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Abstract—Moisture content of cereal grains is a highly im-
portant factor in safe storage and food processing. The existing
detection methods are either time-consuming, sensitive to the
environment, or have a high cost. In this paper, we propose
DeepWMD, a deep LSTM network based system for multi-class
wheat moisture detection. We first collect CSI amplitude and
phase difference data to detect wheat moisture content. Then,
we design the DeepWMD system with commodity Wi-Fi devices
in the SGHz band, including data preprocessing of collected
CSI data, offline training, and online testing. Our experimental
results verify the efficacy of the proposed DeepWMD system,
and demonstrates that DeepWDM can achieve high-precision
multi-class wheat moisture detection in different indoor storage
environments.

Index Terms—Channel state information (CSI); commodity
Wi-Fi; phase difference; wheat moisture detection; deep learning;
long short-term memory (LSTM).

I. INTRODUCTION

With the growth of the world population and the improve-
ment of people’s life quality, the demands on the quality
and quantity of cereal grains become more stringent, and are
increasing rapidly every year [1]-[5]. In fact, more than two
billion tons of grain are harvested annually [6]. How to store
safely the harvested grains for meeting the future grain demand
becomes highly important, especially for emergency demand
scenarios such as famine or natural disasters [7]. Two physical
factors, including moisture content and temperature, greatly
influence the safe storage of grains [6]. Compared with the
temperature factor, moisture content of cereal grains is more
important in different phases of the grain distribution chain
between the producer and consumer, which is one of the most
important factors that determine quality. It is also an important
factor in determining the proper time for harvesting, and has
great influence on safe storage and selling price.

The existing grain moisture content measurement tech-
niques include destructive methods [8] and non-destructive
methods [9]-[14]. The destructive methods, such as oven-
drying [8], are usually time-consuming, which requires oven
drying for specific time periods at a specific temperature. Thus,
the destructive methods are not proper for widely deployment
in the grain trade. On the other hand, non-destructive methods
use the electric properties or the magnetic field to determine
the grain moisture content, which require less man power and

are less time-consuming. However, the exiting non-destructive
methods still have some limitations. For example, the capac-
itive method has the shortcoming that the measured grain
moisture values are sensitive to the environment temperature
and the grain flow velocity in the dryer [9]. Moreover, although
the resistance method [10], the microwave method [11], [12],
and the neutron method [13] can obtain high accuracy and
and achieve fast detection, the detection devices for these non-
destructive methods entail a high cost.

In this paper, we propose to use Wi-Fi Channel state
information (CSI) for non-destructive grain moisture content
measurement. The CSI represents fine-grained channel in-
formation, thus reflecting the indoor channel features such
as shadowing fading, multipath effect, and distortion [15].
Moreover, CSI amplitude data [16], [17] and phase difference
data [18] have been shown to be highly stable, compared with
received signal strength (RSS). By modifying the open-source
device driver for off-the-shelf Wi-Fi network interface cards
(NIC), we can read CSI values for received Wi-Fi packets
from all the three antennas of the IEEE 802.11n NIC. For
example, using Intel Wi-Fi Link 5300 NIC [15] and Atheros
9380 NIC [19], we can extract 90 CSI values and 168 CSI
values for each received packet from the three antennas for
the 20 MHz Wi-Fi channel, respectively, while the NIC can
operate either in 2.4 GHz or 5 GHz. Moreover, the stable phase
difference data in 5 GHz can be obtain when the transmitter
and the receiver are equipped with the Intel Wi-Fi Link 5300
NIC, and are set in the inject model and monitoring model,
respectively [18].

