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ABSTRACT

In this article, we propose a general deep
learning framework for RF sensing in the loT. We
first present the proposed framework, and then
review various RF sensing techniques, deep learn-
ing techniques, and canonical RF sensing appli-
cations. We apply the proposed framework to
fingerprinting, activity recognition, and vital sign
monitoring using WiFi CSI and present experimen-
tal results. We conclude this article with a discus-
sion of research challenges and open problems.

INTRODUCTION

With the fast advances in mobile devices and com-
munication technologies, various machines and
devices are capable of interacting with each other
within a network, that is, the Internet of Things
(loT) [1]. Many emerging applications benefit
from the development of the loT. In general, loT-
based applications consist of three layers: the sens-
ing layer, the gateway layer, and the cloud layer.
As shown in Fig. 1, the left block represents the
sensing layer, where sensed data is captured by
various sensors, such as accelerometers and gyro-
scopes. Recently, researchers have also utilized RF
signals to capture events in the loT environment
(i.e., RF sensing). While RF signals are transmitted,
reflected, blocked, and scattered by objects like
walls, furniture, vehicles, and human bodies, it is
possible to extract useful information, such as posi-
tion, movement direction, speed, and vital signs of
a human subject, from received RF signals. Unlike
traditional hardware sensors, RF sensing provides
users with low-cost and unobtrusive services. Fur-
thermore, due to the broadcast nature of RF sig-
nals, RF sensing can be used not only to monitor
multiple subjects, but also to capture changes in
the environment over a large area.

The gateway layer in Fig. 1 (the middle block)
transfers sensed signals to the cloud layer (the
right block). Usually, captured signals are ana-
lyzed in the cloud layer with various signal
processing techniques or machine learning algo-
rithms. Recently, there has been considerable
interest in applying deep learning techniques such
as deep autoencoder, convolutional neural net-
work (CNN), and long short-term memory (LSTM)
to RF sensing [2-4]. Traditional machine learn-
ing algorithms, such as support vector machine
(SVM) and K-nearest neighbor (KNN), are effec-
tive for relatively small datasets and easy classifi-
cation tasks.

They do not scale well with increased numbers
of samples. Moreover, SVM and KNN require
careful data preprocessing and parameters selec-
tion to avoid over-fitting and under-fitting. For
example, principal component analysis (PCA) is
always required for feature extraction with tradi-
tional machine learning. Deep learning can handle
large datasets and complex classification tasks to
obtain higher classification accuracy. Moreover,
deep learning models can predict well, although
they are highly over-parametrized. Finally, deep
learning algorithms also have great potential to
process high dimensional data that could not be
effectively handled by shallow machine learning
algorithms.

In this article, we present a general deep learn-
ing framework for RF sensing in the loT, along
with several experimental case studies, and a dis-
cussion of challenges and open problems. The
general architecture is presented in the follow-
ing section, where various RF sensing techniques,
including WiFi, RF identification (RFID), acous-
tics, ultra-wideband (UWB), and three represen-
tative deep learning algorithms, including deep
autoencoder, CNN, and LSTM, are examined in
detail. Next, we review three canonical RF sensing
applications, including indoor localization, activ-
ity recognition, and health sensing, and present
three experimental case studies by applying the
proposed framework. We then discuss challenges
and research directions for RF sensing with deep
learning, including utilizing multiple data sourc-
es, exploiting new spectra for RF sensing, moving
deep learning from the cloud to the edge and/or
mobile devices, security and privacy issues, and
deep learning theory. The final section concludes
this article.

