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Abstract—Moisture content of cereal grains is a highly im-

portant factor in safe storage and food processing. The existing

detection methods are either time-consuming, sensitive to the

environment, or have a high cost. In this paper, we propose

DeepWMD, a deep LSTM network based system for multi-class

wheat moisture detection. We first collect CSI amplitude and

phase difference data to detect wheat moisture content. Then,

we design the DeepWMD system with commodity Wi-Fi devices

in the 5GHz band, including data preprocessing of collected

CSI data, offline training, and online testing. Our experimental

results verify the efficacy of the proposed DeepWMD system,

and demonstrates that DeepWDM can achieve high-precision

multi-class wheat moisture detection in different indoor storage

environments.

Index Terms—Channel state information (CSI); commodity

Wi-Fi; phase difference; wheat moisture detection; deep learning;

long short-term memory (LSTM).

I. INTRODUCTION

With the growth of the world population and the improve-

ment of people’s life quality, the demands on the quality

and quantity of cereal grains become more stringent, and are

increasing rapidly every year [1]–[5]. In fact, more than two

billion tons of grain are harvested annually [6]. How to store

safely the harvested grains for meeting the future grain demand

becomes highly important, especially for emergency demand

scenarios such as famine or natural disasters [7]. Two physical

factors, including moisture content and temperature, greatly

influence the safe storage of grains [6]. Compared with the

temperature factor, moisture content of cereal grains is more

important in different phases of the grain distribution chain

between the producer and consumer, which is one of the most

important factors that determine quality. It is also an important

factor in determining the proper time for harvesting, and has

great influence on safe storage and selling price.

The existing grain moisture content measurement tech-

niques include destructive methods [8] and non-destructive

methods [9]–[14]. The destructive methods, such as oven-

drying [8], are usually time-consuming, which requires oven

drying for specific time periods at a specific temperature. Thus,

the destructive methods are not proper for widely deployment

in the grain trade. On the other hand, non-destructive methods

use the electric properties or the magnetic field to determine

the grain moisture content, which require less man power and

are less time-consuming. However, the exiting non-destructive

methods still have some limitations. For example, the capac-

itive method has the shortcoming that the measured grain

moisture values are sensitive to the environment temperature

and the grain flow velocity in the dryer [9]. Moreover, although

the resistance method [10], the microwave method [11], [12],

and the neutron method [13] can obtain high accuracy and

and achieve fast detection, the detection devices for these non-

destructive methods entail a high cost.

In this paper, we propose to use Wi-Fi Channel state

information (CSI) for non-destructive grain moisture content

measurement. The CSI represents fine-grained channel in-

formation, thus reflecting the indoor channel features such

as shadowing fading, multipath effect, and distortion [15].

Moreover, CSI amplitude data [16], [17] and phase difference

data [18] have been shown to be highly stable, compared with

received signal strength (RSS). By modifying the open-source

device driver for off-the-shelf Wi-Fi network interface cards

(NIC), we can read CSI values for received Wi-Fi packets

from all the three antennas of the IEEE 802.11n NIC. For

example, using Intel Wi-Fi Link 5300 NIC [15] and Atheros

9380 NIC [19], we can extract 90 CSI values and 168 CSI

values for each received packet from the three antennas for

the 20 MHz Wi-Fi channel, respectively, while the NIC can

operate either in 2.4 GHz or 5 GHz. Moreover, the stable phase

difference data in 5 GHz can be obtain when the transmitter

and the receiver are equipped with the Intel Wi-Fi Link 5300

NIC, and are set in the inject model and monitoring model,

respectively [18].

