′′
i ) − w

(1)
i w

(2)
i ‖ < λλ2

0αcε.

Step 3: Let us set λ′ = λλ2
0αc and for any ε in (0, 1

4λ′ ) set h′
ε = hλλ2

0αcε. Consider the 

element of O
λ′ε,h′

εr′

1 (A, B)

zy = [u1]λ′ε,h′
εr′⊗[p1] + . . . + [ul]λ′ε,h′

εr′⊗[pl] + [u′′
1 ]λ′ε,h′

εr′⊗([p′
1] − [p′

1(0)]) + . . .

+ [u′′
l′ ]λ′ε,h′

εr′⊗([p′
l′ ] − [p′

l′(0)]).

If we set

Wy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wu1,u′
1,p1

. . .
Wul,u′

l,pl

W ′
u′′

1 ,u′′′
1 ,p′

1

. . .
W ′

u′′
l′ ,u′′′

l′ ,p′
l′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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then Wy is a λ′ε-h′
εr′-unitary in M2ny

(C(T2, A⊗B)). Using Lemmas 1.2 and 1.3

and up to replacing (λ′, h′) by (12λ′, 2h′), then for i = 1, . . . l (resp. for i =

1, . . . , l′) diag(u′
i, Iki

) is homotopic to diag(u∗
i , Iki

) (resp. diag(u′′′
i , Ik′

i
) is homotopic to 

diag(u′′
i

∗
, Ik′

i
)) as a λ′ε-h′

εr′-unitary in Mni
(A) (resp. in Mn′

i
(S̃A)). Hence we deduce that 

[Wy]αF λ′ε,kF,λ′εh′
εr′ belongs to O′

1
αF λ′ε,kF,λ′εh′

εr′

(A, B) and in view of equations (14) and 

(15), we see that

[Wy]αF λ′ε,kF,λ′εh′
εr′ = F

λ′ε,h′
εr′

A,B,∗ (zy)

in O′
1

αF λ′ε,kF,λ′εh′
εr′

(A, B). In the same way, if we set

W ′
y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wu′
1,u1,p1

. . .
Wu′

l,ul,pl

W ′
u′′′

1 ,u′′
1 ,p′

1

. . .
W ′

u′′′
l′ ,u′′

l′ ,p′
l′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then W ′
y is also an λ′ε-h′

εr′-unitary in M2ny
(C(T2, A⊗B)).

Step 4: For i = 1, . . . , l and j = 1, 2, let v′
i
(j)

be the matrix in Mni
(A) obtained from 

vi
(j) by flipping the ki first and the ki-last coordinates, and define similarly w′

i
(j)

in 

Mn′
i
(Ã) for i = 1, . . . , l′ and j = 1, 2. Up to replacing λ′ by 2λ′, we have that

• v
′ (1)
i and v

′ (2)
i are λ′ε-h′

εr′ unitaries in Mni
(A);

•

‖v′
i
(1)∗

diag(Iki
, 0)v′

i
(1) − (Ini

− q̃i)‖ < λ′ε

and

‖v′
i
(2)

diag(Ini
, 0)v′

i
(2)∗ − (Ini

− q̃i)‖ < λ′ε.

• ‖ diag(u′
i, ui) − v′

i
(1)

v′
i
(2)‖ < λ′ε,

where q̃i is obtained from qi by flipping the ki first and the ki last coordinates. Similarly, 

for i = 1, . . . l′, we have

• w′
i
(1)

and w′
i
(2)

are two λ′ε-h′
εr′ unitaries in Mn′

i
(S̃A);

• w′
i
(j) − In′

i
is an element in M2n′

i
(SA∆j

) for j = 1, 2;

•

‖w′
i
(1)∗

diag(Ik′
i
, 0)w′

i
(1) − (In′

i
− q̃′

i)‖ < 2λ′ε
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and

‖w′
i
(2)

diag(In′
i
, 0)w′

i
(2)∗ − (In′

i
− q̃′

i)‖ < λ′ε.

• ‖ diag(u′′
i , u′

i) − w′
i
(1)

w′
i
(2)‖ < λ′ε,

where q̃′
i is obtained from q′

i by flipping the k′
i first and the k′

i last coordinates. Then we 

have

‖ diag(Wui,u′
i,pl

, Wu′
i,ui,pi

) − Wvi
(1),v′

i
(1),pi

Wvi
(2),v′

i
(2),pi

‖ < λ′ε

and

‖W ∗
vi

(1),v′
i

(1),pi
· diag(Pki

, Pki
) · Wvi

(1),v′
i

(1),pi
− E′

qi,ki,pi⊗PBott,pi⊗P1
‖ < λ′ε,

with

E′
qi,ki,pi⊗PBott,pi⊗P1

=

(
qi⊗pi⊗PBott + Pki

⊗(I2 − pi⊗PBott) 0
0 Pki

⊗(I2 − pi⊗P1) + (Ini
− q̃i)⊗pi⊗P1

)