GENERAL DEEP LEARNING FRAMEWORK FOR
RF SENSING

THE GENERAL FRAMEWORK
We present a general framework to leverage deep
learning techniques for RF sensing applications.
As shown in Fig. 2, various types of RF signals
can be utilized as inputs to deep learning algo-
rithms, such as WiFi, RFID, UWB, and acoustics.
Data pre-processing is an essential step before
employing deep learning algorithms. Compared
to traditional shallow machine learning techniques,
such as SVM and KNN, feature extraction is not
necessary in our framework, because deep learn-
ing has an excellent ability to represent data and
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extract features from data. In fact, the pre-process-
ing step needs to first obtain calibrated data from
RF signals, where randomness errors, such as the
packet boundary detection (PBD) error, sampling
frequency offset (SFO), and central frequency off-
set (CFO), are removed. For example, calibrated
phase or phase difference between two anten-
nas for RF signals should be implemented in the
pre-processing step. Then, for different deep net-
work architectures, different inputs are obtained in
the pre-processing step. For example, when CNN
is used, images are constructed from the calibrat-
ed phases or amplitudes When LSTM is employed,
signals can be divided into short time series. When
an autoencoder is used, signals can be directly uti-
lized for the proposed deep learning framework.

The proposed framework consists of two stag-
es: an offline training stage and an online pre-
diction stage. In the offline stage, training data is
used to train the deep leaning model. For differ-
ent types of applications, the deep network mod-
els exhibit different potentials. For example, CNN
achieves outstanding performance in image clas-
sification and pattern recognition, since it emu-
lates the natural visual perception mechanism.
LSTM is effective at processing variable-length
input sequences, which makes it highly suited for
time related applications. In the online stage, test
data is fed into the well trained deep network to
provide prediction results. In this stage, strategies
such as Bayesian methods have been used to
optimize the output of the deep network [2]. The
output of the deep network can be directly used
as prediction results, such as in some recognition
and detection applications. When the surrounding
environment changes, the proposed framework
can employ transfer learning to update weights
with small measurement datasets.

RF SENSING TECHNIQUES

Various wireless signals have been used for RF
sensing, such as WiFi, RFID, UWB, and acoustic
signals. Their main features are summarized in
Table 1.

WiFi has become the dominant data access
technology for mobile users in the 2.4 GHz and
5.8 GHz bands (while IEEE 802.17ad uses the 60
GHz band). WiFi access is ubiquitous in many
indoor and outdoor environments, which makes
WiFi an ideal candidate for RF sensing to capture
changes in the environment. Compared to tra-
ditional sensors, WiFi is capable of monitoring a
large and crowded area, but WiFi signals are sus-
ceptible to interference.

There are two types of RFID systems: active
and passive. An active RFID system depends on
the internal power supply to reflect a response
to the reader. Although longer ranges can be
achieved, active RFID systems usually have a high-
er cost and larger form factor. Passive RFID tags
draw much attention because of their smaller size
and lower cost, and no need for power sources.
RFID is limited by its extremely simple design. For
instance, when a reader attempts to read multiple
tags close to each other, there may be collision
among the response signals or large delay if a
medium access control scheme is in place.

UWSB is a carrierless communication technolo-
gy that achieves high date rates by utilizing ultra-
short pulses with a duration of less than 1 ns. Due
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Figure 1. The layered architecture for RF sensing in the loT.
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Figure 2. A general deep learning framework for RF sensing.

to the ultra-short pulses, the power consumption
of UWB is much lower than traditional communi-
cation systems. Ultra-short pulses also mitigate the
multipath effect and enable high-precision time
of flight (TOF) estimation, which is beneficial to
many RF sensing applications. UWB signals can
penetrate materials, and many through-wall imag-
ing systems are proposed to exploit this feature.
Furthermore, because of its unique wide spec-
trum, UWB signals are robust to interference from
other wireless sources.