Recently, CSI data has been employed for indoor lo-

calization and device-free sensing. For indoor localization,

DeepFi [16], [17] and FIFS [20] systems are based on CSI

amplitude values for fingerprinting based localization; the

PhaseFi [21], [22] and the BiLoc system [18] employ cali-

brated CSI phase data and bimodal CSI data as fingerprints

for indoor localization, respectively, using a deep autoen-

coder network. To improve localization accuracy and reduce

data storage, the CiFi system [23] and ResLoc system [24]

leverage CSI images and tensor for indoor localization, us-

ing a deep convolution network and deep residual sharing

learning, respectively. On the other hand, CSI data has been
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used for device-free sensing, including fall detection, activity

recognition, and breathing and heart rates monitoring. For

fall detection, RT-Fall [25] and WiFall [26] consider CSI

phase differences and amplitude to detect the fall of a patient,

respectively. For activity recognition, E-eyes system [27] and

The CARM system [28] can effectively recognize the different

activity in indoor environments. For breathing and heart rate

monitoring, PhaseBeat [29] and TensorBeat [30] exploit CSI

phase difference data to monitor a single or multiple persons’

breathing rates. Motivated by the existing CSI-based sensing

techniques, our previous work has used CSI amplitude and

phase difference data for wheat moisture detection, which is

a binary classification method for detection of anomaly wheat

moisture content [31].

In this paper, we focus on the multi-class wheat moisture

content detection using CSI amplitude and phase difference

data using 5GHz Wi-Fi, which is different from the anomaly

detection of wheat moisture with support vector machine

(SVM) based binary classification method [31]. In our exper-

iments, we collect CSI amplitude and phase difference data

on five different levels of wheat moisture content, ranging

from 10.6% to 14.9%, in order to achieve multi-class wheat

moisture content detection. We find that although most of the

wheat moisture content levels have different CSI amplitude

or phase difference values, there are still highly similar CSI

values for different wheat moisture content levels, which

brings a challenge for multi-class wheat moisture detection

using traditional machine learning methods such as SVM.

Thus, we exploit the deep long short-term memory (LSTM)

method to handle the above similar CSI values for achieving

a higher detection accuracy. In fact, the deep LSTM network

has a stronger data representation capability than traditional

machine learning methods [32], [33], which has been suc-

cessfully applied for speech recognition [34], human activity

recognition [35], and indoor localization [36].

In particular, we design DeepWMD, a Deep LSTM network

based multi-class Wheat Moisture Content Detection system.

The proposed DeepWMD system includes a data prepro-

cessing module to collect CSI amplitude or phase difference

data, and then normalize the amplitudes or phase differences

of CSI data. The DeepWMD system has an offline training

phase, where a two-layer deep LSTM network and a softmax

classifier are trained with collected data. The deep LSTM

network can achieve a stronger learning and representation

ability. Moreover, the softmax classifier uses the cross-entropy

to measure the difference between true labeled data and the

normalized output data, and employs L2 regularization to

avoid over-fitting. The back propagation through time (BPTT)

algorithm is incorporated for training the deep LSTM network.

For the online phase, an improved predication method is

developed for determining wheat moisture content level with

newly received CSI amplitude or phase difference data.

The main contributions of this paper are summarized as

follows:
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Fig. 1. CSI amplitude measurements for different antennas over subcarriers

in LOS environment.

• We validate the feasibility of using fine-grained CSI

amplitude and phase difference data for multi-class wheat

moisture detection. To the best of our knowledge, this is

the first work that leverages a deep LSTM network to

detect multi-class wheat moisture.

• We design the DeepWMD system, which collects CSI

amplitude and phase difference data to train the deep

LSTM network, respectively, and then employ newly

received CSI data for determining the moisture content of

cereal wheat. The DeepWMD system includes data pre-

processing, offline training, and online testing modules.

• We also implement DeepWMD on two off-the-shelf lap-

top computers with commodity Wi-Fi cards. The exper-

iment results demonstrate that the proposed DeepWMD

system can achieve considerably high classification ac-

curacy in both line-of-sight (LOS) and non-line-of-sign

(NLOS) scenarios.

The remainder of this paper is organized as follows. The

preliminaries are discussed in Section II. We present the

DeepWMD system design in Section III and evaluate its

performance in Section IV. Section V concludes this paper.

II. PRELIMINARIES AND FEASIBILITY

A. Channel State Information

Modern wireless communication systems such Wi-Fi and

LTE mainly adopt OFDM techniques in the Physical Layer

(PHY) [37]. The OFDM technique can separate the total

spectrum into multiple orthogonal subcarriers, where data can

be sent over subcarriers for addressing the frequency selection

fading in complex indoor scenarios [38]. For the OFDM

technique in Wi-Fi system, the subcarriers can considered as

narrowband flat fading channels. We define Hi as the CSI

value of the ith subcarrier, that is

Hi = |Hi| exp {j∠Hi} , (1)
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Fig. 2. CSI phase difference measurements for different antenna pairs over

subcarriers in LOS environment.
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Fig. 3. CSI amplitude measurements for five different wheat moisture
contents.

where |Hi| and ∠Hi are the amplitude and phase information

for the ith subcarrier, respectively.

