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Abstract—In this paper, we present a non-destructive and
economic wheat moisture detection system with commodity WiFi.
First, we experimentally validate the feasibility of wheat moisture
detection by using CSI amplitude and phase difference data.
We then design Wi-Wheat system, where data preprocessing,
feature extraction and support vector machine (SVM) classifi-
cation are implemented for CSI processing module. For data
preprocessing, we employ outlier detection, data normalization
and eliminating noise for obtaining clear CSI amplitude and
phase difference data. Then, we consider principal component
analysis (PCA) based feature extraction for Wi-Wheat system.
For SVM classification, Gaussian radial basis function (RBF)
is used as the kernel function for wheat moisture detection.
The experimental results show the Wi-Wheat system can achieve
higher classification accuracy for LOS and NLOS scenarios.

Index Terms—Channel state information (CSI); Commodity
WiFi; phase difference; wheat moisture detection; machine learn-
ing; support vector machine (SVM).

I. INTRODUCTION

With the increase in population and social mobility, the
demand for food will be doubled by 2050 [1]. Globally, more
than two billion tons of grain are harvested annually [2]. The
harvested grains need to be stored safely to meet the future
food demand of the population, and in particular, to deal with
emergency needs such as disaster and famine. Safe storage
of grains can be accomplished by manipulating two important
physical factors: temperature and moisture content [2]. Com-
pared with temperature monitoring, grain moisture detection is
more challenging for different phases of the grain distribution
chain between the consumer and producer.

The existing grain moisture content measurement techniques
can be roughly classified into two categories, namely, de-
structive methods [3] and non-destructive methods [4]-[9].
Destructive methods for determining the moisture level in
grain require oven drying for specific time periods at specified
temperature with the existing methods. Because such methods
are tedious and time-consuming, they are not suitable for
general use in the grain trade, while other faster testing meth-
ods have been developed. On the other hand, non-destructive
methods mainly exploit magnetic or electric properties to mea-
sure the grain moisture content. Moreover, the non-destructive
technique is less time-consuming and requires less man power,
as grain or food items can be directly used without any
processing like cleaning or crushing. However, the detection
devices for non-destructive methods are usually complex with
a high cost.

Recently, channel state information (CSI) based sensing,
detection, and recognition techniques have been successfully
applied for many applications, such as fall detection, activity
recognition, breathing and heart rate monitoring, and indoor
localization [10]. CSI can provide fine-grained channel in-
formation, which reflects indoor channel characteristics such
as multipath effect, distortion, and shadowing fading. Fur-
thermore, compared with received signal strength (RSS), CSI
amplitude and phase difference data are considerably more
stable. Such CSI information can now be easily extracted from
off-the-shelf WiFi network interface cards (NIC), such as the
Intel WiFi Link 5300 NIC. Motivated by the existing CSI
sensing techniques and the easy access with commodity WiFi,
we propose to use CSI amplitude and phase difference data
for contact-free wheat moisture detection.

In the paper, we present a non-destructive and economic
wheat moisture detection system with commodity WiFi,
namely Wi-Wheat. The proposed system does not need any
dedicated device, thus having low cost with easy deployment.
We first introduce the CSI background and experimentally
prove the feasibility of wheat moisture detection using CSI
amplitude and phase difference data. We then present the
detailed design of the proposed Wi-Wheat system, which
consists of CSI extraction and CSI processing. CSI amplitude
and phase difference data are first extracted from the receiver
NIC through the device driver, when the transmitter sends
a number of packets to the receiver. Once the CSI data is
collected, the CSI processing module of Wi-Wheat consists
of data preprocessing, feature extraction, and training-based
support vector machine (SVM) classification. For data pre-
processing, we employ outlier detection, data normalization,
and noise removal to obtain calibrated CSI amplitude and
phase difference data. For feature extraction, we utilize the
principal component analysis (PCA) technique, which not only
retains the core data characteristics, but also reduces the input
data dimension. For SVM classification, the Gaussian radial
basis function (RBF) is used as the kernel function for wheat
moisture detection. We also present our experiment results to
validate the performance of the proposed scheme.

