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Abstract—In this paper, we present a non-destructive and
economic wheat moisture detection system with commodity WiFi.
First, we experimentally validate the feasibility of wheat moisture
detection by using CSI amplitude and phase difference data.
We then design Wi-Wheat system, where data preprocessing,
feature extraction and support vector machine (SVM) classifi-
cation are implemented for CSI processing module. For data
preprocessing, we employ outlier detection, data normalization
and eliminating noise for obtaining clear CSI amplitude and
phase difference data. Then, we consider principal component
analysis (PCA) based feature extraction for Wi-Wheat system.
For SVM classification, Gaussian radial basis function (RBF)
is used as the kernel function for wheat moisture detection.
The experimental results show the Wi-Wheat system can achieve
higher classification accuracy for LOS and NLOS scenarios.

Index Terms—Channel state information (CSI); Commodity
WiFi; phase difference; wheat moisture detection; machine learn-
ing; support vector machine (SVM).

I. INTRODUCTION

With the increase in population and social mobility, the

demand for food will be doubled by 2050 [1]. Globally, more

than two billion tons of grain are harvested annually [2]. The

harvested grains need to be stored safely to meet the future

food demand of the population, and in particular, to deal with

emergency needs such as disaster and famine. Safe storage

of grains can be accomplished by manipulating two important

physical factors: temperature and moisture content [2]. Com-

pared with temperature monitoring, grain moisture detection is

more challenging for different phases of the grain distribution

chain between the consumer and producer.

The existing grain moisture content measurement techniques

can be roughly classified into two categories, namely, de-

structive methods [3] and non-destructive methods [4]–[9].

Destructive methods for determining the moisture level in

grain require oven drying for specific time periods at specified

temperature with the existing methods. Because such methods

are tedious and time-consuming, they are not suitable for

general use in the grain trade, while other faster testing meth-

ods have been developed. On the other hand, non-destructive

methods mainly exploit magnetic or electric properties to mea-

sure the grain moisture content. Moreover, the non-destructive

technique is less time-consuming and requires less man power,

as grain or food items can be directly used without any

processing like cleaning or crushing. However, the detection

devices for non-destructive methods are usually complex with

a high cost.

Recently, channel state information (CSI) based sensing,

detection, and recognition techniques have been successfully

applied for many applications, such as fall detection, activity

recognition, breathing and heart rate monitoring, and indoor

localization [10]. CSI can provide fine-grained channel in-

formation, which reflects indoor channel characteristics such

as multipath effect, distortion, and shadowing fading. Fur-

thermore, compared with received signal strength (RSS), CSI

amplitude and phase difference data are considerably more

stable. Such CSI information can now be easily extracted from

off-the-shelf WiFi network interface cards (NIC), such as the

Intel WiFi Link 5300 NIC. Motivated by the existing CSI

sensing techniques and the easy access with commodity WiFi,

we propose to use CSI amplitude and phase difference data

for contact-free wheat moisture detection.

In the paper, we present a non-destructive and economic

wheat moisture detection system with commodity WiFi,

namely Wi-Wheat. The proposed system does not need any

dedicated device, thus having low cost with easy deployment.

We first introduce the CSI background and experimentally

prove the feasibility of wheat moisture detection using CSI

amplitude and phase difference data. We then present the

detailed design of the proposed Wi-Wheat system, which

consists of CSI extraction and CSI processing. CSI amplitude

and phase difference data are first extracted from the receiver

NIC through the device driver, when the transmitter sends

a number of packets to the receiver. Once the CSI data is

collected, the CSI processing module of Wi-Wheat consists

of data preprocessing, feature extraction, and training-based

support vector machine (SVM) classification. For data pre-

processing, we employ outlier detection, data normalization,

and noise removal to obtain calibrated CSI amplitude and

phase difference data. For feature extraction, we utilize the

principal component analysis (PCA) technique, which not only

retains the core data characteristics, but also reduces the input

data dimension. For SVM classification, the Gaussian radial

basis function (RBF) is used as the kernel function for wheat

moisture detection. We also present our experiment results to

validate the performance of the proposed scheme.

