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Abstract

Rolling isolation systems (RISs) have been used extensively to protect vibration-sensitive equipment, such

as server cabinets, from earthquake-induced floor motions. These systems are commonly installed in multi-

unit arrays to isolate multiple cabinets from harsh floor motions. The mathematical model presented in

this paper is an extension of an experimentally-validated model for a single-unit RIS and is amenable to an

arbitrary number of isolated cabinets. The proposed model is first compared to free response tests and is

then validated with forced response tests using a synthetic waveform representative of earthquake-induced

floor motions. An extensive numerical parameter study using the proposed model is carried out to assess

the influence of the number of isolated cabinets, as well as mass eccentricity, on the seismic isolation

performance of these systems. Through an incremental dynamic analysis it is shown that systems with

more cabinets are less prone to impacts, indicating better performance. Rotations produced in the presence

of mass eccentricity may induce premature impacts transverse to the loading direction diminishing these

systems’ performance.
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1. Introduction

Rolling isolation systems (RISs) have been used extensively to protect structures and nonstructural

components from earthquake-induced ground and floor motions. The protected object is mechanically

decoupled from horizontal components of ground motions via a rolling interface. Recently, there have

been many studies of RISs, with applications ranging from bridges [1–5], to buildings [6–12], to floors
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Figure 1: Multi-unit rolling isolation system array installation at a financial institution data center. Source: [23].

within a building [13, 14], and to individual objects inside a building [15–21]. RISs are widely used to

isolate mission-critical equipment (e.g., server cabinets, mainframes, LAN racks, electronics enclosures,

and telecommunications switches) and valuable property. The prediction of the response of equipment

isolation systems and their ability to protect building contents requires models that can capture the observed

nonlinear behavior of actual RISs subjected to multi-axial loading.

Previous efforts to model RISs have focused on isolating a single cabinet or piece of equipment [18, 22].

However, multiple cabinets commonly need to be protected. Common practice is to install a multi-unit row

or array of RISs to support and isolate a cluster of cabinets, as shown in Fig. 1. In doing so, additional

bearings (beyond the typical four) must be incorporated to support the added load. Because the sub-units

are installed in a row, the overall length and aspect ratio of the isolation system change. The displacement

across the end bearings due to rotation is proportional to overall length of the RIS, making the multi-unit

system more vulnerable to rotations. RISs are known to rotate even in the absence of rotational disturbances

due to their chaotic nature and the nonholonomic ball dynamics [18]. These rotations can be exacerbated if

the equipment mass is not concentric with the center of stiffness.

In this paper, the equations of motion of multi-unit RIS arrays are derived, incorporating the rolling

dynamics of the balls and an arbitrary number of isolated cabinets and mass eccentricity. The resulting

mathematical model is used to numerically assess the influence of the number of isolated cabinets and mass

eccentricity on the performance of multi-unit RIS arrays subjected to floor motions representative of a range

of operating conditions. Isolation performance is characterized by the peak total acceleration experienced

by the isolated cabinets, which are compared to a representative threshold for electrical equipment.
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Figure 2: Configuration of an RIS array. The payload mass is carried by the top frame which is supported at various points by steel
balls between counter-facing concave bowls. The bottom and top frames isolate groups of equipment from harsh floor motions.

2. Description of the model and modeling assumptions

Consider the multi-unit RIS array illustrated in Figure 2. Vibration-sensitive equipment, such as elec-

trical cabinets, are rigidly connected to the top frame, and the top frame and equipment are mechanically

isolated from the bottom frame via rolling bearings. Each rolling bearing is composed of a large, steel ball

that rolls between a concave-up lower bowl and a concave-down upper bowl. The bearings are configured

in pairs on planks that are connected together with steel bars. For a single isolated cabinet, only two planks

(four bearings) are required. For N pieces of equipment, N + 1 planks are required; e.g., three planks for

two cabinets (Figure 2).

2.1. Geometry and notation

Consider the displaced configuration of the RIS illustrated in Figure 3. The bearings are numbered i =

1, . . . ,n, where the number of bearings, n, depends on the number of isolated cabinets, N ; i.e., n = 2(N +1).

The Xt–Yt coordinates of the ith bowl center are given by ξ i = {xi , yi }Tt ,1 which is dictated by the frame

geometry. The planks are spaced at lx on centers, with the bearings spaced at ly on centers.

The N isolated cabinets are assumed to be identical, each having a mass m that is eccentrically lo-

cated at (ex ,ey ) relative to centroid of the two supporting planks. The total mass of the isolated equipment

M = N × m, which is eccentrically located at e = {ex ,ey }Tt from the top-frame centroid O. The mass

moment of inertia about the top-frame centroid is IO. The top frame undergoes rotation θ(t) and transla-

1In this paper, vectors are represented by boldface minuscule letters, and matrices by majuscule letters; the superscript ‘T’
denotes the transpose; and the subscripts ‘t’ and ‘b’ are used to indicate the coordinate system in which positions are measured,
namely top (Xt,Yt) and bottom (Xb,Yb).
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Figure 3: Geometry and notation of a rolling isolation system, N = 3: (a) displaced configuration; (b) kinematics of rolling balls.

tional displacement u(t) = {ux (t),uy (t)}Tb relative to the bottom frame. The bottom frame is excited by

translational disturbance ug(t) = {ugx (t),ugy (t)}Tb .