Recently, CSI data has been employed for indoor lo-
calization and device-free sensing. For indoor localization,
DeepFi [16], [17] and FIFS [20] systems are based on CSI
amplitude values for fingerprinting based localization; the
PhaseFi [21], [22] and the BilLoc system [18] employ cali-
brated CSI phase data and bimodal CSI data as fingerprints
for indoor localization, respectively, using a deep autoen-
coder network. To improve localization accuracy and reduce
data storage, the CiFi system [23] and ResLoc system [24]
leverage CSI images and tensor for indoor localization, us-
ing a deep convolution network and deep residual sharing
learning, respectively. On the other hand, CSI data has been
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used for device-free sensing, including fall detection, activity
recognition, and breathing and heart rates monitoring. For
fall detection, RT-Fall [25] and WiFall [26] consider CSI
phase differences and amplitude to detect the fall of a patient,
respectively. For activity recognition, E-eyes system [27] and
The CARM system [28] can effectively recognize the different
activity in indoor environments. For breathing and heart rate
monitoring, PhaseBeat [29] and TensorBeat [30] exploit CSI
phase difference data to monitor a single or multiple persons’
breathing rates. Motivated by the existing CSI-based sensing
techniques, our previous work has used CSI amplitude and
phase difference data for wheat moisture detection, which is
a binary classification method for detection of anomaly wheat
moisture content [31].

In this paper, we focus on the multi-class wheat moisture
content detection using CSI amplitude and phase difference
data using 5GHz Wi-Fi, which is different from the anomaly
detection of wheat moisture with support vector machine
(SVM) based binary classification method [31]. In our exper-
iments, we collect CSI amplitude and phase difference data
on five different levels of wheat moisture content, ranging
from 10.6% to 14.9%, in order to achieve multi-class wheat
moisture content detection. We find that although most of the
wheat moisture content levels have different CSI amplitude
or phase difference values, there are still highly similar CSI
values for different wheat moisture content levels, which
brings a challenge for multi-class wheat moisture detection
using traditional machine learning methods such as SVM.
Thus, we exploit the deep long short-term memory (LSTM)
method to handle the above similar CSI values for achieving
a higher detection accuracy. In fact, the deep LSTM network
has a stronger data representation capability than traditional
machine learning methods [32], [33], which has been suc-
cessfully applied for speech recognition [34], human activity
recognition [35], and indoor localization [36].

In particular, we design DeepWMD, a Deep LSTM network
based multi-class Wheat Moisture Content Detection system.
The proposed DeepWMD system includes a data prepro-
cessing module to collect CSI amplitude or phase difference
data, and then normalize the amplitudes or phase differences
of CSI data. The DeepWMD system has an offline training
phase, where a two-layer deep LSTM network and a softmax
classifier are trained with collected data. The deep LSTM
network can achieve a stronger learning and representation
ability. Moreover, the softmax classifier uses the cross-entropy
to measure the difference between true labeled data and the
normalized output data, and employs L2 regularization to
avoid over-fitting. The back propagation through time (BPTT)
algorithm is incorporated for training the deep LSTM network.
For the online phase, an improved predication method is
developed for determining wheat moisture content level with
newly received CSI amplitude or phase difference data.

The main contributions of this paper are summarized as
follows:
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Fig. 1. CSI amplitude measurements for different antennas over subcarriers

in LOS environment.

o We validate the feasibility of using fine-grained CSI
amplitude and phase difference data for multi-class wheat
moisture detection. To the best of our knowledge, this is
the first work that leverages a deep LSTM network to
detect multi-class wheat moisture.

o We design the DeepWMD system, which collects CSI
amplitude and phase difference data to train the deep
LSTM network, respectively, and then employ newly
received CSI data for determining the moisture content of
cereal wheat. The DeepWMD system includes data pre-
processing, offline training, and online testing modules.

¢ We also implement DeepWMD on two off-the-shelf lap-
top computers with commodity Wi-Fi cards. The exper-
iment results demonstrate that the proposed DeepWMD
system can achieve considerably high classification ac-
curacy in both line-of-sight (LOS) and non-line-of-sign
(NLOS) scenarios.

The remainder of this paper is organized as follows. The
preliminaries are discussed in Section II. We present the
DeepWMD system design in Section III and evaluate its
performance in Section IV. Section V concludes this paper.