Recently, CSI data has been leveraged for RF sensing such

as fall detection, activity recognition, breathing and heart

rate monitoring, and indoor localization [16], [29], [39]–[41],

because CSI data can offer fine-grained channel information,

reflecting indoor channel characteristics such as distortion,

multipath effect, and shadowing fading. For example, Fig. 1

and Fig. 2 show CSI amplitude and phase difference mea-

surements over subcarriers in the LOS environment using the

Atheros 9380 NIC, respectively. We can see that the CSI values

are highly different for different antennas over subcarriers,

which can be used for multi-class wheat moisture detection

using the deep LSTM network.

B. Our Experiment Observation

We first experimentally verify the feasibility of using CSI

amplitude and phase difference data for wheat moisture de-
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Fig. 4. CSI phase difference measurements for five different wheat moisture
contents.

tection, using the binary classification SVM based method

proposed in our prior work [31] for anomaly detection of

wheat moisture content. In this experiment, we collect CSI

amplitude and phase difference data that pass through wheat

over five moisture content levels, ranging from 10.6% to

14.9%. Fig. 3 shows the CSI amplitude measurements for five

different wheat moisture content levels. It is noticed that for

most of the wheat moisture content levels, the corresponding

CSI amplitude values are different. However, when the wheat

moisture contents are 11.3% and 14.1%, the CSI amplitude

values are close to each other, which leads to a big challenge

for distinguishing these two content levels.

Fig. 4 shows the CSI phase difference measurements for

five different wheat moisture content levels. As we can see,

different wheat moisture content levels has also different CSI

phase difference values. Only for wheat moisture content

levels at 11.3% and 12.7%, the CSI phase difference values

are close to each other. To deal with such cases, we propose to

leverage a deep LSTM network to achieve a higher multi-class

wheat moisture detection accuracy. This is because the deep

LSTM network has a stronger data representation capability

than traditional machine learning methods such as SVM.

III. THE DEEPWMD SYSTEM DESIGN

A. DeepWMD System Architecture

The DeepWMD system consists of two Wi-Fi devices, while

one is set as the transmitter and the other as the receiver.

Both of them are equipped with an Intel Wi-Fi link 5300 NIC.

Moreover, to obtain 5 GHz CSI amplitude and phase difference

data, the transmitter and receiver are configured in the injection

mode and the monitoring mode, respectively.

Fig. 5 shows the proposed DeepWMD system, including

data preprocessing, offline training, and online testing com-

ponents. First, the DeepWMD system calibrates the collected

wheat moisture data to obtain a clear CSI data sequence. Then,



for offline training, the DeepWMD system employs use cap-

tured data from five different moisture content levels to train a

deep LSTM network, while a softmax classifier is used in the

top layer for classification. The LSTM model can effectively

handle sequence based data, and also has a strong classification

capability for multi-class wheat moisture detection. For online

testing, the newly collected CSI data is fed into the well-

trained LSTM model to detect the closest wheat moisture level

among five known, different wheat moisture content levels.

B. Data Preprocessing

We measure CSI data from five wheat piles with different

moisture content levels. In this experiment, we transmit 1000

packets and collect the corresponding CSI amplitude and phase

difference data for each training moisture content level. Thus,

the size of training data is 5000 packets for all 5 training mois-

ture content levels. For online moisture estimation, DeepWDM

collects CSI data from 200 packets for each test moisture level.

In order to improve wheat moisture detection accuracy, the

input values should be limited in the range (0,1) for LSTM

classification. Thus we choose a zero mean normalization

approach (Z-score standardization) to normalize the CSI am-

plitudes and phase differences data. The normalized value Zi

is computed by

zi =
xi − µ

ρ
, (2)

where xi represents the raw CSI data in the ith packet, µ

and ρ2 are the mean and variance of the original data set,

respectively.