for i = 1 . . . l. Similarly, we have

‖ diag(W ′
u′′

i ,u′′′
i ,p′

i
, Wu′′′

i ,u′′
i ,p′

i
) − Wwi

(1),w′
i

(1),p′
i
, Wwi

(2)w′
i

(2),p′
i
)‖ < λ′ε,

and

‖W ′∗
wi

(1),w′
i

(1),p′
i

· diag(Pk′
i
, Pk′

i
) · W ′

wi
(1),w′

i
(1),p′

i
− E′

q′
i,k′

i,p′
i,p′

i(0)‖ < λ′ε,

for i = 1 . . . l′ with

E′
q′

i,k′
i,p′

i,p′
i(0)⊗P1

=

(
q′

i⊗p′
i + P ′

k′
i
⊗(I2 − p′

i) 0

0 Pk′
i
⊗(I2 − p′

i(0)) + (In′
i

− q̃′
i)⊗p′

i(0))

)
.

From this we deduce that there exist W
(1)
y and W

(2)
y two λ′-h′

εr′-unitaries in 

M2ny
(C(T2, A⊗B)) such that

• W
(i)
y − I2ny

is in M2nx
(C(T2, A∆i

⊗B)) for i = 1, . . . n;

• ‖ diag(Wy, W ′
y) − W

(1)
y W

(2)
y ‖ < λ′ε;

• ‖W
(1)∗
y diag(Inx

, 0)W
(1)
y − qy‖ < λ′ε,
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where

qy =

⎛
⎜⎜⎜⎜⎜⎜⎝

E′
q1,k1,p1⊗PBott,p1⊗P1

. . .
E′

ql,kl,pl⊗PBott,pl⊗P1

E′
q′

1,k′
1,p′

1,p′
1(0)

. . .
Eq′

l′ ,k′
l,p′

l′ ,p′
l′ (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Clearly qy is λ′ε-h′
εr′-projection in M2ny

(C(T2, A⊗B)) such that

[qy, ny]λ′ε,h′
εr′ = [q′

y, ny]λ′ε,h′
εr′ = ι

−,λ′ε,h′
εr′

O′,∗ ◦ ∂ε,r
C(T2,∆1⊗B),C(T2,∆2⊗B)(y)

and hence zy, qy, ny, Wy, W ′
y, W

(1)
y and W

(2)
y satisfy the required conditions for some 

suitable control pair. �

End of the proof of the QS-statement. Let (λ, h) be a control pair as in Proposi-

tion 4.16, let ε be a positive number in (0, 1
4λ ), let y be an element in O′

1
ε,r

(A, B) and let 

r′, zy, qy, ny, Wy, W ′
y, W

(1)
y and W

(2)
y as in the proposition. Let u be an ε-r unitary in 

some Mn(C(T2, A⊗B)), let u1 and u2 be αcε-kc,εr-unitaries in some M2n(C(T2, A⊗B))

and let q be an αcε-kc,εr-projection in M2n(C(T2, A⊗B)) such that

• ui − I2n is in M2n(C(T2, A⊗B) for i = 1, 2;

• ‖ diag(u, u∗) − u1u2‖ < αcε;

• q − diag(In, 0) is in M2n(C(T2, (A∆1
∩ A∆2

)⊗B));

• ‖q − v∗
1 diag(In, 0)v1‖ < αcε;

• ‖q − v2 diag(In, 0)v∗
2‖ < αcε;

• −y = [u]ε,r;

• ∂ε,r
C(T2,∆1⊗B),C(T2,∆2⊗B)(−y) = [q, n]αcε,kc,εr.

Then applying Lemma 3.5 to diag(u, Wy), diag(u∗, W ′
y) and to the matrices respectively 

obtained from diag(u1, W
(1)
y ), diag(u2, W

(2)
y ) and diag(q, qy) by swapping the order of 

coordinates n + 1, . . . , 2n and 2n + 1, . . . , 2n + nx, we see that for a controlled pair 

(λ′, h′) depending only on λ0 and c, and if ε is in (0, 1
4λ′ ), there exist U1 and U2 some 

λ′ε-h′
εr′-unitary in some Mn′(C(T2, A⊗B)) with U1 − In′ in Mn′(C(T2, A∆1

⊗B)) and 

U2 − In′ in Mn′(C(T2, A∆2
⊗B)) such that

[U1]λ′ε,h′
εr′ + [U2]λ′ε,h′

εr′ = [Wy]λ′ε,h′
εr′ − ι

−,λ′ε,h′
εr′

O′,∗ (y)

in K
λ′,h′

εr′

1 (C(T2, A⊗B)). Up to replacing Uj for j = 1, 2 by

T2−→M3n′ ; (z1, z2) �→ diag(U∗
j (1, 1)Uj(z1, z2), U∗

j (z1, 1)Uj(1, 1), U∗
j (1, z2)Uj(1, 1)),

and (λ′, h′) by (3λ′, 2h′), we can assume that [Uj ]λ′ε,h′
εr′ belongs to O′

1
λ′ε,h′

εr′

(A∆j
, B).
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Let r′′ be a positive number with kF,λ0λ′εr′′ � h′
εr′ such that for j = 1, 2, any 

positive number ε in (0, 1
4λ0λ′ ) and any z in O′

∗
λ′ε,h′

εr′

(A∆j
, B), there exists an element 

x in O∗
λ0λ′ε,r′′

(A∆j
, B) such that

ι
−,λ0αF λ′ε,kF,λ0λ′εr′′

O′,∗ (z) = F λ0λ′ε,r′′

A∆j
,B,∗ (x).

