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Abstract—With the fast increasing demands of location-based
service and proliferation of smartphones and other mobile
devices, accurate indoor localization has attracted great interest.
In this paper, we present DeepML, a deep long short-term
memory (LSTM) based system for indoor localization using the
smartphone magnetic and light sensors. We verify the feasibility
of using bimodal magnetic and light data for indoor localization
through experiments. We then design the DeepML system, which
first builds bimodal images by data preprocessing, and then
trains a deep LSTM network to extract the location features.
Newly received magnetic field and light intensity data is then
exploited for estimating the location of the mobile device using
an improved probabilistic method. Our extensive experiments
verify the effectiveness of the proposed DeepML system.

Index Terms—Bimodal data; deep learning; deep long short-
term memory (LSTM); indoor localization; light intensity; mag-
netic field.

I. INTRODUCTION

Indoor localization has been a research hotspot for

decades [1]. However, unlike outdoor GPS navigation systems,

there are still no robust indoor localization systems widely

adopted by now. In fact, people still cannot use the popular

Google Maps to navigate to a meeting room in an unfamiliar

office building. Recently, there is considerable new interest in

indoor localization techniques, driven by the proliferation of

smartphones and other mobile devices, which, on one hand,

makes it possible to enable many location based services, and

on the other hand, provides an array of embedded sensors that

can be exploited for indoor localization. Specifically, many

researchers focus on WiFi [2] based fingerprinting indoor

localization using received signal strength (RSS) [3], [4] or

Channel State information (CSI) [5]–[11]. These methods

can achieve robust meter-level accuracy but cannot work

effectively when the WiFi signal is weak or not available in

some scenarios, such as underground parking areas.

In contrast, the geomagnetic field is omnipresent and thus

can be considered as a ubiquitous signature for indoor localiza-

tion. In the past, geomagnetism basically needs to be used with

special equipments for robot tracking [12] and navigation [13].

In [13], researchers employ the leader-follower model in a nav-

igation system, where customized magnetic sensing devices

are used for blind people. On the other hand, for magnetic

field based localization with smartphones, the authors in [14]

use mobile phones to measure magnetic field intensity and

use them as magnetic signatures for identifying locations

and rooms. However, according to its strategy, this system

depends heavily on pillars in the building and only achieves

room-level accuracy. Recently, the Magicol system combines

magnetism and WiFi RSSI to build a fingerprint map, which is

designed with a particle-filtering based inertial measurement

unit (IMU) engine for localization and tracking [15]. Other

systems based on magnetic sequences matching are proposed

for improving tracking accuracy [16]. The above magnetic

field based, smartphone localization systems require the user

to walk around for data collection and online localization.

In addition, visible light is also omnipresent and has been

exploited for localization, due to the density and stability of

lighting infrastructures. For example, visible light intensity

in an underground park area usually does not change over

time, and is not influenced by the outdoor sunlight, which

can be thus leveraged for indoor localization. Existing visible

light localization systems, such as polarized LEDs [17] and

collocated LEDs [18], require customized LED drivers to emit

identity beacons, which increases the system cost. To eliminate

the need for customized LEDs, LiTell system [19] extracts

high-frequency features from fluorescent light for localization.

Other visible light localization systems for smartphones are

based on particle-filtering and light intensity data sequence,

for which there is still room for improvement by exploiting

movement sensors [20], [21].