The main contributions of this paper are summarized below.

∙ We validate the feasibility of using fine-grained CSI

amplitude and phase difference data for wheat moisture

measurement. To the best of our knowledge, this is the

first work that leverages CSI data to detect wheat moisture
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content level.

∙ We design the Wi-Wheat system, including its CSI ex-

traction and processing modules. We also implement the

Wi-Wheat system on two off-the-shelf laptop computers

with commodity WiFi cards.

∙ We conduct experiments with real grain to validate the

performance of the proposed Wi-Wheat system. The

experiment results show that Wi-Wheat can achieve con-

siderably high classification accuracy in both line-of-sight

(LOS) and non-line-of-sign (NLOS) scenarios.

The remainder of this paper is organized as follows. The

related work is reviewed in Section II. The preliminaries are

discussed in Section III. We present the Wi-Wheat system de-

sign in Section IV and evaluate its performance in Section V.

Section VI concludes this paper.

II. RELATED WORK

A. Wheat Moisture Measurement

According to the measurement technology, the existing

methods on wheat moisture measurement can be classi-

fied into drying method [3], capacitance method [4], resis-

tance method [5], microwave method [6], [7], and neutron

method [8]. The oven-drying method [3] is widely used in

practice. Although this method is quite accurate, it is only

suitable for the laboratory environment; it does not meet the

requirements of online moisture detection in the field. The

capacitive moisture detection method [4] is also popular, but its

performance is limited by the fact that the measurement values

are not only sensitive to the temperature, but also to the grain

flow velocity and grain compactness in the dryer. Moreover,

the measurement values can also be affected by many other

factors in grain moisture measurement. For example, the

method needs to implement sensor recalibration after a long

time of use.

For the resistance method [5], the online resistance grain

moisture detector is designed based on the model of the

relationship between measurement frequency and grain mois-

ture and the nonlinear correction method of temperature. The

detector consists of a lower computer and a upper computer.

The lower computer mainly senses the grain resistance values

based on V/F conversion. The upper computer is focused

on the conversion of moisture and frequency and nonlinear

correction of temperature. The microwave method [6], [7] and

neutron method [8] have several advantages, such as high

accuracy, fast detection speed, non-destructive, and noninva-

sive measurements. Moreover, they can easily measure the the

grain internal moisture. However, the measurement device is

complex with a high cost.

B. CSI-based Sensing Systems

CSI-based sensing systems have been widely used for

indoor localization and device-free sensing. Fingerprinting

based indoor localization techniques that use CSI data have

become the mainstream methods recently. For example, the

FIFS [11] and DeepFi [12] systems employ CSI amplitude

values for indoor localization; the PhaseFi [13] system exploits

calibrated CSI phase data and the BiLoc system [14] incorpo-

rates bimodal CSI data as fingerprints, respectively, for indoor

localization with a deep autoencoder network. Moreover, the

CiFi system [15] considers phase difference values for indoor

localization, where a deep convolution network is incorporated

for learning the CSI image data, for improving localization

accuracy and reducing the data storage requirement.

On the other hand, CSI based device-free sensing systems

are also popular, which mainly includes activity recognition,

fall detection, and vital sign monitoring. For activity recog-

nition, the E-eyes system implements device-free location-

oriented methods for recognizing household activities based

on CSI amplitude [16]. For recognizing spoken words, the

WiHear system exploits specialized directional antennas to

measure CSI variations caused by lip movements [17]. The

CARM system provides a CSI based speed model and activity

model for identifying the relationship between human activity

and CSI dynamics [18]. For fall detection, WiFall [19] and

RT-Fall [20] utilize CSI amplitude and phase differences to

detect the fall of certain objects, respectively. For vital sign

monitoring, PhaseBeat [21] and TensorBeat [22] use CSI phase

differences to estimate a single or multiple persons’ respiration

rates. In recent works Wi-Fire [23] and Wi-Metal [24], the

authors employ CSI data to detect fire events and metal

objects, respectively.