The gravitational restoring forces in the system are attributed to changes in the heights at the bearings,

which depend on the top frame’s displacement and rotation, as well as the balls’ locations. As seen in Fig.

3(b), the balls’ locations with respect to the centers of the lower and upper bowls are r i (t) = {rxi (t),ryi (t)}Tb

and qi (t) = {qxi (t),qyi (t)}Tb , and the center-to-center displacement is pi (t) = {pxi (t),pyi (t)}Tb ≡ u(t) +(
Rθ (t ) − I

)
ξ i where I is the identity matrix and

Rθ (t ) =



cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)



All the bowls are assumed axisymmetric with radius-dependent bowl-shape function η(r). The height of

the top frame at the center of the ith upper bowl is the sum of contributions from the lower and upper bowls,

given by

hi ≡ hi (ux ,uy , θ, r i ; t) = η
(
ri (t)

)
+ η

(
qi (t)

)
(1)

where ri (t) = ‖r i (t)‖ and qi (t) = ‖qi (t)‖.
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2.2. Kinematics of rolling balls

The ball coordinates r i (t) evolve according to a set of nonholonomic constraints prescribed by the

condition of rolling without slipping between non-parallel surfaces [18]. The kinematic constraint, relating

the ball velocities ṙ i (t) to the relative velocities of the upper bowls at the ball locations, depends upon the

slopes of the upper and lower bowls. For shallow bowls (i.e., small η ′(r)), the nonholonomic constraint can

be approximated by the condition that the velocity of the ball center is half of the relative velocity across

the isolation system [22]. The ball velocity is in the direction of this relative velocity,

ṙ i (t) = 1
2

{
u̇(t) + θ̇(t) D

[
ξ i + r i (t) − u(t)

]}
, (i = 1, ...,n) (2)

where the cross product θ̇k × (ξ i + r i − u) is performed using the matrix

D =



0 −1

1 0



The 2n non-linear first-order ordinary differential equations (2) prescribe the evolution of the n balls in the

Xb–Yb plane. Initial conditions r i (0) must be specified.

2.3. Equations of motion

Approaching this problem by using Lagrange’s equation, expressions for the kinetic energy T and

potential energyV need to be found. The kinetic energy T is given by

T (u̇x , u̇y , θ, θ̇; t) = 1
2 MvT

GvG + 1
2 IG θ̇2 (3)

in which vG is the absolute (horizontal) velocity of the center of gravity G given by

vG (t) = u̇g(t) + u̇(t) + θ̇(t)R′θ (t )e (4)

where R′θ = ∂
∂θRθ , and IG = IO + M (e2

x + e2
y ). The potential energyV is due to the change in height of the

isolated cabinets’ centers of mass. The change in height of a cabinet’s center of mass can be interpolated

from the heights hi [Eq. (1)] of the four bowls on the supporting planks [18]. The interpolated height at the

center of mass is given by

ĥ j = a1h2 j−1 + a2h2 j + a3h2 j+1 + a4h2 j+2 (5)
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where, in terms of the nondimensional eccentricities εx = ex/lx and εy = ey/ly ,




a1

a2

a3

a4




=
1
4



1 −2 −2 4

1 −2 2 −4

1 2 −2 −4

1 2 2 4






1

εx

εy

εxεy




(6)

which is then used to express the potential energy,

V (ux ,uy , θ, r i , . . . , rn; t) =

N∑
j=1

mgĥ j (7)

where g is gravitational acceleration. For N = 1 (single cabinet) the contribution from the four bearings

is the same, but for N > 1 (multiple cabinets) the contribution from the bearings on the external planks

(i = 1,2,n − 1,n) is less than that from the bearings on the interior planks (i = 3,4, ...,n − 2), as the interior

planks have twice the tributary area. Eq. (7) can hence be written in the form

V =

n∑
i=1

mgbihi (8)

where the weighting coefficients for the exterior bearings are b1 = a1, b2 = a2, bn−1 = a3, bn = a4 and for

the interior bearings are

bi =




a1 + a3 : 3 ≤ i ≤ n − 3, i odd

a2 + a4 : 4 ≤ i ≤ n − 2, i even

Applying the fundamental nonholonomic form of Lagrange’s equation [24, Eq. (2.48)], the equations

of motion of the platform coordinates (ux ,uy , θ), taking into account the constraint (2), are as follows:

M
[
üg(t) + ü(t) + θ̈(t) R′θ (t )e −

(
θ̇(t)

)2 Rθ (t )e
]

+
n∑
i=1

mgbiη ′
(
qi (t)

)
q̂i (t) +

n∑
i=1

1
2λi = 0 (9a)

M
[
üg(t) + ü(t)

]TR′θ (t )e + IO θ̈(t) +
n∑
i=1

mgbiη ′
(
qi (t)