II. PRELIMINARIES AND FEASIBILITY
A. Channel State Information

Modern wireless communication systems such Wi-Fi and
LTE mainly adopt OFDM techniques in the Physical Layer
(PHY) [37]. The OFDM technique can separate the total
spectrum into multiple orthogonal subcarriers, where data can
be sent over subcarriers for addressing the frequency selection
fading in complex indoor scenarios [38]. For the OFDM
technique in Wi-Fi system, the subcarriers can considered as
narrowband flat fading channels. We define H; as the CSI
value of the ith subcarrier, that is

H; = |H;|exp{jZH;}, (D
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Fig. 2. CSI phase difference measurements for different antenna pairs over

subcarriers in LOS environment.
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Fig. 3.  CSI amplitude measurements for five different wheat moisture
contents.

where |H;| and ZH; are the amplitude and phase information
for the ith subcarrier, respectively.

Recently, CSI data has been leveraged for RF sensing such
as fall detection, activity recognition, breathing and heart
rate monitoring, and indoor localization [16], [29], [39]-[41],
because CSI data can offer fine-grained channel information,
reflecting indoor channel characteristics such as distortion,
multipath effect, and shadowing fading. For example, Fig. 1
and Fig. 2 show CSI amplitude and phase difference mea-
surements over subcarriers in the LOS environment using the
Atheros 9380 NIC, respectively. We can see that the CSI values
are highly different for different antennas over subcarriers,
which can be used for multi-class wheat moisture detection
using the deep LSTM network.

B. Our Experiment Observation

We first experimentally verify the feasibility of using CSI
amplitude and phase difference data for wheat moisture de-
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Fig. 4. CSI phase difference measurements for five different wheat moisture
contents.

tection, using the binary classification SVM based method
proposed in our prior work [31] for anomaly detection of
wheat moisture content. In this experiment, we collect CSI
amplitude and phase difference data that pass through wheat
over five moisture content levels, ranging from 10.6% to
14.9%. Fig. 3 shows the CSI amplitude measurements for five
different wheat moisture content levels. It is noticed that for
most of the wheat moisture content levels, the corresponding
CSI amplitude values are different. However, when the wheat
moisture contents are 11.3% and 14.1%, the CSI amplitude
values are close to each other, which leads to a big challenge
for distinguishing these two content levels.

Fig. 4 shows the CSI phase difference measurements for
five different wheat moisture content levels. As we can see,
different wheat moisture content levels has also different CSI
phase difference values. Only for wheat moisture content
levels at 11.3% and 12.7%, the CSI phase difference values
are close to each other. To deal with such cases, we propose to
leverage a deep LSTM network to achieve a higher multi-class
wheat moisture detection accuracy. This is because the deep
LSTM network has a stronger data representation capability
than traditional machine learning methods such as SVM.

III. THE DEEPWMD SYSTEM DESIGN

A. DeepWMD System Architecture

The DeepWMD system consists of two Wi-Fi devices, while
one is set as the transmitter and the other as the receiver.
Both of them are equipped with an Intel Wi-Fi link 5300 NIC.
Moreover, to obtain 5 GHz CSI amplitude and phase difference
data, the transmitter and receiver are configured in the injection
mode and the monitoring mode, respectively.

Fig. 5 shows the proposed DeepWMD system, including
data preprocessing, offline training, and online testing com-
ponents. First, the DeepWMD system calibrates the collected
wheat moisture data to obtain a clear CSI data sequence. Then,



for offline training, the DeepWMD system employs use cap-
tured data from five different moisture content levels to train a
deep LSTM network, while a softmax classifier is used in the
top layer for classification. The LSTM model can effectively
handle sequence based data, and also has a strong classification
capability for multi-class wheat moisture detection. For online
testing, the newly collected CSI data is fed into the well-
trained LSTM model to detect the closest wheat moisture level
among five known, different wheat moisture content levels.

B. Data Preprocessing

We measure CSI data from five wheat piles with different
moisture content levels. In this experiment, we transmit 1000
packets and collect the corresponding CSI amplitude and phase
difference data for each training moisture content level. Thus,
the size of training data is 5000 packets for all 5 training mois-
ture content levels. For online moisture estimation, DeepWDM
collects CSI data from 200 packets for each test moisture level.