The main contributions of this paper are summarized below.

o We validate the feasibility of using fine-grained CSI

amplitude and phase difference data for wheat moisture
measurement. To the best of our knowledge, this is the
first work that leverages CSI data to detect wheat moisture
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content level.

o We design the Wi-Wheat system, including its CSI ex-
traction and processing modules. We also implement the
Wi-Wheat system on two off-the-shelf laptop computers
with commodity WiFi cards.

e We conduct experiments with real grain to validate the
performance of the proposed Wi-Wheat system. The
experiment results show that Wi-Wheat can achieve con-
siderably high classification accuracy in both line-of-sight
(LOS) and non-line-of-sign (NLOS) scenarios.

The remainder of this paper is organized as follows. The
related work is reviewed in Section II. The preliminaries are
discussed in Section III. We present the Wi-Wheat system de-
sign in Section IV and evaluate its performance in Section V.
Section VI concludes this paper.

II. RELATED WORK
A. Wheat Moisture Measurement

According to the measurement technology, the existing
methods on wheat moisture measurement can be classi-
fied into drying method [3], capacitance method [4], resis-
tance method [5], microwave method [6], [7], and neutron
method [8]. The oven-drying method [3] is widely used in
practice. Although this method is quite accurate, it is only
suitable for the laboratory environment; it does not meet the
requirements of online moisture detection in the field. The
capacitive moisture detection method [4] is also popular, but its
performance is limited by the fact that the measurement values
are not only sensitive to the temperature, but also to the grain
flow velocity and grain compactness in the dryer. Moreover,
the measurement values can also be affected by many other
factors in grain moisture measurement. For example, the
method needs to implement sensor recalibration after a long
time of use.

For the resistance method [5], the online resistance grain
moisture detector is designed based on the model of the
relationship between measurement frequency and grain mois-
ture and the nonlinear correction method of temperature. The
detector consists of a lower computer and a upper computer.
The lower computer mainly senses the grain resistance values
based on V/F conversion. The upper computer is focused
on the conversion of moisture and frequency and nonlinear
correction of temperature. The microwave method [6], [7] and
neutron method [8] have several advantages, such as high
accuracy, fast detection speed, non-destructive, and noninva-
sive measurements. Moreover, they can easily measure the the
grain internal moisture. However, the measurement device is
complex with a high cost.

B. CSI-based Sensing Systems

CSI-based sensing systems have been widely used for
indoor localization and device-free sensing. Fingerprinting
based indoor localization techniques that use CSI data have
become the mainstream methods recently. For example, the
FIFS [11] and DeepFi [12] systems employ CSI amplitude
values for indoor localization; the PhaseFi [13] system exploits

calibrated CSI phase data and the BiLoc system [14] incorpo-
rates bimodal CSI data as fingerprints, respectively, for indoor
localization with a deep autoencoder network. Moreover, the
CiFi system [15] considers phase difference values for indoor
localization, where a deep convolution network is incorporated
for learning the CSI image data, for improving localization
accuracy and reducing the data storage requirement.

On the other hand, CSI based device-free sensing systems
are also popular, which mainly includes activity recognition,
fall detection, and vital sign monitoring. For activity recog-
nition, the E-eyes system implements device-free location-
oriented methods for recognizing household activities based
on CSI amplitude [16]. For recognizing spoken words, the
WiHear system exploits specialized directional antennas to
measure CSI variations caused by lip movements [17]. The
CARM system provides a CSI based speed model and activity
model for identifying the relationship between human activity
and CSI dynamics [18]. For fall detection, WiFall [19] and
RT-Fall [20] utilize CSI amplitude and phase differences to
detect the fall of certain objects, respectively. For vital sign
monitoring, PhaseBeat [21] and TensorBeat [22] use CSI phase
differences to estimate a single or multiple persons’ respiration
rates. In recent works Wi-Fire [23] and Wi-Metal [24], the
authors employ CSI data to detect fire events and metal
objects, respectively.