)
q̂T
i(t)R

′
θ (t )ξ i

+
n∑
i=1

1
2λ

T
i D

[
ξ i + r i (t) − u(t)

]
= 0 (9b)

where qi (t) = pi (t) − r i (t), as in Figure 3; the over-hat indicates the unit vector, e.g., r̂ i ≡ r i/‖r i ‖; and λi

are the Lagrange multipliers enforcing Eq. (2). The multipliers are found by applying Lagrange’s equation
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to the ball coordinates r i :

λi = fd
i + mgbi

[
η ′

(
ri (t)

)
r̂ i (t) − η ′

(
qi (t)

)
q̂i (t)

]
(10)

where the damping forces fd
i counteract the balls’ motion. The form of fd

i depends on the ball–bowl inter-

face, which can range from lightly damped (steel-on-steel [18]) to heavily damped (rubber coated balls [19]

or rubber coated bowls [22, 25–27]). Substituting Eq. (10) into Eq. (9) and combining terms,2 the equations

of motion of the platform coordinates can be rewritten in matrix form:



MI MDRθ (t )e

M
(
DRθ (t )e

)T IO






ü(t)

θ̈(t)




+




−M
(
θ̇(t)

)2 Rθ (t )e

0




+
1
2

n∑
i=1



I(
ξ i + r i (t) − u(t)

)TDT



(
fd
i + fL

i + fU
i

)
= −



MI

M
(
DRθ (t )e

)T


üg(t) (11)

where the lower and upper gravitational restoring forces are defined respectively by

fL
i = mgbiη ′

(
ri (t)

)
r̂ i (t) (12a)

fU
i = mgbiη ′

(
qi (t)

)
q̂i (t) (12b)

Eqs. (2) and (11) comprise the full set of system dynamics, which must be integrated simultaneously.

The equations of motion for the platform coordinates [Eq. (11)] represent an extension of a previously

developed model that was valid only for the case of N = 1 (n = 4) [18, 22] to be able to accommodate an

arbitrary number of isolated cabinets (N > 1). Upon closer inspection, Eq. (11) reduces to those previous

models if N is taken to be 1.

2.4. Typical bowl geometry and damping model

The mathematical model [Eq. (11)] requires the bowl-shape function η(r) and the damping model to be

specified. A typical bowl-shape function η(r) is conical with a spherical central region and lip at the edge

[21, 28]. For this shape, the bowl gradient, which appears in the gravitational restoring forces [Eq. (12)], is

2Note that R′θ ≡ DRθ , Rθξ i ≡ ξ i + r i − u − qi , and q̂i
TDqi ≡ 0.
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given by

η ′(r) =




r
√

R2 − r2
, r ≤ R sin[arctan(s)]

s , R sin[arctan(s)] < r ≤ ro

so (r − ro ) + s , r > ro

(13)

where r is the location of the ball relative to the center of the bowl, R is the radius of curvature in the

spherical region in the center of the bowl, s is the slope of the conical section of the bowl, ro is the radial

distance to the bowl lip/edge, and so is the slope to represent impact with the lip. Note that this model

assumes a linear Hooke impact model, as opposed to a nonlinear impact model such as the Hertz model

[29].

Commonly, the bowls and balls are both made of stainless steel, i.e., lightly damped, which is considered

here. For a lightly damped RIS, linear viscous damping is appropriate: fd
i = ci r i where ci is the mass-

dependent damping coefficient [18]. The damping coefficient ci depends on the normal force carried by

each ball. Values for the damping coefficients were fitted to experimental data of lightly damped RISs in

a previous study [18, Eq. (51)], which considered a single cabinet configuration (N = 1) with no mass

eccentricity (i.e., with each ball carrying one fourth the mass m). The largest mass considered in that study

was only 635 kg. To account for larger masses and mass eccentricity, the following relationship is proposed

ci =




0.000229(4mi )2 + 0.02884(4mi ), mi ≤ 160 kg

1.288mi − 93.80, mi > 160 kg
(14)

where mi = mbi is the mass allocated to the ith bearing. The first equation is simply the fitted values

from Ref. [18] over the applicable range of masses; the 4 accounts for the equal mass distribution in the

absence of mass eccentricity (i.e., bi = 1/4, i = 1,2,3,4). The second equation is a linear extrapolation from

mi = 160 kg to higher masses not tested in Ref. [18]. It is important to note that a linear viscous damping

model is not valid for rolling bearings with supplemental damping (e.g., rolling surfaces coated with an

elastomeric material [30]), which would require a more sophisticated rolling resistance model [31, 32].