Let then z
(j)
y be for j = 1, 2 an element in O1

λ0λ′ε,r′′

(A∆j
, B) such that

ι
−,αF λ0λ′ε,kF,λ0λ′εr′′

O′,∗ ([Ui]λ′ε,h′
εr′) = F λ0λ′ε,r′′

A∆j
,B,∗ (z(j)

y ).

Let us set

z̃y = ι
−,λ0λ′ε,h′

εR
O,∗ (zy) − jλ0λ′ε,r′′

∆1,O,∗ (z(1)
y ) − jλ0λ′ε,r′′

∆2,O,∗ (z(2)
y )

in Oλ0λ′ε,h′
εr′′

1 (A, B). By naturality of F•,B,∗, we see then that

F λ0λ′ε,r′′

A,B,∗ (z̃y) = ι
−,αF λ0λ′ε,kF,λ0λ′εr′′

O,∗ (y)

and hence the QS-condition is satisfied.

4.4. Quantitative Künneth formula for crossed-product C∗-algebras

We shall next discuss the connection between the Baum–Connes conjecture and the 

quantitative Künneth formula. The connection between the usual Baum–Connes conjec-

ture and the Künneth formula was studied in [1].

Before proving Theorem 4.5, recall that article [1] introduced an equivariant analogue 

of the map ω•,•,∗ for the topological K-theory of a locally compact group G (i.e., the 

left-hand side of the Baum–Connes assembly map). Let A be a G-C∗-algebra and let B

be a C∗-algebra. The C∗-algebra B can be viewed as a G-C∗-algebra with the trivial 

action of G and we equip A⊗B with the diagonal action. Then the elements in K∗(B)

can be viewed as element of KG
∗ (B). If X is a G-proper space, the map

ωG,X
A,B,∗ : KKG

∗ (C0(X), A)⊗K∗(B) → KKG
∗ (C0(X), A⊗B); x⊗y �→ x⊗τA(y),

is compatible with inclusion of G-proper cocompact spaces and hence gives rise to a 

morphism

ωG,top
A,B,∗ : Ktop

∗ (G, A)⊗K∗(B) → Ktop
∗ (G, A⊗B).

Theorem 4.17. Let Γ be a discrete group and let A be a Γ-C∗-algebra. Assume that for 

every finite subgroup F of Γ, the C∗-algebra A � F satisfies the Künneth formula, then

for any C∗-algebra B such that K∗(B) is a free abelian group and any positive number d
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ω
Γ,Pd(Γ)
A,B,∗ : KKΓ

∗ (C0(Pd(Γ)), A)⊗K∗(B) → KKΓ
∗ (C0(Pd(Γ)), A⊗B)

is an isomorphism.

Proof. (Compare with the proof of [1, Lemma 1.7]) The action of Γ on Pr(Γ) is simplicial 

and up take a barycentric subdivision of Pd(Γ), we can assume that Pd(Γ) is a locally 

finite and finite dimension typed simplicial complex, equipped with a simplicial and type 

preserving action of Γ. Let Z0, · · · , Zn be the skeleton decomposition of Pd(Γ). Then Zj is 

a simplicial complex of dimension j, locally finite and equipped with a proper, cocompact 

and type preserving simplicial action of Γ. Let us prove by induction on j that

ω
Γ,Zj

A,B,∗ : KKG
∗ (C0(Zj), A)⊗K∗(B) → KKG

∗ (C0(Zj), A⊗B)

is an isomorphism. The 0-skeleton Z0 is a finite union of orbits and thus, for j = 0, it is 

enough to prove that

ω
Γ,Γ/F
A,B,∗ : KKΓ

∗ (C0(Γ/F ), A)⊗K∗(B) → KKG
∗ (C0(Zj), A⊗B)

is an isomorphism when F is a finite subgroup of Γ. Let us recall from [8] that for every 

C∗-algebra B equipped with an action of Γ, there is a natural restriction isomorphism

ResB
F,Γ,∗ : KKΓ

∗ (Γ/F, B)−→KKF
∗ (C, B) ∼= K∗(B � F ).

By naturality, this isomorphism respects also Kasparov products (using the same argu-

ment as in the proof of Lemma 4.11). Therefore, we have the following commutative 

diagram

KKΓ
∗ (C0(Γ/F ), A)⊗K∗(B)

ω
Γ/F,Γ
A,B,∗−−−−−→ KKΓ

∗ (C0(Γ/F ), A⊗B)

ResA
F,Γ,∗

⏐⏐�
⏐⏐�ResA⊗B

F,Γ,∗

K∗(A � F )⊗K∗(B)
ωA�F,B,∗−−−−−−→ K∗(A � F⊗B)

.