C. Offline Training

For offline training, we design a deep LSTM network with

two layers for multi-class wheat moisture detection using

features of different humidity levels from CSI data. The offline

training module consists of a deep LSTM network and a

softmax classifier.

1) Deep LSTM Network: The LSTM network is considered

as a type of recurrent neural network (RNN), which can

effectively handle long-range dependency in the dataset [32],

[33]. It also overcomes the issues of vanishing or exploding

gradients found in traditional RNNs. The LSTM network

can leverage temporal information of CSI data for multi-

class wheat moisture detection, where the hidden LSTM units

can map input CSI data to output label from five different

wheat moisture levels. As shown in Fig. 6, we design a two-

layer LSTM network to achieve a stronger CSI data learning

representation, thus improving the classification accuracy.

Moreover, we leverage the LSTM network to implement a

mapping from the normalized CSI data z = (z1, z2, ..., zT )
over different time slots from t = 1 to T , to an output label

Fig. 5. The system architecture of DeepWMD.

y, which is formulated by

it = σ(ωixzt + ωimht−1 + bi) (3)

ft = σ(ωfxzt + ωfmht−1 + bf ) (4)

ot = σ(ωoxzt + ωomht−1 + bo) (5)

gt = tanh(ωcxzt + ωcmht−1 + bc) (6)

ct = ft ⊙ ct−1 + it ⊙ gt (7)

ht = ot ⊙ tanh(ct), (8)

where the ω terms are the matrices of weights; the b terms

are the bias vectors; tanh is the hyperbolic tangent function,

σ is the sigmoid function; i, f , o, g c are the input gate,

forget gate, output gate, candidate values, and cell activation,

respectively; h denotes the cell output activation vector; and ⊙
is the element-wise product of vectors. For the LSTM network,

different gates control different data flows. For example, the

input gate decides how much new data will be utilized in the

current memory cell, and the forget gate decides how much

data will be removed from the old memory cell. The output

gate controls how much information will be output from the

current memory cell. Using these gates, the LSTM network

can effectively achieve multi-class wheat moisture detection



Fig. 6. The LSTM network architecture for offline training.

utilizing CSI data sequences.

2) Softmax Classifier: We use the softmax classifier to train

the CSI data in the two layer LSTM network, where the output

of the final cell’s hidden node in the second layer is as the

input of a fully connected layer. We denote the output of the

softmax function as s = [s1, s2, ..., sM ], which maps M input

data vector to M normalized output data. We can formulate

the softmax function by

si =
ek

T
f ωi

∑M

m=1
ek

T
f
ωm

, i = 1, 2, ...,M, (9)

where ωi is the weight vector of the fully connected layer,

kf is the output vector of the final cell’s hidden node in the

second layer, and (·)T is the transpose operator.

For training LSTM weights, we denote L(ω) be the loss

function with the weight parameter ω. To measure the dif-

ference between the normalized output data and the true

label data, a cross-entropy metric is employed. Moreover, we

adopt L2 regularization hyperparameter to reduce the space

of solutions, thus avoiding over-fitting. We formulate the loss

function by

max
θ

L(ω) = −
M
∑

i=1

yi log(si) +
η

2
∥ω∥

2

2
, (10)

where yi is the true labeled data for the ith wheat moisture

level, and η is the hyperparameter for L2 regularization. Based

on this loss function, we apply the Backpropagation Through

Time (BPTT) algorithm to the LSTM network to train the

parameters [32], where the Adam Optimizer is utilized to make

LSTM network computationally efficient [42].

D. Online Forecast

After preprocessing N newly testing input data, we leverage

the trained deep LSTM model with M training wheat moisture

levels for online prediction. We define β as the output results

TABLE I
MOISTURE CONTENT CALIBRATION

Wheat sample 1 2 3 4 5

Moisture content 10.6% 11.3% 12.7% 14.1% 14.9%

(a) The high speed universal disinte-
grator.

(b) The multi-function Infrared Mois-
ture Analyzer.

Fig. 7. The oven-drying method.

of the Softmax classifier of the deep LSTM model, that is

β =











β11 β12 · · · β1N

β21 β22 · · · β2N

...
...