In order to improve wheat moisture detection accuracy, the
input values should be limited in the range (0,1) for LSTM
classification. Thus we choose a zero mean normalization
approach (Z-score standardization) to normalize the CSI am-
plitudes and phase differences data. The normalized value Z;
is computed by

Ty — [

P

where x; represents the raw CSI data in the ¢th packet,
and p? are the mean and variance of the original data set,
respectively.

C. Offline Training

For offline training, we design a deep LSTM network with
two layers for multi-class wheat moisture detection using
features of different humidity levels from CSI data. The offline
training module consists of a deep LSTM network and a
softmax classifier.

1) Deep LSTM Network: The LSTM network is considered
as a type of recurrent neural network (RNN), which can
effectively handle long-range dependency in the dataset [32],
[33]. It also overcomes the issues of vanishing or exploding
gradients found in traditional RNNs. The LSTM network
can leverage temporal information of CSI data for multi-
class wheat moisture detection, where the hidden LSTM units
can map input CSI data to output label from five different
wheat moisture levels. As shown in Fig. 6, we design a two-
layer LSTM network to achieve a stronger CSI data learning
representation, thus improving the classification accuracy.

Moreover, we leverage the LSTM network to implement a
mapping from the normalized CSI data z = (z1, 22, ..., 21)
over different time slots from ¢ = 1 to 7, to an output label
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Fig. 5. The system architecture of DeepWMD.

y, which is formulated by

it = 0(Wiz 2t + Wimhe—1 + b;) (3)
fi = o0(wpzze + wrmhi—1 + by) “)
0t = 0(Wouzt + Womht—1 + bo) ®)
gt = tanh(wez 2t + Wemhi—1 + be) (6)
¢t =[tOc—1+1it Og )
ht = oy ® tanh(c;), )

where the w terms are the matrices of weights; the b terms
are the bias vectors; tanh is the hyperbolic tangent function,
o is the sigmoid function; ¢, f, o, g ¢ are the input gate,
forget gate, output gate, candidate values, and cell activation,
respectively; h denotes the cell output activation vector; and ®
is the element-wise product of vectors. For the LSTM network,
different gates control different data flows. For example, the
input gate decides how much new data will be utilized in the
current memory cell, and the forget gate decides how much
data will be removed from the old memory cell. The output
gate controls how much information will be output from the
current memory cell. Using these gates, the LSTM network
can effectively achieve multi-class wheat moisture detection
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utilizing CSI data sequences.

2) Softmax Classifier: We use the softmax classifier to train
the CSI data in the two layer LSTM network, where the output
of the final cell’s hidden node in the second layer is as the
input of a fully connected layer. We denote the output of the
softmax function as s = [s1, Sa, ..., Sps], Which maps M input
data vector to M normalized output data. We can formulate
the softmax function by

ey M, 9

where w; is the weight vector of the fully connected layer,
k; is the output vector of the final cell’s hidden node in the
second layer, and (-)7 is the transpose operator.

For training LSTM weights, we denote L(w) be the loss
function with the weight parameter w. To measure the dif-
ference between the normalized output data and the true
label data, a cross-entropy metric is employed. Moreover, we
adopt Lo regularization hyperparameter to reduce the space
of solutions, thus avoiding over-fitting. We formulate the loss
function by

M
mpx L(w) = =3 pilog(sn) + gllells, (10

where y; is the true labeled data for the ith wheat moisture
level, and 7 is the hyperparameter for Lo regularization. Based
on this loss function, we apply the Backpropagation Through
Time (BPTT) algorithm to the LSTM network to train the
parameters [32], where the Adam Optimizer is utilized to make
LSTM network computationally efficient [42].

