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ABSTRACT

In this article, we propose a general deep 
learning framework for RF sensing in the IoT. We 
first present the proposed framework, and then 
review various RF sensing techniques, deep learn-
ing techniques, and canonical RF sensing appli-
cations. We apply the proposed framework to 
fingerprinting, activity recognition, and vital sign 
monitoring using WiFi CSI and present experimen-
tal results. We conclude this article with a discus-
sion of research challenges and open problems.

INTRODUCTION

With the fast advances in mobile devices and com-
munication technologies, various machines and 
devices are capable of interacting with each other 
within a network, that is, the Internet of Things 
(IoT) [1]. Many emerging applications benefit 
from the development of the IoT. In general, IoT-
based applications consist of three layers: the sens-
ing layer, the gateway layer, and the cloud layer. 
As shown in Fig. 1, the left block represents the 
sensing layer, where sensed data is captured by 
various sensors, such as accelerometers and gyro-
scopes. Recently, researchers have also utilized RF 
signals to capture events in the IoT environment 
(i.e., RF sensing). While RF signals are transmitted, 
reflected, blocked, and scattered by objects like 
walls, furniture, vehicles, and human bodies, it is 
possible to extract useful information, such as posi-
tion, movement direction, speed, and vital signs of 
a human subject, from received RF signals. Unlike 
traditional hardware sensors, RF sensing provides 
users with low-cost and unobtrusive services. Fur-
thermore, due to the broadcast nature of RF sig-
nals, RF sensing can be used not only to monitor 
multiple subjects, but also to capture changes in 
the environment over a large area.

The gateway layer in Fig. 1 (the middle block) 
transfers sensed signals to the cloud layer (the 
right block). Usually, captured signals are ana-
lyzed in the cloud layer with various signal 
processing techniques or machine learning algo-
rithms. Recently, there has been considerable 
interest in applying deep learning techniques such 
as deep autoencoder, convolutional neural net-
work (CNN), and long short-term memory (LSTM) 
to RF sensing [2–4]. Traditional machine learn-
ing algorithms, such as support vector machine 
(SVM) and K-nearest neighbor (KNN), are effec-
tive for relatively small datasets and easy classifi-
cation tasks.

They do not scale well with increased numbers 
of samples. Moreover, SVM and KNN require 
careful data preprocessing and parameters selec-
tion to avoid over-fitting and under-fitting. For 
example, principal component analysis (PCA) is 
always required for feature extraction with tradi-
tional machine learning. Deep learning can handle 
large datasets and complex classification tasks to 
obtain higher classification accuracy. Moreover, 
deep learning models can predict well, although 
they are highly over-parametrized. Finally, deep 
learning algorithms also have great potential to 
process high dimensional data that could not be 
effectively handled by shallow machine learning 
algorithms.

In this article, we present a general deep learn-
ing framework for RF sensing in the IoT, along 
with several experimental case studies, and a dis-
cussion of challenges and open problems. The 
general architecture is presented in the follow-
ing section, where various RF sensing techniques, 
including WiFi, RF identification (RFID), acous-
tics, ultra-wideband (UWB), and three represen-
tative deep learning algorithms, including deep 
autoencoder, CNN, and LSTM, are examined in 
detail. Next, we review three canonical RF sensing 
applications, including indoor localization, activ-
ity recognition, and health sensing, and present 
three experimental case studies by applying the 
proposed framework. We then discuss challenges 
and research directions for RF sensing with deep 
learning, including utilizing multiple data sourc-
es, exploiting new spectra for RF sensing, moving 
deep learning from the cloud to the edge and/or 
mobile devices, security and privacy issues, and 
deep learning theory. The final section concludes 
this article.