. . .
...

βM1 βM2 · · · βMN











. (11)

To reduce the variance of the output results, we need to

obtain the average value of the N output results at every

moisture level. We denote βi as the average value of the output

data vector [βi1, βi2, ..., βiN ] in the ith row. Thus, we can

obtain the mean vector as β̄= [β̄1, β̄2, ..., β̄M ]. Finally, the

multi-class wheat moisture detection result D is obtained by

D = argmax
i∈{1,2,...,M}

β̄i. (12)

IV. EXPERIMENTS AND EVALUATION

In this section, we first introduce the moisture content

calibration operation, and then describe the prototype im-

plementation of the DeepWMD system and the details of

experimental settings. Finally, we evaluate the performance

of DeepWMD with experiments.

A. Moisture Level Calibration

We first calibrate the moisture content levels of five groups

of wheat samples using the oven-drying method [8], where

uses a high speed universal disintegrator and a multi-function

infrared moisture analyzer as shown in Fig. 7. The moisture

content levels are given in Table I for all the five wheat

samples.

B. DeepWDM Implementation

1) Hardware and Software: We leverage commodity lap-

tops and Wi-Fi cards to implement the DeepWMD system. The

prototype includes a Dell Latitude 5480 laptop with Intel(R)
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(b) CSI phase difference.

Fig. 9. Accuracy of multi-class wheat moisture detection for the LOS scenario.
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(a) CSI amplitude.
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(b) CSI phase difference.

Fig. 10. Accuracy of multi-class wheat moisture detection for the NLOS scenario.

(a) The LOS experiment scenario. (b) The NLOS experiment scenario.

Fig. 8. Experimental setup for DeepWMD.

processor Pentium dual-core CPU as a receiver, and a Dell

PP18l laptop as a transmitter, each installed with an Intel Link

5300 Wi-Fi NIC along with a modified device driver. Setting

the transmitter in the injection mode and the receiver in the

monitor mode, we inject packets from the transmitter using

one antenna to the receiver using three antennas, and collect

CSI data for each received packet.

For the system software, the laptops run the 32-bit Ubuntu

Linux14.04 operating system with kernel 4.1.10+. Then, we

employ an LSTM model with two layers using Tensorflow

to analyze CSI data and then implement multi-class wheat

moisture detection [43].

2) Experiment Scenario: We conduct experiments to eval-

uate the performance of DeepWMD system in both LOS

and NLOS scenarios in the research laboratory of Henan

University of technology, Zhengzhou, P.R. China. We place

the transmitter and the receiver at 3 m distance for both

the LOS 8(a) and NLOS 8(b) scenarios. In the LOS case,

the wheat is placed in the middle of the transmitter and the

receiver. We send ICMP ping packets from the transmitter to



the receiver at 1000 packets/s.

C. Performance Evaluation

We first evaluate the performance of DeepWMD in the

LOS scenario. Fig. 9 shows the accuracy of multi-class wheat

moisture detection for the LOS scenario using CSI amplitude

(a) and phase difference data (b), respectively. Using CSI

amplitude, we can notice that the DeepWMD can obtain the

highest classification accuracy for wheat moisture detection,

when the wheat moisture content level is 10.6%. For the

wheat moisture content level of 14.1% the lowest classification

accuracy for wheat moisture detection is 92.23%. Moreover,

the average accuracy of five cases is about 97.53%. On the

other hand, when CSI phase difference data is employed,

the average accuracy of wheat moisture detection is about

99.42%, which is higher than CSI amplitude data. In addition,

the classification accuracy even reaches to 100% in three

cases, 10.6%, 11.3% and 14.1%, respectively. Thus, by using

using CSI amplitude or phase difference data, the proposed

DeepWMD method can obtain a high classification accuracy

for LOS scenario based on the deep LSTM approach.

We then investigate the performance of the proposed Deep-

WMD system in the NLOS scenario. Fig. 10 show the

accuracy of classification for the NLOS scenario using CSI

amplitude (a) and phase difference data (b), respectively. We

can notice that the classification accuracy is above 90% for

all the wheat moisture content level using CSI amplitude.

Moreover, the average detection accuracy is about 96.9%.