III. PRELIMINARIES AND FEASIBILITY

The OFDM technique is widely adopted in the Physical
Layer (PHY) or modern wireless communication systems,
such as LTE and WiFi [25], [26]. In OFDM, the total spectrum
(e.g., 20 MHz or 40 MHz in IEEE 802.11n) is divided into
multiple orthogonal subcarriers [12], [22]. Moreover, data is
transmitted on subcarriers to deal with frequency selection
fading in indoor environments. Recently, OFDM have been
exploited for wireless sensing such as indoor localization and
activity recognition, where rich CSI data can be extracted from
open-source devices for certain WiFi chipsets.

For the WiFi OFDM PHY in the 2.4 GHz or 5 GHz
bands, the subcarriers can be regarded as narrowband flat
fading channels, which are stable for RF sensing. The channel
frequency response of the 4, subcarrier can be written as

hi = |hi| exp{jZhi}, (D

where |h;| and Zh; are the amplitude and phase information
for the ¢th subcarrier, respectively. In this paper, the Wi-Wheat
system leverages CSI amplitude and phase difference data for
device-free wheat moisture detection. The device driver for the
Intel WiFi Link 5300 NIC with 802.11n can provide CSI from
30 subcarriers among the 56 subcarriers used in the PHY.

To validate the feasibility of using the fine-grained CSI data
for wheat moisture measurement, we collect CSI amplitude
and phase difference data for wheat piles with different
moisture content levels. In this experiment, we consider wheat
moisture content level of 13% as the critical moisture content
(MC). We measure the CSI amplitude and phase difference
data for normal wheat moisture content level of 11% as well



as abnormal moisture content levels of 14.7% and 16.5%, as
the WiFi signal propagates through the wheat pile. As shown
in Fig. 1, there are small changes in CSI amplitude when the
wheat moisture content level is increased from 11% to 16.5%.
Moreover, Fig. 2 presents the CSI phase difference data when
wheat moisture content level is changed. It can be seen that
for wheat moisture content level of 14.7%, the CSI data is
quite different from that when the moisture content level is
13%. Thus, we can see that CSI data can be leveraged for
measuring the wheat moisture content level.

IV. OVERVIEW OF THE WI-WHEAT SYSTEM

A. Wi-Wheat System Architecture

The Wi-Wheat system architecture is illustrated in Fig. 3,
which includes two main parts: (i) CSI extraction and (ii)
CSI processing. For CSI extraction, we leverage two mo-
bile devices equipped with Intel WiFi link 5300 NIC: one
as transmitter and the other as receiver. The transmitter is
configured to operate in the injection mode and the receiver
in the monitor mode. The 5 GHz CSI data can be extracted
from the receiver, where CSI amplitude and phase difference
data are thus obtained.

The CSI processing part includes three main functional
modules, which are data preprocessing, features extraction,
and SVM classification. CSI data preprocessing mainly con-
sists of outlier detection, data normalization, and noise removal
to obtain calibrated and clear CSI data sequences. For feature
extraction, we exploit the PCA technique to extract CSI
sequence features, which not only retains the main charac-
teristics, but also reduces the dimension space of the CSI
data. Finally, SVM classification is utilized for wheat moisture
detection, where a nonlinear classifier with the Gaussian RBF
kernel function is incorporated to achieve high classification
accuracy. Based on the detection result, alarm messages may
be sent to the warehouse manager once the wheat moisture
content level is over the critical threshold.

B. Wi-Wheat Design Methodology

In this section, we present the design methodology of the
Wi-Wheat system, including its data preprocessing, features
extraction, and SVM classification modules.

1) Data Preprocessing: The data preprocessing module in-
cludes outlier detection, data normalization, and noise removal
for calibrating the captured CSI data.

¢ Outlier detection: There are usually some abnormal val-
ues in the captured CSI amplitude and phase difference
traces. Anomaly detection is performed to detect bad
data values, which should be replaced from the raw CSI
data. In Wi-Wheat, we adopt the Pauta criterion method
to detect and remove outliers. The detailed process is
presented as follows.