In this paper, we exploit bimodal magnetic field and am-

bient light data for indoor localization with a deep learning

approach. The proposed scheme is motivated by the following

observations. First, the magnetic field and light intensity at

each location are highly stable and robust over time. Second,

magnetic field and light intensity are complementary to each

other at many locations. For example, magnetic field does not

perform well at some locations, while these locations may have

different light intensities, which can be used to distinguish

them. Using the bimodal data can enhance magnetic field

based indoor localization schemes. Third, using bimodal data

with magnetic field and light intensity can increase the size of

input data, thus improving location diversity and recognition

performance. Moreover, we incorporate a deep long-short term

memory (LSTM) network to train the bimodal data, which is

a popular recurrent neural network (RNN) to deal with long-

range dependencies [22], [23]. The deep LSTM network has

been successfully employed for speech recognition [24] and

human activity recognition [25]. Compared to conventional

fingerprinting based methods, the deep LSTM network only

requires one group of weights trained for all training locations,
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instead of creating a database for each training location. This

feature can accelerate location prediction and reduce the data

storage requirement.

In particular, we design DeepML, a Deep LSTM network

based indoor localization system using smartphone Magnetic

and Light sensors. The proposed DeepML system includes

a data preprocessing module for collecting magnetic field

and light intensity data, and to create bimodal image data

with a sliding window method. DeepML also has an offline

training phase that includes feature extraction, the deep LSTM

network, and a softmax classifier. A fully connected layer is

implemented for extracting features from bimodal image data.

The deep LSTM network consists of two layers of LSTM

networks to achieve a stonger learning and representation

ability. The softmax classifier employs the cross-entropy to

measure the difference between true labeled data and the

normalized output data, as well as the L2 regularization hyper-

parameter to avoid over-fitting. The back propagation through

time (BPTT) algorithm, which is a gradient-based technique

for training certain types of RNNs, is used for training the deep

LSTM network. For online location prediction, an improved

probabilistic method is leveraged for estimating the location

of the target smartphone using newly received magnetic field

and light intensity data.

The main contributions of this paper include:

∙ We experimentally validate the feasibility of using mag-

netic field and light intensity data for indoor localization.

We show that both data are stable over time, and the

fusion of magnetic field and light intensity data can

improve location diversity and accuracy. To the best of

our knowledge, this is the first work to employ bimodal

magnetic field and light intensity data for indoor local-

ization with a deep LSTM network approach.

∙ We present the DeepML system design, which first builds

bimodal images to train the deep LSTM network, and

then employs newly received magnetic field and light data

for estimating the location of the target mobile device.

∙ We implement the proposed DeepML system with An-

droid smartphones, and validate its performance in two

typical indoor environments with extensive experiments.

DeepML outperforms the baseline scheme that uses mag-

netic field data only with considerable gains in all the

experiments.

In the remainder of the paper, we present the preliminaries

and motivation in Section II. We describe the DeepML design

in Section III and our performance evaluation in Section IV.

Section V concludes this paper.

II. PRELIMINARIES AND MOTIVATION

In this section, we examine the characteristic of magnetic

field and light intensity data, especially on their stability and

location diversity. Then, we show how to fuse magnetic field

and light intensity data for detection of location features.

A. Magnetic Field Preliminaries

The magnetic field of the earth, i.e., the geomagnetic field,

is ubiquitous on the surface of the earth, with magnitude

ranging from 0.25 to 0.65 Gauss. The magnetometer in most

smartphones can measure the magnetic field, in the form of a

vector with three elements (𝑚𝑥, 𝑚𝑦 , 𝑚𝑧), which describes

the magnetic field component for north, east, and vertical

directions, respectively. For studying the stability and location

diversity of magnetic field data, we measure the magnetic

field data (𝑚𝑥, 𝑚𝑦 , 𝑚𝑧) at 10 different locations selected in

a corridor of 20 meters long in the Broun Hall on Auburn

University Campus. We obtain five different datasets collected

at five different times. Fig. 1 shows the magnetic field data

components (𝑚𝑥, 𝑚𝑦 , 𝑚𝑧) for different locations and times.

We find that for any fixed location, all the three elements (𝑚𝑥,

𝑚𝑦 , 𝑚𝑧) exhibit small variations over time, as indicated by the

negligible error bars. This validates the stability of magnetic

field data with respect to location, which can guarantee the

reliability of fingerprinting based indoor localization using

magnetic field data.