3. Experimental calibration and validation

The mathematical model developed in the preceding section is used to assess the performance of multi-

unit RIS arrays under parametric variation in Section 4. The isolated cabinet and RIS geometries considered
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Figure 4: Picture of the experimental setup: ganged (N = 2) cabinet configuration in the front-to-back orientation.

in the numerical simulations are described below. These geometries are representative of a typical instal-

lation that would be seen in the field and correspond to actual network cabinets and RISs previously tested

in the lab [33]. The experimental setup is shown in Fig. 4. The experimental setup was instrumented with

an array of sensors to measure the displacements and accelerations of the shake table and the isolation sys-

tem. The table’s displacement and acceleration were measured with an LVDT and a uniaxial accelerometer,

respectively. The orthogonal displacements and rotation of the isolation system were measured with three

string potentiometers connected to the top frame (just above the isolation layer) and attached to a fixed

reference frame. Two triaxial accelerometers located at opposite corners of the top frame of the isolation

system to measure the total accelerations at the base of the isolated cabinet. See Ref. [33] for additional

details on the experimental setup and testing program. The model incorporating the experimental operating

conditions is first calibrated to free response tests and then validated with forced response tests.

The mathematical model is implemented into Matlab (Mathworks, Natick, MA), and the complete set

of equations that describe the evolution of the system [Eqs. (2) and (11)] are solved simultaneously using the
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Figure 5: Plan dimensions of server cabinet and single (N = 1) and ganged (N = 2) cabinet configurations.

ode45 solver in Matlab, which requires the equations of motion in state-space form: ẋ(t) = f(x, ügx , ügy ; t)

where the inputs are the ground accelerations ügx (t) and ügy (t). The states of the system are the platform

translational and rotational displacements and velocities and the ball translational displacements:

x(t) =
[
ux (t) uy (t) θ(t) u̇x (t) u̇y (t) θ̇(t) r1x (t) r1y (t) · · · rnx (t) rny (t)

]T
∈ R6+2n (15)

The states are initialized to zero for all cases, i.e., x(0) = 0. The ode45 solver uses a 4th-order Runge-Kutta

method with an adaptive time step. Tight error tolerances, both relative and absolute, were used to ensure

numerical accuracy.

3.1. Considered setup and properties

The dimensions (H × D ×W ) of each isolated network cabinet are 2026-mm × 1194-mm × 699-mm

(see Fig. 5), with a mass m of 705 kg. The center of mass (G) of the experimental cabinets was 740 mm

from the base, concentric about the width (ex = 0), and 122 mm forward-of-center in the cabinet depth

(ey = 122 mm). Other values of ey will be considered in Section 4.

Determination of IO must consider how the cabinet mass is distributed, as well as the spacing of the

cabinets and their position relative to the top-frame centroid O. To be consistent with the development of

the potential energy [Eq. (8)], an individual cabinet mass m is allocated to the centers of each supporting

bearing with each cabinet contributing mai , where ai is given by Eq. (6). The total mass contributed to a
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given bearing located at ξ i is mi = mbi (i = 1, ...,n). Treating the allocated masses as point masses, the

mass moment of inertia about the centroid O is given by

IO =

n∑
i=1

miξ
T
i ξ i (16)

Two configurations were experimentally tested: single cabinet (N = 1) and two ganged cabinets (N = 2).

In both cases, the bearing spacing, as denoted in Fig. 3(a), are taken to be lx = 57 cm and ly = 110 cm

(see Figure 5). For the eccentricity (ex ,ey ) = (0,122 mm), a1 = a3 = 0.19 and a2 = a4 = 0.31. So, for

the single cabinet setup, m1 = m3 = 137 kg, m2 = m4 = 215 kg, and IO = 270 kg m2. For the two-cabinet

ganged setup, the bearings on the middle plank carry twice the mass (m3 = 273 kg and m4 = 431 kg), and

IO = 656 kg m2. These allocated masses are used to determine the damping coefficients ci from Eq. (14).

The gravitational restoring forces given by Eq. (12) depend explicitly on the bowl gradient η ′(r). The

form of the gradient is taken to be Eq. (13), where nominal values for R, s, and ro are 12.7 cm, 0.1, and

9 cm, respectively [21]. The nominal radius R = 12.7 cm gave good agreement with the acceleration-

displacement at small displacements. The peak acceleration in the horizontal direction over the conical

section of the rolling surface is governed by the slope s and is approximately 0.1g [34]. However, after

initial numerical trials, the stiffness was found to be high, and therefore the periods of the numerical results

were lower than that of the experimental trials. The slope of the conical section of the bowl was modified

in order to match the periods of the systems; a slope of 0.095 provided good agreement with the period of

the experimental results. At a ball displacement r > 9 cm, impact occurs with the lip/edge of the bowl. In

order to simulate the impact, a high stiffness is used. A value of so = 100 produced the acceleration spikes

needed for impact, but also preserved model stability for grazing impacts of the lip/edge.