The bottom row being by assumption an isomorphism, the top row is then also an 

isomorphism. Let us assume that we have proved that ω
Zj−1,Γ
A,B,∗ is an isomorphism. Then 

the short exact sequence

0−→C0(Zj \ Zj−1)−→C0(Zj)−→C0(Zj−1)−→0

gives rise to an natural long exact sequence

−→KKΓ
∗ (C0(Zj−1), •)−→KKΓ

∗ (C0(Zj), •)−→KKΓ
∗ (C0(Zj \ Zj−1), •)

−→KKΓ
∗+1(C0(Zj−1), •)
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and thus by naturality and since K∗(B) is a free abelian group, we get a commutative 
diagram

KKΓ
∗ (C0(Zj−1), A)⊗ · · · −−→ KKΓ

∗ (C0(Zj ), A)⊗ · · · −−→ KKΓ
∗ (C0(Zj \ Zj−1), A) · · · −−→ KKΓ

∗+1(C0(Zj−1), A)⊗ · · ·

ω
Zj−1 ,Γ

A,B,∗

⏐⏐� ω
Zj ,Γ

A,B,∗

⏐⏐� ω
Zj \Zj−1 ,Γ

A,B,∗

⏐⏐� ω
Zj−1 ,Γ

A,B,∗

⏐⏐�

KKΓ
∗ (C0(Zj−1), · · · −−→ KKΓ

∗ (C0(Zj ), · · · −−→ KKΓ
∗ (C0(Zj \ Zj−1), · · · −−→ KKΓ

∗+1(C0(Zj−1) · · ·

,

Let σ̊j be the interior of the standard j-simplex. Since the action of Γ is type pre-

serving, then Zj \ Zj−1 is equivariantly homeomorphic to ̊σj × Σj , where Σj is the set of 

center of j-simplices of Zj , and where Γ acts trivially on ̊σj . This identification, together 

with Bott periodicity, provides a commutative diagram

KKΓ
∗ (C0(Zj \ Zj−1), A)⊗K∗(B) −−−−→ KKΓ

∗+1(C0(Σj), A)⊗K∗(B)

ω
Zj \Zj−1,Γ

A,B,∗

⏐⏐� ω
Σj ,Γ,∗

A,B,∗

⏐⏐�

KKΓ
∗ (C0(Zj \ Zj−1), A⊗B) −−−−→ KKΓ

∗+1(C0(Σj), A⊗B)

.

By the first step of induction, ω
Σj ,Γ
A,B,∗ is an isomorphism, and hence ω

Zj\Zj−1,Γ
A,B,∗ is 

an isomorphism. Using the induction hypothesis and the five lemma, we conclude that 

ω
Zj ,Γ
A,B,∗ is an isomorphism. �

Lemma 4.18. There exists a positive number λ0 and a function

(0, +∞) ×
(

0,
1

4λ0

)
: (d, ε) �→ r′

d,ε

non decreasing in d and non increasing in ε with rd,ε � r′
d,ε for all ε in (0, 1

4λ0
) and 

d > 1 such that the following holds:

for any finitely generated group Γ, any Γ-C∗-algebra A, any C∗-algebra B and any 

positive numbers ε, r and d with ε < 1
4λ0

and r � r′
d,ε, then we have

ωε,r
A�Γ,B,∗ ◦ (με,r,d

Γ,A,∗⊗IdK∗(B)) = μ
αT ε,kT ,εr,d
Γ,A⊗B,∗ ◦ ω

Γ,Pd(Γ)
A,B,∗ .

Proof. Let z be an element in KKΓ
∗ (C0(Pd(Γ)), A) and let y be an element in K∗(B). 

Then

ωε,r
A�Γ,B,∗

(
Jred,ε′,r′

Γ (z) ([pΓ,d, 0]ε′,r′) ⊗y
)

= τ ε,r
A�red,∗(y) ◦ Jred,ε′,r′

Γ (z) ([pΓ,d, 0]ε′,r′)

for ε′ = ε
αJ

and r′ = r
kJ,ε/αJ

. The result is then a consequence of Remark 1.32. �
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Proof of Theorem 4.5. Let λ0 and (0, +∞) ×
(

0, 1
4λ0

)
; (d, ε) �→ r′

d,ε as in Lemma 4.18. 

Let α0 be a positive number in as in Theorem 1.34, let ε and r be positive num-

bers with ε < 1
4λ0α0αT

. Let d and R be positive numbers with R � r′
d,ε such that 

QSΓ,A(d, ε, α0ε, r, R) is satisfied for every Γ-C∗-algebra A. Let d′ be a positive number 

such that QIΓ,A(d, d′, αT α0ε, kT ,α0εR) is satisfied for every Γ-C∗-algebra A. Let us prove 

the QS-statement Definition 1.19.

Let y be an element in Kε,r
∗ ((A�redΓ)⊗B). Since (A�redΓ)⊗B ∼= (A⊗B)�redΓ and 

QSΓ,A⊗B(d, ε, α0ε, r, R) is satisfied, there exists an element z1 in KKΓ
∗ (C0(Pd(Γ)), A⊗B)

such that

ι−,α0ε,R
∗ (y) = μα0ε,R,d

Γ,A⊗B,∗(z1).