In addition, we also find good diversity of magnetic field

data for different locations. In Fig. 1, the magnetic field

data exhibits sufficient variations for different locations. For

example, each of the three elements (𝑚𝑥, 𝑚𝑦 , 𝑚𝑧) has

different values for locations 1 and 2. Specifically, we can see

that at least one element of the magnetic field data changes

for a different location. The indoor magnetic field has local

anomalies (or, local disturbances), because modern buildings

generally have many ferromagnetic structures. The ambient

magnetic field leads to geomagnetic anomalies, which can be

leveraged for accurate indoor localization.

B. Light Intensity Preliminaries

Modern buildings usually use several types of light bulbs,

such as the compact fluorescent lamp (CFL) and light-emitting

diode (LED) [26]. Most smartphones can capture light inten-

sity from such bulbs. In fact, light propagates in the air from

the light bulbs to the smartphone light receiver, with different

radiant intensity measurements for different locations, which

are susceptible to the indoor propagation environment, such

as shadowing, scattering, and reflection for different surfaces.

This motivates the work on light intensity based fingerprinting

localization technique [27].

To study the stability and location diversity of light inten-

sity at different times and locations, we measure the light

intensities at 10 different locations in the same corridor, and

collected five datasets at different times. Fig. 2 presents the

characteristics of light intensity data at different locations and

times. Similarly, we find light intensity data is quite stable

for any given location, as indicated by the negligible error

bars. Furthermore, light intensity measurements take different

values for some different locations, e.g., see neighboring

locations 1 and 2, 4 and 5, and 9 and 10. But for some other

neighboring locations, e.g., 3 and 4, and 7 and 8, the light

intensity values are very close. Thus, unlike magnetic field
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Fig. 1. Characteristics of magnetic field data.
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Fig. 2. Characteristics of light intensity data.
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Fig. 3. Confusion matrix of the bimodal data with
magnetic field vector and light intensity.

data, it is difficult to use light intensities only as fingerprints

for indoor localization.

C. Fusion of Magnetic Field Data and Light Intensity

Our measurement study of magnetic field and light intensity

motivates us to use them as bimodal data for indoor localiza-

tion. This is because we can use the different light intensities at

different locations to improve the accuracy of magnetic field

based indoor localization. By fusing the magnetic field and

light intensity data, the dimension of input data is increased,

making it suitable for the proposed deep LSTM based scheme,

to strengthen the uniqueness of location features.

To measure the location diversity of the bimodal data with

magnetic field and light intensity, we define the confusion

matrix for 𝑁 different locations as

𝑫 =

⎡

⎢

⎢

⎢

⎣

𝑑11 𝑑12 𝑑13 . . . 𝑑1𝑁
𝑑21 𝑑22 𝑑23 . . . 𝑑2𝑁

...
...

...
. . .

...

𝑑𝑁1 𝑑𝑁2 𝑑𝑁3 . . . 𝑑𝑁𝑁

⎤

⎥

⎥

⎥

⎦

, (1)

where 𝑑𝑖𝑗 denotes the Euclidean distance between the two

signal vectors of locations 𝑖 and 𝑗, which can be computed by

𝑑𝑖𝑗 = ∣∣𝑆𝑖 − 𝑆𝑗 ∣∣2, where 𝑆𝑖 is the signal vector of location

𝑖, including both the magnetic field vector and light intensity.

To measure the performance of different datasets, we need to

normalize the confusion matrix with the same metric.

Fig. 3 presents the confusion matrix of the bimodal data

with magnetic field vector and light intensity for an experiment

with 10 locations in the corridor. We can see that the fusion

of magnetic field and light intensity achieves great location

diversity with large distances for most location pairs, which

is different from using magnetic field vector only or light

intensity only in Sections II-A and II-B. Such enhanced

diversity is highly desirable for the training and location

estimation of the proposed deep LSTM network for indoor

localization.