GENERAL DEEP LEARNING FRAMEWORK FOR 

RF SENSING

THE GENERAL FRAMEWORK

We present a general framework to leverage deep 
learning techniques for RF sensing applications. 
As shown in Fig. 2, various types of RF signals 
can be utilized as inputs to deep learning algo-
rithms, such as WiFi, RFID, UWB, and acoustics. 
Data pre-processing is an essential step before 
employing deep learning algorithms. Compared 
to traditional shallow machine learning techniques, 
such as SVM and KNN, feature extraction is not 
necessary in our framework, because deep learn-
ing has an excellent ability to represent data and 
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extract features from data. In fact, the pre-process-
ing step needs to first obtain calibrated data from 
RF signals, where randomness errors, such as the 
packet boundary detection (PBD) error, sampling 
frequency offset (SFO), and central frequency off-
set (CFO), are removed. For example, calibrated 
phase or phase difference between two anten-
nas for RF signals should be implemented in the 
pre-processing step. Then, for different deep net-
work architectures, different inputs are obtained in 
the pre-processing step. For example, when CNN 
is used, images are constructed from the calibrat-
ed phases or amplitudes When LSTM is employed, 
signals can be divided into short time series. When 
an autoencoder is used, signals can be directly uti-
lized for the proposed deep learning framework.

The proposed framework consists of two stag-
es: an offline training stage and an online pre-
diction stage. In the offline stage, training data is 
used to train the deep leaning model. For differ-
ent types of applications, the deep network mod-
els exhibit different potentials. For example, CNN 
achieves outstanding performance in image clas-
sification and pattern recognition, since it emu-
lates the natural visual perception mechanism. 
LSTM is effective at processing variable-length 
input sequences, which makes it highly suited for 
time related applications. In the online stage, test 
data is fed into the well trained deep network to 
provide prediction results. In this stage, strategies 
such as Bayesian methods have been used to 
optimize the output of the deep network [2]. The 
output of the deep network can be directly used 
as prediction results, such as in some recognition 
and detection applications. When the surrounding 
environment changes, the proposed framework 
can employ transfer learning to update weights 
with small measurement datasets.

RF SENSING TECHNIQUES

Various wireless signals have been used for RF 
sensing, such as WiFi, RFID, UWB, and acoustic 
signals. Their main features are summarized in 
Table 1.

WiFi has become the dominant data access 
technology for mobile users in the 2.4 GHz and 
5.8 GHz bands (while IEEE 802.11ad uses the 60 
GHz band). WiFi access is ubiquitous in many 
indoor and outdoor environments, which makes 
WiFi an ideal candidate for RF sensing to capture 
changes in the environment. Compared to tra-
ditional sensors, WiFi is capable of monitoring a 
large and crowded area, but WiFi signals are sus-
ceptible to interference.

There are two types of RFID systems: active 
and passive. An active RFID system depends on 
the internal power supply to reflect a response 
to the reader. Although longer ranges can be 
achieved, active RFID systems usually have a high-
er cost and larger form factor. Passive RFID tags 
draw much attention because of their smaller size 
and lower cost, and no need for power sources. 
RFID is limited by its extremely simple design. For 
instance, when a reader attempts to read multiple 
tags close to each other, there may be collision 
among the response signals or large delay if a 
medium access control scheme is in place.

UWB is a carrierless communication technolo-
gy that achieves high date rates by utilizing ultra-
short pulses with a duration of less than 1 ns. Due 

to the ultra-short pulses, the power consumption 
of UWB is much lower than traditional communi-
cation systems. Ultra-short pulses also mitigate the 
multipath effect and enable high-precision time 
of flight (TOF) estimation, which is beneficial to 
many RF sensing applications. UWB signals can 
penetrate materials, and many through-wall imag-
ing systems are proposed to exploit this feature. 
Furthermore, because of its unique wide spec-
trum, UWB signals are robust to interference from 
other wireless sources.

Although at much lower frequencies, we 
include acoustic signals for the sake of complete-
ness. Considering the lower propagation speed 
and narrow bandwidth of an acoustic signal, high-
speed resolution can be provided to capture the 

Figure 1. The layered architecture for RF sensing in the IoT.
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small movements of an object. Acoustic signals 
have been exploited for activity recognition and 
speed detection based on machine learning and 
Doppler shift. However, compared to WiFi and 
RFID, acoustic signals can easily be affected by 
other sound sources. Acoustic signals transmitted 
from smartphones also do not have strong pene-
tration ability. Thus, applications with smartphone 
acoustic signals can only be deployed within small 
distances.