3.2. Free response results

The mathematical model for a multi-unit RIS array with N = 1 and 2 cabinets was first compared

to experimental free response tests. Experimental free response was achieved by exciting the RIS and

cabinets with an abrupt motion from the shake table in the Y direction (see Fig. 3) with a velocity of

75 cm/s and a total displacement of 15 cm. The longitudinal and transverse displacements (uy ,ux) and

rotation (θ) were measured along with the longitudinal and transverse total accelerations. Fig. 6 shows

the response for the ganged cabinet setup. Excellent agreement is seen between the experimental results

and the numerical prediction. Similar results were found for the single cabinet setup (not shown). The
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Figure 6: Experimental and numerical free response results for ganged cabinets (N = 2) with bare steel dishes in the front-to-back
orientation: (a) longitudinal displacement, uy (t); (b) transverse displacement, ux (t); (c) longitudinal acceleration, üy (t) + ügy (t);
(d) transverse acceleration, üx (t) + ügx (t); (e) rotation, θ(t); and (f) longitudinal acceleration versus longitudinal displacement.

numerical results for the single cabinet showed good agreement over the first five cycles of motion, after

which the experimental system began to respond in the transverse direction with rotation. Due to slight

asymmetries in the experimental system, energy in the longitudinal direction transitioned into the transverse

and rotational modes. The numerical model however is perfectly symmetrical in the Y (front-to-back)

direction, so transverse displacements and rotations are not predicted. The numerical results for the ganged

cabinets (Fig. 6) shows good agreement with the experimental for the entirety of the test as very little of the

longitudinal energy transitioned into the transverse and rotational modes.

3.3. Forced response results

Next, the mathematical model was validated against forced response tests. The inputs to the mathe-

matical model are the ground-motion accelerations ügx (t) and ügy (t). A uniaxial ground motion üg(t) is
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Input Response Spectrum

Zone 4 Required Response Spectrum (RRS)

Figure 7: Ground motion waveform — (a) displacement ug(t) (b) velocity u̇g(t), and (c) acceleration üg(t) — and (d) 2%-damped
response spectrum.

considered, and the angle of incidence α is varied; i.e., ügx (t) = üg(t) cos α and ügy (t) = üg (t) sin α. The

uniaxial ground motion üg(t) used for this study is the Zone-4 VERTEQ-II record shown in Fig. 7. This is a

synthetically generated record with a broadband frequency spectrum. The record was synthesized from sev-

eral typical earthquakes and for different building and site soil conditions. It is spectrally compatible with

the floor acceleration of a building located in a high seismic zone. VERTEQ-II was originally developed

for testing of telecommunications equipment [35], making it an appropriate waveform for this study.

Angles of incidence of 0 and 90◦ are considered, which represent loading in the side-to-side (X) and

front-to-back (Y ) directions, respectively. Four different configurations were experimentally tested and used

for the model validation: the single cabinet and the double cabinet each loaded in both directions. Figs.

8 and 9 show the time histories of the experimental and numerical results for the ganged cabinet setups

loaded in the front-to-back direction at ground-motion (GM) scaling of 75 and 100%, respectively. Fig. 10

shows the results for the ganged cabinet setups loaded in the side-to-side direction at a ground-motion (GM)

scaling of 100%.

At 75% GM scaling in the front-to-back direction (Fig. 8), the model shows excellent agreement with

the experimental results, predicting the response nearly perfectly up until impact at 8 s [indicated by the

dots in Fig. 8(a)]. At the point of impact, a large spike in the acceleration is observed and predicted. Prior

to impact, the experimental system exhibits rotations up nearly 4◦ (Fig. 8(e)), which are not predicted by

the model due to the perfect symmetry assumed in the model as previously discussed.
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Figure 8: Experimental and numerical forced response results at 75% GM scaling for ganged cabinets (N = 2) with bare steel
dishes in the front-to-back orientation: (a) longitudinal displacement, uy (t); (b) transverse displacement, ux (t); (c) longitudinal
acceleration, üy (t) + ügy (t); (d) transverse acceleration, üx (t) + ügx (t); (e) rotation, θ(t); and (f) longitudinal acceleration versus
longitudinal displacement.

At 100% GM scaling in the front-to-back direction (Fig. 9), again good agreement is observed, pre-

dicting peak responses and phasing, up until the point of impact. However, in this case, the time of impact

is not predicted correctly. The experimental response exhibits a light impact at 10 s, as seen by the small

spike in longitudinal acceleration (0.24g). Before this impact the rotations are relatively small (< 1◦), but

increase to 4◦ following the impact. As a result, there is a subsequent impact at 15 s. This impact is not

captured by the numerical model, but a later impact at about 18 s is predicted. The results for the numerical

model after impact are not shown as they are suspect because the model does not account for the energy

loss of the impact and produces high restoring forces due to the elastic action of the stiffness which acts at

the edge/lip of the bowl [see Eq. (13)]. In actuality, these forces are not elastic and would not behave as

seen in the model. However, the purpose of the model is to capture if/when impacts occur, as opposed to
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Figure 9: Experimental and numerical forced response results at 100% GM scaling for ganged cabinets (N = 2) with bare steel
dishes in the front-to-back orientation: (a) longitudinal displacement, uy (t); (b) transverse displacement, ux (t); (c) longitudinal
acceleration, üy (t) + ügy (t); (d) transverse acceleration, üx (t) + ügx (t); (e) rotation, θ(t); and (f) longitudinal acceleration versus
longitudinal displacement.

the exact value of the high accelerations sustained at impact.