III. THE PROPOSED DEEPML SYSTEM

A. DeepML System Architecture

We design the DeepML system and prototype it with a

Samsung Galaxy S7 Edge smartphone with an Android 7.0

platform. The Android application is developed with Android

Studio 2.3.3 for data collection and preprocessing. The pro-

posed DeepML system employs both magnetic field data and

ambient light for two main reasons. First, as discussed in

Section II, the variance in magnetic field and light intensity

at each location is generally very small; they are both highly

stable over time for each given position. Second, magnetic

field measurements may not show sufficient location diversity

in some areas. Incorporating the bimodal data could exploit

the different light intensities for enhanced location diversity

for such areas. Magnetic field and light intensity are comple-

mentary to each other for many locations. Using the bimodal

data can improve the localization performance.

The design of DeepML is presented in Fig. 4. The most

salient features include the use of bimodal magnetic and light

data, and the deep LSTM network used for extracting location

features from the bimodal data. DeepML first performs data

preprocessing of collected magnetic field and light data, to

build bimodal images using a sliding window method. During

the offline training phase, we implement feature extraction for

the bimodal images for effectively training the deep LSTM

network. Compared to conventional fingerprinting based meth-

ods, DeepML does not need to establish a database for each

training location, where either raw data or extracted features

are stored as fingerprints. Rather, our DeepML system only

requires one group of weights to be trained for all training

locations. In the online testing phase, we incorporate an

improved probabilistic approach for location estimation, based

on newly received magnetic and light bimodal data from the

target mobile device.

B. Data Preprocessing

We first collect and record real-time readings from the

smartphone magnetic field ambient light sensors. Due to the

sequence size requirement of the deep LSTM network, we

need to reduce the sampling rate of the magnetic field sensor,

to make its readings in-sync with that from the ambient light

sensor. Specifically, we obtain 1500 rows of magnetic field and

light intensity combined patterns for each training location.

For example, the size of training data is about 15000 rows for

the 10 training locations in the corridor, and 18000 rows for

the 12 train locations in the laboratory scenario. For online
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Fig. 4. The DeepML system architecture.

location estimation, the data size is about 400 rows for each

test location.

We next employ a sliding window to build bimodal image

data. For both training and testing phases, we set the size of the

sliding window to 20. Thus, we can obtain the bimodal image

data with size 20 × 4, with 20 measured data points in the

column dimension and 4 feature values in the row dimension,

including 𝑚𝑥, 𝑚𝑦 , 𝑚𝑧 for magnetic field and 𝑙 for light.

C. Offline Training

For offline training, we propose a deep LSTM approach to

extract location features from the bimodal image data with

magnetic field and light intensity. The offline training module

includes feature extraction, the deep LSTM network, and the

Softmax classifier.

1) Feature Extraction: For better feature extraction, we

implement one fully connected layer for extracting features

from raw magnetic fields and light intensity data, which is

formulated as

𝑧𝑡 = ReLU(𝑊𝑥𝑡 + 𝑏), (2)

where 𝑥𝑡 and 𝑧𝑡 are the input and output of the fully connected

layer, respectively, 𝑊 and 𝑏 are the weights and biases of the

fully connected layer, respectively. ReLU(⋅) is the rectified

linear unit, which is considered as the activation function with

ReLU(𝑥) = max(𝑥, 0). The ReLU(⋅) function has several

advantages such as sparse representations, efficient gradient

propagation and computation.

2) Deep LSTM Network: After feature extraction, we next

use the deep LSTM algorithm for training optimal weights,

where the LSTM network is a popular recurrent neural

network (RNN) that can effectively deal with long-range

dependency [22], [23]. It can solve the problems of exploding

or vanishing gradients found in RNNs. Moreover, LSTM

can exploit temporal information of magnetic field and light

intensity data through recursively mapping the input sequence

to output label by using the hidden LSTM units. Each LSTM

unit has a built-in memory cell to store information over time

using non-linear gate units, which can control the change

of values and memory contents. For the proposed DeepML

system, we stack two layers of the LSTM network to obtain a

stronger learning and representation ability for magnetic and

light sensor data, thus improving the localization performance.