Although at much lower frequencies, we
include acoustic signals for the sake of complete-
ness. Considering the lower propagation speed
and narrow bandwidth of an acoustic signal, high-
speed resolution can be provided to capture the
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Table 1. Features of RF sensing techniques.
Applications Operation Training methods Comparison with traditional ML
Autoencoder Data compression, signal Restricted Bolzmann Pretraining, unrolling, .
- . ) . 1. Nonlinear transform
7 denoising machine fine-tuning
Image recognition. video 1. Requires relatively large datasets
g€ recos ' Convolutional layer, pooling  Standard 2. Performs well with complex problems such as image
CNN [8] analysis, natural language . .
rocessin layer, fully connected layer backpropagation classification
P g 3. No need to extract features
LSTM [9] Time-series prediction, speech Input gate, output gate, Backpropagation 1. Handle long-range dependency
recognition, activity recognition forget gate through time 2. Better capability to represent data

Table 2. Features of three popular deep learning techniques.

small movements of an object. Acoustic signals
have been exploited for activity recognition and
speed detection based on machine learning and
Doppler shift. However, compared to WiFi and
RFID, acoustic signals can easily be affected by
other sound sources. Acoustic signals transmitted
from smartphones also do not have strong pene-
tration ability. Thus, applications with smartphone
acoustic signals can only be deployed within small
distances.

DEEP LEARNING TECHNIQUES

Deep learning is a branch of machine learning
that achieves multiple levels of representation of
data with a general-purpose learning procedure.
Recently, there has been considerable interest in
applying deep learning to wireless systems, largely
motivated by the huge success of deep learning
in several areas, such as natural language process-
ing, pattern recognition, image classification, and
gaming. In Table 2, we compare the features of
three widely used deep learning models, including
autoencoder, CNN, and LSTM.

Autoencoder Neural Network: An auto-
encoder neural network is an unsupervised
learning algorithm [7].The architecture of the

autoencoder, shown in Fig. 3 (top), is composed
of three parts: an input layer, one or more hid-
den layers, and an output layer. To reconstruct
its own input, the output layer has an identical
number of nodes as the input layer. The number
of nodes in the hidden layers is always smaller
than the number of nodes in the input layer, so
a compressed representation can be extracted
from the input data.

There are three stages in the training pro-
cess, including pretraining, unrolling, and
fine-tuning. In the pretraining stage, each neigh-
boring set of two layers is modeled as a restrict-
ed Boltzmann machine (RBM). Then the deep
network is unrolled to obtain the reconstructed
input with forward propagation. Next, the back-
propagation technique is used to fine-tune the
results. Like PCA, the purpose of the autoen-
coder is to find low-dimensional representations
of the input data. Naturally, the autoencoder
is widely used in data compression and signal
denoising. The first work that utilizes an auto-
encoder in RF sensing is DeepFi [2]. With the
proposed framework in Fig. 2, we can also use
the deep autoencoder for activity recognition
and health sensing.
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Convolutional Neural Network: CNN is
inspired by emulating the natural visual perception
mechanism of living creatures, and consequent-
ly, CNN has achieved great success in computer
vision. The first CNN architecture was LeNet-5 [8].
In Fig. 3, the convolution and subsampling opera-

Autoencoder

Compressed
data

' ; ) . Original Learned
tions of LeNet-5 are first applied to the input data data representation
in the convolutional layer and subsampling layer,
respectively. After two groups of such computa-
tion, the output of the higher layer is processed
by a fully connected neural network, where the Encode Decode
final classification results are improved.
In 2015, a residual learning framework, called CNN
ResNet, was proposed by Microsoft Research l Feature Feature Feature  Feature o
[10]. The 152-layer residual network achieves 22532 maps maps maps maps zogpltit]
an error rate of 3.57 percent on the ImageNet 4@20x20 4@10x10  8@B8  B@4x4

test set, and won first place in the ILSVRC 2015
classification competition. To solve the vanish-
ing gradient problem caused by greatly increased
depth, the residual module creates a shortcut
path between the input and output, which implies
an identity mapping.

The great performance of CNNs also attracts
RF sensing researchers’ attention. For example,
ResLoc [4], an indoor localization system with
commodity 5 GHz WiFi, uses bimodal channel
state information (CSI) tensor data to train a deep
residual sharing learning. ResLoc has achieved
superior performance and outperformed several
existing deep-learning-based methods [4].