At 100% GM scaling in the side-to-side direction (Fig. 10), the model predicts an impact at 8 s, which is

attributed to large longitudinal displacements (16 cm) compounded with appreciable rotation (2◦). Rotations

are predicted by the model (Fig. 10(e)) for this case because of the mass eccentricity in the side-to-side

direction. While rotations develop experimentally, they do not lead to impacts at the time predicted, but

instead subsequently at 17 s.

In summary, the model does a good job predicted displacements, accelerations, and rotations initially,

but due to the chaotic nature of these systems [18] the trajectories diverge following impacts or after a few

cycles of motion. The divergence can be attributed to slight imperfections in the experimental system that

are not captured by the model. These imperfections lead to rotations in the experimental system even when
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Figure 10: Experimental and numerical forced response results at 100% GM scaling for ganged cabinets (N = 2) with bare steel
dishes in the side-to-side orientation: (a) longitudinal displacement, ux (t); (b) transverse displacement, uy (t); (c) longitudinal
acceleration, üx (t) + ügx (t); (d) transverse acceleration, üy (t) + ügy (t); (e) rotation, θ(t); and (f) longitudinal acceleration versus
longitudinal displacement.

the system is loaded front-to-back (i.e., without mass eccentricity). Transverse displacements (Figs. 8(b),

9(b), and 10(b)) and accelerations (Figs. 8(d), 9(d), and 10(d)) are also experimentally observed, but are not

predicted by the model. Nonetheless, while the model does not always predict the correct instance in time

at which impact occurs, it successfully predicts the occurrence of an impact, which is satisfactory for this

study focused on sensitivity to number of cabinets (N) and mass eccentricity (ey ).

4. Incremental dynamic analysis

In order to evaluate which RIS configurations result in lower risk of failure, incremental dynamic anal-

ysis (IDA) is conducted. IDA curves for isolated cabinets with different numbers of ganged cabinets and

different mass eccentricities are presented in Sections 4.2 – 4.4. Single (N = 1) and ganged (N = 2, 4,
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Figure 11: Schematic of the geometrical configurations considered in the incremental dynamic analysis: Server cabinets with
eccentricity ey = 0, 12, 24, and 26 cm, in arrays of N = 1 (single), 2, 4 and 8 ganged configurations.

and 83) cabinet configurations are considered, and the mass eccentricity ey is varied from 0 to 36 cm at

increments of 12 cm, while fixing ex = 0.

The Zone-4 VERTEQ-II waveform (Fig. 7) is used, and the motion is scaled from 0 to 100% at incre-

ments of 5%; the ground-motion (GM) scaling serves as the intensity measure. Two loading directions are

considered: 0◦ (side-to-side) and 90◦ (front-to-back). Due to the location of the center of mass (i.e., along

the centerline of the cabinet), the front-to-back orientation is identical to the side-to-side orientation with

3For more than 8 isolated cabinets, ganged rolling isolation systems are impractical, and an isolated raised floor would be better
suited [36].
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ey = 0; therefore, the results for the front-to-back orientation are not shown, but may be interpreted from

the side-to-side case with ey = 0. The engineering demand parameters of interest are intrinsically linked to

the failure modes of the electrical cabinets, which are described here.

4.1. Engineering demand parameters

Vibration-sensitive equipment such as electrical cabinets are typically rated according to peak accel-

erations they can sustain and remain operational. For example, IBM suggests operational vibration limits

of 0.1g and 0.3g peak acceleration for light and heavy floor mounted machines in an office environment

[37]. Hence, the first engineering demand parameter is the peak total acceleration sustained by the isolated

equipment. The total acceleration at the centroid of each cabinet is calculated as follows:

at
j (t) = üg (t) + ü(t) + θ̈(t)R′θ (t ) s j + [θ̇(t)]2R′′θ (t ) s j , ( j = 1, . . . ,N) (17)

where s j is the Xt–Yt position of the jth cabinet’s centroid. The largest peak total acceleration experienced

by any of the cabinets is given by

at
max = max

j ∈{1, ...,N }
max
t




a
t
j (t)




 (18)

The allowable limit on at
max is taken to be 0.3g [38], which if exceeded constitutes a failure of the isolation

system to perform adequately.

Even though the bowl parameterization (13) effectively governs the accelerations sustained by the equip-

ment, RISs are prone to failure because of excessive relative displacements resulting in impacts with the

bowl lip resulting in acceleration spikes [20]. While this limit state will be captured by the response quantity

at
max, the relative displacement across the bearings also serves as a response quantity of interest. The largest

peak relative bearing deflection is given by

dmax = max
i∈{1, ...,n }

max
t



pi (t)

 (19)

The allowable limit on dmax is taken to be 18 cm (twice the bowl radius ro), beyond which an impact occurs

degrading the system’s performance.

The third engineering demand parameter is the peak rotation

θmax = max
t
|θ(t) | (20)
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Figure 12: IDA curve of peak acceleration at
max of isolated cabinets in the side-to-side orientation with eccentricity ey = (a) 0, (b)

12, (c) 24, and (d) 36 cm, indicating responses with (I) at
max ≤ 0.3g (white); (II) at

max > 0.3g, dmax < 18 cm (grey); and (III)
at

max > 0.3g, dmax ≥ 18 cm (black).