3) Softmax Classifier: The output of the final cell’s hidden

state in the second LSTM network is the input to a fully

connected layer, which uses a basic neural network with

one hidden layer to train the output data using the Softmax

classifier. Moreover, the input data to the Softmax function

is in the form of a 𝑁 dimensional vector 𝑞 = [𝑞1, 𝑞2, ..., 𝑞𝑁 ],
where 𝑁 is the number of training locations. The 𝑖th input

data can be obtained as 𝑞𝑖 = ℎ𝑇
𝑓 𝑤𝑖, where ℎ𝑓 is the output

vector of the final cell’s hidden state in the second LSTM

network, and 𝑤𝑖 is the weight vector of the fully connected

layer. The Softmax function then maps the 𝑁 dimensional

vector to normalized data 𝑝 = [𝑝1, 𝑝2, ..., 𝑝𝑁 ], that is

𝑝𝑖 =
𝑒𝑞𝑖

∑𝑁

𝑛=1
𝑒𝑞𝑛

=
𝑒ℎ

𝑇
𝑓 𝑤𝑖

∑𝑁

𝑛=1
𝑒ℎ

𝑇
𝑓
𝑤𝑛

, for 𝑖 = 1, 2, ..., 𝑁. (3)

Let 𝐽(𝜃) be the loss function with the weight parameter 𝜃.

We adopt the cross-entropy to measure the difference between

the true labeled data and the normalized output data, and use

the L2 regularization hyperparameter to avoid over-fitting. To

obtain the optimal weights, the training loss is minimized as

min
𝜃

𝐽(𝜃) = −

𝑁
∑

𝑖=1

𝑦𝑖 log(𝑝𝑖) +
𝜆

2
∥𝜃∥

2

2
, (4)

where 𝑦𝑖 denotes the true labeled data for the 𝑖th location, and

𝜆 is the L2 regularization hyperparameter. We then train the

parameters in the deep LSTM using Backpropagation Through

Time (BPTT) of LSTM. We also use the Adam Optimizer for

improving the efficiency of optimization [28].

D. Online Location Estimation

For online location test, we first build 𝑀 bimodal images

with magnetic and light sensor data (as shown in the data

preprocessing section), each of which has the same size as

training images. Then, we leverage a probabilistic method for

estimating the location of the target mobile device by feeding

the 𝑀 bimodal images to the trained deep LSTM network.

Let 𝝎 denote the output results of the Softmax classifier

using the deep LSTM network for 𝑁 training locations with



𝑀 newly measured bimodal images. We have

𝝎 =

⎡

⎢

⎢

⎢

⎣

𝜔11 𝜔12 𝜔13 . . . 𝜔1𝑀

𝜔21 𝜔22 𝜔23 . . . 𝜔2𝑀

...
...

...
. . .

...

𝜔𝑁1 𝜔𝑁2 𝜔𝑁3 . . . 𝜔𝑁𝑀

⎤

⎥

⎥

⎥

⎦

. (5)

We then compute the average result for 𝑀 output data at every

location, thus reducing the variance of the output results. Let

�̄�𝑛 be the mean of the output data vector [𝜔𝑛1, 𝜔𝑛2, ..., 𝜔𝑛𝑀 ]
in the 𝑛th row. The mean vector can be obtained as �̄� =
[�̄�1, �̄�2, ..., �̄�𝑁 ].

Finally, the position of the target mobile device is estimated

as a weighted average of all the 𝑁 training locations, as

�̂� =

𝑁
∑

𝑖=1

𝑙𝑛 × �̄�𝑛, (6)

where 𝑙𝑛 is the 𝑛th training location.