Step 1: let X;, ¢ = 1,2,...,n, be the the ith sample of
CSI amplitude or phase difference from a subcarrier. We

compute the arithmetic mean value as
X = ! zn:X ; 2)
o i=1 )

Step 2: we then calculate the residual V; as in (3) and
the standard deviation o of CSI amplitudes or phase
differences as in (4).

Vi=X;— X, i=1,2,..,n 3)

LS - X “

n—1+4
=1

Step 3: for all X;, ¢ = 1,2,...,n, if |V;| > 30, then we
regard X; as an abnormal value and replace it with the
arithmetic mean value X.

Step 4: repeat the above 3 steps till all samples are
detected.

o Data normalization: In order to improve the detection
accuracy, the input values should be limited in the range
(0, 1) for SVM classification. Thus we choose to normal-
ize the amplitudes or phase differences of CSI data. The
normalized value Y; is computed as

Xi - Xmean
Xmaz - Xmin ’
where X; represents the raw data, X,,cqn 1S the aver-
age value of the amplitudes, X,,,, and X,,;, are the

maximum and minimum of CSI amplitudes or phase
differences over a period of time after outlier removal.

Yi= s)

o Noise elimination: Before applying feature extraction
techniques, we choose the magnitude-squared Chebyshev
Type 11 filter for further removing environment noise. We
define the response function of the Chebyshev Type II
filter as

EC (%)

H(jw)” = S 6
where €, 0 < € < 1, is the amplitude frequency ripples in
the stopband, ws describes a frequency scaling constant,
N is the order number of the polynomial C%, (%), and

Cn(z) = { cos(N cos™ (),

cosh(N cosh™(z)),

2) Feature Extraction: The PCA technique is employed in
Wi-Wheat for feature extraction, which can not only focus
on the main data characteristics but also decrease the input
data dimension [18]. For CSI amplitude and phase difference
data, we can compute p principal components for each CSI
data sequence using the PCA method. The matrix with size
p X n can thus be obtained. We set p = 12 for all the
experiments reported in this paper. The procedure is described
in the following.

if |z <1

itle>1. @

o Preprocessing: Because the static components have been
removed in the previous data preprocessing procedure, we
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Fig. 2. CSI phase difference measurements when wheat moisture content changes.
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employ the processed CSI amplitude or phase difference
data to create CSI matrices as

processed CSI amplitude or phase difference for subcar-
rier ¢ recorded for packet j.

Calculate the correlation matrix: We compute %ZTZ to
obtain the correlation matrix, with size n X n.

Calculate eigenvectors: With the correlation matrix
%ZTZ , we apply eigen decomposition to compute the
eigenvectors v;, 1 = 1,2, ..., p.

Reconstruct the signal: We build a new CSI matrix using
the correlation matrix and the eigenvectors, as z; = v;Z,
where z; is the ith principal component and v; is the ith
eigenvector.

3) SVM Classification: SVM is employed to classify the
processed CSI data for wheat moisture detection [27]. We
randomly divide the processed data into two groups to train
and test, and then find a hyperplane in the n-dimensional data
space. The training procedure is as follows.

Step 1: we use f(x) to represent the classification function,

211 212 213 Z1n which is defined by
Z21 %22 Z23 Z2n

Z = : e ® f(z) = sign(w"z + b), ©)
#ml  Zm2  Zm3 Zmn where w’ and b are the classification surface function param-

where m is the number of subcarriers, z;; denotes the

eters (w” is the normal vector and b is the offset), and z is



the extracted feature from CSI amplitude or phase difference
data.

Step 2: let y that takes 1 or -1 to represent two different
categories (i.e., 1 and -1 mean normal and abnormal for
Wi-Wheat, respectively), and add a certain constraint on the
normal vector w (see (9)). With Lagrangian multiplier «, the
new objective function is formulated as

L(w,b,a) = > ai(yi(w "z +b) — 1), (10)

i=1

L wl?
1o
2

where L(w, b, a) is the objective function, n is the size of the
training set, and « is the Lagrangian multiplier.