Long Short-Term Memory: The LSTM model,
shown in Fig. 3, is proposed to handle data with
long-term dependencies [9]. Unlike the traditional
RNN, an LSTM unit utilizes three gates to con-
trol the data flow. An input gate decides if a new
value could flow into the memory; a forget gate
controls if a value should remain in memory; and
an output gate determines if the value in memo-
ry could be used to compute the output of the
unit. These gates ensure the effectiveness of gra-
dient-based optimization methods in training the
LSTM. LSTM has been used widely in machine
translation, speech recognition, and time-series
prediction, with emerging applications in RF sens-

ing.
APPLICATIONS AND EXPERIMENT RESULTS

RF SENSING APPLICATIONS

Indoor Localization: Recently, deep learning
has been employed for indoor fingerprinting,
which is a model-free approach. The representa-
tion work is DeepFi [2], which exploits CSI ampli-
tude data for fingerprinting. To build a fingerprint
database, WiFi CSI values are collected at each
test position and used to train a deep autoencod-
er. In the online phase, a probabilistic method
based on the radial basis function is employed
for location estimation. The difference between
traditional fingerprinting methods and DeepFi is
that the trained weights of the deep autoencoder
network are utilized as fingerprints. This is a much
more effective way to extract the features of the
CSI values from every test location. DeepFi is a
special case of the proposed deep learning frame-
work, which can be used for indoor localization
with different deep network architectures and dif-
ferent RF signals [4].

Activity Recognition: Activity recognition is
the key component of many useful RF sensing

e
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\Ct
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Convolution

Figure 3. Three popular deep learning networks: CNN (top), autoencoder

(middle), LSTM (bottom).

applications, such as fall detection and security
surveillance. The idea is to classify activities based
on extracted features from RF signals. Different
feature extraction and classification models have
been explored, such as PCA, anomaly detection,
DWT, and hidden Markov model (HMM).

Several recent works have utilized deep learn-
ing techniques for classification. For example, a
deep learning architecture that uses only RFID
data for detection of process phases and activities
during a trauma is proposed in [11]. 3D matrices
are generated by processed RFID signals using a
network of three convolutional layers and three
fully connected layers. The CNN is used to classify
the activities into different categories. This system
achieves an average accuracy of 80.40 percent
for recognition of 11 types of activities and an
average accuracy of 72.03 percent for detection
of five phases.

Healthcare Sensing: Long-term monitoring of
vital signs, such as respiration and heartbeat, in
indoor environments has become a hot research
area. Many existing RF-based vital sign monitor-
ing systems rely on specially designed hardware,
such as a Doppler radar or ultra wideband (UWB)
radar. Some other systems employ WiFi signals.
For example, PhaseBeat [3] monitors respiration
and heart rates with commodity WiFi utilizing
CSl phase difference data, where discrete wave-
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By applying deep learn-

ing techniques to new
signals from 5G spec-
tra, RF sensing could
be greatly enhanced
with a stronger data
representation ability,
not only for personal
loT applications such
as indoor localization,

activity recognition, and

healthcare, but also for

other loT applications.
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Figure 4. Performances of localization with deep
autoencoder and CNN networks.

let transform is leveraged to decompose the pro-
cessed phase difference data into respiration and
heart signals, and peak detection and Root-MU-
SIC are used to estimate the respiration rate for a
single person and multiple subjects, respectively.
Fast Fourier transform (FFT) is used for estimating
the heart rate. The median error of PhaseBeat for
respiration rate and heart rate are 0.25 beat per
minute and 1 beat per minute, respectively [3].