DEEP LEARNING TECHNIQUES

Deep learning is a branch of machine learning 
that achieves multiple levels of representation of 
data with a general-purpose learning procedure. 
Recently, there has been considerable interest in 
applying deep learning to wireless systems, largely 
motivated by the huge success of deep learning 
in several areas, such as natural language process-
ing, pattern recognition, image classification, and 
gaming. In Table 2, we compare the features of 
three widely used deep learning models, including 
autoencoder, CNN, and LSTM.

Autoencoder Neural Network: An auto-
encoder neural network is an unsupervised 
learning algorithm [7].The architecture of the 

autoencoder, shown in Fig. 3 (top), is composed 
of three parts: an input layer, one or more hid-
den layers, and an output layer. To reconstruct 
its own input, the output layer has an identical 
number of nodes as the input layer. The number 
of nodes in the hidden layers is always smaller 
than the number of nodes in the input layer, so 
a compressed representation can be extracted 
from the input data.

There are three stages in the training pro-
cess, including pretraining, unrolling, and 
fine-tuning. In the pretraining stage, each neigh-
boring set of two layers is modeled as a restrict-
ed Boltzmann machine (RBM). Then the deep 
network is unrolled to obtain the reconstructed 
input with forward propagation. Next, the back-
propagation technique is used to fine-tune the 
results. Like PCA, the purpose of the autoen-
coder is to find low-dimensional representations 
of the input data. Naturally, the autoencoder 
is widely used in data compression and signal 
denoising. The first work that utilizes an auto-
encoder in RF sensing is DeepFi [2]. With the 
proposed framework in Fig. 2, we can also use 
the deep autoencoder for activity recognition 
and health sensing.

Table 1. Features of RF sensing techniques.

Signal Protocol Frequency Bandwidth
Max. data rate 

(theoretical)

Approximate 

indoor rage
Pros Cons

WiFi [5]
802.11  

a/b/g/n/ac

11–2.4 GHz 

11a–3.7/5 GHz  

11b–2.4GHz  

11g–2.4 GHz  

11n–20/40 MHz  

11ac–5 GHz

11–22 MHz  

11a–20 MHz  

11b–20 MHz  

11g–20 MHz  

11n–20/40 MHz  

11ac–20/40/80/ 

   160 MHz

11–2 Mb/s 

11a–54 Mb/s 

11b–11 Mb/s 

11g–54 Mb/s 

11n–450 Mb/s 

11ac–1.73 Gb/s

11–20 m  

11a–35 m 

11b–35 m 

11g–35 m

11n–70 m

11ac–35 m

1. Low cost  

2. Ubiquitousness  

3. Large coverage

1. Susceptible to 

environmental 

influence

RFID [6]

ISO11784/85 

ISO15693 

ISO14443 

EPCglobal

LF: 125–134 kHz HF: 

13.553–13.567 MHz  

UHF: 868 MHz, 915 MHz

LF: 10 kHz  

HF: 15 kHZ  

UHF: 500 kHz 

(North America)

26.7 kb/s up to 

640 kb/s

LF: 0.2 m–1 m  

HF: 0.1 m–0.7m 

UHF: 3 m–10 m

1. Directional 

performance  

2. Privacy

1. Signal collision and 

data loss  

2. Security concerns

UWB 802.15.7 3.1–10.6 GHz >500 MHz
480 Mb/s up to 

1.6 Gb/s
10 m

1. Large bandwidth  

2. Low power 

requirement  

3. Low probability of 

intercept and detection  

4. NLOS and LOS could 

be easily distinguished  

5. Large coverage

1. Hardware 

dependency

Acoustics N/A 20 to 20 kHz N/A N/A Several meters

1. Ubiquitousness  

2. High speed resolution  

3. High resolution in 

detecting phase shift

1. Susceptible to  

environment  

2. Small coverage  

3. Bad user experience

Table 2. Features of three popular deep learning techniques.