Step 3: we seek the maximum interval between the two
boundary ends or the extreme dividing line to determine w
and b. Then the problem of finding the classification function
is transformed into an optimization problem for w and b. We
can determine the final classification function as follows.

max W (o Zal _ = Z y %)y(J)a aj (2) x(j)> (11)
3,7=1
t:OgaiSC, i=1,2,...n (12)
D iy =0 (13)
=1

where C is the penalty coefficient, and «; and «; are the
Lagrangian multipliers.

Step 4: only two components a; and «; are selected in each
iteration, while the other components remain constant. After
obtaining «; and «;, the other components are then improved
by «; and «;. We obtain a maximum margin hyper plane
classifier as

(14)

= sign (Z yia (T (@) ,x) + b)

For wheat moisture detection using CSI amplitude or phase
difference data, the problem is not linearly separable due
to the complexity indoor environments. We can leverage the
Gaussian RBF as kernel function for mapping processed CSI
data into a high dimensional feature vector space. The new
SVM classifier is defined as

= sign (Z v K (2@ 2) + b)

where the RBF kernel function K () is given by

2
}, (16)

(15)

. 1 .
K<$(Z),fl;> = exp {_22 H"I’. —_ :L.(l)
ag

where o is the standard deviation.

(a) The LOS Scenario

(b) The NLOS Scenario

Fig. 4. Experimental setup.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We implement the Wi-Wheat system with off-the-shelf
laptops and WiFi cards. The prototype consists of an HP
ProBook 4411s laptop with 2.1GHz Intel (R) Pentium 2 CPU
and 2GB RAM as receiver, and a Sony PCG-6SI1T laptop as
a transmitter. Both laptops use the Unbuntu 12.04 operation
system, and are equipped with Intel Link 5300 WiFi NIC. To
obtain 5 GHz CSI data, we set the transmitter in the injection
mode and the receiver in the monitor mode. We inject packets
from the transmitter, using one antenna, to the receiver with
three antennas. Our experiments are conducted over a period
of six months. For the experimental setup shown in Fig. 4, we
test both LOS and NLOS scenarios in a computer laboratory
environment.

In general, wheat can be safely stored for up to a year when
the moisture content is under a temperate climatic condition,
i.e., between 12% and 13% wet basis [2]. Thus, we choose
wheat a moisture content level 13% as the critical value for
the SVM classifier. If wheat moisture content is larger than the
critical value, it is regarded as abnormal. Moreover, we utilize
100 samples to train the SVM classifier and other samples are
used for testing.

Fig. 5 shows the accuracy of classification for the LOS
scenario using either CSI amplitude (left) or phase difference
data (right), respectively. When CSI amplitude data is used, we
can see that as the wheat moisture content level is increased
from 11% to 16.5%, the classification accuracy also increases
from 94% to 97%. On the other hand, using phase difference
data, the the classification accuracy is the highest, i.e., 98%,
when the wheat moisture content level is 14.7%. The proposed
Wi-Wheat system can achieve high classification accuracy for
LOS scenario using CSI amplitude or phase difference data.

In Fig. 6, we present the accuracy of classification for
the NLOS scenario using CSI amplitude (left) and phase
difference data (right), respectively. Similarly, we can see that
the classification accuracy using CSI amplitudes increase from
93% to 96% as the wheat moisture content level is increased
from 11% to 16.5%. Moreover, for Wi-Wheat with CSI phase
difference data, a 95% classification accuracy is achieved for
every wheat moisture content level. The experimental results
also validate the effectiveness of the Wi-Wheat system for the
NLOS scenario.
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VI. CONCLUSIONS

In this paper, we proposed Wi-Wheat, a device-free wheat
moisture detection system with commodity WiFi. We first
introduced CSI preliminaries and validated the feasibility of
using CSI amplitude and phase difference data for wheat
moisture detection. We then presented the design of Wi-Wheat,
including CSI extraction and CSI processing. Our experimen-
tal study demonstrated the efficacy of the proposed Wi-Wheat
system, which can achieve high classification accuracy for both
LOS and NLOS scenarios.
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