EXPERIMENTS AND RESULTS

In the following experiments, a desktop computer
is used as a WiFi access point and a Dell laptop
is used as a mobile device. Both computers are
equipped with an Intel 5300 network interface
card (NIC), and both run the Ubuntu Desktop
14.04 LTS system. To accelerate the training pro-
cess, Keras with tensorflow backend on a PC
with Intel® Core™ i7-6700K CPU and a Nvidia
GTX1070 GPU are used for training.

First, we experiment with ResLoc [4], a deep-re-
sidual-learning-based indoor localization sys-
tem, and DeepFi [2], a deep-autoencoder-based
indoor fingerprinting system, in a computer lab-
oratory with size 6 m x 9 m, where CSI data col-
lected from 30 locations are separated equally
into the training dataset and testing dataset. The
input to ResLoc is bimodal CSI data that includes
CSI amplitude and phase difference, while the
input to DeepFi only contains CSI amplitude. The
cumulative distribution function (CDF) of local-
ization errors are plotted in Fig. 4. The median
errors are about 0.86 m and 1.785 m for ResLoc
and DeepFi, respectively. The maximum errors
for ResLoc and DeepFi are 2.55 m and 2.87 m,
respectively. The results show that deep residual
learning and autoencoder can both achieve accu-
rate indoor localization.

We also leverage the proposed framework
for activity recognition using LSTM. We collect a
CSl dataset that contains CSI amplitude data and
phase difference data. The dataset includes five
types of activities, denoted as “fall, run, sit down,
stand up, and walk.” The LSTM network has two
hidden layers, with 125 hidden units in each layer.
The detection accuracy for the five activities are
95.1,92.3, 91.8, 89.9, and 73.5 percent, respec-
tively. The overall accuracy and average recall are
90.37 and 88.52 percent for all activities, respec-
tively. Only the accuracy of “walk” and “stand”
are below 90 percent, due to the high similarity
between these two activities.

Finally, we apply the proposed framework to
health sensing for an apnea detection application.
Apnea means temporary suspension of breath-
ing during which the volume of the lungs does
not change. LSTM is chosen as the deep learn-
ing model to process CSI data for apnea detec-
tion. We use CSI amplitude and phase difference
that capture the respiration and apnea signals.
We find the overall accuracy for LSTM with CSI
amplitude is 90.16 percent, and that for LSTM
with CSI phase difference is 98.36 percent. The
results show that our deep-learning-based RF sens-
ing framework can effectively detect apnea.

CHALLENGES AND FUTURE DIRECTIONS

FusION OF MULTIPLE DATA SOURCES

As shown in our experimental studies, bimodal
or even multimodal data can improve RF sens-
ing performance. For example, WiFi and light
sensors are both available on smartphones and
can be integrated for indoor localization, where
WiFi and light signals are complementary to each
other. Using bimodal data of WiFi received sig-
nal strength (RSS) and light intensity can increase
data diversity, which results in higher location
accuracy.

The key to exploiting multimodal data is how
to effectively fuse various data. One solution to
train multimodal data is to adopt a multi-chan-
nel deep network architecture, one for each data
source [4, 12]. Signals from different channels
can be fused at intermediate layers [4] and/or at
the output layer [12]. Other deep networks such
as deep reinforcement learning and generative
adversarial networks can also be incorporated for
fusion of multiple data sources to improve sensing
accuracy or reduce cost with small training data.
For effective data fusion, the input data from dif-
ferent sources should be normalized, and data
samples from different sources should be aligned.