Applications Operation Training methods Comparison with traditional ML

Autoencoder 

[7]

Data compression, signal 

denoising

Restricted Bolzmann 

machine

Pretraining, unrolling, 

fine-tuning
1. Nonlinear transform

CNN [8]

Image recognition, video 

analysis, natural language 

processing

Convolutional layer, pooling 

layer, fully connected layer

Standard 

backpropagation

1. Requires relatively large datasets  

2. Performs well with complex problems such as image  

    classification  

3. No need to extract features 

LSTM [9]
Time-series prediction, speech 

recognition, activity recognition

Input gate, output gate, 

forget gate

Backpropagation 

through time

1. Handle long-range dependency  

2. Better capability to represent data
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Convolutional Neural Network: CNN is 
inspired by emulating the natural visual perception 
mechanism of living creatures, and consequent-
ly, CNN has achieved great success in computer 
vision. The first CNN architecture was LeNet-5 [8]. 
In Fig. 3, the convolution and subsampling opera-
tions of LeNet-5 are first applied to the input data 
in the convolutional layer and subsampling layer, 
respectively. After two groups of such computa-
tion, the output of the higher layer is processed 
by a fully connected neural network, where the 
final classification results are improved.

In 2015, a residual learning framework, called 
ResNet, was proposed by Microsoft Research 
[10]. The 152-layer residual network achieves 
an error rate of 3.57 percent on the ImageNet 
test set, and won first place in the ILSVRC 2015 
classification competition. To solve the vanish-
ing gradient problem caused by greatly increased 
depth, the residual module creates a shortcut 
path between the input and output, which implies 
an identity mapping.

The great performance of CNNs also attracts 
RF sensing researchers’ attention. For example, 
ResLoc [4], an indoor localization system with 
commodity 5 GHz WiFi, uses bimodal channel 
state information (CSI) tensor data to train a deep 
residual sharing learning. ResLoc has achieved 
superior performance and outperformed several 
existing deep-learning-based methods [4].

Long Short-Term Memory: The LSTM model, 
shown in Fig. 3, is proposed to handle data with  
long-term dependencies [9]. Unlike the traditional 
RNN, an LSTM unit utilizes three gates to con-
trol the data flow. An input gate decides if a new 
value could flow into the memory; a forget gate 
controls if a value should remain in memory; and 
an output gate determines if the value in memo-
ry could be used to compute the output of the 
unit. These gates ensure the effectiveness of gra-
dient-based optimization methods in training the 
LSTM. LSTM has been used widely in machine 
translation, speech recognition, and time-series 
prediction, with emerging applications in RF sens-
ing.

APPLICATIONS AND EXPERIMENT RESULTS

RF SENSING APPLICATIONS

Indoor Localization: Recently, deep learning 
has been employed for indoor fingerprinting, 
which is a model-free approach. The representa-
tion work is DeepFi [2], which exploits CSI ampli-
tude data for fingerprinting. To build a fingerprint 
database, WiFi CSI values are collected at each 
test position and used to train a deep autoencod-
er. In the online phase, a probabilistic method 
based on the radial basis function is employed 
for location estimation. The difference between 
traditional fingerprinting methods and DeepFi is 
that the trained weights of the deep autoencoder 
network are utilized as fingerprints. This is a much 
more effective way to extract the features of the 
CSI values from every test location. DeepFi is a 
special case of the proposed deep learning frame-
work, which can be used for indoor localization 
with different deep network architectures and dif-
ferent RF signals [4].

Activity Recognition: Activity recognition is 
the key component of many useful RF sensing 

applications, such as fall detection and security 
surveillance. The idea is to classify activities based 
on extracted features from RF signals. Different 
feature extraction and classification models have 
been explored, such as PCA, anomaly detection, 
DWT, and hidden Markov model (HMM).

Several recent works have utilized deep learn-
ing techniques for classification. For example, a 
deep learning architecture that uses only RFID 
data for detection of process phases and activities 
during a trauma is proposed in [11]. 3D matrices 
are generated by processed RFID signals using a 
network of three convolutional layers and three 
fully connected layers. The CNN is used to classify 
the activities into different categories. This system 
achieves an average accuracy of 80.40 percent 
for recognition of 11 types of activities and an 
average accuracy of 72.03 percent for detection 
of five phases.