On the other hand, the detection accuracy is above 95%

for all the wheat moisture content level using CSI phase

difference, and the average classification accuracy is about

99%, which demonstrates that CSI phase difference can obtain

better performance than CSI amplitude, because CSI phase

difference can well capture the change of wireless channel.

D. Impact of System Parameters

For the impact of parameters on the performance of multi-

class wheat moisture detection, we mainly focus on the ratio

of training data over test data, the number of layers in LSTM

network, and different antennas in LOS and NLOS scenarios.

Fig. 11 shows the average detection accuracy for different

ratios of training data over test data in LOS scenario. As we

can see, when we use 80% CSI amplitude or phase difference

data for training, the best accuracies for CSI amplitude and

phase difference are 97.5% and 99.4%, respectively. Moreover,

using only 20% CSI data for training, we obtain that the

average accuracies for CSI amplitude and phase difference

are 95.0% and 93.9%, respectively, which are still acceptable

results. On the other hand, Fig. 12 shows the average detection

accuracy for different ratios of training data over test data

in NLOS scenario. We can see that when the ratio is above

0.6, the average accuracy for CSI amplitude is above 96.%.

Moreover, when the ratio is above 0.4, the average accuracy

for CSI amplitude is above 98.0%.
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Fig. 11. Average detection accuracy for different ratios of training data over

test data in LOS scenario.

Fig. 13 shows the average detection accuracy for different

number of layers in LSTM network over test data in LOS

scenario. As we can see, with the increase of the number of

layers from 1 to 2, the average detection accuracy increases

from 96.6% to 97.5% using CSI amplitude. When we employ

CSI phase difference, the average accuracy increases from 99.1

% to 99.4%. On the other hand, Fig. 14 shows the average

detection accuracy for different number of layers in LSTM

network over test data in NLOS scenario. The multi-class

detection accuracy for NLOS environment is decreased, com-

paring with for LOS environment. In fact, with the increase

of the number of layers from 1 to 2, the average detection

accuracy will increase from 96.2% to 96.8% and from 98.1%

to 99.0% using CSI amplitude and phase difference data,

respectively. Thus, increasing number of layers in LSTM

network can obtain high multi-class detection performance for

LOS and NLOS environments.

Fig. 15 shows the average detection accuracy for different

antennas over test data in LOS scenario, where for phase

difference, the antenna 1, 2, and 3 mean the antenna pair

1 and 2, the antenna pair 2 and 3, and the antenna pair 3

and 1, respectively. We can find that for different antennas

or antenna pairs, the multi-class detection performance is

almost same in LOS environment. Fig. 16 shows the average

detection accuracy for different antennas over test data in

NLOS scenario, where the phase difference has the same

setting as Fig. 15. We can see that for CSI phase difference

data, the highest detection accuracy is obtained by using

antenna pair 1 and 2. We also find that for CSI amplitude

data, the antenna 2 can achieve the best performance. In fact,

the multi-class detection performance is almost same in NLOS

environment. Thus, we only select the antenna 1 for the CSI

amplitude method and antenna pair 1 and 2 for the CSI phase

difference method in the above experiments.
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Fig. 12. Average detection accuracy for different ratios of training data over

test data in NLOS scenario.
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Fig. 13. Average detection accuracy for different number of layers in LSTM

network over test data in LOS scenario.
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Fig. 14. Average detection accuracy for different number of layers in LSTM

network over test data in NLOS scenario.
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Fig. 15. Average detection accuracy for different antennas over test data in

LOS scenario.
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Fig. 16. Average detection accuracy for different antennas over test data in

NLOS scenario.

V. CONCLUSIONS

In this paper, we proposed DeepWMD, a deep LSTM

network based system for multi-class wheat moisture de-

tection. The proposed system exploited CSI amplitude and

phase difference data from comodity Wi-Fi devices for wheat

mosture content detection. We designed and implemented

the DeepWMD system with commodity Wi-Fi devices in

the 5GHz band, which consisting of data preprocessing of

collected CSI data, offline training, and online testing modules.

Our experimental study demonstrated the efficacy of the

proposed DeepWMD system, which was shown to achieve

high-precision multi-class wheat moisture detection for both

LOS and NLOS scenarios.
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