EXPLORING NEW SPECTRUM FOR RF SENSING

With the fast growth of 5G technologies, signals
from new spectra, such as the low-bands (below
1 GHz), mid-bands (1 GHz to 6 GHz), and high-
bands (above 24 GHz, e.g., the millimeter-wave,
mmWave, band), could be leveraged for RF sens-
ing. Specifically, the low-bands spectrum can be
utilized for massive loT and mobile broadband;
the mid-band spectrum provides wider band-
widths and can be employed for mission-critical
applications and enhanced mobile broadband
(eMBB); the high-band spectrum provides a
huge amount of bandwidth and can be used for
high-throughput communications. In the literature,
mmWave massive multiple-input multiple-output
(MIMO) has been applied for fingerprinting with
a deep learning approach. Moreover, narrowband
(NB) loT technologies, such as LoRaWAN and
SIGFOX with low power and long range, can also
be leveraged for detecting multiple objects.
Channel estimation based on deep learning
could become an interesting research topic. Some
key parameters, such as amplitude, angle of arriv-
al (AOA), and time of arrival (TOA), from the mul-
tipaths can be predicted from training data with
deep learning. By applying deep learning tech-
niques to new signals from 5G spectra, RF sensing
could be greatly enhanced with a stronger data
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representation ability, not only for personal loT
applications such as indoor localization, activity
recognition, and healthcare, but also for other loT
applications such as smart city, manufacturing,
supply chain management, precision agriculture,
and animal tracking.

FrRoM CLOUD TO EDGE AND MOBILE DEVICES

Deep learning models are usually computation-in-
tensive and require large storage space. For image
and speech recognition applications, usually the
programs are executed at a server or in the cloud.
For RF sensing applications, it would be more
appealing to execute the deep learning models at
the edge or mobile devices to avoid large delay
for better user experience [13].

The challenge is how to execute deep learn-
ing models at the relatively more resource-con-
strained edge or mobile devices. To this end,
compressed deep network can be utilized for RF
sensing on edge devices, and parallel and distrib-
uted deep learning are suitable for execution on
edge and mobile devices. Finally, graphic pro-
cessing unit and field-programmable-gate-array-ac-
celerated hardware can be used at the edge or
mobile devices to greatly accelerate the computa-
tion for RF sensing applications.

SECURITY AND PRIVACY PRESERVATION

By leveraging features of multi-path RF signals,
deep learning can be used to classify eavesdrop-
ping, denial of service attack, bad data injection,
and intrusion detection in smart homes. Specifical-
ly, deep LSTM networks can be used for realtime
intrusion detection. RF sensing can be incorporat-
ed for user authentication with different RF signals
such as WiFi, RFID, acoustics, and UWB, where
implicit authentication can be used.

Deep learning security has become a hot
research topic recently [14]. The main challenge
is how to recognize adversarial data and clean
data. An attacker can easily inject noise or jam-
ming signals to RF sensing signals. Such adversar-
ial data should be recognized in the beginning
stage. Another challenge is how to preserve user
privacy. While RF signals mostly propagate in all
directions, it is important to prevent an illegitimate
user from detecting a user’s location or monitor-
ing a patient’s vital signs.

DEEP LEARNING THEORY

To explain why deep learning can achieve promis-
ing performance, opening the black box of deep
learning has become a hot research topic recent-
ly. Researchers are tackling three main issues:

+ The expressive power that defines deep net-
works’ ability from depth, width, and layer
type to approximate functions

+ The generalization capability that explains why
the deep learning models can predict well
although they are highly over-parametrized

+ Optimization of the empirical loss that consid-
ers why stochastic gradient descent (SGD) on
the non-convex empirical loss is effective [15]

CONCLUSIONS

In this article, we discuss RF sensing techniques
for the loT with a general deep learning frame-
work. After presenting the general architecture
and the proposed framework, we provide an

overview of existing RF sensing techniques and
deep learning algorithms. We then review sev-
eral canonical RF sensing applications and pres-
ent three experimental studies that adopt the
proposed framework. We conclude this article
with a discussion of challenges and open prob-
lems.
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Deep learning security
has become a hot
research topic recently
[14]. The main challenge
is how to recognize
adversarial data and
clean data. An attacker
can easily inject noise
or jamming signals to
RF sensing signals. Such
adversarial data should
be recognized in the
beginning stage. Anoth-
er challenge is how to
preserve user privacy.
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