Healthcare Sensing: Long-term monitoring of 
vital signs, such as respiration and heartbeat, in 
indoor environments has become a hot research 
area. Many existing RF-based vital sign monitor-
ing systems rely on specially designed hardware, 
such as a Doppler radar or ultra wideband (UWB) 
radar. Some other systems employ WiFi signals. 
For example, PhaseBeat [3] monitors respiration 
and heart rates with commodity WiFi utilizing 
CSI phase difference data, where discrete wave-

Figure 3. Three popular deep learning networks: CNN (top), autoencoder 
(middle), LSTM (bottom).
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let transform is leveraged to decompose the pro-
cessed phase difference data into respiration and 
heart signals, and peak detection and Root-MU-
SIC are used to estimate the respiration rate for a 
single person and multiple subjects, respectively. 
Fast Fourier transform (FFT) is used for estimating 
the heart rate. The median error of PhaseBeat for 
respiration rate and heart rate are 0.25 beat per 
minute and 1 beat per minute, respectively [3].

EXPERIMENTS AND RESULTS

In the following experiments, a desktop computer 
is used as a WiFi access point and a Dell laptop 
is used as a mobile device. Both computers are 
equipped with an Intel 5300 network interface 
card (NIC), and both run the Ubuntu Desktop 
14.04 LTS system. To accelerate the training pro-
cess, Keras with tensorflow backend on a PC 
with Intel® Core™ i7-6700K CPU and a Nvidia 
GTX1070 GPU are used for training.

First, we experiment with ResLoc [4], a deep-re-
sidual-learning-based indoor localization sys-
tem, and DeepFi [2], a deep-autoencoder-based 
indoor fingerprinting system, in a computer lab-
oratory with size 6 m  9 m, where CSI data col-
lected from 30 locations are separated equally 
into the training dataset and testing dataset. The 
input to ResLoc is bimodal CSI data that includes 
CSI amplitude and phase difference, while the 
input to DeepFi only contains CSI amplitude. The 
cumulative distribution function (CDF) of local-
ization errors are plotted in Fig. 4. The median 
errors are about 0.86 m and 1.785 m for ResLoc 
and DeepFi, respectively. The maximum errors 
for ResLoc and DeepFi are 2.55 m and 2.87 m, 
respectively. The results show that deep residual 
learning and autoencoder can both achieve accu-
rate indoor localization.

We also leverage the proposed framework 
for activity recognition using LSTM. We collect a 
CSI dataset that contains CSI amplitude data and 
phase difference data. The dataset includes five 
types of activities, denoted as “fall, run, sit down, 
stand up, and walk.” The LSTM network has two 
hidden layers, with 125 hidden units in each layer. 
The detection accuracy for the five activities are 
95.1, 92.3, 91.8, 89.9, and 73.5 percent, respec-
tively. The overall accuracy and average recall are 
90.37 and 88.52 percent for all activities, respec-
tively. Only the accuracy of “walk” and “stand” 
are below 90 percent, due to the high similarity 
between these two activities.

Finally, we apply the proposed framework to 
health sensing for an apnea detection application. 
Apnea means temporary suspension of breath-
ing during which the volume of the lungs does 
not change. LSTM is chosen as the deep learn-
ing model to process CSI data for apnea detec-
tion. We use CSI amplitude and phase difference 
that capture the respiration and apnea signals. 
We find the overall accuracy for LSTM with CSI 
amplitude is 90.16 percent, and that for LSTM 
with CSI phase difference is 98.36 percent. The 
results show that our deep-learning-based RF sens-
ing framework can effectively detect apnea.

CHALLENGES AND FUTURE DIRECTIONS

FUSION OF MULTIPLE DATA SOURCES

As shown in our experimental studies, bimodal 
or even multimodal data can improve RF sens-
ing performance. For example, WiFi and light 
sensors are both available on smartphones and 
can be integrated for indoor localization, where 
WiFi and light signals are complementary to each 
other. Using bimodal data of WiFi received sig-
nal strength (RSS) and light intensity can increase 
data diversity, which results in higher location 
accuracy. 

The key to exploiting multimodal data is how 
to effectively fuse various data. One solution to 
train multimodal data is to adopt a multi-chan-
nel deep network architecture, one for each data 
source [4, 12]. Signals from different channels 
can be fused at intermediate layers [4] and/or at 
the output layer [12]. Other deep networks such 
as deep reinforcement learning and generative 
adversarial networks can also be incorporated for 
fusion of multiple data sources to improve sensing 
accuracy or reduce cost with small training data. 
For effective data fusion, the input data from dif-
ferent sources should be normalized, and data 
samples from different sources should be aligned.