III. PRELIMINARIES AND FEASIBILITY

The OFDM technique is widely adopted in the Physical

Layer (PHY) or modern wireless communication systems,

such as LTE and WiFi [25], [26]. In OFDM, the total spectrum

(e.g., 20 MHz or 40 MHz in IEEE 802.11n) is divided into

multiple orthogonal subcarriers [12], [22]. Moreover, data is

transmitted on subcarriers to deal with frequency selection

fading in indoor environments. Recently, OFDM have been

exploited for wireless sensing such as indoor localization and

activity recognition, where rich CSI data can be extracted from

open-source devices for certain WiFi chipsets.

For the WiFi OFDM PHY in the 2.4 GHz or 5 GHz

bands, the subcarriers can be regarded as narrowband flat

fading channels, which are stable for RF sensing. The channel

frequency response of the 𝑖𝑡ℎ subcarrier can be written as

ℎ𝑖 = ∣ℎ𝑖∣ exp{𝑗∠ℎ𝑖}, (1)

where ∣ℎ𝑖∣ and ∠ℎ𝑖 are the amplitude and phase information

for the 𝑖th subcarrier, respectively. In this paper, the Wi-Wheat

system leverages CSI amplitude and phase difference data for

device-free wheat moisture detection. The device driver for the

Intel WiFi Link 5300 NIC with 802.11n can provide CSI from

30 subcarriers among the 56 subcarriers used in the PHY.

To validate the feasibility of using the fine-grained CSI data

for wheat moisture measurement, we collect CSI amplitude

and phase difference data for wheat piles with different

moisture content levels. In this experiment, we consider wheat

moisture content level of 13% as the critical moisture content

(MC). We measure the CSI amplitude and phase difference

data for normal wheat moisture content level of 11% as well



as abnormal moisture content levels of 14.7% and 16.5%, as

the WiFi signal propagates through the wheat pile. As shown

in Fig. 1, there are small changes in CSI amplitude when the

wheat moisture content level is increased from 11% to 16.5%.

Moreover, Fig. 2 presents the CSI phase difference data when

wheat moisture content level is changed. It can be seen that

for wheat moisture content level of 14.7%, the CSI data is

quite different from that when the moisture content level is

13%. Thus, we can see that CSI data can be leveraged for

measuring the wheat moisture content level.

IV. OVERVIEW OF THE WI-WHEAT SYSTEM

A. Wi-Wheat System Architecture

The Wi-Wheat system architecture is illustrated in Fig. 3,

which includes two main parts: (i) CSI extraction and (ii)

CSI processing. For CSI extraction, we leverage two mo-

bile devices equipped with Intel WiFi link 5300 NIC: one

as transmitter and the other as receiver. The transmitter is

configured to operate in the injection mode and the receiver

in the monitor mode. The 5 GHz CSI data can be extracted

from the receiver, where CSI amplitude and phase difference

data are thus obtained.

The CSI processing part includes three main functional

modules, which are data preprocessing, features extraction,

and SVM classification. CSI data preprocessing mainly con-

sists of outlier detection, data normalization, and noise removal

to obtain calibrated and clear CSI data sequences. For feature

extraction, we exploit the PCA technique to extract CSI

sequence features, which not only retains the main charac-

teristics, but also reduces the dimension space of the CSI

data. Finally, SVM classification is utilized for wheat moisture

detection, where a nonlinear classifier with the Gaussian RBF

kernel function is incorporated to achieve high classification

accuracy. Based on the detection result, alarm messages may

be sent to the warehouse manager once the wheat moisture

content level is over the critical threshold.

B. Wi-Wheat Design Methodology

In this section, we present the design methodology of the

Wi-Wheat system, including its data preprocessing, features

extraction, and SVM classification modules.

1) Data Preprocessing: The data preprocessing module in-

cludes outlier detection, data normalization, and noise removal

for calibrating the captured CSI data.