According to Theorem 4.17 there exists z0 in KKΓ
∗ (C0(Pd(Γ)), A)⊗K∗(B) such that z1 =

ω
Γ,Pd(Γ)
A,B,∗ (z0). Now if we set ε′ = α0λ0ε and r′ = kT ,α0εR, then x = με′,r′,d

Γ,A,∗ ⊗IdK∗(B)(z0)

is in Kε′,r′

∗ (A�redΓ)⊗K∗(B) and from Lemma 4.18 we deduce that

ι
−,αT ε′,kT ,ε′ r′

∗ (y) = ωε′,r′

A�Γ,B,∗(x).

Let us prove the QI-statement. Let x be an element in Kε,r
∗ (A �red Γ)⊗K∗(B)

such that ωε,r
A�Γ,B,∗(x) = 0 in K

αT ε,kT ,εr
∗ ((A�redΓ)⊗B), let z0 be an element in 

KKΓ
∗ (C0(Pd(Γ)), A)⊗K∗(B) such that

ι−,α0ε,R
∗ ⊗IdK∗(B)(x) = μα0ε,R,d

Γ,A,∗ ⊗IdK∗(B)(z0)

and let us set

z1 = ω
Γ,Pd(Γ)
A,B,∗ (z0).

According to Lemma 4.18, we have that

μ
αT α0ε,kT ,α0εR,d

Γ,A⊗B,∗ (z1) = 0

in K
αT α0ε,kT ,α0εR
∗ ((A�redΓ)⊗B) and hence since QIΓ,A⊗B(d, d′, αT α0ε, kT ,α0εR) is sat-

isfied, we have qd,d′,∗(z1) = 0 in KKΓ
∗ (C0(Pd′(Γ)), A⊗B). According to Theorem 4.17

and since ω
Γ,Pd(Γ)
A,B,∗ is compatible with inclusion

Pd(Γ) ↪→ Pd′(Γ),

we deduce that qd,d′,∗(z0) = 0 in KKΓ
∗ (C0(Pd′(Γ)), A)⊗K∗(B). Set ε′ = α0ε and pick 

any positive number r′ such that r′ � R and r′ � rd′,α0ε. Then we have

ι−,ε′,r′

∗ ⊗IdK∗(B)(x) = (ι−,α0ε,r′

∗ ⊗IdK∗(B)) ◦ μα0ε,R,d′

Γ,A,∗ ⊗IdK∗(B)(z0)

= 0. �
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5. C
∗-algebras with finite asymptotic nuclear decomposition and quantitative 

Künneth formula

In this section, we introduce the concept of finite asymptotic nuclear decomposi-

tion for filtered C∗-algebras. For a C∗-algebra A in this class, there exist an integer n

such that for any positive number r, we can decompose Ar in n steps using controlled 

Mayer–Vietoris pairs into locally Bootstrap C∗-algebras (see Definition 5.2). We prove 

the quantitative Künneth formula for C∗-algebras with finite asymptotic nuclear decom-

position. We deduce from this that uniform Roe algebras of discrete metric spaces with 

bounded geometry and finite asymptotic dimension satisfy the Künneth formula.

5.1. Locally bootstrap C∗-algebras

Let us first recall the definition of the bootstrap category.

Definition 5.1. The bootstrap category N is the smallest class of nuclear separable 

C∗-algebras such that

(i) N contains C;

(ii) N is closed under countable inductive limits;

(iii) N is stable under extension, i.e. for any extension of C∗-algebras

0 → J → A → A/J → 0,

if any two of the C∗-algebras are in N then so is the third;

(iv) N is closed under KK-equivalence.

Next we introduce the concept of locally bootstrap C∗-algebras.

Definition 5.2. A filtered C∗-algebra A with filtration (Ar)r>0 is called locally bootstrap if 

for all positive number s there exists a positive number r with r � s and a sub-C∗-algebra 

A(s) of A such that

• A(s) belongs to the bootstrap class;

• As ⊆ A(s) ⊆ Ar.

Proposition 5.3. There exists a positive number λ0 with λ0 � 1 such that any locally 

bootstrap C∗-algebra satisfies the quantitative Künneth formula with rescaling λ0.

Proof. Let λ0 be as in the second part of Proposition 1.10 and let B be a separable 

C∗-algebra with K∗(B) free abelian. Let us prove first the QI-statement of Defini-

tion 1.19.
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Let ε and s be positive numbers with ε < 4
λ0ατ

. Let then r be a positive number with 

r � kτ,εs and let A(s) be a C∗-algebra such that A(s) belongs to the bootstrap class and 

Akτ,εs ⊆ A(s) ⊆ Ar. Then A(s) is filtered by (A(s) ∩ As′)s′>0 and the filtration is indeed 

finite, i.e. A(s) ∩ As′ = A(s) for any positive number s′ with s′ � r. Let us consider the 

commutative diagram

Kε,s
∗ (A)⊗K∗(B) −−−−→ Kε,s

∗ (A(s))⊗K∗(B)
ι−ε,r

∗ ⊗IdK∗(B)−−−−−−−−−−→ Kε,r
∗ (A(s))⊗K∗(B)