IV. EXPERIMENTAL STUDY

A. Experiment Setup

We prototype the DeepML system with a Samsung Galaxy

S7 Edge smartphone on the Android 7.0 platform. Moreover,

we implement an Android application with Android Studio

2.3.3 for data collection and preprocessing. We compare

DeepML with a benchmark that uses magnetic field data

only. To guarantee a fair comparison, we use for these two

approaches the same magnetic field dataset and the same

deep LSTM parameters to estimate the location of the mobile

device. We experiment with the two methods in two different

indoor scenarios.

∙ Lab Scenario: This is a 6×12 m2 computer laboratory in

Broun Hall on the Auburn University campus. The lab is a

cluttered environment with tables, chairs, and computers.

The floor plan is shown in Fig. 5. We choose 12 training

locations, which are marked as red squares. The distance

between two neighboring training locations is 1.6 m. We

collect 1800 rows of light intensity and magnetic field

combined pattern for each training location, and 400 rows

of data for each test location. Note that each test location

is different from the known training locations.

∙ Corridor Scenario: This is a 2.4 × 20 m2 corridor in

Broun Hall. As shown in Fig. 6, we employ 10 training

locations along a straight line with 1.6 m separation. The

training data size is 1500 rows and the testing data size

is 400 rows.

For online test, we leverage an LSTM deep leaning model

using Tensorflow on a computer with CPU 4720HQ and then

integrate it with the data collection Android application, which

achieves localization estimation in real-time.

B. Localization Performance

Figure 7 plots the cumulative distribution function (CDF)

of localization errors of the two schemes in the lab ex-

periment. For this environment with complex light intensity

and magnetic field distribution, DeepML is able to leverage

Fig. 5. Layout of the computer lab scenario: training locations are marked
as red squares.

Fig. 6. Layout of the corridor scenario: training locations are marked as red
squares.
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Fig. 7. CDF of localization error of the lab experiment.
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Fig. 8. CDF of localization error of the corridor experiment.

bimodal magnetic-light features to predict location accurately.

Fig. 7 shows that about 58% of the location errors with the



proposed DeepML system are under 0.5 m, while 20% of

the location errors with the magnetic field only scheme are

under 0.5 m. Moreover, DeepML has 82% of the test locations

with location errors less than or equal to 2 m, while it is

50% for the magnetic field only scheme. DeepML achieves

a maximum error of 3.7 m, which is much better than the 5

m maximum error of the benchmark scheme. Apparently, the

proposed DeepML system is more accurate for the cluttered

lab environment.

Fig. 8 presents the CDF of localization errors of both

schemes in the corridor scenario. There are about 65% of the

test locations that have an estimation error less than or equal

to 0.4 m for DeepML, while it is 25% for the magnetic only

scheme. Additionally, we find DeepML has 87% of the test

locations achieving an error under 3 m, comparing to 78% of

the magnetic only scheme. Moreover, for the corridor scenario,

the maximum location errors for DeepML and the magnetic

only scheme are 6.5 m and 8.2 m, respectively. The proposed

DeepML system is more robust than the baseline scheme.

The experiments validate that DeepML outperforms the

benchmark scheme in both experiment scenarios. The main

reason is that dual-module fingerprint has stronger location

diversity, which carries more location features. In many cases

magnetic field data and light intensity are complementary to

each other. Furthermore, the proposed deep LSTM network

can effectively extract the rich location features from the

bimodal data, to achieve enhanced localization performance.

V. CONCLUSIONS

In this paper, we presented DeepML, a deep LSTM based

system for indoor localization using the magnetic and light

sensors in smartphones. We first experimentally verified the

feasibility of using the magnetic-light bimodal data for indoor

localization. We then presented the DeepML design, with its

data preprocessing, deep LSTM network, and probabilistic lo-

cation estimation modules. Our experiments under two repre-

sentative indoor environments demonstrated the effectiveness

of the proposed DeepML system.
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