∙ Outlier detection: There are usually some abnormal val-

ues in the captured CSI amplitude and phase difference

traces. Anomaly detection is performed to detect bad

data values, which should be replaced from the raw CSI

data. In Wi-Wheat, we adopt the Pauta criterion method

to detect and remove outliers. The detailed process is

presented as follows.

Step 1: let 𝑋𝑖, 𝑖 = 1, 2, ..., 𝑛, be the the 𝑖th sample of

CSI amplitude or phase difference from a subcarrier. We

compute the arithmetic mean value as

𝑋̄ =
1

𝑛

𝑛
∑

𝑖=1

𝑋𝑖. (2)

Step 2: we then calculate the residual 𝑉𝑖 as in (3) and

the standard deviation 𝜎 of CSI amplitudes or phase

differences as in (4).

𝑉𝑖 = 𝑋𝑖 − 𝑋̄, 𝑖 = 1, 2, ..., 𝑛 (3)

𝜎 =

√

√

√

⎷

1

𝑛− 1

𝑛
∑

𝑖=1

(𝑋𝑖 − 𝑋̄)2. (4)

Step 3: for all 𝑋𝑖, 𝑖 = 1, 2, ..., 𝑛, if ∣𝑉𝑖∣ > 3𝜎, then we

regard 𝑋𝑖 as an abnormal value and replace it with the

arithmetic mean value 𝑋̄ .

Step 4: repeat the above 3 steps till all samples are

detected.

∙ Data normalization: In order to improve the detection

accuracy, the input values should be limited in the range

(0, 1) for SVM classification. Thus we choose to normal-

ize the amplitudes or phase differences of CSI data. The

normalized value 𝑌𝑖 is computed as

𝑌𝑖 =
𝑋𝑖 −𝑋𝑚𝑒𝑎𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

, (5)

where 𝑋𝑖 represents the raw data, 𝑋𝑚𝑒𝑎𝑛 is the aver-

age value of the amplitudes, 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the

maximum and minimum of CSI amplitudes or phase

differences over a period of time after outlier removal.

∙ Noise elimination: Before applying feature extraction

techniques, we choose the magnitude-squared Chebyshev

Type II filter for further removing environment noise. We

define the response function of the Chebyshev Type II

filter as

∣𝐻(𝑗𝜔)∣2 =
𝜖2𝐶2

𝑁 (𝜔𝑠

𝜔
)

1 + 𝜖2𝐶2
𝑁 (𝜔𝑠

𝜔
)
, (6)

where 𝜖, 0 < 𝜖 < 1, is the amplitude frequency ripples in

the stopband, 𝜔𝑠 describes a frequency scaling constant,

𝑁 is the order number of the polynomial 𝐶2
𝑁 (𝜔𝑠

𝜔
), and

𝐶𝑁 (𝑥) =

{

cos(𝑁 cos−1(𝑥)), if ∣𝑥∣ ≤ 1

cosh(𝑁 cosh−1(𝑥)), if ∣𝑥∣ > 1.
(7)

2) Feature Extraction: The PCA technique is employed in

Wi-Wheat for feature extraction, which can not only focus

on the main data characteristics but also decrease the input

data dimension [18]. For CSI amplitude and phase difference

data, we can compute 𝑝 principal components for each CSI

data sequence using the PCA method. The matrix with size

𝑝 × 𝑛 can thus be obtained. We set 𝑝 = 12 for all the

experiments reported in this paper. The procedure is described

in the following.

∙ Preprocessing: Because the static components have been

removed in the previous data preprocessing procedure, we
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Fig. 1. CSI amplitude measurements when wheat moisture content changes.
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Fig. 2. CSI phase difference measurements when wheat moisture content changes.

Fig. 3. The system architecture of Wi-Wheat.

employ the processed CSI amplitude or phase difference

data to create CSI matrices as

𝑍 =

⎡

⎢

⎢

⎢

⎣

𝑧11 𝑧12 𝑧13 . . . 𝑧1𝑛
𝑧21 𝑧22 𝑧23 . . . 𝑧2𝑛

...
...