EXPLORING NEW SPECTRUM FOR RF SENSING

With the fast growth of 5G technologies, signals 
from new spectra, such as the low-bands (below 
1 GHz), mid-bands (1 GHz to 6 GHz), and high-
bands (above 24 GHz, e.g., the millimeter-wave, 
mmWave, band), could be leveraged for RF sens-
ing. Specifically, the low-bands spectrum can be 
utilized for massive IoT and mobile broadband; 
the mid-band spectrum provides wider band-
widths and can be employed for mission-critical 
applications and enhanced mobile broadband 
(eMBB); the high-band spectrum provides a 
huge amount of bandwidth and can be used for 
high-throughput communications. In the literature, 
mmWave massive multiple-input multiple-output 
(MIMO) has been applied for fingerprinting with 
a deep learning approach. Moreover, narrowband 
(NB) IoT technologies, such as LoRaWAN and 
SIGFOX with low power and long range, can also 
be leveraged for detecting multiple objects.

Channel estimation based on deep learning 
could become an interesting research topic. Some 
key parameters, such as amplitude, angle of arriv-
al (AOA), and time of arrival (TOA), from the mul-
tipaths can be predicted from training data with 
deep learning. By applying deep learning tech-
niques to new signals from 5G spectra, RF sensing 
could be greatly enhanced with a stronger data 

Figure 4. Performances of localization with deep 
autoencoder and CNN networks.
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representation ability, not only for personal IoT 
applications such as indoor localization, activity 
recognition, and healthcare, but also for other IoT 
applications such as smart city, manufacturing, 
supply chain management, precision agriculture, 
and animal tracking.

FROM CLOUD TO EDGE AND MOBILE DEVICES

Deep learning models are usually computation-in-
tensive and require large storage space. For image 
and speech recognition applications, usually the 
programs are executed at a server or in the cloud. 
For RF sensing applications, it would be more 
appealing to execute the deep learning models at 
the edge or mobile devices to avoid large delay 
for better user experience [13].

The challenge is how to execute deep learn-
ing models at the relatively more resource-con-
strained edge or mobile devices. To this end, 
compressed deep network can be utilized for RF 
sensing on edge devices, and parallel and distrib-
uted deep learning are suitable for execution on 
edge and mobile devices. Finally, graphic pro-
cessing unit and field-programmable-gate-array-ac-
celerated hardware can be used at the edge or 
mobile devices to greatly accelerate the computa-
tion for RF sensing applications.

SECURITY AND PRIVACY PRESERVATION

By leveraging features of multi-path RF signals, 
deep learning can be used to classify eavesdrop-
ping, denial of service attack, bad data injection, 
and intrusion detection in smart homes. Specifical-
ly, deep LSTM networks can be used for real-time 
intrusion detection. RF sensing can be incorporat-
ed for user authentication with different RF signals 
such as WiFi, RFID, acoustics, and UWB, where 
implicit authentication can be used.

Deep learning security has become a hot 
research topic recently [14]. The main challenge 
is how to recognize adversarial data and clean 
data. An attacker can easily inject noise or jam-
ming signals to RF sensing signals. Such adversar-
ial data should be recognized in the beginning 
stage. Another challenge is how to preserve user 
privacy. While RF signals mostly propagate in all 
directions, it is important to prevent an illegitimate 
user from detecting a user’s location or monitor-
ing a patient’s vital signs.

DEEP LEARNING THEORY

To explain why deep learning can achieve promis-
ing performance, opening the black box of deep 
learning has become a hot research topic recent-
ly. Researchers are tackling three main issues:
• The expressive power that defines deep net-

works’ ability from depth, width, and layer 
type to approximate functions

• The generalization capability that explains why 
the deep learning models can predict well 
although they are highly over-parametrized

• Optimization of the empirical loss that consid-
ers why stochastic gradient descent (SGD) on 
the non-convex empirical loss is effective [15]

CONCLUSIONS

In this article, we discuss RF sensing techniques 
for the IoT with a general deep learning frame-
work. After presenting the general architecture 
and the proposed framework, we provide an 

overview of existing RF sensing techniques and 
deep learning algorithms. We then review sev-
eral canonical RF sensing applications and pres-
ent three experimental studies that adopt the 
proposed framework. We conclude this article 
with a discussion of challenges and open prob-
lems.
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