D. Online Forecast

After preprocessing N newly testing input data, we leverage
the trained deep LSTM model with M training wheat moisture
levels for online prediction. We define 3 as the output results

TABLE I
MOISTURE CONTENT CALIBRATION

Wheat sample 1 2 3 4 5
10.6% 113% 127% 141% 14.9%

Moisture content

(a) The high speed universal disinte- (b) The multi-function Infrared Mois-
grator. ture Analyzer.

Fig. 7. The oven-drying method.

of the Softmax classifier of the deep LSTM model, that is

B P2 Bin
B21 a2 Ban

=\ . ) : (11)
51;41 51;42 BuN

To reduce the variance of the output results, we need to
obtain the average value of the N output results at every
moisture level. We denote [3; as the average value of the output
data vector [(3;1, Bi2, ..., Bin] in the ith row. Thus, we can
obtain the mean vector as B: (51, Bg, - BM]. Finally, the
multi-class wheat moisture detection result D is obtained by

D = argmax J;. (12)

ie{1,2,..., M}

IV. EXPERIMENTS AND EVALUATION

In this section, we first introduce the moisture content
calibration operation, and then describe the prototype im-
plementation of the DeepWMD system and the details of
experimental settings. Finally, we evaluate the performance
of DeepWMD with experiments.

A. Moisture Level Calibration

We first calibrate the moisture content levels of five groups
of wheat samples using the oven-drying method [8], where
uses a high speed universal disintegrator and a multi-function
infrared moisture analyzer as shown in Fig. 7. The moisture
content levels are given in Table I for all the five wheat
samples.

B. DeepWDM Implementation

1) Hardware and Software: We leverage commodity lap-
tops and Wi-Fi cards to implement the DeepWMD system. The
prototype includes a Dell Latitude 5480 laptop with Intel(R)
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(a) The LOS experiment scenario.

(b) The NLOS experiment scenario.

Fig. 8. Experimental setup for DeepWMD.

processor Pentium dual-core CPU as a receiver, and a Dell
PP18I1 laptop as a transmitter, each installed with an Intel Link
5300 Wi-Fi NIC along with a modified device driver. Setting

the transmitter in the injection mode and the receiver in the
monitor mode, we inject packets from the transmitter using
one antenna to the receiver using three antennas, and collect
CSI data for each received packet.

For the system software, the laptops run the 32-bit Ubuntu
Linux14.04 operating system with kernel 4.1.10+. Then, we
employ an LSTM model with two layers using Tensorflow
to analyze CSI data and then implement multi-class wheat
moisture detection [43].

2) Experiment Scenario: We conduct experiments to eval-
uate the performance of DeepWMD system in both LOS
and NLOS scenarios in the research laboratory of Henan
University of technology, Zhengzhou, P.R. China. We place
the transmitter and the receiver at 3 m distance for both
the LOS 8(a) and NLOS 8(b) scenarios. In the LOS case,
the wheat is placed in the middle of the transmitter and the
receiver. We send ICMP ping packets from the transmitter to



the receiver at 1000 packets/s.

C. Performance Evaluation

We first evaluate the performance of DeepWMD in the
LOS scenario. Fig. 9 shows the accuracy of multi-class wheat
moisture detection for the LOS scenario using CSI amplitude
(a) and phase difference data (b), respectively. Using CSI
amplitude, we can notice that the DeepWMD can obtain the
highest classification accuracy for wheat moisture detection,
when the wheat moisture content level is 10.6%. For the
wheat moisture content level of 14.1% the lowest classification
accuracy for wheat moisture detection is 92.23%. Moreover,
the average accuracy of five cases is about 97.53%. On the
other hand, when CSI phase difference data is employed,
the average accuracy of wheat moisture detection is about
99.42%, which is higher than CSI amplitude data. In addition,
the classification accuracy even reaches to 100% in three
cases, 10.6%, 11.3% and 14.1%, respectively. Thus, by using
using CSI amplitude or phase difference data, the proposed
DeepWMD method can obtain a high classification accuracy
for LOS scenario based on the deep LSTM approach.