...
. . .

...

𝑧𝑚1 𝑧𝑚2 𝑧𝑚3 . . . 𝑧𝑚𝑛

⎤

⎥

⎥

⎥

⎦

, (8)

where 𝑚 is the number of subcarriers, 𝑧𝑖𝑗 denotes the

processed CSI amplitude or phase difference for subcar-

rier 𝑖 recorded for packet 𝑗.

∙ Calculate the correlation matrix: We compute 1
𝑛
𝑍𝑇𝑍 to

obtain the correlation matrix, with size 𝑛× 𝑛.

∙ Calculate eigenvectors: With the correlation matrix
1
𝑛
𝑍𝑇𝑍, we apply eigen decomposition to compute the

eigenvectors 𝑣𝑖, 𝑖 = 1, 2, ..., 𝑝.
∙ Reconstruct the signal: We build a new CSI matrix using

the correlation matrix and the eigenvectors, as 𝑧𝑖 = 𝑣𝑖𝑍,

where 𝑧𝑖 is the 𝑖th principal component and 𝑣𝑖 is the 𝑖th

eigenvector.

3) SVM Classification: SVM is employed to classify the

processed CSI data for wheat moisture detection [27]. We

randomly divide the processed data into two groups to train

and test, and then find a hyperplane in the n-dimensional data

space. The training procedure is as follows.

Step 1: we use 𝑓(𝑥) to represent the classification function,

which is defined by

𝑓(𝑥) = sign(𝜔𝑇𝑥+ 𝑏), (9)

where 𝜔𝑇 and 𝑏 are the classification surface function param-

eters (𝜔𝑇 is the normal vector and 𝑏 is the offset), and 𝑥 is



the extracted feature from CSI amplitude or phase difference

data.

Step 2: let 𝑦 that takes 1 or -1 to represent two different

categories (i.e., 1 and -1 mean normal and abnormal for

Wi-Wheat, respectively), and add a certain constraint on the

normal vector 𝜔 (see (9)). With Lagrangian multiplier 𝛼, the

new objective function is formulated as

ℒ(𝜔, 𝑏, 𝛼) =
1

2
∥𝜔∥

2
−

𝑛
∑

𝑖=1

𝛼𝑖(𝑦𝑖(𝜔
𝑇𝑥𝑖 + 𝑏)− 1), (10)

where ℒ(𝜔, 𝑏, 𝛼) is the objective function, 𝑛 is the size of the

training set, and 𝛼 is the Lagrangian multiplier.

Step 3: we seek the maximum interval between the two

boundary ends or the extreme dividing line to determine 𝜔

and 𝑏. Then the problem of finding the classification function

is transformed into an optimization problem for 𝜔 and 𝑏. We

can determine the final classification function as follows.

max
𝛼
𝑊 (𝛼) =

𝑛
∑

𝑖=1

𝛼𝑖 −
1

2

𝑛
∑

𝑖,𝑗=1

𝑦(𝑖)𝑦(𝑗)𝛼𝑖𝛼𝑗⟨𝑥
(𝑖), 𝑥(𝑗)⟩ (11)

𝑠.𝑡. : 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, ..., 𝑛 (12)
𝑛
∑

𝑖=1

𝛼𝑖𝑦
(𝑖) = 0, (13)

where 𝐶 is the penalty coefficient, and 𝛼𝑖 and 𝛼𝑗 are the

Lagrangian multipliers.