ωε,s
A,B,∗

⏐⏐� ωε,s

A(s),B,∗

⏐⏐�
⏐⏐�ωε,r

A(s),B,∗

K
ατ ε,kτ,εs
∗ (A⊗B) −−−−→ K

ατ ε,kτ,εs
∗ (A(s)⊗B)

ι
−,ατ ε,kτ,εr
∗−−−−−−−−→ K

ατ ε,kτ,εr
∗ (A(s)⊗B),

where the left bottom and left top maps are induced by the inclusion As′ ⊆ A
(s)
s′ for any 

s′ � kτ,εs. Let x be an element in Kε,s
∗ (A)⊗K∗(B) such that ωε,s

A,B,∗(x) = 0 and let then 

y in Kε,r
∗ (A(s))⊗K∗(B) be the image of x under the compositions of the top row. Then 

ωε,r
A(s),B,∗(y) = 0 and hence

ωA(s),B,∗ ◦ (ιε,r
∗ ⊗IdK∗(B))(y) = ι

ατ ε,kτ,εr
∗ ◦ ωε,r

A(s),B,∗(y) = 0.

Since A(s) is in the bootstrap class, then

ωA(s),B,∗ : K∗(A(s))⊗K∗(B) → K∗(A⊗B)

is an isomorphism and hence (ιε,r
∗ ⊗IdK∗(B))(y) = 0 in K∗(A(s))⊗K∗(B). Since K∗(B)

is free abelian and according to Proposition 1.10, there exists a positive number r′, with 

r′ ≥ r such that

(ι−,λ0ε,r′

∗ ⊗IdK∗(B))(y) = 0

in Kλ0ε,r′

∗ (A(s))⊗K∗(B). But since A(s) has propagation less than r, then (ι−,λ0ε,r
∗ ⊗

IdK∗(B))(y) = 0 in Kλ0ε,r
∗ (A(s))⊗K∗(B). Hence composing with the map

Kλ0ε,r
∗ (A(s))⊗K∗(B)−→Kλ0ε,r

∗ (A)⊗K∗(B)

induced by the inclusion A(s) ↪→ A, we get then that

(ι−,λ0ε,r
∗ ⊗IdK∗(B))(x) = 0.

Let us prove now the QS-statement of Definition 1.19. Let s and ε be positive numbers 

with ε < 1
4λ0ατ

, let r be a positive number and let A(s) be a C∗-algebra such that A(s)

belongs to the bootstrap class and As ⊆ A(s) ⊆ Ar. Let z be an element in some 

Kε,s
∗ (A⊗B) and let z′ in Kε,s

∗ (A(s)⊗B) be the image of z under the map
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Kε,s
∗ (A⊗B) → Kε,s

∗ (A(s)⊗B)

induced by the inclusion As ⊆ A(s). Since A(s) is in the bootstrap class, there exists y in 

K∗(A(s))⊗K∗(B) such that ιε,s
∗ (z′) = ωA(s),B,∗(y) in K∗(A(s)⊗B). Since any element of 

A(s) has propagation less than r, there exists an element x in Kε,r
∗ (A(s)⊗B) such that 

(ιε,r
∗ ⊗IdK∗(B))(x) = y in K∗(A(s))⊗K∗(B). Since

ι
ατ ε,kτ,εr
∗ ◦ ωε,r

A(s),B,∗ = ωA(s),B,∗ ◦ (ιε,r
∗ ⊗IdK∗(B)),

we get that ωε,r
A(s),B,∗(x) and ι

−,ατ ε,kτ,εr
∗ (z′) have same image under the map

ι
ατ ε,kτ,εr
∗ : K

ατ ε,kτ,εr
∗ (A(s)⊗B)−→K∗(A(s)⊗B).

Hence, according to Proposition 1.10, there exists a positive number r′, with r′ ≥ kτ,εr, 

such that

ι−,λ0ατ ε,r′

∗ ωε,r
A(s),B,∗(x) = ι−,λ0ατ ε,r′

∗ (z′).

But since A
(s)
r = A

(s)
r′′ for all r′′ � r we get that

ι
−,λ0ατ ε,kτ,λ0εr
∗ ωε,r

A(s),B,∗(x) = ι
−,λ0ατ ε,kτ,λ0εr
∗ (z′).

Composing with the map

K
ατ λ0ε,kτ,εr
∗ (A(s)⊗B)−→K

ατ λ0ε,kτ,εr
∗ (A⊗B)

induced by the inclusion A(s) ↪→ A, we get then that

ωλ0ε,r
A,B,∗(x′) = ι

−,λ0ατ ε,kτ,λ0εr
∗ (z),

where x′ is the image of ι−,λ0ε,r
∗ ⊗IdK∗(B)(x) under the composition

Kλ0ε,r
∗ (A(s)⊗B)−→Kλ0ε,r

∗ (A⊗B)

induced by the inclusion A(s) ↪→ A. �

We will need a uniform version of Proposition 5.3.