We then investigate the performance of the proposed Deep-
WMD system in the NLOS scenario. Fig. 10 show the
accuracy of classification for the NLOS scenario using CSI
amplitude (a) and phase difference data (b), respectively. We
can notice that the classification accuracy is above 90% for
all the wheat moisture content level using CSI amplitude.
Moreover, the average detection accuracy is about 96.9%.
On the other hand, the detection accuracy is above 95%
for all the wheat moisture content level using CSI phase
difference, and the average classification accuracy is about
99%, which demonstrates that CSI phase difference can obtain
better performance than CSI amplitude, because CSI phase
difference can well capture the change of wireless channel.

D. Impact of System Parameters

For the impact of parameters on the performance of multi-
class wheat moisture detection, we mainly focus on the ratio
of training data over test data, the number of layers in LSTM
network, and different antennas in LOS and NLOS scenarios.

Fig. 11 shows the average detection accuracy for different
ratios of training data over test data in LOS scenario. As we
can see, when we use 80% CSI amplitude or phase difference
data for training, the best accuracies for CSI amplitude and
phase difference are 97.5% and 99.4%, respectively. Moreover,
using only 20% CSI data for training, we obtain that the
average accuracies for CSI amplitude and phase difference
are 95.0% and 93.9%, respectively, which are still acceptable
results. On the other hand, Fig. 12 shows the average detection
accuracy for different ratios of training data over test data
in NLOS scenario. We can see that when the ratio is above
0.6, the average accuracy for CSI amplitude is above 96.%.
Moreover, when the ratio is above 0.4, the average accuracy
for CSI amplitude is above 98.0%.
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Fig. 11.  Average detection accuracy for different ratios of training data over

test data in LOS scenario.

Fig. 13 shows the average detection accuracy for different
number of layers in LSTM network over test data in LOS
scenario. As we can see, with the increase of the number of
layers from 1 to 2, the average detection accuracy increases
from 96.6% to 97.5% using CSI amplitude. When we employ
CSI phase difference, the average accuracy increases from 99.1
% to 99.4%. On the other hand, Fig. 14 shows the average
detection accuracy for different number of layers in LSTM
network over test data in NLOS scenario. The multi-class
detection accuracy for NLOS environment is decreased, com-
paring with for LOS environment. In fact, with the increase
of the number of layers from 1 to 2, the average detection
accuracy will increase from 96.2% to 96.8% and from 98.1%
to 99.0% using CSI amplitude and phase difference data,
respectively. Thus, increasing number of layers in LSTM
network can obtain high multi-class detection performance for
LOS and NLOS environments.

Fig. 15 shows the average detection accuracy for different
antennas over test data in LOS scenario, where for phase
difference, the antenna 1, 2, and 3 mean the antenna pair
1 and 2, the antenna pair 2 and 3, and the antenna pair 3
and 1, respectively. We can find that for different antennas
or antenna pairs, the multi-class detection performance is
almost same in LOS environment. Fig. 16 shows the average
detection accuracy for different antennas over test data in
NLOS scenario, where the phase difference has the same
setting as Fig. 15. We can see that for CSI phase difference
data, the highest detection accuracy is obtained by using
antenna pair 1 and 2. We also find that for CSI amplitude
data, the antenna 2 can achieve the best performance. In fact,
the multi-class detection performance is almost same in NLOS
environment. Thus, we only select the antenna 1 for the CSI
amplitude method and antenna pair 1 and 2 for the CSI phase
difference method in the above experiments.
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V. CONCLUSIONS

In this paper, we proposed DeepWMD, a deep LSTM
network based system for multi-class wheat moisture de-
tection. The proposed system exploited CSI amplitude and
phase difference data from comodity Wi-Fi devices for wheat
mosture content detection. We designed and implemented
the DeepWMD system with commodity Wi-Fi devices in
the SGHz band, which consisting of data preprocessing of
collected CSI data, offline training, and online testing modules.
Our experimental study demonstrated the efficacy of the
proposed DeepWMD system, which was shown to achieve
high-precision multi-class wheat moisture detection for both
LOS and NLOS scenarios.
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