As observed in the forced response results (Section 3.3), an eccentric mass introduces rotations into the

response which may lead to impacts in a bearing. Additionally, rotations have the effect of influencing the

sustained accelerations due to centripetal acceleration [see Eq. (17)]

Figs. 12, 13, and 14 show the IDA curves for the three engineering demand parameters: at
max, dmax, and

θmax, respectively. The markers are color coded to indicate three distinct types of response: (I) at
max ≤ 0.3g;

(II) at
max > 0.3g without impact; and (III) at

max > 0.3g with impact. Response type I is desirable in terms

of isolation performance as the equipment will remain operational, while types II and III constitute failures.

Type III corresponds to the bearing capacity being reached (dmax ≥ 18 cm) and impacts with the bearing

lip/edge occurring; these failures are accompanied by large spikes in acceleration. The sensitivity of each

demand parameters to variation in number of cabinets and mass eccentricity is discussed in the following

sections.

4.2. Peak acceleration

Fig. 12 shows the IDA curve of peak acceleration at
max. Without mass eccentricity (Fig. 12(a)0, the

peak acceleration is nearly constant for all cases due to the constant slope of the rolling bearing up till a GM

scaling of 70% (65% for N = 1 discussed later). Beyond 70%, a distinct “breaking point” occurs when the

peak displacements reach the 18-cm limit producing impacts within the bearings causing excessive spikes
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in acceleration. With mass eccentricity (Figs. 12(b–d)), the peak acceleration gradually increases with GM

scaling, which is due to rotations induced by an eccentric center of mass. This effect is increased with larger

eccentricities. For ey = 24 and 36 cm (Figs. 12(c,d)0, excessive accelerations are observed in the absence

of an impact (response type II) due to centripetal accelerations. The eccentricity also has an effect on the

breaking point at which impacts occur for a given number of cabinets, decreasing the GM scaling required

for impact.

The number of cabinets has little effect on the peak acceleration when there is no eccentricity (Fig.

12(a)); the single cabinet setup (N = 1) does hits the breaking point at 65% versus the ganged cabinet setups

which occur at 70%. This is due to the single cabinet setup not having a middle plank that carries twice

the load, resulting in less damping overall. The effect of the number of cabinets is more pronounced in the

presence of a mass eccentricity (Figs. 12(c–d)). Systems with a greater number of cabinets exhibit slightly

smaller accelerations. This is because the mass moment of inertia increases quadratically with N , with

no change in eccentricity, resulting in a greater resistance to rotation and lower centripetal accelerations.

Additionally, the distance through which the gravitational restoring forces act is larger, providing greater

moment resistance. As a result, for a given mass eccentricity, the critical GM scaling at which impacts

occur is higher for greater number of cabinets.

4.3. Peak bearing displacement

Fig. 13 shows the IDA curve of peak bearing displacement dmax. The peak displacement increases with

increasing GM scaling until a bearing displacement of 18 cm is reached, beyond which dmax is stunted due

to impacts with the bowl lip. Peak bearing displacements beyond the theoretical limit of 18 cm are predicted

by the model for the cases in which impacts occur. As previously discussed, the numerical model does not

rigorously model impacts, but instead a very stiff region is included in the assumed bowl profile [Eq. (13)] to

simulate impacts. While the predicted excessive bearing displacements are not observed experimentally at

impact, there is a transition of energy from the isolation mode to the structural mode of the cabinet. Though

the model treats the isolated cabinets as rigid, these predicted displacements may be interpreted as body

deformations in the isolated cabinet or rocking of the cabinet. With that said, the quantitative accuracy of

these predictions are suspect, but may be improved through a fitting of the secondary slope so in the bowl

geometry [Eq. (13)], which is a topic of ongoing research.

The peak bearing displacements are quite sensitive to the level of eccentricity within the cabinets. With

larger eccentricity comes larger rotations, which in turn lead to larger bearing displacements (without larger
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Figure 13: IDA curve of peak bearing displacement dmax of isolated cabinets in the side-to-side orientation with eccentricity ey =

(a) 0, (b) 12, (c) 24, and (d) 36 cm, indicating responses with (I) at
max ≤ 0.3g (white); (II) at

max > 0.3g, dmax < 18 cm (grey); and
(III) at

max > 0.3g, dmax ≥ 18 cm (black).

centroidal displacements). Impacts are therefore reached at lower GM scales as the eccentricity increases.

Higher peak displacements are also seen for fewer cabinets (N = 1,2) than for higher number of cabinet

(N = 4,8) for all GM scalings. Configurations with more cabinets are better able to resist rotations that

those with fewer cabinets due to an increase in the mass moment of inertia and larger moment arm for the

restoring forces.