Definition 5.4. A family of filtered C∗-algebras (Ai)i∈N is uniformly locally bootstrap if 

for all integer i and for all positive number s, there exist a positive number r with r � s

and a sub-C∗-algebra A
(s)
i of Ai such that for all integer i,



JID:YJFAN AID:8179 /FLA [m1L; v1.252; Prn:8/02/2019; 14:55] P.85 (1-89)

H. Oyono-Oyono, G. Yu / Journal of Functional Analysis ••• (••••) •••–••• 85

• A
(s)
i belongs to the bootstrap class;

• Ai,s ⊆ A
(s)
i ⊆ Ai,r

(Ai being filtered by (Ai,r)r>0).

Proposition 5.3 can be extended to uniformly locally bootstrap families of C∗-algebras.

Proposition 5.5. There exists a positive number λ0 with λ0 � 1 such that any uni-

formly locally bootstrap family (Ai)i∈N of filtered C∗-algebras and any C∗-algebra B with 

K∗(B)-free abelian then

(ΩAi,B,∗ : K∗(Ai)⊗K∗(B)−→K∗(Ai⊗B))i∈N

is a uniform family of quantitative isomorphisms with rescaling λ0

5.2. Finite asymptotic nuclear decomposition

Let us define C(0)
fand as the class of uniformly locally bootstrap families of C∗-algebras. 

Then we define by induction C(n)
fand as the class of family A(1) for which there exists a 

positive number c such that for every positive number r, the following is satisfied:

there exists a family A(2) in C(n−1)
fand and for any C∗-algebra A in A(1) an r-controlled 

nuclear Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) with coercitivity c for A with A∆1
, A∆2

and A∆1
∩ A∆2

in A(2).

Define then Cfand as the class of families A such that A is in C(n)
fand for some integer n. 

Theorem 4.12 obviously admits a uniform version for families and hence, together with 

Proposition 5.3, we obtain the following result.

Proposition 5.6. Let A be a family in Cfand. Then there exists a positive number λA with 

λA � 1 such that for any C∗-algebra B with K∗(B) free abelian, then

(ΩA,B,∗ : K∗(A)⊗K∗(B)−→K∗(A⊗B))A∈A

is a uniform family of quantitative isomorphisms with rescaling λA (indeed A only de-

pends on n such that A lies in C(n)
fand.

Definition 5.7. A filtered C∗-algebra A has finite asymptotic nuclear decomposition if 

the single family {A} is in Cfand.

As a consequence of Proposition 5.6, we obtain

Theorem 5.8. If A is a filtered C∗-algebra with finite asymptotic nuclear decomposition, 

then the quantitative Künneth formula holds for A.
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Corollary 5.9. If A is a filtered C∗-algebra with finite asymptotic nuclear decomposition, 

then A satisfies the Künneth formula in K-theory, i.e. there exists a natural short exact 

sequence

0 → K∗(A) ⊗ K∗(B) → K∗(A ⊗ B) → Tor(K∗(A), K∗(B)) → 0

for any other C∗-algebra B.

Typical examples of family of filtered C∗-algebra in Cfand are provided by spaces with 

asymptotic dimension. Recall that for a metric space X and a positive number r, a cover 

(Ui)i∈N has r-multiplicity n if any ball of radius r in X intersects at most n elements in 

(Ui)i∈N.

Definition 5.10. Let Σ be a proper discrete metric space. Then Σ has finite asymptotic 

dimension if there exists an integer m such that for any positive number r, there exists 

a uniformly bounded cover (Ui)i∈N with finite r-multiplicity m + 1. The smallest integer 

that satisfies this condition is called the asymptotic dimension of Σ.

Recall the following characterization of finite asymptotic dimension.

Proposition 5.11. Let Σ be a proper discrete metric space and let m be an integer. Then 

the following assertions are equivalent:

(i) Σ has asymptotic dimension m;

(ii) For every positive number r there exist m + 1 subsets X(1), . . . , X(m+1) of Σ such 

that

• Σ = X(1) ∪ . . . ∪ X(m+1);

• for i = 1, . . . m + 1, then X(i) is the r-disjoint union of a family (X
(i)
k )k∈N

of subsets of X(i) with uniformly bounded diameter, i.e. X(i) = ∪k∈NX
(i)
k ,

di(X
(i)
k , X

(i)
l ) � r if k �= l and there exists a positive number C such 

diam X
(i)
k � C for all integer k.

Example 5.12. If T is a tree, then T has asymptotic dimension equal to 1.

Let Σ be a proper metric space with asymptotic dimension m, then there exists a 

sequence of positive numbers (Rk)k∈N and for any integer k a cover (U
(k)
i )i∈N of Σ such 

that

• Rk+1 > 4Rk for every integer k;

• U
(k)
i has diameter less than Rk for every integer i and k;

• for any integer k, the Rk-multiplicity of (U
(k+1)
i )i∈N is m + 1.