Step 4: only two components 𝛼𝑖 and 𝛼𝑗 are selected in each

iteration, while the other components remain constant. After

obtaining 𝛼𝑖 and 𝛼𝑗 , the other components are then improved

by 𝛼𝑖 and 𝛼𝑗 . We obtain a maximum margin hyper plane

classifier as

𝑓(𝑥) = sign

(

𝑛
∑

𝑖=1

𝑦𝑖𝛼𝑖⟨𝑥
(𝑖), 𝑥⟩+ 𝑏

)

. (14)

For wheat moisture detection using CSI amplitude or phase

difference data, the problem is not linearly separable due

to the complexity indoor environments. We can leverage the

Gaussian RBF as kernel function for mapping processed CSI

data into a high dimensional feature vector space. The new

SVM classifier is defined as

𝑓(𝑥) = sign

(

𝑛
∑

𝑖=1

𝑦𝑖𝛼𝑖𝐾⟨𝑥(𝑖), 𝑥⟩+ 𝑏

)

, (15)

where the RBF kernel function 𝐾⟨⟩ is given by

𝐾⟨𝑥(𝑖), 𝑥⟩ = exp

{

−
1

2𝜎2

∥

∥

∥
𝑥− 𝑥(𝑖)

∥

∥

∥

2
}

, (16)

where 𝜎 is the standard deviation.

(a) The LOS Scenario (b) The NLOS Scenario

Fig. 4. Experimental setup.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We implement the Wi-Wheat system with off-the-shelf

laptops and WiFi cards. The prototype consists of an HP

ProBook 4411s laptop with 2.1GHz Intel (R) Pentium 2 CPU

and 2GB RAM as receiver, and a Sony PCG-6S1T laptop as

a transmitter. Both laptops use the Unbuntu 12.04 operation

system, and are equipped with Intel Link 5300 WiFi NIC. To

obtain 5 GHz CSI data, we set the transmitter in the injection

mode and the receiver in the monitor mode. We inject packets

from the transmitter, using one antenna, to the receiver with

three antennas. Our experiments are conducted over a period

of six months. For the experimental setup shown in Fig. 4, we

test both LOS and NLOS scenarios in a computer laboratory

environment.

In general, wheat can be safely stored for up to a year when

the moisture content is under a temperate climatic condition,

i.e., between 12% and 13% wet basis [2]. Thus, we choose

wheat a moisture content level 13% as the critical value for

the SVM classifier. If wheat moisture content is larger than the

critical value, it is regarded as abnormal. Moreover, we utilize

100 samples to train the SVM classifier and other samples are

used for testing.

Fig. 5 shows the accuracy of classification for the LOS

scenario using either CSI amplitude (left) or phase difference

data (right), respectively. When CSI amplitude data is used, we

can see that as the wheat moisture content level is increased

from 11% to 16.5%, the classification accuracy also increases

from 94% to 97%. On the other hand, using phase difference

data, the the classification accuracy is the highest, i.e., 98%,

when the wheat moisture content level is 14.7%. The proposed

Wi-Wheat system can achieve high classification accuracy for

LOS scenario using CSI amplitude or phase difference data.

In Fig. 6, we present the accuracy of classification for

the NLOS scenario using CSI amplitude (left) and phase

difference data (right), respectively. Similarly, we can see that

the classification accuracy using CSI amplitudes increase from

93% to 96% as the wheat moisture content level is increased

from 11% to 16.5%. Moreover, for Wi-Wheat with CSI phase

difference data, a 95% classification accuracy is achieved for

every wheat moisture content level. The experimental results

also validate the effectiveness of the Wi-Wheat system for the

NLOS scenario.
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Fig. 5. Accuracy of Classification for the LOS Scenario: Amplitude (left)
and Phase Difference (right) results.
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Fig. 6. Accuracy of Classification for the NLOS Scenario: Amplitude (left)
and Phase Difference (right) results.

VI. CONCLUSIONS

In this paper, we proposed Wi-Wheat, a device-free wheat

moisture detection system with commodity WiFi. We first

introduced CSI preliminaries and validated the feasibility of

using CSI amplitude and phase difference data for wheat

moisture detection. We then presented the design of Wi-Wheat,

including CSI extraction and CSI processing. Our experimen-

tal study demonstrated the efficacy of the proposed Wi-Wheat

system, which can achieve high classification accuracy for both

LOS and NLOS scenarios.
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