4.4. Peak rotation

Fig. 14 shows the IDA curve of peak rotation θmax. No rotations are observed for the case with zero

eccentricity (Fig. 14(a)) up until impacts are predicted. Cases with eccentricity (Figs. 14(b–d)) show a

roughly linear increase in θmax with GM scaling up until the point of impact, at which point θmax saturates

to a limiting value. The theoretical maximum permissible rotation, denoted θo , is dictated by the geometry

of the RIS platform and bearing capacity, taken to be

θo = arctan
2ro

min{ly ,N · lx }
(21)

For single (N = 1) and ganged (N = 2, 4, and 8) cabinet setups, θo are 18.1◦, 17.5◦, 8.97◦, and 4.51◦,

respectively. For zero or small eccentricity (Figs. 14(a,b)), the peak rotation abruptly jumps to the maximum
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Figure 14: IDA curve of peak rotation θmax of isolated cabinets in the side-to-side orientation with eccentricity ey = (a) 0, (b)
12, (c) 24, and (d) 36 cm, indicating responses with (I) at

max ≤ 0.3g (white); (II) at
max > 0.3g, dmax < 18 cm (grey); and (III)

at
max > 0.3g, dmax ≥ 18 cm (black).

value at the “breaking point” where impacts are achieved. For these cases, the impacts occur primarily along

the loading direction, and the rotations had little influence on the critical (excessive) displacement across

the bearings. The resulting large rotations are due to high restoring forces produced in the elastic impact.

For larger eccentricities (Figs. 14(c,d)), the peak rotation gradually increases up to the maximum value

before impacts are observed. For these cases, the excessive bearing displacements leading to impact are

attributed to the large rotations and accompanying bearing displacements. Because the rotations produce

displacements transverse to the loading direction, the resulting impacts tend to not be along the loading

direction. While the initial impact in this case can be more grazing in nature, it still produces high restoring

forces inducing larger subsequent rotations and accelerations.

4.5. Performance curves

Isolation of typical building contents and nonstructural components would ideally be designed using

basic charts for determining performance. From the IDA results (Figs. 12 – 14), there are distinct GM

scalings at which isolation performance is degraded (i.e., the “breaking point” where impacts are observed).

Performance curves, which depict the limiting GM scaling for which the system configurations meet the

displacement capacity criteria without experiencing an impact, are shown in Fig. 15 for varying number of

cabinets (a) and mass eccentricity (b). These curves give an upper bound on “acceptable performance.” A

22



1 2 3 4 5 6 7 8

Number of cabinets, N

0

25

50

75

100

L
im

it
in

g
 G

M
 s

c
a

lin
g

 [
%

]

e
y
 = 0 cm

e
y
 = 12 cm

e
y
 = 24 cm

e
y
 = 36 cm

(a)

0 12 24 36

Eccentricity, e
y
 [cm]

0

25

50

75

100

L
im

it
in

g
 G

M
 s

c
a

lin
g

 [
%

]

N = 1

N = 2

N = 4

N = 8

(b)

Figure 15: Performance curves showing the largest (limiting) ground-motion (GM) scaling without experiencing an impact for a
lightly-damped RIS with varying number of cabinets and mass eccentricity: (a) constant lines for eccentricity, and (b) constant
lines for number of cabinets.

higher limiting GM scaling means the system can sustain more intense shaking without an impact, indicating

better performance. Fig. 15(a) shows enhanced performance with increasing number of cabinets for a

constant value of eccentricity. The sensitivity of this trend increases with increasing eccentricity. Fig. 15(b)

shows reduced performance with increasing eccentricity for a constant number of cabinets. The sensitivity

of this trend decreases with increasing number of cabinets. A designer could use these curves to establish

the required configuration (number of cabinets and eccentricity) for a given GM intensity.

5. Conclusions

In this paper, a physics-based mathematical model for the dynamics of multi-unit RIS arrays is de-

veloped. The model can be used to predict the response of RIS arrays supporting an arbitrary number of

cabinets including mass eccentricity. A damping model is proposed that takes into consideration the addi-

tional load on interior planks, increasing rolling resistance modeled as viscous damping in lightly damped

RISs. A linear Hooke impact model is incorporated to simulate impacts with the rolling surface edge.

Predictions with the model are compared to free and forced vibration tests of actual systems with N = 1

and 2 isolated cabinets, showing good agreement. The model is then used to predict peak acceleration,

displacement, and rotation responses with varying eccentricity, number of cabinets, ground-motion (GM)

scaling, and loading direction. The limiting GM scaling at which impacts are observed was shown to be

sensitive to the mass eccentricity because of the rotations induced and to number of cabinets because of

the additional rotational resistance afforded by a large number of cabinets. Performance curves illustrated

these sensitivities, showing that large arrays of cabinets (N = 8) were least vulnerable, even when large

eccentricities (ey = 36 cm) are present. Going forward, a more accurate impact model (e.g., Hertz type)

should be explored to better capture the accelerations during impact and the responses following an impact.
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Also, the proposed model should be validated against experimental test data considering a larger number

of cabinets. The experimental results presented herein considered up to only two cabinets, but larger arrays

(up to 10 cabinets) are commonly used in practice.
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