The sequence (Rk)k∈N is called the m-growth of Σ.
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Lemma 5.13. Let m be an integer, let (Rk)k∈N be a sequence of positive numbers such 

that Rk+1 > 4Rk for every integer k. Let (Σi)i∈N be a family of proper metric spaces 

with asymptotic dimension m and m-growth (Rk)k∈N. Then for any family (Ai)i∈I in 

the bootstrap category, the family (Ai⊗K (�2(Σi)))i∈N belongs to Cfand.

Proof. Let us equip Σ =
∐

i∈N
Σi with a distance dΣ such that the inclusion Σi ↪→ Σ are 

isometric for all integer i and dΣ(Σi, Σj) � i + j for all integers i and j with i �= j. Then 

Σ has asymptotic dimension m and hence according to [3], the metric space Σ embeds 

uniformly in a product of trees 
∏n

j=1 Tj . Let d be the metric on X =
∏n

j=1 Tj and di

the distance on Σi when i runs through integers. Then there exist two non-decreasing 

functions ρ± : [0, +∞) → [0, +∞) and for every integer i a map fi : Σi →∏n
j=1 Tj such 

that

• limr �→+∞ ρ±(r) = +∞;

• ρ−(di(x, y)) � d(fi(x), fi(y)) � ρ+(di(x, y)) for all integer i and all x and y in Σi.

If n = 1, then X is a tree and then the result holds in view of Examples 2.15, 2.20 and 

5.12. A straightforward induction shows that if Σ embeds uniformly in a product of n

trees, then (Ai⊗K (�2(Σi)))i∈N is in Cfand. �

In order to study the structure of Roe algebras we need to add some infinite product 

decompositions in the quantitative decomposition process.

Definition 5.14. Let (A(i))i∈I be a family of filtered C∗-algebras. Then the uniform prod-

ucts of (A(i))i∈I , denoted by 
∏u

i∈I A(i) is the closure of

{(xi)i∈I ∈
∏

i∈I

A(i)
r , r > 0}

in 
∏

i∈I A(i) equipped with the supremium norm. The uniform product 
∏u

i∈I A(i) is then 

obviously a filtered C∗-algebra.

It is proved in [10, Lemma 1.11] that the quantitative K-theory of a uniform product 

of a stable filtered C∗-algebra is computable in term of the quantitative K-theory of the 

algebras of the family.

Definition 5.15. A C∗-algebra is said to be of finite asymptotic nuclear π-decomposition 

if there exists a positive number c and an integer n such that for any positive num-

ber r, there exists a r-controlled Mayer–Vietoris pair (Δ1, Δ2, A∆1
, A∆2

) that satisfies 

the following.

There exist three families of filtered C∗-algebras (B
(1)
k )k∈N , (B

(2)
k )k∈N and (B

(1,2)
k )k∈N

in Cfand such that A∆1
, A∆2

and A∆1
∩ A∆2

are respectively isomorphic as filtered 

C∗-algebras to 
∏u

k∈N
B

(1)
k , 
∏u

k∈N
B

(2)
k and 

∏u
k∈N

B
(1,2)
k .
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If the C∗-algebras in the families (B
(1)
k )k∈N , (B

(2)
k )k∈N and (B

(1,2)
k )k∈N are stable, then 

A is said to be of stably asymptotic finite nuclear π-decomposition.

Proposition 5.16. If Σ is a proper metric set of bounded geometry and with finite 

asymptotic dimension. Then the uniform Roe algebra Cu
∗ (Σ) has asymptotic finite nu-

clear π-decomposition and the Roe algebra C∗(Σ) has stably asymptotic finite nuclear 

π-decomposition.

Proof. Let us prove de result for Cu
∗ (Σ), the proof for C∗(Σ) being similar. Let us fix x0

in Σ and let r be a positive number. Let us fix s and R two positive numbers such that 

10r < 2s < R. Set for k integer

X
(1)
k = {x ∈ Σ such that 2kR � d(x, x0) � (2k + 1)R}

and

X
(2)
k = {x ∈ Σ such that (2k + 1)R � d(x, x0) � (2k + 2)R}.

Then Σ = X(1)∪X(2) and X(i) is for i = 1, 2 the R-disjoint union of the family (X
(i)
k )k∈N. 

Let Δi be for i = 1, 2 the set of element in Cu
∗ (Σ) with support in

{(x, y) ∈ Σ × Σ such that d(x, y) < r and x ∈ X(i)}.

Since Σ has bounded geometry, then with notations of Example 2.15, there exists a 

controlled Mayer–Vietoris (Δ1, Δ2, A∆1
, A∆2

) of order r and coercitivity 1 such that

A∆i
∼=

u∏

k∈N

K (�2(X
(i)
k,s))

for i = 1, 2 and

A∆1
∩ A∆2

∼=
u∏

(k,l)∈N2

K (�2(X
(i)
k,s ∩ X

(i)
l,s )).

The result is now a consequence of Lemma 5.13. �

Proceeding similarly we can prove the quantitative Künneth formula for uniform Roe 

algebras of spaces with finite asymptotic dimension.

Theorem 5.17. If Σ is a discrete proper metric set of bounded geometry and with finite 

asymptotic dimension. Then the uniform Roe algebra Cu
∗ (Σ) satisfies the quantitative 

Künneth formula for some rescaling λ.
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